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Algebra I: Section 4. Transformation Groups

4.1 Actions of a group G on a space X.

Let G be a group and X a set.

4.1.1 Definition. A group action is a map τ : G ×X → X that assigns to each pair (g, x)
in the Cartesian product set G ×X an element τ(g, x) = g · x in X. If we write τg(x) = g · x
we get a mapping τg : X → X for each g ∈ G. We require the action to have the following
properties.

(1)

(a) For each g ∈ G, τg is a bijection. Hence τg ∈ Per(X), the group of all
permutation mappings on X.

(b) For each g1, g2 ∈ G we have τg1g2(x) = τg1(τg2(x)) – i.e. g1g2 ·x = g1 ·(g2 ·x).
The latter property is what makes τ a left action (covariant action) on
X; there is a similar definition for right actions, but they won’t play a
role in our discussion.

(c) τe(x) = x for all x ∈ X, so that τe = id
X
.

It follows from (1) that each operator τg is invertible, and that (τg)
−1 = τg−1 , because we have

τg ◦ τg−1 = τe = id
X
. �

The τg are “transformations” of X . It follows from (1) that the map Φ : G→ (Per(X), ◦) given
by Φ(g) = τg is a homomorphism from G to the group of permutations on X , in which the
product is composition of operators: σ1 ◦ σ2(x) = σ1(σ2(x)). The kernel of the homomorphism
Φ : G → Per(X) is {g ∈ G : τg = id

X
}. It is often referred to as the kernel of the action

G×X → X , or simply the action kernel.

4.1.2 Definition. Given a group action G × X → X, each point x0 ∈ X has a G-orbit
G · x0 = {g · x0 : g ∈ G}. We say that the action G×X → X is transitive if there is just one
orbit:

(2) For all x, y ∈ X, there exists a g ∈ G such that g · x = y

or equivalently, G · x = X for any x. �

In X there is a natural an RST relation R such that

(3) x ∼
R
y ⇐⇒ ∃g ∈ G such that y = g · x

It is easily verified that R is reflexive, symmetric and transitive. Furthermore, the equivalence
class of a point x0 under R is precisely its G-orbit, so

[x0] = {y ∈ X : y ∼
R
x0}

= {y ∈ X : ∃g ∈ G such that y = g · x0}(4)

= {g · x0 : g ∈ G} = (G-orbit of x0)

Thus X splits into disjoint G-orbits which fill X .

4.1.3 Exercise. Verify that the relation R defined in (3) is reflexive, symmetric, and transitive:
(i) x ∼

R
x, (ii) x ∼

R
y ⇒ y ∼

R
x, (iii) x ∼

R
y and y ∼

R
z ⇒ x ∼

R
z. �

4.1.4 Examples. Let G be any group.
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(a) Take X = G and τg(x) = gx (left translation by the element g). Clearly
τg1g2(x) = τg1(τg2 (x)) and τe(x) = x, for all x. Each τg is a bijection on
X = G because id

G
= τe = τg ◦ τg−1 ; obviously (τg)

−1 = τg−1 . This is the
action of G on itself by left translations. It is a transitive action. The action
kernel is trivial because τg(x) = gx = x for all x implies (by cancellation)
that g = e. �

(b) Take G = Sn (permutations on n objects) and X = {1, 2, . . . , n}, with the
obvious action of σ ∈ Sn on the integers 1 ≤ k ≤ n. (Sn is in fact defined as
a group of transformations acting on this space X .) The action is transitive:
given i 6= j the two-cycle σ = (i, j) satisfies σ(i) = j, but many other
permutations work too. The action kernel, kerΦ = {σ ∈ Sn : σ(i) = i, all i},
obviously reduces to the identity operator on X . �

(c) The group of matrices G = GL(n,F) = {n× n matrices A : detA 6= 0} acts
as F-linear operators on the vector spaceX = F

n of n-tuples x = (x1, . . . , xn)
if we define

(5) τA(x) = Ax (matrix product (n× n) · (n× 1))

Since detA 6= 0, τA is invertible and hence a bijection. It is obvious that
τ

I
= id

X
(I = n× n identity matrix) and τAB = τA ◦ τB . This action is not

transitive. For one thing, the zero vector 0 has A0 = 0 for all A, so G ·0 = 0
is a single point. On the other hand if x0 = e1 = (1, 0, . . . , 0) it is not hard
to construct linear operators that move x0 to any other nonzero vector y;
thus G · x0 = {x ∈ F

n : x 6= 0} is the only other orbit. �

(d) Let G be the group of all rotations Rθ about the origin in X = R2. The
operator Rθ rotates each vector x counterclockwise by θ radians. Recall that

Rθ′ = Rθ if and only if θ′ = θ + 2πk for some k ∈ Z

R0 = id
X

when θ = 0

Rθ1+θ2 = Rθ1 ◦Rθ2 for all θ1, θ2 ∈ R

R−θ = (Rθ)
−1

Obviously G congSO(2).
We have a group action because G is defined as a group of bijective linear
transformations of X = R2, with composition as the group operation. The
action is not transitive. There are two types of orbits:

O0 = G · 0 = 0 (a one-point orbit)

Or = {x : ‖x‖ = r} = G · (r, 0) (a circle of radius r > 0).

The action kernel is trivial. �

(e) Permutation action of G on a coset space G/H. Here G is any group,
H any subgroup, and X = G/H = the space of cosets xH . We define a left
action G×G/H → G/H in the obvious way

τg(xH) = gxH τg : G/H → G/H

The rules (1) are satisfied, and τg is a bijection because if we are given cosets
xH, yH we get τg(xH) = τg(yH) ⇔ gxH = gyH ⇔ xH = yH in G/H . The
action is also transitive: given cosets xH, yH the group element g = yx−1

moves xH to yH .
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This action is called the permutation representation of G on G/H because the
map Φ(g) = τg is a homomorphism from G into the group of permutations
(Per(G/H), ◦). This homomorphism can have nontrivial kernel, and hence
different group elements g1 6= g2 could produce the same effect on G/H . Two
extreme cases are worth noting. If H = G then X = G/H consists of a single
point and the action is not very interesting (kerΦ = G). If H = {e} then
G/H = G and the permutation action becomes the action of G on itself by
left translations, described above. �

In a little while we will prove a remarkable result connecting algebra and geometry (Theorem
4.2.4):

If G × X → X is a transitive group action, there exists a subgroup H ⊆ G such
that the given action on X is really “equivalent to” – i.e. is a “disguised version
of” – the permutation action G ×G/H → G/H on cosets of H . The latter action
is defined, and can be studied, in purely algebraic terms.

We continue with some particularly important entries in our catalog of group actions, and prove
some theorems leading up to an explanation of the preceeding comment.

4.1.5 Theorem (Cayley’s Theorem). If G is any finite group then G is isomorphic to some
subgroup of the permutation group Sn, n = |G|.

Proof: The action of G on itself by left translations, τg(x) = gx, gives a homomorphism
Φ : G → Per(X) where X = G. Relabeling points in G as g1 = e, g2, . . . , gn, we can view this
as a homomorphism Φ : G → Sn where X = {1, 2, . . . , n}. Each τg is a bijection. The kernel
of the action is kerΦ = {g ∈ G : τg = id

X
}. But X = G, and τg = id

X
⇔ gx = x for all

x ⇔ g = e. Hence kerΦ is trivial and Φ is one-to-one. The range H = Φ(G) is a subgroup of
Sn, and since Φ maps G one-to-one onto H we see that G ∼= H as required �

We have shown that all finite groups are already present as subgroups of Sn for n sufficiently
large. But Sn is a huge and unwieldy group, since |Sn| = n! It may be possible to realize G
within a smaller group of permutations: we could try the permutation action G×G/H → G/H
for suitably chosen subgroups H ⊆ G. (In Cayley’s theorem we took H = {e}.) The map
Φ : G → Per(G/H), φ(g) = τg, is always a homomorphism and its range M = Φ(G) is always
a subgroup; Φ is an isomorphism making G ∼= M if and only if kerΦ is trivial. To see when
this happens we must compute K = kerΦ. That is an interesting calculation. Note that

g ∈ kerΦ ⇔ τg(xH) = xH, ∀x ∈ G⇔ gxH = xH, ∀x ∈ G

⇔ (x−1gx) ·H = H, ∀x ∈ G

⇔ (x−1gx) ∈ H, ∀x ∈ G

⇔ g ∈ xHx−1, ∀x ∈ G

⇔ g ∈
⋂

x∈G

xHx−1

The intersection is a subgroup M in G, being an intersection of subgroups; it is also normal in
G. In fact y(

⋂

x xHx
−1)y−1 =

⋂

x(yx)H(yx)−1, but yx runs through all of G as x runs through
G, so the last intersection is just

⋂

z∈G zHz
−1 = M . Hence yMy−1 = M for any y and M ⊳G.

Finally, note that M ⊆ H because H = eHe−1 is one of the groups in the intersection that
defines M . This leads to the following natural identification of M = kerΦ.

(6)

For the permutation action G×G/H → G/H , the action kernel kerΦ is the
largest subgroup M ′ in G such that: (i) M ′ is normal in G, (ii) M ′ ⊆ H . In
particular, kerΦ is trivial if and only if H contains no nontrivial subgroups
M ′ that are normal in G.
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[Discussion: Let M =
⋂

x∈G xHx
−1; we claim that this is the largest group with properties (i),

(ii). In fact, if M ′ is any subgroup having these properties, we have x−1M ′x ⊆M ′ ⊆ H for all
x, hence M ′ ⊆ xHx−1 for all x. Thus M ′ ⊆M =

⋂

x∈G xHx
−1, proving maximality of M .]

We resume our discussion of examples with one that will be of continuing interest.

4.1.6 Example (Adjoint action). Here we take X = G and let G act on itself by conjuga-
tion:

αg(x) = gxg−1 for all x ∈ X = G

We have a group action because

αe = id
G

αg1g2 = αg1 ◦ αg2 and hence αg−1 = (αg)
−1

It is easily seen that each αg is a bijection, and in fact is one of the inner automorphisms of
G. Let Φ : G→ Int(G) ⊆ Aut(G) be the homomorphism Φ(g) = αg. Note that

(i) Φ is trivial (with Φ(g) = id
G

for all g) if G is an abelian group.

(ii) In general, we have Φ(g) = id
G
⇔ αg = id

G
⇔ gxg−1 = x, ∀x ∈ G ⇔ gx =

xg, ∀x ∈ G⇔ g commutes with every element in G.

Recall the definition of the center of G: it is the subgroup Z(G) = {g ∈ G : gx = xg, ∀x ∈ G}.

4.1.7 Exercise. Prove that: (a) Z(G) is a subgroup; (b) Z(G) is normal in G; (c) Z(G) is a
“characteristic subgroup” in G – i.e. β(Z(G)) = Z(G) for every automorphism β ∈ Aut(G),
not just the inner automorphisms as in the definition of “normal subgroup”. �

The preceeding remarks prove the following result

4.1.8 Theorem. Under the adjoint action G×X → X, with X = G and action αg(x) = gxg−1,
the action kernel for the homomorphism Φ : G→ Int(G) is precisely the center Z(G).

4.1.9 Corollary. For any group G we have Int(G) ∼= G/Z(G).

Proof: The diagram at right commutes. Since kerΦ =
Z(G), which is also the kernel of the quotient homomor-
phism π : G → G/Z(G), it follows from the first isomor-
phism theorem that the homomorphism Φ : G → Int(G)
induces an isomorphism Φ̃ : G/Z(G) → range(Φ). But
range(Φ) = Int(G), by definition. Thus G/Z(G) ∼=
(Int(G), ◦). �

G
Φ

−→ Int(G) ⊆ Aut(G)
π ↓ ր

G/Z(G) Φ̃

Figure 4.1.

4.1.10 Exercise. Show that Int(G) = {αg : g ∈ G} is a normal subgroup in Aut(G).
Note: The quotient Out(G) = Aut(G)/Int(G) is often referred to as the group of outer auto-
morphisms of G. �

Orbits under the adjoint action are called the conjugacy classes in G. Thus a typical
conjugacy class is

Cx = {gxg−1 : g ∈ G} = {αg(x) : g ∈ G} = G · x

In general the adjoint action is not transitive – for instance the class of the identity element is
{e}. Thus G gets partitioned into disjoint conjugacy classes of various types. Some are trivial:
the one-point classes. These include the identity element, but in fact we can identify all such
classes.

(7) If x ∈ G, then Cx = {x} (one-point class) ⇐⇒ x ∈ Z(G) (the center of G)

This is immediate. The following less obvious observation has profound number-theoretic con-
sequences.
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4.1.11 Theorem (The Class Equation). If G is finite and if C1 = Ce, C2, . . . , Cr are the
distinct conjugacy classes, then

|G| = |C1| + . . .+ |Cr |

= #(one-point classes) +
∑

nontrivialCk

|Ck|(8)

= |Z(G)| +
∑

nontrivialCk

|Ck|

Furthermore

(9)
If G is finite and Cx is any conjugacy class, the number of points |Cx| in the
class always divides |G|.

Proof: The statements in (8) are trivial; the claim in (9) will become obvious as we continue
our discussion of general group actions, so we defer this part of the proof. �

Notice that |Z(G)| is nonzero because the identity element lies in the center; this trivial fact will
have serious implications, which is why all the one-point classes have been gathered together
in the last version of the class equation.

4.2 Transitive group actions.

If a group a group action G × X → X is not transitive, and Ox0
is any orbit in X , we may

consider the action of G restricted to the orbit. The restricted action G×Ox0
→ Ox0

has the
properties (1) required of a left action. Furthermore, by definition of orbit it is obvious that

The action of G on any orbit is a transitive action.

So X splits into disjoint pieces (orbits), on each of which the action is transitive. Thus the study
of general group actions reduces to the study of transitive actions. However, as our examples
show, G can have markedly different actions on different orbits.

For transitive actions there is a nice relation between algebra in the group and the geometry
of the action, as we now explain.

4.2.1 Definition. Let G × X → X be any group action, and let x0 be any point in X. The
stabilizer of x0 is the set StabG(x0) = {g ∈ G : g ·x0 = x0} of points that leave x0 fixed. �

4.2.2 Exercise. Show that StabG(x0) is a subgroup in G.
Note: These subgroups are generally not normal, and can vary erratically as x0 runs through
the space X . �

Now consider a transitive action (or more generally, the action of G on a single orbit in some
larger space).

4.2.3 Theorem. If G is finite and G×X → X is a transitive group action, then the space X
must be finite. Furthermore, if we fix a base point x0 ∈ X and let H = StabG(x0), we have

(10) |X | = |G/H | and |G| = |G/H | · |H | = |X | · |StabG(x0)|

In particular, for transitive actions |X | must always divide |G|.

4.2.4 Corollary. If Cx is a conjugacy class in a finite group G (an orbit under the adjoint
action), then the cardinality |Cx| of the class must divide |G|.

Proof (4.2.3): Let H = StabG(x0). There is a bijective correspondence between G/H = {xH :
x ∈ G} and points in X . It is implemented by the following map:

(11) ψ : G/H → X where ψ(gH) = g · x0

5



This map is well-defined – i.e. if we take a different coset representative g′ such that g′H = gH ,
we still get ψ(g′H) = ψ(gH). [We have g′H = gH ⇔ there is some h ∈ H such that g′ = gh.
But then we get

g′ · x0 = (gh) · x0 = g · (h · x0) = g · x0 ,

since h · x0 = x0 by definition of H = StabG(x0).]
Furthermore ψ is an onto map because the action is transitive. [Given y ∈ X there is some

g ∈ G such that y = g · x0, and then ψ(gH) = g · x0 = y.] Finally, ψ is a one-to-one map (and
ψ : G/H → X is a bijection). In fact, if ψ(g1H) = ψ(g2H) we have g1 · x0 = g2 · x0, which
implies that g−1

1 · (g2 · x0) = (g−1
1 g2) · x0 = x0. But g−1

1 g2 fixes x0 ⇔ g−1
1 g2 ∈ H ; thus there

exists an h ∈ H such that g−1
1 g2 = h, and hence g2H = (g1h)H = g1H as required.

Since ψ is a bijection we must have |X | = |G/H |. Once we know this we finish the proof by
applying Lagrange’s theorem, which says that |G| = |G/H | · |H | for any subgroup. �

There is a lot more to be said about the bijection ψ :
G/H → X we have constructed in the proof of 4.2.3. Con-
sider the diagram at right. As above, we start with a
transitive action G × X → X , fix a base point x0 ∈ X ,
define H = StabG(x0), and define the bijection ψ via
ψ(gH) = g · x0. A group element g ∈ G acts on X as
some operator τg. On G/H we also have a transitive ac-
tion of G, the permutation action discussed earlier, which
is implemented by the operators

G/H
ψ

−→ X = G · x0

Lg ↓ ↓ τg

G/H
ψ

−→ X

Figure 4.2

(12) Lg(xH) = gxH for g, x ∈ G (Lg : G/H → G/H)

We claim that the diagram in Figure 4.2 is commutative, which means that

(13) ψ ◦ Lg = τg ◦ ψ (or equivalently, that τg = ψ ◦ Lg ◦ ψ
−1, ∀g ∈ G)

The property is easily checked: for any coset yH we have

τg(ψ(yH)) = τg(y · x0) = g · (y · x0) = (gy) · x0 = ψ(gyH) = ψ(Lg(yH))

and therefore τg ◦ ψ = ψ ◦ Lg as maps from G/H to X . Property (13) is often described by
saying that the map ψ : G/H → X intertwines the actions of G on the two spaces, or that ψ
is an equivariant map. We summarize all this as follows.

4.2.5 Theorem. Let G × X → X be a transitive group action, fix a base point x0 ∈ X, let
H = StabG(x0), and define the bijection ψ : G/H → X as in (12). Then ψ intertwines the two
group actions and the diagram shown in Figure 4.2 commutes.

The identity τg = ψ ◦ Lg ◦ ψ
−1 says that we get the same result following two different paths:

• Transfer x ∈ X over to a coset in G/H
• Act on the coset via Lg
• Transfer the result back to X







= (the original action of τg on x)

What all this means in practice is that there is a way to identify points in G/H with points
in X so that the action of Lg on G/H becomes the action of τg on X . Intuitively, the actions
L : G×G/H → G/H and τ : G×X → X are the same action in different disguises. They are
“isomorphic” group actions, in the same sense that certain groups are isomorphic. (The notion
of “isomorphism” applies to all sorts of algebraic structures.) The following example illustrates
this notion of isomorphic actions.

4.2.6 Example. The matrix group SO(3) consists of all real orthogonal 3 × 3 matrices with
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det(A) = 1. A matrix A is orthogonal if AtA = I = AAt (At = transpose matrix), and then
At = A−1. Given A ∈ SO(3) we get a linear operator

τ
A

: R
3 → R

3 via τ
A
(v) = Av (a matrix product (3 × 3) · (3 × 1)).

It is well known from linear algebra that the resulting group G of linear operators on R3 consists
of all rotations Ru,θ with θ ∈ R, u a vector with length ‖u‖ = 1,

Ru,θ =

(

Rotation counterclockwise by θ radians
about the axis through the origin deter-
mined by the unit vector u

)

As usual, multiplication of matrices corresponds to composition of rotation operators:

τ
AB

= τ
A
◦ τ

B
τ

I
= id

R3
(τ

A
)−1 = τ

A−1
= τ

At

τ
A

= τ
B

on R3 ⇐⇒ A = B as matrices

Next consider the unit sphere in R3, X = {x ∈ R3 : ‖x‖ = 1}, where ‖x‖2 = x2
1 + x2

2 + x2
3.

Every rotation τ
A

maps X to itself, and we get a group action G×X → X

4.2.7 Exercise. Explain why this action is transitive.
Hint: Use geometric reasoning to show that the unit vector e3 = (0, 0, 1) can be moved by a
rotation to any desired position on the sphere. (By what angle about what axis?) �

Take x0 = (0, 0, 1) in X . The stabilizer H = StabG(x0) consists of all rotations (by any
angle θ) about the positive z-axis; the corresponding group of matrices in SO(3) is

H =











cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 : θ ∈ R







By our discussion, there is a bijection between G/H (a purely algebraic construct) and the
sphere X , given by ψ(AH) = Ax0. This bijection transfers the purely algebraic action L

A
:

G/H → G/H to the geometric action τ
A

: X → X . Thus the geometric action of SO(3) on the
sphere can be studied by algebraic methods by examining the action G×G/H → G/H . �

4.2.8 Exercise. Compute the stabilizer H = StabG(x0) above and show it has the form stated.

Hint: A rotation about the origin in R2 is described by a matrix

[

cos θ − sin θ
sin θ cos θ

]

for suitably

chosen θ. �

4.2.9 Exercise. Let X be the unit circle {z ∈ C : |z| = 1}. The group G = (R,+) acts on X
via rotations

τθ(z) = e2πiθ · z = (cos θ + i sin θ) · z

Verify that this is a group action. Taking base point z0 = 1+ i0 in X , compute H = StabG(z0).
Does the coset space G/H look familiar? �

4.2.10 Exercise. Consider the action Sn × X → X of the permutation group on X =
{1, 2, . . . , n}. This action is transitive (why?). Suppose we fix the base point x0 = 1. Determine
the stabilizer subgroup H = StabSn

(x0) and explain why it is isomorphic to Sn−1. What
happens if you take some other base point x0 = k in X? �

4.2.11 Exercise. The group G = SL(n,R) acts on X = R
n. It leaves the origin 0 fixed, and

hence leaves invariant the complementary set Y = X ∼ {0}. If n ≥ 2 is the action G× Y → Y
transitive? I.e. is Y a single G-orbit, or does it break up into smaller orbits?
Note: At the beginning of Section 3.1 we considered the action of GL(n,R) on Rn, which does
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act transitively on Y . The present case is more subtle, and the action on Y fails to be transitive
when n = 1. (What are the orbits in this case?) �

4.3 Applications of the Conjugacy Class Equation.

Consider the action G ×X → X where a group G acts on itself by conjugation, via αg(x) =
gxg−1. We have seen that the cardinality |Cx| of an orbit (conjugacy class) divides the order
of G, and in fact that

(14) |Cx| =
|G|

|Z
G
(x)|

where Z
G
(x) is the “centralizer of x” = {g ∈ G : gxg−1 = x}

It is easily verified that the centralizer Z
G
(x) of any group element is a subgroup of G; in fact

it is just the stabilizer of x under conjugation. Using this terminology we may recast the class
equation 4.1.11 in a slightly different form.

4.3.1 Corollary (Class Equation). If G is a finite group and S a set of representatives for
the distinct conjugacy classes in G, then

(15) |G| = |Z(G)| +
∑

x∈S′

|G|

|Z
G
(x)|

= |Z(G)| +
∑

x∈S′

|Cx|

where S′ is the set of representatives of the conjugacy classes such that |Cx| > 1.

We note that an element a ∈ G lies in the center Z(G) ⇔ αg(a) = a, ∀g ∈ G ⇔ Z
G
(a) =

StabG(a) is all of G. As a simple application we show how the class equation can be used to
reveal some internal structure in a finite group. We already know that G ∼= (Zp,+) if |G| = p
is a prime. When |G| = pn (a power of some prime p > 1), the group still has some abelian
aspects.

4.3.2 Theorem (Cauchy). Let G be a finite group with |G| = pn for some prime p > 1 and
some n ≥ 1. Then the center is nontrivial: Z(G) 6= {e}.

Proof: Obviously e ∈ Z(G). What else can lie in the center? Look at the centralizer Z
G
(a) =

{g ∈ G : gag−1 = a}. If a 6= e then |Z
G
(a)| ≥ 2 since {e, a} ⊆ Z

G
(a); but |Z

G
(a)| divides

|G| = pn, by Lagrange, so there is an integer 1 ≤ k(a) ≤ n such that |Z
G
(a)| = pk. Furthermore,

a class Ca is nontrivial ⇔ |Z
G
(a)| < |G| ⇔ k(a) < n. Thus if Ca is nontrivial we have

1 < |ZG(a)| < |G| and the exponent k(a) must satisfy 0 < k(a) < n.
The class equation (15) says

pn = |Z(G)| +
∑

a∈S′

pn

pk(a)

and it follows that

|Z(G)| = pn −
∑

a∈S′

pn

pk(a)

Since k(a) < n for each a ∈ S′, the right side is divisible by p, so p divides |Z(G)| – i.e.
|Z(G)| = ℓp for some ℓ ≥ 1. In particular |Z(G)| > 1, as required. �

4.3.3 Corollary. If |G| = p2 for some prime p > 1, then G is abelian.

Proof: By 4.3.2, the center Z(G) is nontrivial. By Lagrange’s theorem, the only remaining
possibilities are: |Z(G)| = p or p2. If |Z(G)| = p2 we’re done. If |Z(G)| = p, there would exist
some a ∈ G ∼ Z(G), and for this element we would have Z

G
(a) ⊇ Z(G) and |Z

G
(a)| 6= |Z(G)|

because the centralizer also contains a. That forces Z
G
(a) = G, which means that a is in the

center of G, violating our hypothesis that a /∈ Z(G). This contradiction shows that the case
|Z(G)| = p cannot occur. �
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It follows that all groups of order 1, 4, 9, 25, . . . are abelian. In Cahpetr 3 we showed “by hand”
that this is true when |G| = 4, such a direct proof by brute force would be much harder for
groups of order |G| = 9; none of the ideas used when |G| = 4 carry over.

We now prove a result that relates the internal structure of a finite group to the primes
p > 1 that divide the order of the group. This result is simple to state but not so easy to prove.
We will attack it in two stages, first proving the result for finite abelian groups, and then for
general finite groups.

4.3.4 Theorem (Cauchy’s Theorem for Abelian Groups). Let G be a finite abelian
group. If p > 1 is a prime that divides n = |G|, then there is an element a ∈ G of order exactly
equal to p – i.e. G contains an isomorphic copy of (Zp,+).

Proof: We argue by induction on n. The result is true by default if n = 1. (There are no
prime divisors p > 1 of a group with |G| = 1, so you can’t exhibit a prime p for which the claim
fails to be true.) For n = 2, G is isomorphic to (Z2,+) whose nontrivial element has order 2.
Thus we may assume n ≥ 3. We procede to the induction step: for n ≥ 3 we assume the result
true for any groups G′ of order less than n and any prime p > 1 that divides |G′|; we must
prove the result holds true any group G of order n. We distinguish several possibilities.

Case 1: G has no proper subgroups H. “Proper” means: H 6= {e} and H 6= G. Since n > 1
there is an element a ∈ G such that a 6= e. The cyclic subgroup H = 〈a〉 it generates must equal
G, so G is cyclic with G ∼= (Zn,+). But if n is not prime it is easy to find proper subgroups in
Zn, so n must be a prime and p = n is its only prime divisor. The generator a has o(a) = p, as
required.

4.3.5 Exercise. If n > 1 explain why there must exist proper subgroups (e) 6= H 6= G in the
cyclic group G = (Zn,+). �

Case 2: There is a proper subgroup N . The subgroup N is abelian and 1 < |N | < |G| = n,
so the induction hypothesis applies to N . If p divides |N |, we can find an element of order p
within N , and the proof is finished. Thus we may assume that p does not divide |N |.

Since G is abelian, N is a normal subgroup, and the quotient group G/N is also abelian;
both have order less than n. By Lagrange’s theorem we have |G| = |N | · |G/N |, and since p
does not divide |N | it must divide |G/N |. The induction hypothesis applies to G/N , so there
must be an element a ∈ G/N of order p; in particular a 6= e (the identity element in G/N). The
quotient map π : G→ G/N is surjective, so we can find a preimage a ∈ G such that π(a) = a.
But π is a homomorphism, so we must have ap ∈ N = ker(π) because π(ap) = (π(a))p = ap = e,
which implies that ap ∈ kerπ = N .

Thus ap ∈ N , but a /∈ N because that would imply a = π(a) = e, contrary to our assumption
that a 6= e. One corollary to Lagrange’s theorem says:

Every element in a finite group G′ satisfies the condition y|G
′| = e.

In our present context that means (ap)|N | = e since ap ∈ N . But then we conclude that

(a|N |)p = a(p|N |) = (ap)|N | = e

Let b = a|N |. Obviously bp = e, but the only powers of a group element b that equal e are
multiples of its order o(b), so p must be a multiple of o(b). Since p > 1 is prime there are just
two possibilities: either o(b) = p, in which case we have found the desired element of order p,
or o(b) = 1 which means that b = e.

In the latter case we have a|N | = e, hence in the quotient group we have a|N | = e. But a
had order p, by definition, which means |N | must be a multiple of p. That is a contradiction
because we know that p does not divide |N |. Conclusion: the case b = e cannot arise, and the
proof is complete. �

We now turn to the proof for general (not necessarily abelian) groups. It will make essential
use of the previous result, as well as the Class Equation 4.3.1 for conjugacy classes (which is
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only meaningful for nonabelian groups).

4.3.6 Theorem (Cauchy). Let G be a finite group. If p > 1 is a prime that divides n = |G|,
then there is an element a ∈ G of order exactly p.

Proof: If n = 1 the group is trivial and the result is true by default, as noted in 4.3.4; if n = 2
the element a such that a 6= e satisfies a2 = e, so G ∼= Z2 is abelian and our result is true. In
proving the inductive step we may assume n ≥ 2. The induction hypothesis says:

Induction hypothesis P (n): If G′ is any group such that |G′| ≤ n, and if p > 1 is a
prime that divides the order of G′, then then there is an element a ∈ G′ of order
o(a) = p.

Assuming P (n) true we must prove P (n+ 1) is true. So, assume G is a nontrivial group such
that |G| ≤ n+ 1 and that p > 1 is a prime divisor of |G|. There are several possibilities.

Case 1: |G| ≤ n. The induction hypothesis applies to G, and there is an element of order
o(a) = p.

Case 2: |G| = n + 1 and there is a proper subgroup H in G such that p divides |H |. The
induction hypothesis applies to H ; there is an element in H such that o(a) = p.

Case 3: |G| = n+1 and p does not divide the order of any proper subgroup in G. Consider the
center Z(G). If Z(G) = G we are in the abelian case considered previously, and can head for the
exit. Otherwise there are elements a /∈ Z(G) and we may consider their centralizer subgroups
Z

G
(a) = {g ∈ G : ga = ag}. Now Z

G
(a) 6= G because a is not central, and Z

G
(a) 6= {e}

because it includes both a and e, so Z
G
(a) is a proper subgroup in G whenever a /∈ Z(G). Let

S′ be a set of representatives for the nontrivial conjugacy classes (those containing more than
one point). These representatives lie outside the center, so by Theorem 4.2.3 we get

|Ca| = |G|/|Z
G
(a)| > 1, ∀a ∈ S′.

The class equation says

|G| = |Z(G)| +
∑

a∈S′

|G|

|Z
G
(a)|

= |Z(G)| +
∑

a∈S′

|Ca|

By the hypotheses prevailing in Case 3, p is not a divisor of |Z
G
(a)| for any a /∈ Z(G) because

these are all proper subgroups. But p does divide |G|, so p divides |Ca| = |G|/|Z
G
(a)| for each

a ∈ S′. It follows that
p divides |Z(G)| = |G| −

∑

a∈S′

|Ca|

We have a contradiction if Z(G) is a proper subgroup; since we already know that Z(G) 6= G,
the only way out is to have Z(G) trivial. But that is also impossible: we can’t have |Z(G)| = 1
because p divides |Z(G)| and p > 1.

To summarize what has happened in Case 3: If Z(G) = G we are in the abelian case, and
if Z(G) 6= G we get a contradiction. Since all cases have been addressed, the inductive proof of
the theorem is complete. �

4.3.7 Exercise. Let G be a finite group and let g ∈ G. Explain why the only powers gm that
are equal to e are multiples of the order o(g). �
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