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Abstract

We design a randomized polynomial time algorithm which, given a 3-tensor of real numbers A =
{ai jk}

n
i, j,k=1 such that for all i, j, k ∈ {1, . . . , n} we have ai jk = aik j = ak ji = a jik = aki j = a jki and

aiik = ai j j = ai ji = 0, computes a number Alg(A) which satisfies with probability at least 1
2 ,

Ω


√

log n
n

 · max
x∈{−1,1}n

n∑
i, j,k=1

ai jk xix jxk ≤ Alg(A) ≤ max
x∈{−1,1}n

n∑
i, j,k=1

ai jk xix jxk.

On the other hand, we show via a simple reduction from a result of Håstad and Venkatesh [22] that
under the assumption NP * DT IME

(
n(log n)O(1)

)
, for every ε > 0 there is no algorithm that approximates

maxx∈{−1,1}n
∑n

i, j,k=1 ai jk xix jxk within a factor of 2(log n)1−ε
in time 2(log n)O(1)

.
Our algorithm is based on a reduction to the problem of computing the diameter of a convex body

in Rn with respect to the L1 norm. We show that it is possible to do so up to a multiplicative error

of O
(√

n
log n

)
, while no randomized polynomial time algorithm can achieve accuracy o

(√
n

log n

)
. This

resolves a question posed by Brieden, Gritzmann, Kannan, Klee, Lovász and Simonovits in [10].
We apply our new algorithm to improve the algorithm of Håstad and Venkatesh [22] for the Max-E3-

Lin-2 problem. Given an over-determined system E of N linear equations modulo 2 in n ≤ N Boolean
variables, such that in each equation appear only three distinct variables, the goal is to approximate
in polynomial time the maximum number of satisfiable equations in E minus N

2 (i.e. we subtract the
expected number of satisfied equations in a random assignment). Håstad and Venkatesh [22] obtained an

algorithm which approximates this value up to a factor of O
(√

N
)
. We obtain a O

(√
n

log n

)
approximation

algorithm. By relating this problem to the refutation problem for random 3 − CNF formulas we give
evidence that obtaining a significant improvement over this approximation factor is likely to be difficult.

∗Research supported in part by NSF CARREER award CCF-0643626, and a Microsoft New Faculty Fellowship.
†Research supported by NSF grants CCF-0635078 and DMS-0528387.



1 Introduction

A function f : {−1, 1}n → R has Fourier expansion f (x) =
∑

S⊆{1,...,n} f̂ (S )
∏

i∈S xi. Assume that f has
a succinct representation in phase space, i.e. only polynomially many of the Fourier coefficients f̂ (S ) are
non-zero. Can we then compute in polynomial time a good approximation of the maximum of f over the
discrete cube {−1, 1}n? In other words, if we are given polynomially many Fourier coefficients, is there a
way to approximate maxx∈{−1,1}n f (x) while only looking at the values of f on a tiny part of the cube? As
we shall see below, under widely believed complexity assumptions the answer to this question is generally
negative. But, under some additional structural information on the support of he Fourier transform it is
possible to achieve this goal, and when this occurs such phenomena have powerful algorithmic applications.
Currently our understanding of this fundamental problem is far from satisfactory, and the purpose of the
present paper is to investigate cases which have previously eluded researchers. As a result, we uncover new
connections to problems in algorithmic convex geometry and combinatorial optimization.

The Fourier maximization problem described above has been investigated extensively in the quadratic
case, partly due to its connections to various graph partitioning problems. In [3] it has been shown that a clas-
sical inequality of Grothendieck can be used to give a constant factor approximation algorithm for computing
the maximum of functions f : {−1, 1}n × {−1, 1}m → R which have the form f (x, y) =

∑n
i=1

∑m
j=1 ai jxiy j.

This algorithm has various applications, including algorithmic versions of Szemerédi’s regularity lemma. In
the non-bipartite case several researchers [27, 25, 12] have discovered an algorithm which computes up to
a factor O(log n) the maximum of functions f : {−1, 1}n → R which have the form f (x) =

∑n
i, j=1 ai jxix j,

where the matrix (ai j) is assumed to be symmetric and vanish on the diagonal. This result was shown in [12]
to imply the best-known approximation algorithms to graph partitioning problems such as MAXCUTGAIN
and Correlation Clustering. In [2] the structure of the “Fourier support graph”, i.e. the pairs {i, j} ∈ {1, . . . , n}
for which ai j , 0, was taken into account. It was shown there that there exists an approximation algorithm
which approximates the maximum of f up to a factor O(logϑ) = O(log χ), where ϑ is the Lovász Theta
Function of the complement of the Fourier support graph, and χ is the chromatic number of this graph. We
refer to [2] for more information on this topic, as well as its connection to the evaluation of ground states of
spin glasses.

Negative results on the performance of the above mentioned algorithms, as well as complexity lower
bounds were obtained in [3, 2, 5, 24, 1]. In particular, in was shown in [2] that the semidefinite relaxation
that was used in the O(log n) algorithm discussed above had integrality gap Ω(log n). Moreover in [5] it was
shown that unless NP ⊆ DT IME

(
nO((log n)3)

)
there is no polynomial time algorithm which approximates the

maximum of
∑n

i, j=1 ai jxix j on {−1, 1}n up to a factor smaller that (log n)γ, where γ is a universal constant.
It was also shown in [5] that under the assumption of the existence of sufficiently strong PCPs it is also
NP-hard to approximate this problem to within a factor of O(log n).

The motivation for the present paper is to study the case of functions whose Fourier expansion is sup-
ported on the third level. Specifically, given a 3-tensor of real numbers A = {ai jk}

n
i, j,k=1 such that for all

i, j, k ∈ {1, . . . , n} we have ai jk = aik j = ak ji = a jik = aki j = a jki and aiik = ai j j = ai ji = 0, we wish
to approximate the maximum of the function f : {−1, 1}n → R given by f (x) =

∑n
i, j,k=1 ai jkxix jxk. De-

spite being a modest goal, this problem has eluded researchers for some time, as the “obvious” semidef-
inite programming approach that was previously applied to the quadratic case does not generalize to the
degree-3 case. As we shall see below, this issue reflects a major difference from the quadratic case: Unless
NP ⊆ DT IME

(
n(log n)O(1))

, for every ε > 0 there is no algorithm that approximates the maximum of f within

a factor of 2(log n)1−ε
in time 2(log n)O(1)

. On the other hand, we will derive here a polynomial time algorithm

which approximates the maximum of f to within a factor of O
(√

n
log n

)
. This algorithm is based on a novel
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connection between this problem and the problem of efficient computation of the diameter of convex bodies
under the `n1 norm, which is the main new insight of the present paper. We shall now describe our new
approach, and its application to a fundamental problem in combinatorial optimization: The Max-E3-Lin-2
problem.

We associate to every 3-tensor A as above a convex body KA ⊆ R
n. The body KA admits a polyno-

mial time solution to the weak optimization problem for linear functionals (see [19, 18] for the relevant
background on convex optimization). Moreover, we show that the `n1 diameter of KA, i.e. diam1(KA) B
maxa,b∈KA ‖a − b‖1, is within a constant factor of maxxi∈{−1,1}

∑n
i, j,k=1 ai jkxix jxk. This step is crucially based

on an application of Grothendieck’s inequality. We therefore reduce the level-3 Fourier maximization prob-
lem to the following question: Given a convex body K ⊆ Rn with a weak optimization oracle, approximate
in oracle-polynomial time its `n1 diameter diam1(K).

Such problems have been studied extensively in the literature, though mostly in the context of the Eu-
clidean `n2 diameter (see for example [6, 8, 18, 10, 9, 31] and the references therein). In particular, a famous
result of Bárány and Füredi states that no deterministic polynomial time algorithm can approximate the `n2
diameter of convex bodies up to a factor of o

(√
n

log n

)
. In the paper [10] of Brieden, Gritzmann, Kannan,

Klee, Lovász and Simonovits it is shown that unlike the case of volume computation, randomization does
not help when it comes to approximating the Euclidean diameter of convex bodies: The same lower bound
holds also for the accuracy of randomized oracle-polynomial time algorithms. The paper [10] also studies
the case of the `n1 diameter, or more generally the `np diameter, i.e. diamp(K) B maxa,b∈KA ‖a − b‖p. It is
shown there that there is an oracle polynomial time algorithm which approximates diam1(K) to within a fac-

tor of O
(√

n
)
, and no polynomial time algorithm can achieve accuracy better than O

( √
n

log n

)
. When 1 < p ≤ 2

it is shown in [10] that diamp(K) can be approximated within a factor O
( √

n
(log n)(p−1)/p

)
, and no polynomial

time algorithm can achieve accuracy better than Op

(√
n

log n

)
. These bounds coincide only when p = 2, and

the question of closing the gap in the remaining cases was raised in [10] (see also [9]). Here we resolve this
problem by showing that the accuracy threshold for randomized oracle-polynomial algorithms that compute

diamp(K) is Θ
(√

n
log n

)
for all 1 ≤ p ≤ 2. Our improved accuracy lower bound when p = 1 is a slight variant

of the argument in [10]. The main issue is obtaining an improved approximation algorithm—our approach
is different from the polyhedral approximation of the `np ball that was used in [10] (though we believe that
the construction of [10] is of independent interest).

We apply the results described above to obtain a significant improvement to the Max-E3-Lin-2 algorithm
of Håstad and Venkatesh [22]. This fundamental problem is described as follows. Consider a system E of
N linear equations modulo 2 in n Boolean variables z1, . . . , zn, such that in each equation appear only three
distinct variables. We assume throughout that N ≥ n (thus avoiding degenerate cases). Let MAXSAT(E)
be the maximum number of equations in E that can be satisfied simultaneously. A random assignment of
these variables satisfies in expectation N

2 equations, so in the Max-E3-Lin-2 problem it is natural to ask
for an approximation algorithm to MAXSAT(E) − N

2 . This problem was studied extensively by Håstad and
Venkatesh in [22], where the best known upper and lower bounds were obtained. In particular, using the
powerful methods of Håstad [21] they show that unless NP ⊆ DT IME

(
n(log n)O(1))

, for every ε > 0 there is

no algorithm that approximates MAXSAT(E) − N
2 within a factor of 2(log n)1−ε

in time 2(log n)O(1)
. Moreover,

they design a randomized polynomial time algorithm which approximates MAXSAT(E) − N
2 to within a

factor of O
(√

N
)
.

Let E be a system of linear equations as above. Write ai jk(E) = 1 if the equation zi + z j + zk = 0 is in the
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system E. Similarly write ai jk(E) = −1 if the equation zi + z j + zk = 1 is in E. Finally, write ai jk(E) = 0 if no
equation in E corresponds to zi + z j + zk. Assume that the assignment (z1, . . . , zk) satisfies m of the equations
in E. Then

∑n
i, j,k=1 ai jk(E)(−1)zi+z j+zk = m − (N − m) = 2

(
m − N

2

)
. It follows that

max
xi∈{−1,1}

n∑
i, j,k=1

ai jk(E)xix jxk = max
zi∈{0,1}

n∑
i, j,k=1

ai jk(E)(−1)zi+z j+zk = 2
(
MAXSAT(E) −

N
2

)
.

Thus our algorithm yields a O
(√

n
log n

)
approximation to the Max-E3-Lin-2 problem. Note that when N =

Θ(n) our improvement over the Håstad-Venkatesh algorithm is only logarithmic, but typically N can be as
large as Θ

(
N3

)
. The above reasoning also allows us to apply the Håstad-Venkatesh hardness result for Max-

E3-Lin-2 that was described above to the level-3 Fourier maximization problem. In particular it follows that
this problem is computationally much harder than the quadratic case, in which a O(log n) approximation
is possible. Finally, our reasoning comes full circle to shed light on the problem of approximating the
`n1 diameter diam1(K). While the proof in [10] is essentially an “entropy argument” showing that there are
simply too many convex bodies to allow an approximation factor better than O

(√
n
)
, our reduction produces

a concrete family of convex bodies for which computing the `n1 diameter within a factor of is 2(log n)1−ε
is hard.

2 A new algorithm for Max-E3-Lin-2

As described in the reduction that was presented in the introduction, our new algorithm for Max-E3-Lin-2
will follow from the more general algorithm for approximating the maximum of functions whose Fourier
transform is supported on subsets of size 3. So, from now on let {ai jk}

n
i, j,k=1 be real numbers such that for

all i, j, k ∈ {1, . . . , n} we have ai jk = aik j = ak ji = a jik = aki j = a jki and aiik = ai j j = ai ji = 0. Our
first lemma reduces the problem of maximizing

∑n
i, j,k=1 ai jkxix jxk to the analogous tripartite case. Note

that such a result is false in the quadratic case. Indeed, Theorem 3.5 in [2] implies that the gap between
maxxi∈{−1,1}

∑n
i, j=1 ai jxix j and maxxi,y j∈{−1,1}

∑n
i, j=1 ai jxiy j can be as large as Ω

(
n

log n

)
. The key “trick” which

allows us to prove that this cannot happen in the level-3 case is identity (1) below.

Lemma 2.1. The following inequalities hold true:

1
10

max
xi,y j,zk∈{−1,1}

n∑
i, j,k=1

ai jkxiy jzk ≤ max
xi∈{−1,1}

n∑
i, j,k=1

ai jkxix jxk ≤ max
xi,y j,zk∈{−1,1}

n∑
i, j,k=1

ai jkxiy jzk.

Proof. Define

M = max
xi,y j,zk∈{−1,1}

n∑
i, j,k=1

ai jkxiy jzk,

and

m = max
xi∈{−1,1}

n∑
i, j,k=1

ai jkxix jxk.

Clearly m ≤ M, so we need to show that that M ≤ 10m. To see this observe first of all that
∑n

i, j,k=1 ai jkxix jxk

is linear in xi for each i. This implies that

m = max
|xi |≤1

n∑
i, j,k=1

ai jkxix jxk.
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Moreover, since
∑n

i, j,k=1 ai jkxix jxk changes sign if we replace xi by −xi for each i, we see that

m = max
|xi |≤1

∣∣∣∣∣∣∣∣
n∑

i, j,k=1

ai jkxix jxk

∣∣∣∣∣∣∣∣ .
Now, for each i, j, k ∈ {1, . . . , n} we have the identity

2xiy jyk + 2x jyiyk + 2xkyiy j = (xi + yi)(x j + y j)(xk + yk) + (xi − yi)(x j − y j)(xk − yk) − 2xix jxk − 2yiy jyk. (1)

Multiplying this identity by ai jk, summing over all i, j, k ∈ {1, . . . , n}, and using the symmetries of the
coefficients ai jk, we see that

6
n∑

i, j,k=1

ai jkxiy jyk = 8
n∑

i, j,k=1

ai jk
xi + yi

2
·

x j + y j

2
·

xk + yk

2
+ 8

n∑
i, j,k=1

ai jk
xi − yi

2
·

x j − y j

2
·

xk − yk

2

− 2
n∑

i, j,k=1

ai jkxix jxk − 2
n∑

i, j,k=1

ai jkyiy jyk.

It follows that

M′ B max
xi,y j∈{−1,1}

∣∣∣∣∣∣∣∣
n∑

i, j,k=1

ai jkxiy jyk

∣∣∣∣∣∣∣∣ ≤ 20
6

m =
10
3

m.

As before, because
∑n

i, j,k=1 ai jkxiy jyk is linear in each of the variables xi and y j, we have the identity

M′ = max
|xi |,|y j |≤1

∣∣∣∣∣∣∣∣
n∑

i, j,k=1

ai jkxiy jyk

∣∣∣∣∣∣∣∣ .
Now, consider the identity

y jzk + ykz j = (y j + z j)(yk + zk) − y jyk − z jzk.

Multiplying by ai jkxi, and summing up, we get the identity

2
n∑

i, j,k=1

ai jkxiy jzk = 4
n∑

i, j,k=1

ai jkxi ·
y j + z j

2
·

yk + zk

2
−

n∑
i, j,k=1

ai jkxiy jyk −

n∑
i, j,k=1

ai jkxiz jzk ≤ 6M′ ≤ 20m.

It follows that M ≤ 10m, as required. �

Let (`n2)n
∞ denote the space of ~v = (v1, . . . , vn) ∈ (Rn)n, equipped with the norm∥∥∥~v∥∥∥(`n2)n

∞
B max

1≤ j≤n
‖v j‖2.

Similarly we let (`n2)n
1 denote the space of ~v = (v1, . . . , vn) ∈ (Rn)n, equipped with the norm

∥∥∥~v∥∥∥(`n2)n
1
B

n∑
j=1

‖v j‖2.
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Any n × n matrix B = (bi j) ∈ Mn(R) can be tensorized with the identity to yield an operator B ⊗ I :
(`n2)n

∞ → (`n2)n
1 given by (

(B ⊗ I)~v
)
i B

n∑
j=1

bi jv j.

The operator norm of B ⊗ I is given by

‖B ⊗ I‖(`n2)n
∞→(`n2)n

1
= max


n∑

i=1

∥∥∥∥∥∥∥∥
n∑

j=1

bi jv j

∥∥∥∥∥∥∥∥
2

: max
1≤ j≤n

‖v j‖2 ≤ 1


= max


n∑

i=1

〈 n∑
j=1

bi jv j, ui

〉
: max

1≤ j≤n
‖v j‖2 ≤ 1 ∧ max

1≤i≤n
‖ui‖2 ≤ 1


= max

‖ui‖2,‖v j‖2≤1

n∑
i, j=1

bi j
〈
ui, v j

〉
. (2)

By Lemma 2.1 our goal is to approximate the value

Opt(A) B max
xi,y j,zk∈{−1,1}

n∑
i, j,k=1

ai jkxiy jzk.

For every x ∈ {−1, 1}n define an n × n matrix A(x) ∈ Mn(R) by

A(x) jk =

n∑
i=1

ai jkxi.

Since for each x ∈ Rn we have ‖A(x) ⊗ I‖(`n2)n
∞→(`n2)n

1
≥ max|y j |,|zk |≤1

∑n
j,k=1 A(x)i jy jzk it follows that

Opt(A) ≤ maxx∈{−1,1}n ‖A(x) ⊗ I‖(`n2)n
∞→(`n2)n

1
. On the other hand, using (2), Grothendieck’s inequality (see

the discussion in [3]) says that

max
x∈{−1,1}n

‖A(x) ⊗ I‖(`n2)n
∞→(`n2)n

1
≤ max

x∈{−1,1}n
KG max

y,x∈{−1,1}n

n∑
j,k=1

A(x) jky jzk = KG · Opt(A),

where KG ≤ 2 is Grothendieck’s constant. It therefore suffices to approximate the value of

max
x∈{−1,1}n

‖A(x) ⊗ I‖(`n2)n
∞→(`n2)n

1
.

Define a norm ‖ · ‖A on Rn by ‖x‖A B ‖A(x) ⊗ I‖(`n2)n
∞→(`n2)n

1
. Then the unit ball BA B {x ∈ Rn : ‖x‖A ≤ 1} is

a centrally symmetric convex body. Denote by KA = B◦A the polar of BA, i.e.

KA = {y ∈ Rn : ∀x ∈ BA, 〈x, y〉 ≤ 1}.

Then

max
x∈{−1,1}n

‖A(x) ⊗ I‖(`n2)n
∞→(`n2)n

1
= max
‖x‖∞≤1

‖x‖A = max
‖x‖∞≤1

max
y∈KA
〈x, y〉 = max

y∈KA
max
‖x‖∞≤1

〈x, y〉 = max
y∈KA
‖y‖1 =

1
2

diam1 (KA) .

We have thus reduced our original problem to approximating diam1 (KA) in polynomial time. Note
that (2) implies that the computation of ‖x‖A is a semidefinite program. Therefore by the theory of Grötschel,

5



Lovász and Schrijver [19] it follows that linear functionals can be optimized on BA in polynomial time. As
shown in [19], this property is preserved under polarity, i.e. linear functionals can be optimized on B◦A = KA

in polynomial time. We have therefore reduced the problem of approximating maxxi∈{−1,1}
∑n

i, j,k=1 ai jkxix jxk

to the problem of approximating diam1(K) in oracle polynomial time, where K is a centrally symmetric
convex body with a weak optimization oracle. This problem is resolved in Section 3, thus proving the
following theorem, which is our main result.

Theorem 2.2. There is a randomized polynomial time algorithm which, given a 3-tensor A = {ai jk}
n
i, j,k=1

such that for all i, j, k ∈ {1, . . . , n} we have ai jk = aik j = ak ji = a jik = aki j = a jki and aiik = ai j j = ai ji = 0,
computes a number Alg(A) which satisfies with probability at least 1

2 ,

max
x∈{−1,1}n

n∑
i, j,k=1

ai jkxix jxk ≤ Alg(A) ≤ O
(√

n
log n

)
max

x∈{−1,1}n

n∑
i, j,k=1

ai jkxix jxk.

3 An approximation algorithm for the L1 diameter

The main result of this section is the following theorem, which settles a problem posed by Brieden, Gritz-
mann, Kannan, Klee, Lovász and Simonovits in [10].

Theorem 3.1. Let K ⊆ Rn be a convex body with a weak optimization oracle. Then there exists a randomized
algorithm which computes in oracle-polynomial time a number Alg(K) such that with probability at least 1

2 ,

1
2

√
log n

n
· diam1(K) ≤ Alg(K) ≤ diam1(K).

On the other hand, no randomized oracle-polynomial time algorithm can compute diam1(K) with accuracy

o
(√

n
log n

)
.

Since we will be only using Theorem 3.1 when K is 0-symmetric, i.e. K = −K, we will prove it under
this assumption. This is only for the sake of simplifying the notation—identical arguments work in the
general case. Our starting point is the following distributional inequality.

Lemma 3.2. For every δ ∈
(
0, 1

2

)
there is a constant c(δ) > 0 with the following property. Fix a =

(a1, . . . , an) ∈ Rn and let ε1, . . . , εn be i.i.d. symmetric Bernoulli random variables. Then

Pr

 n∑
j=1

a jε j ≥

√
δ log n

n
· ‖a‖1

 ≥ c(δ)
nδ
.

Proof. Write X =
∑n

j=1 a jε j. Assume first of all that

4‖a‖22
√

n

‖a‖21
>

1
12nδ
. (3)

The classical Paley-Zygmund inequality [28, 23, 4] states that for every θ ∈ (0, 1) we have

Pr
(
X2 ≥ θEX2

)
≥ (1 − θ)2 ·

(
EX2

)2

EX4 ≥
(1 − θ)2

9
, (4)

6



where we used the well known (and easy) fact that EX4 ≤ 9
(
EX2

)2
.

The inclusion of events
{
X2 ≥ θ

}
⊆

{
X ≥

√
θ
}
∪

{
−X ≥

√
θ
}
, and the fact that X is symmetric, implies

that Pr
(
X ≥

√
θ
)
≥ 1

2 Pr
(
X2 ≥ θ

)
. Since δ < 1

2 there is n0(δ) ∈ N such that for every n ≥ n0(δ) we have
48δ log n

n
1
2 −δ
< 1

2 . For such n we deduce that

Pr

 n∑
j=1

a jε j ≥

√
δ log n

n
· ‖a‖1

 ≥ 1
2

Pr
(
X2 ≥

δ log n
n
‖a‖21

)
(3)
≥

1
2

Pr
(
X2 ≥

48δ log n

n
1
2−δ

· EX2
)

(4)
≥

1
72
.

Hence Lemma 3.2 holds assuming (3) and n ≥ n0(δ). By adjusting c(δ) the required result holds also when
n ≤ n0(δ), so it remains to deal with the case

4‖a‖22
√

n

‖a‖21
≤

1
12nδ
. (5)

Assuming (5) we define S B
{

j ∈ {1, . . . , n} : |a j| <
2‖a‖22
‖a‖1

}
. Then

‖a‖1 =
∑
j<S

|a j| +
∑
j∈S

|a j| ≤
‖a‖1

2‖a‖22

∑
j<S

a2
j +

√
|S |

∑
j∈S

a2
j ≤
‖a‖1

2
+

√
n
∑
j∈S

a2
j .

Hence, √∑
j∈S

a2
j ≥
‖a‖1
2
√

n
. (6)

Write Y =
∑

j∈S a jε j and Z = X − Y . For every t ∈ R we have {Y ≥ 2t} ⊆ {Y + Z ≥ t} ∪ {Y − Z ≥ t}.
Since Y + Z and Y − Z have the same distribution as X, it follows that Pr(X ≥ t) ≥ 1

2 Pr(Y ≥ 2t). Let g be a
standard Gaussian random variable. By the Berry-Esseen inequality (see [20]. The constant we use below
follows from [30]) we know that

Pr(Y ≥ 2t) = Pr
(

Y
√
EY2

≥
2t
√
EY2

)
≥ Pr

(
Y
√
EY2

≥
t
√

n
‖a‖1

)
≥ Pr

(
g ≥

t
√

n
‖a‖1

)
−max

j∈S

|a j|√∑
k∈S a2

k

(6)
≥

1
√

2π
exp

− t2n
‖a‖21

 − 4‖a‖22
√

n

‖a‖21
.

Plugging t =
√
δ log n

n · ‖a‖1 we get that

Pr

 n∑
j=1

a jε j ≥

√
δ log n

n
· ‖a‖1

 ≥ 1
2

Pr(Y ≥ 2t) ≥
1

6nδ
−

4‖a‖22
√

n

‖a‖21

(5)
≥

1
12nδ
,

as required. �
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Proof of Theorem 3.1. Let
{
εi j : i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

}
be i.i.d. symmetric Bernoulli random vari-

ables. Compute the number

Alg(K) B 2 max
1≤i≤m

max
a∈K

n∑
j=1

a jεi j.

Then Alg(K) ≤ 2 maxa∈K ‖a‖1 = diam1(K). Moreover, M can be computed using O(m) oracle calls. Now,
fix a ∈ K such that ‖a‖1 = 1

2 diam1(K). Using Lemma 3.2 we see that there exists a universal constant c > 0
for which

Pr

Alg(K) >
1
2

√
log n

n
· diam1(K)

 = 1 − Pr

 m⋂
i=1


n∑

j=1

a jεi j <
1
2

√
log n

n
· ‖a‖1




≥ 1 −
(
1 −

c
4√n

)m

≥ 1 − exp
(
−

cm
4√n

)
.

Choosing m =
⌈

4√n
c

⌉
we see that with probability at least 1

2 ,

1
2

√
log n

n
· diam1(K) ≤ Alg(K) ≤ diam1(K),

as required.
The algorithmic lower bound in Theorem 3.1 is essentially already contained in [10]—the authors simply

overlooked there an easy stronger upper bound on the volume of polytopes inscribed in in the cube [−1, 1]n.
In Proposition 1.10 in [10] the authors prove that for every 0-symmetric polytope P ⊆ [−1, 1]n with at most
2k vertices, where 20 log2

(
k
n + 1

)
≤ n ≤ k,

(vol(P))1/n ≤ O(1)
√

1 + log n ·

√
log

(
k
n + 1

)
n

. (7)

The term
√

1 + log n in (7) is precisely the reason why the lower bound in [10] for the accuracy of random-

ized algorithms which compute diam1(K) was Ω
( √

n
log n

)
instead of O

(√
n

log n

)
. This term can be removed as

follows.
Let Bn

2 be the standard unit Euclidean ball of `n2. Write P = conv{±v1, . . . ,±vk}, where vi ∈ [−1, 1]n.
Then vi√

n
∈ Bn

2, and by the results of [6, 11, 17] we deduce that


vol

(
1√
n
P
)

vol
(
Bn

2

)


1/n

≤ O(1)

√
log

(
k
n + 1

)
n

.

Since
(
vol

(
Bn

2

))1/n
= Θ

(
1√
n

)
it follows that

(vol(P))1/n ≤ O(1)

√
log

(
k
n + 1

)
n

.

�
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3.1 The case of the Lp diameter, 1 < p < 2

Fix p ∈ (1, 2), and define q = p
p−1 > 2. Let h1, . . . , hn be i.i.d. random variables whose density is q

2Γ(1/q) e
−|t|q .

Let H be the random vector (h1, . . . , hn) ∈ Rn. Then the random variables H/‖H‖q and ‖H‖q are inde-
pendent [29] (see [7] for more information on this phenomenon). The following lemma is analogous to
Lemma 3.2.

Lemma 3.3. There exist universal constants δ, c1, c2 > 0 such that for every a = (a1, . . . , an) ∈ Rn we have

Pr

〈 H
‖H‖q

, a
〉
≥

√
δ log n

n
· ‖a‖p

 ≥ c1

nc2
.

Proof. The random variable ‖H‖q has density q
Γ(n/q) u

n−1e−uq
for u > 0 (see for example [26]). Hence for

every t ∈ (0, 1) we have

Eet‖H‖qq =
q

Γ(n/q)

∫ ∞

0
etuq
· un−1e−uq

du =
q

Γ(n/q)

∫ ∞

0
un−1e−[(1−t)1/qu]q

du =
1

(1 − t)n/q .

Since q ≥ 2 it follows that

Pr
(
‖H‖q ≥ n1/q

)
≤ e−n(1− 1

e )Ee(1− 1
e )‖H‖qq = e−n

(
1− 1

e−
1
q

)
≤ e−n( 1

2−
1
e ) ≤ e−n/8. (8)

Using the independence of H/‖H‖q and ‖H‖q we deduce that

Pr

〈 H
‖H‖q

, a
〉
≥

√
δ log n

n
· ‖a‖p

 ≥ Pr

〈 H
‖H‖q

, a
〉
≥

√
δ log n

n
· ‖a‖p

 Pr
(
‖H‖q ≤ n1/q

)
= Pr

〈 H
‖H‖q

, a
〉
≥

√
δ log n

n
· ‖a‖p ∧ ‖H‖q ≤ n1/q


≥ Pr

〈H, a〉 ≥ n1/q

√
δ log n

n
· ‖a‖p ∧ ‖H‖q ≤ n1/q


≥ 1 − Pr

〈H, a〉 < n1/q

√
δ log n

n
· ‖a‖p

 − Pr
(
‖H‖q > n1/q

)
(8)
≥ Pr

〈H, a〉 ≥ n1/q

√
δ log n

n
· ‖a‖p

 − e−n/8. (9)

As in the proof of Lemma 3.2 we write X =
∑n

j=1 a jh j. Let

S B

 j ∈ {1, . . . , n} : |a j| ≤
2

1
2−p ‖a‖

2
2−p

2

‖a‖
p

2−p
p

 .
Then, using the definition of S and Hölder’s inequality, we see that

‖a‖pp =
∑
j<S

|a j|
p +

∑
j∈S

|a j|
p ≤
‖a‖pp
2‖a‖22

∑
j<S

a2
j + |S |

2−p
2

∑
j∈S

a2
j


p
2

≤
‖a‖pp

2
+ n

2−p
2

∑
j∈S

a2
j


p
2

.
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It follows that √∑
j∈S

a2
j ≥

‖a‖p

2
1
p n

1
p−

1
2

. (10)

Set Y B
∑

j∈S a jh j, and note that

√
EY2 =

√∑
j∈S

a2
jEh2

j = Ω(1)
√∑

j∈S

a2
j

(10)
≥ c
‖a‖p

n
1
p−

1
2

, (11)

where c > 0 is a universal constant. Using the Berry-Esseen inequality as in the proof of Lemma 3.2, we
see that

Pr

 n∑
j=1

a jh j ≥ n
1
q

√
δ log n

n
· ‖a‖p

 ≥ 1
2

Pr

 Y
√
EY2

≥ 2cn1− 1
p

√
δ log n

n
· n

1
p−

1
2


≥

1
6n4c2δ

−max
j∈S

|a j|√∑
k∈S a2

k

· E|h1|
3 =

1
6n4c2δ

− O

n 1
p−

1
2

(
‖a‖2
‖a‖p

) 2
2−p

 ≥ 1
12n4c2δ

, (12)

provided that

n
1
p−

1
2

(
‖a‖2
‖a‖p

) 2
2−p

≤
c̃

n4c2δ
, (13)

for some small enough constant c̃. But, assuming that (13) fails, and that δ is small enough and n is large
enough, we may apply the Paley-Zygmund inequality to conclude that

Pr

 n∑
j=1

a jh j ≥ n
1
q

√
δ log n

n
· ‖a‖p

 ≥ Pr
(
X2 ≥

c̃2−pδ log n

n2− p
2−

1
p−8c2δ

· EX2
)
≥ Pr

(
X2 ≥

δ log n

n
1
2−8c2δ

· EX2
)
≥ Ω(1), (14)

where we used the fact that p ∈ (1, 2) and the easy bound
4√
EX4 = O

(√
EX2

)
. Combining (12) and (14)

with (9) yields the required result. �

Now, arguing as in the proof of Theorem 3.1, given a 0-symmetric convex body K ⊆ Rn with a weak
optimization oracle, we select m i.i.d. copies of H, H1, . . . ,Hm, and define

Alg(K) B 2 max
1≤i≤m

max
a∈K

〈
Hi

‖Hi‖q
, a

〉
.

Arguing as in the proof of Theorem 3.1, with Lemma 3.2 replaced by Lemma 3.3, we see that for m =
poly(n), with constant probability

Ω(1)

√
log n

n
· diamp(K) ≤ Alg(K) ≤ diamp(K).
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4 Discussion and open problems

We end this paper with some remarks and directions for future research.

• We assumed throughout that aiik = ai j j = ai ji = 0. This restriction, which also appeared in [2] as the
condition that the Fourier support graph does not have self loops, is necessary since otherwise if P , NP then
there is no polynomial time algorithm that evaluates the maximum of

∑n
i, j,k=1 ai jkxix jxk over x ∈ {−1, 1}n up

to any factor (even one that grows with n arbitrarily fast)—see the discussion in Remark 3.2 in [2].

• It would be interesting to investigate maximization problem of
∑n

i, j,k=1 ai jkxix jxk in terms of the combina-
torial structure of the Fourier support hypergraph given by {{i, j, k} : ai jk , 0}. The results of [2] suggest
that it might be possible to achieve a better approximation guarantee in the presence of additional structural
information of this type.

• A natural question that arises from our results is to study the maximization problem for∑
S⊆{1,...,n}
|S |=k

aS

∏
j∈S

x j

when k ≥ 4. Our methods do not immediately give good bounds in this case—it is quite easy to get a

O
(

n
k
2 −1

(log n)
k
2 −1

)
approximation algorithm for odd k by iterating our approach, and it would be desirable to

get improved bounds. Such improvements, beyond their intrinsic interest, might have implications to the
problem of refutation of random k −CNF formulas [16, 15, 14] (see [13] for motivation of such questions).
The connection between these two problems is explained in the following theorem.

Theorem 4.1. Suppose for every ` ∈ {1, . . . , k} there is a deterministic polynomial time algorithm that
approximates

max
x1 ,x2 ,...,xn∈{−1,1}

∑
S⊆{1,...,n}
|S |=`

aS

∏
j∈S

x j

within factor f (n). Then there is a polynomial time refutation procedure that refutes w.h.p. a random k-CNF
formula with 24k+1n f (n)2 clauses.

Remark 4.1. Note that for ` = 1, there is a (trivial) exact algorithm and for ` = 2 the result of [27, 25, 12]
give a O(log n)-approximation. Therefore, as long as f (n) ≥ O(log n), the hypothesis in Theorem 4.1 is
required to hold only for 3 ≤ ` ≤ k.

The best known refutation procedure for random 3 − CNF formulas works when they have O
(
n3/2

)
clauses [16]. This can be viewed as evidence that obtaining an improvement over our approximation factor
to o

(
n1/4

)
is likely to be difficult.

Before proving Theorem 4.1 we shall introduce some notation. Let −1 represent logical TRUE and 1
represent logical FALSE. Let φ = {C1,C2, . . . ,Cm} be a k-CNF formula on variables x := {x1, x2, . . . , xn}.
Let the set of indices of variables in the clause Ci be denoted as S i, so that |S i| = k. Define {σi j : 1 ≤ i ≤
m, j ∈ S i} as follows: σi j = 1 if x j appears in clause Ci un-negated and σi j = −1 if x j appears in clause Ci

negated. Consider the expression

1 −
1
2k

∏
j∈S i

(
1 + σi jx j

)
.

11



For any {−1, 1}-assignment to variables, this expression evaluates to 1 if the clause Ci is satisfied and to 0 if
the clause Ci is not satisfied. Therefore, the fraction of satisfied clauses is

1
m

m∑
i=1

1 − 1
2k

∏
j∈S i

(
1 + σi jx j

) . (15)

For notational convenience, think of S i as an ordered k-tuple of indices, and for T ⊆ {1, . . . , k}, let S i[T ]
denote the subset of S i given by the co-ordinates in T . With this notation (15) can be rewritten as

1 −
1
2k −

1
m

m∑
i=1

∑
∅,T⊆{1,...,k}

∏
j∈S i[T ]

σi jx j = 1 −
1
2k +

∑
∅,T⊆{1,...,k}

ΓT (x), (16)

Where

ΓT (x) B −
1
m

m∑
i=1

∏
j∈S i[T ]

σi jx j. (17)

Lemma 4.2. If φ is satisfiable, then there exists a {−1, 1} assignment to variables of φ and a nonempty set
T ⊆ {1, . . . k} such that ΓT (x) ≥ 1

2k(2k−1) . In other words,

∃ ∅ , T ⊆ {1, . . . , k}, max
x∈{−1,1}n

ΓT (x) ≥
1

2k(2k − 1)
.

Proof. Since φ is satisfiable, there is an assignment x that satisfies every clause. For this assignment, the
expression (16) has value 1. Thus, for some T ⊆ [k],T , ∅, it must be the case that ΓT (x) ≥ 1

2k(2k−1) . �

Lemma 4.3. Let φ be a random k-CNF formula with m ≥ 24k+1n f (n)2 clauses. Then with probability
1 − 2−Ω(n) over the choice of the formula, for every {−1, 1}-assignment to variables and every nonempty
T ⊆ {1, . . . , k} we have ΓT (x) ≤ 1

22k f (n) . In other words,

∀∅ , T ⊆ {1, . . . , k}, max
x∈{−1,1}n

ΓT (x) ≤
1

22k f (n)
.

Proof. Fix any {−1, 1}-assignment to the variables and a nonempty set T ⊆ {1, . . . , k}. We will show that
with probability 1 − e−n over the choice of φ we have ΓT (x) ≤ 1

22k f (n) . Taking the union bound over all
possible {−1, 1}-assignments to variables and all choices for T implies the statement of the lemma.

Note that when φ is random, the signs σi j are random and independent, and therefore an inspection of
the definition (17) shows that ΓT (x) is an average of m independent Bernoulli random variables. By the
Chernoff bound,

Pr
[
ΓT (x) ≥

1
22k f (n)

]
≤ exp

(
−

1
2
·

m
(22k f (n))2

)
≤ e−n.

�

Proof of Theorem 4.1. The refutation procedure is very simple. Given a formula φ, use the f (n)-approximation
algorithm to compute, for every nonempty T ⊆ {1, . . . , k}, a number Alg(ΓT ) such that

1
f (n)

(
max

x∈{−1,1}n
ΓT (x)

)
≤ Alg(ΓT ) ≤ max

x∈{−1,1}n
ΓT (x).

If there is some T , ∅ for which Alg(ΓT ) ≥ 1
2k(2k−1) f (n) , then say YES. Otherwise, say NO. Lemma 4.2

shows that this procedure always says YES if φ is satisfiable. Lemma 4.3 shows that the procedure says NO
on a 1 − 2−Ω(n) fraction of random formulas. �
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