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Abstract

It is shown that the maximal number of edges in an n-vertex graph con-
taining no cycle of length six has order of magnitude 1

2n4/3.

1 Introduction

The forbidden subgraph problem, commonly known as a Turán-type problem, involves

the determination of the maximum number of edges that an n-vertex graph may have

if it contains no isomorphic copy of a fixed graph H. This number is called the Turán

number for H, and denoted t(n,H). Apart from its intrinsic interest, this type of

problem has drawn considerable attention since the early 1940s because many graphs

arising from natural algebraic constructions (for example, Cayley graphs and incidence

graphs of projective geometries) are known not to contain certain subgraphs. The case

of the complete graph Kr was studied by Turán in [20], where it was shown that:

t(n,Kr) =
∑

1≤i<j≤r−1

⌊
n + i− 1

r − 1

⌋
·
⌊

n + j − 1

r − 1

⌋

Here, and in what follows, the notation an ∼ bn is used as shorthand for the statement

limn→∞ an/bn = 1. In words, we say that an has order of magnitude bn.

When the forbidden subgraph H is not bipartite, the Turán problem is well understood.

The Erdős-Simonovits-Stone Theorem [8] asserts that as long as H is not bipartite,

t(n,H) ∼
(

1− 1

χ− 1

)(
n

2

)
,

where χ is the chromatic number of H. Simonovits [19] further showed that if the

chromatic number of H decreases under deletion of any edge of H, and n is sufficiently

large, then t(n,H) = t(n,Kχ), generalizing Turán’s Theorem.
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When the forbidden subgraph H is bipartite, much less is known. Kövari, Sós and

Turán [13] showed that for the complete bipartite graph Kr,s with r ≤ s, t(n,Kr,s) =

O(n2−1/r), and therefore, for each bipartite graph H, there is a constant c > 0 such that

t(n,H) = O(n2−c). Erdős and Simonovits [9] conjectured that for every bipartite graph

H there are positive constants a, α such that t(n,H) ∼ an1+α. In particular, it has

been a major long-standing open problem in combinatorics to estimate the maximum

size of a graph on n vertices containing no cycle of length 2k, or 2k-gon. Such a cycle

is denoted by C2k. The order of magnitude of t(n,C2k) is not known for any integer

k > 2. In the case k = 2, it was proved independently by Reiman [17], Brown [5] and

Erdős, Rényi and Sós [7] that t(n,C4) ∼ 1
2
n3/2. Füredi [11] showed that for any prime

power q > 13,

t(q2 + q + 1, C4) =
q(q + 1)2

2
.

In fact, Füredi characterized in [10] the unique extremal graph on q2 + q + 1 vertices

which achieves the above equality.

This paper settles the next unknown case, namely k = 3. We establish the order of

magnitude of t(n,C6), the Turán Number for the hexagon, thereby answering affirma-

tively a question posed by Erdős and Simonovits in [9]:

Theorem 1.1 The Turán Number for the hexagon has order of magnitude 1
2
n4/3.

By considering polarities in certain rank two geometries, Lazebnik, Ustimenko and

Woldar [15] constructed, for every prime power q, a graph on q3 + q2 + q + 1 vertices

with 1
2
(q + 1)(q3 + q2 + q + 1) − 1

2
(q2 + 1) edges, and which contains no hexagon. In

other words, for infinitely many n,

t(n,C6) ≥ 1

2
n4/3 +

1

3
n + O(n2/3).

It is known that for some θ < 1 and every sufficiently large integer n, there is a

prime in the interval [n − nθ, n] (for example, a recent result of Baker, Harman and

Pintz [1] shows we can take θ = 21/40). A straightforward calculation now shows the

construction mentioned above implies, for all n, that

t(n,C6) ≥ 1

2
n4/3 −O(n1+θ/3).

Therefore, in order to prove Theorem 1.1 it suffices to show that t(n,C6) ≤ 1
2
n4/3 +

o(n4/3). We prove that:

t(n,C6) ≤ 1

2
n4/3 + O(n10/9).
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The best known result prior to Theorem 1.1 is due to Füredi [12], who proved that

t(n,C6) ≤ 0.532n4/3 − o(n4/3). The only other value of k for which t(n,C2k) is known

up to a constant factor is k = 5 (a simplification of the original construction, due

to Benson [2], may be found in Wenger [22]). In the current state of knowledge, the

best known bounds for t(n,C2k) valid for all k ≥ 2 are cn1+2/(3k) from below for some

positive constant c, via constructions due to Lazebnik, Ustimenko and Woldar [15],

and 8(k − 1)n1+1/k from above by Verstraëte [21]. We refer to the survey [4] for an

exposition of related problems and results in extremal graph theory.

In [9], Erdős and Simonovits conjectured that for every integer k ≥ 3, t(n,C2k) ∼
1
2
n1+ 1

k . The present article shows that this is indeed the case for k = 3, while the case

k = 5 was disproved in [14]. The case k = 4 seems to be a challenging problem. We

believe that our methods yield interesting bounds for other values of k, but we chose

to present a self-contained exposition of the complete solution of the case k = 3. The

discussion of other applications and generalizations of our approach is deferred to a

second paper on the same topic.

2 A Regularization Lemma

In this section, we present the a key lemma in the proof of Theorem 1.1. This lemma,

which may be referred to as a regularization lemma, implies that the Turán number

for the hexagon is of the same order of magnitude as the maximum number of edges

in an almost regular n-vertex hexagon-free graph. To prove this result, we require the

following proposition, the first part of which is due to Sárkőzy [18] when c = 180. We

improve this result in [16], by replacing the constant c with the optimal constant c = 1.

The second part of the the proposition below is well known (see for example [21]).

Proposition 2.1 If H is an m×n hexagon-free bipartite graph then, for some absolute

constant c ≥ 1,

e(H) ≤ c
[
(mn)2/3 + n

]
.

Furthermore, for all n, t(n, C6) ≤ cn4/3.

The following terminology is required: a spanning subgraph of a graph G on vertex set

V is a subgraph of G containing all vertices of V . For sets S, T ⊂ V , e(S, T ) denotes

the number of edges with one vertex in S and one in T . The number of edges in G,

denoted e(G), is sometimes referred to as the size of G. We write d(v) for the number

of edges containing v.

We now proceed to the regularization lemma:
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Lemma 2.2 Let G = (V, E) be an n-vertex hexagon-free graph. Then for every positive

∆ < n1/2, G contains a spanning subgraph of maximum degree at most ∆ and size at

least:

e(G)− (6c)3
( n

∆

)2

,

where c is as in Proposition 2.1.

Proof. For each t, let St = {v ∈ G : d(v) ≥ t}. We will show, for t ≤ √
n, that

|St| ≤ (4c)3n2/t3. This is clearly true if t ≤ 4c|St|1/3, so we assume t ≥ 4c|St|1/3. Now,

by the second assertion in Proposition 2.1, the number of edges in St is at most c|St|4/3.

Therefore

e(St, V \ St) ≥ |St|t− c|St|4/3 ≥ 1

2
|St|t.

On the other hand, by Proposition 2.1,

e(St, V \ St) ≤ c|St|2/3n2/3 + cn.

Comparing these bounds, we obtain |St| ≤ (4c)n/t or |St| ≤ (4c)3 n2

t3
. For t ≤ b√nc,

therefore, |St| ≤ (4c)3n2/t3. Let S = Sb√nc+1. Then, as above, e(S, S) ≤ c|S|4/3 and:

e(S, V \S) ≥ |S|(b√nc − c|S|1/3) ≥ |S|√n− 2c|S|2/3n2/3.

Applying Proposition 2.1, we also find

e(S, V \S) ≤ c(|S|n)2/3 + cn.

A routine calculation now shows that |S| < (6c)3
√

n. Hence the total number of edges

induced by S in G satisfies:

e(S, S) + e(S, V \S) ≤ c|S|4/3 + c(|S|n)2/3 + cn ≤ 1

2
(6c)3n ≤ (6c)3n2

2∆2
.

We now greedily delete edges from G. First delete the edges incident with at least one

vertex of S. Then start with the set of vertices of G of degree b√nc, and delete one

edge per vertex of this set. In general, having reached a subgraph of G of maximum

degree t <
√

n, delete one edge per vertex of degree t in this subgraph of G. Continuing

this procedure b√nc −∆ steps, we obtain a spanning subgraph G̃ of G, of maximum

degree at most ∆ and

e(G̃) ≥ e(G)−
b√nc∑

t=∆+1

|St| − (6c)3n2

2∆2

≥ e(G)−
n∑

t=∆+1

(4c)3n2

t3
− (6c)3n2

2∆2

≥ e(G)−
∫ ∞

∆

(4c)3n2

t3
dt− (6c)3n2

2∆2
≥ e(G)− (6c)3n2

∆2
.
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3 Small Subgraphs

In this section, we analyze the interaction between certain dense subgraphs of a hexagon-

free graph G, namely triangles and complete bipartite graphs. We will conclude, in a

sense made precise later, that there are few triangles and complete bipartite subgraphs

K2,t in a hexagon-free graph. Some further notation is required first. A path (or cycle)

in a graph G is represented by a sequence of vertices, for example, (v1, v2, v3) denotes a

path of length three. For t ≥ 2, we call a complete bipartite graph K2,t ⊂ G maximal

if it is not properly contained in any other complete bipartite subgraph of G. The set

of all maximal complete bipartite subgraphs of a graph G is denoted B(G).

Lemma 3.1 The number of maximal complete bipartite subgraphs of a hexagon-free

graph G, containing an edge e, is at most eleven. In particular,

∑

K∈B(G)

e(K) ≤ 11e(G).

Proof. Let G1, G2, . . . , Gk be maximal complete bipartite subgraphs of G. The number

of complete bipartite subgraphs of K5, the complete graph on five vertices, containing

a fixed edge of K5, is exactly nine. It is therefore sufficient to show that for some set

S of at most two integers, ∣∣∣
⋃

t 6∈S

V (Gt)
∣∣∣ ≤ 5.

Indeed, it then follows that k ≤ 11. We first observe that since G doesn’t contain

a hexagon, for any two quadrilaterals Qi ⊂ Gi and Qj ⊂ Gj, both containing e,

|V (Qi) ∩ V (Qj)| ≥ 3, otherwise the edges of Qi ∪Qj distinct from e form a hexagon.

There are now three possibilities:

(1) For all i, j, Qi ∪Qj
∼= K2,3

(2) There exist i, j such that Qi ∪Qj
∼= K4, or

(3) There exist i, j such that Qi ∪Qj consists of a pentagon,

C, and two diagonals incident at some vertex v ∈ V (C).

Let Ai and Bi denote the parts in the complete bipartite graph Gi, with |Ai| ≥ |Bi| = 2.

Suppose (1) holds. By the maximality of Gi and Gj, we necessarily have that |Ai| ≥ 3

and |Aj| ≥ 3. For the same reason, Bj ⊂ Ai, otherwise Gi is contained in a complete

bipartite graph with parts Ai ∪ Bj and Bi. By the maximality of Gj, Aj 6= Bi. If

Aj\(Ai ∪Bi) 6= ∅, then there is a hexagon containing a vertex of Aj\(Ai ∪Bi) 6= ∅, the

edge e, and all of Bi. Therefore

Aj\(Ai ∪Bi) = ∅.
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As Aj 6= Bi, there is a vertex v ∈ Ai ∩ Aj, adjacent to all of Bj. If |Ai| ≥ 4, then

we find a hexagon containing v, all of Bi, all of Bj and any vertex of Ai\({v} ∪ Bj).

Therefore |Ai| = |Aj| = 3, V (Gi) = V (Gj), and |V (Gi)| = |V (Gj)| = 5. As this holds

for all i, j, we are done. So we assume that for some i, j, (2) or (3) holds.

Suppose (3) holds for some i, j, and e = {b, c}. Then we may write C = (v, a, b, c, d, v),

where Qi = (v, a, b, c, v) and Qj = (v, b, c, d, v). If u is any vertex not on C adjacent

to two vertices of C, then u is adjacent to v and b, or to v and c, otherwise we find a

hexagon with vertex set V (C)∪ {u}. If V (Gt) ⊂ V (Qi)∪ V (Qj) for all t 6∈ {i, j}, then

set S = {i, j}. Suppose Gt 6⊂ V (Qi)∪V (Qj) for some t 6∈ {i, j}. As |V (Qt)∩V (Qi)| ≥ 3

and |V (Qt) ∩ V (Qj)| ≥ 3, there is a quadrilateral Qt ⊂ Gt, containing e, and a unique

vertex u ∈ V (Qt)\(V (Qi) ∪ V (Qj)). We observed that u is adjacent to v and b or v

and c. Suppose u is adjacent to v and b. Then Gi and Gt consist of a union of paths of

length two between v and b. By maximality, this implies Gi = Gt. So, with S = {i, j},
we are done in the case (3). Suppose (2) holds, and Qi = (v, a, b, c, v) and e = {b, c}.
If V (Qt) ⊂ V (Qi) for all t 6∈ {i, j}, then we are done with S = {i, j}. So we assume

there is t 6∈ {i, j} such that V (Qt) 6⊂ V (Qi). Since |V (Qi) ∩ V (Qt)| ≥ 3, there is a

unique vertex u ∈ V (Qt)\V (Qi) with two neighbors in Qi. Then at least one of the

graphs Qi ∪Qt or Qj ∪Qt satisfies (3).

The number of triangles in a graph G is denoted T (G).

Lemma 3.2 Let G = (V,E) be an n-vertex hexagon-free graph with at least n edges, of

maximum degree ∆. Then T (G) ≤ 3e(G), and the number of subgraphs of G isomorphic

to a graph consisting of two edge-disjoint triangles intersecting in one vertex is at most
9
4
∆e(G).

Proof. For any vertex v of G, denote by Gv the graph spanned by all edges in the

neighborhood of a vertex v ∈ G. Since G is hexagon-free, Gv contains no path of length

four. Therefore, by the Erdős-Gallai Theorem [6], e(Gv) ≤ 3
2
d(v) and

T (G) ≤
∑
v∈V

e(Gv) ≤ 3

2

∑
v∈V

d(v) = 3e(G),

as required. For the second part, the number of ways of selecting a pair of triangles

incident with a single vertex equals the number of way of choosing a vertex v ∈ V , and

then choosing two edges of Gv, which can be bounded as follows:

∑
v∈V

(
e(Gv)

2

)
≤

∑
v∈V

(
3d(v)/2

2

)
<

9

8

∑
v∈V

d(v)2.
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As G has maximum degree ∆, the vector
(
d(v)

)
v∈G

can only take values in the polytope

K = [1, ∆]V ∩ (
2e(G) · ΣV

)
,

where ΣV is the standard simplex in RV . Since the convex function (xv)v∈V 7→
∑

v∈V x2
v

attains its maximum on K at a vertex of K, it is straightforward to verify that:

∑
v∈V

d(v)2 < ∆2

⌊
2e(G)

∆

⌋
+

(
2e(G)−∆

⌊
2e(G)

∆

⌋)2

≤ 2e(G)

∆
·∆2 = 2∆e(G).

Let G be a graph with vertex set V . For every {u, v} ⊂ V , we write P{u,v} for the

set of paths of length three between u and v in G, and G{u,v} for the subgraph of G

consisting of the union of all paths in P{u,v}. For a vertex v ∈ G, G − v denotes the

graph on V \{v} consisting of all edges disjoint from v.

Lemma 3.3 Let G be an n-vertex hexagon-free graph of maximum degree ∆, and let

X = {x : |Px| ≥ 3}. Then

∑
x∈X

|Px| < 36∆e(G).

Proof. Fix a pair {u, v} = x ∈ X. As G contains no hexagon, the edges of Gx disjoint

from u and v form an intersecting family. It follows that Gx − u − v is a triangle or

a star. If Gx contains a maximal K2,t for some t ≥ |Px|, then denote such a maximal

K2,t by K∗
x. Otherwise, as |Px| ≥ 3, by definition of X, Gx contains a pair of triangles

intersecting in one vertex and |Px| = 3; let Y be the set of such pairs x ∈ X. If

H denotes a graph comprising of two triangles intersecting in one vertex, then it is

straightforward to check that for every subgraph L ⊂ G isomorphic to H,

|{y ∈ Y : Gy ⊂ L}| ≤ 2.

Therefore, by Lemma 3.2,

∑
y∈Y

|Py| =
∑
L⊂G
L∼=H

∑
y∈Y

L⊂Gy

3

=
∑
L⊂G
L∼=H

3 |{y ∈ Y : Gy ⊂ L}| ≤
∑
L⊂G
L∼=H

6 ≤ 27

4
∆e(G) < 14∆e(G).
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Consider x ∈ X\Y . By the definition of Gx and Y , K∗
x is also a maximal complete

bipartite subgraph of G. The number of pairs z ∈ X for which K∗
z = K∗

x is at most

2∆, since G has maximum degree at most ∆. By Lemma 3.1,
∑

x∈X\Y
|Px| ≤

∑

K∈B(G)

2∆ · e(K) ≤ 22∆e(G).

Adding the two inequalities above, the proof is complete.

Lemma 3.4 Let G be an n-vertex hexagon-free graph of maximum degree ∆, and let

Z = {z : |Pz| = 2}. Then ∑
z∈Z

|Pz| ≤ 85∆e(G).

Proof. As in the proof of Lemma 3.3, either Gz contains two triangles intersecting in

one vertex, or Gz contains a quadrilateral Cz. Denote by Z ′ the set of all pairs z ∈ Z

for which Cz exists. By Lemma 3.2, the pairs in Z \Z ′ account for 5∆e(G) in the sum

above. Let W = {z ∈ Z ′ : Cz ∈ B(G)}. As the maximum degree of G is ∆, given a

quadrilateral C ⊂ G, the number of pairs w ∈ W for which Cw = C is at most 4∆. By

Lemma 3.1,

∑
w∈W

|Pw| ≤ 4∆
∑
w∈W

e(Cw) ≤ 44∆e(G).

For z ∈ Z\W , i.e. when Cz 6∈ B(G), there exists a pair x ∈ X such that Cz ⊂ K∗
x,

where X is defined in Lemma 3.3. By Lemma 3.3, it follows that

∑

z∈Z′\W
|Pz| ≤ 36∆e(G).

4 The Turán Number for the Hexagon

We now prove Theorem 1.1. Let G = (V,E) be an n-vertex hexagon-free graph.

We may assume that G has size at least 1
2
n4/3, or we are done. By applying the

regularization lemma with ∆ = n4/9, we may pass to a subgraph of G of maximum

degree at most ∆ and size at least e(G) − O(n10/9). In what follows, we therefore

suppose that G has maximum degree at most ∆. The number of paths of length three

in G is precisely
∑

{u,v}∈E

[d(u)− 1][d(v)− 1]− 3T (G) =
∑

{u,v}∈E

d(u)d(v)− 2
∑
v∈V

d(v)2 + e(G)− 3T (G).
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By the Blakley-Roy Inequality [3], for any symmetric matrix S with non-negative

entries and any vector x with non-negative entries,

〈
S3x, x

〉 ≥
〈
Sx, x

〉3

‖x‖2
.

Letting S be the adjacency matrix of G, and x = (1, 1, 1 . . . , 1) ∈ Rn, we find that

∑

{u,v}∈E

d(u)d(v) =
1

2

〈
S3x, x

〉 ≥ 4e(G)3

n2
.

As G has maximum degree ∆, it is straightforward to verify (as in Lemma 3.2) that:

2
∑
v∈G

d(v)2 ≤ 4∆e(G).

By Lemma 3.2, 3T (G)− e(G) ≤ 8e(G) = O(∆e(G)). We therefore conclude that

∑
x⊂V

|Px| >
4e(G)3

n2
−O(∆e(G)).

By Lemma 3.3 and Lemma 3.4, the number of paths of length three in G is

∑
x⊂V

|Px| =
∑
x⊂V
|Px|=1

|Px| +
∑
x⊂V
|Px|≥2

|Px| ≤
(

n

2

)
+ O(∆e(G)).

Comparing the inequalities above, we have

4e(G)3

n2
≤

(
n

2

)
+ O(∆e(G)).

Solving for e(G), we find

e(G) ≤ 1

2
n4/3 + O(n10/9).

This concludes the proof of Theorem 1.1.
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