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Abstract

We show that if H is a group of polynomial growth whose growth rate is at least quadratic then the
Lp compression of the wreath product Z oH equals max

{
1
p ,

1
2

}
. We also show that the Lp compression of

Z oZ equals max
{

p
2p−1 ,

2
3

}
and the Lp compression of (Z oZ)0 (the zero section of Z oZ, equipped with the

metric induced from Z o Z) equals max
{

p+1
2p ,

3
4

}
. The fact that the Hilbert compression exponent of Z o Z

equals 2
3 while the Hilbert compression exponent of (Z o Z)0 equals 3

4 is used to show that there exists a
Lipschitz function f : (Z o Z)0 → L2 which cannot be extended to a Lipschitz function defined on all of
Z o Z.

1 Introduction

Let G be an infinite group which is generated by a finite symmetric set S ⊆ G and let dG denote the left-
invariant word metric induced by S (formally we should use the notation dS , but all of our statements below
will be independent of the generating set). Assume for the moment that the metric space (G, dG) does not
admit a bi-Lipschitz embedding into Hilbert space1. In such a setting the next natural step is to try to
measure the extent to which the geometry of (G, dG) is non-Hilbertian. While one can come up with several
useful ways to quantify non-embeddabililty, the present paper is a contribution to the theory of compression
exponents: a popular and elegant way of measuring non-bi-Lipschitz embeddability of infinite groups that
was introduced by Guentner and Kaminker in [33].

The Hilbert compression exponent of G, denoted α∗(G), is defined as the supremum of those α ≥ 0 for
which there exists a Lipschitz function f : G → L2 satisfying ‖ f (x) − f (y)‖2 ≥ cdG(x, y)α for every x, y ∈ G
and some constant c > 0 which is independent of x, y. More generally, given a target metric space (X, dX)
the compression exponent of G in X, denoted α∗X(G), is the supremum of those α ≥ 0 for which there exists
a Lipschitz function f : G → X satisfying dX( f (x), f (y)) ≥ cdG(x, y)α. When X = Lp for some p ≥ 1 we
shall use the notation α∗p(G) = α∗Lp

(G) (thus α∗2(G) = α∗(G)).

∗Research supported in part by NSF grants DMS-0528387, CCF-0635078 and CCF-0832795, BSF grant 2006009, and the
Packard Foundation.

1This assumption is not very restrictive, and in fact it is conjectured that if (G, dG) does admit a bi-Lipschitz embedding into
Hilbert space then G must have an Abelian subgroup of finite index. We refer to [24] for more information on this conjecture and
its proof in some interesting special cases.
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When (X, ‖ · ‖X) is a Banach space one can analogously define the equivariant compression exponent of G in
X, denoted α#

X(G), as the supremum over α ≥ 0 for which there exists a G-equivariant2 mapping ψ : G → X
satisfying ‖ψ(x) − ψ(y)‖X ≥ cdG(x, y)α. We write as above α#

p(G) = α#
Lp

(G) and α#(G) = α#
2(G). Recall

that G is said to have the Haagerup property if there exists an equivariant function ψ : G → L2 such that
inf{‖ψ(x) − ψ(y)‖2 : dG(x, y) ≥ t} tends to infinity with t. We refer to the book [18] for more information
on the Haagerup property and its applications. Thus the notion of equivariant compression exponent can be
viewed as a quantitative refinement of the Haagerup property, and this is indeed the way that bounds on the
equivariant compression exponent are usually used.

The parameters α∗X(G) and α#
X(G) do not depend on the choice of symmetric generating set S , and are

therefore genuine algebraic invariants of the group G. In [33] it was shown that if α#(G) > 1
2 then G is

amenable. This result was generalized in [47], where it was shown that for p ≥ 1 if X is a Banach space
whose modulus of uniform smoothness has power type p (i.e. for every two unit vectors x, y ∈ X and τ > 0
we have ‖x + τy‖X + ‖x − τy‖X ≤ 2 + cτp for some c > 0 which does not depend on x, y, τ) and α#

X(G) > 1
p ,

then G is amenable. It was also shown in [33] that if α∗(G) > 1
2 then the reduced C∗ algebra of G is exact.

Despite their intrinsic interest and a considerable amount of effort by researchers in recent years, the invari-
ants α∗X(G), α#

X(G) have been computed in only a few cases. It was shown in [3] that for any α ∈ [0, 1] there
exists a finitely generated group G with α∗(G) = α. In light of this fact it is quite remarkable that, apart
from a few exceptions, in most of the known cases in which compression exponents have been computed
they turned out to be equal to 1 or 0. A classical theorem of Assouad [5] implies that groups of polynomial
growth have Hilbert compression exponent 1. On the other hand, Gromov’s random groups [32] have Hilbert
compression exponent 0. Bourgain’s classical metrical characterization of superreflexivity [12] implies that
finitely generated free groups have Hilbert compression exponent 1 (this interpretation of Bourgain’s theo-
rem was first noted in [33]), and more generally it was shown in [14] that hyperbolic groups have Hilbert
compression 1 and in [15] that so does any discrete group acting properly and co-compactly on a finite di-
mensional CAT(0) cubical complex. In [57] it was shown that co-compact lattices in connected Lie groups,
irreducible lattices in semi-simple Lie groups of rank at least 2, polycyclic groups and certain semidirect
products with Z (including wreath products3 of finite groups with Z and the Baumslag-Solitar group) all
have Hilbert compression exponent 1. The first example of a group with Hilbert compression exponent in
(0, 1) was found in [4], where it was proved that R. Thompson’s group F satisfies α∗(F) = 1

2 . Another well-
studied case is the wreath product Z oZ. In [4] and independently in [54] it was shown that α∗(Z oZ) ≥ 1

2 (see
also [31] for a different argument which yields the weaker bound α∗(Z o Z) ≥ 1

3 ). Moreover it was shown
in [4] that α∗(Z oZ) ≤ 3

4 , and a combination of the later results of [7] and [47], which established sharp upper
and lower bounds on α∗(Z o Z), respectively, settles the case of the Hilbert compression exponent of Z o Z
by showing that α∗(Z o Z) = 2

3 (nevertheless, the 3
4 upper bound on α∗(Z o Z) from [4] has a special meaning

which is important for our current work—we will return to this topic later in this introduction). More gen-

2A mapping ψ : G → X is called G-equivariant if there exists an action τ of G on X by affine isometries and a vector v ∈ X such
that ψ(x) = τ(x)v for all x ∈ G. Equivalently there exists an action π on X by linear isometries such that ϕ B ψ − v is a 1-cocycle
with respect to π (we denote this by ϕ ∈ Z1(G, π)), i.e., for every x, y ∈ G we have ϕ(xy) = π(x)ϕ(y) + ϕ(x). A key useful point here
is that in this case ‖ψ(x) − ψ(y)‖X is an invariant semi-metric on G.

3The (restricted) wreath product of G with H, denoted G o H, is defined as as the group of all pairs ( f , x) where f : H → G
has finite support (i.e. f (z) = eG, the identity element of G, for all but finitely many z ∈ H) and x ∈ H, equipped with the product
( f , x)(g, y) B

(
z 7→ f (z)g(x−1z), xy

)
. If G is generated by the set S ⊆ G and H is generated by the set T ⊆ H then G oH is generated

by the set {(eGH , t) : t ∈ T } ∪ {(δs, eH) : s ∈ S }, where δs is the function which takes the value s at eH and the value eG on H \ {eH}.
Unless otherwise stated, we will always assume that G o H is equipped with the word metric associated with this canonical set of
generators (although in most cases our assertions will be independent of the choice of generators).
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erally, it was shown in [47] that if we define recursively Z1 = Z and Z(k+1) = Z(k) o Z then α∗(Z(k)) = 1
2−21−k .

In [47] it was shown that α∗
(
C2 o Z

2
)
= 1

2 , where C2 denotes the cyclic group of order 2 (the lower bound of
1
2 was proved earlier in [57]). Finally, it follows from [22, 47] that α∗(C2 oFn) = α#(C2 oFn) = 1

2 , where Fn is
the free group on n ≥ 2 generators (the upper bound of 1

2 on α∗(C2 oFn) is due to [47] while the lower bound
on α#(C2 o Fn) is the key result of [22]). Many of the above results have (at least partial) variants for the
Lp compression exponents of the groups in question—-we stated here only the case of Hilbert compression
exponents for the sake of simplicity, and we refer to the relevant papers for more information.

The difficulty of evaluating compression exponents is the main reason for our interest in this topic, and
our purpose here is to devise new methods to compute them. In doing so we answer questions posed
in [57, 47]. One feature of the known methods for computing compression exponents is that they involve a
novel interplay between group theory and other mathematical disciplines such as metric geometry, Banach
space theory, analysis and probability. It isn’t only the case that the latter disciplines are applied to group
theory—it turns out that the investigation of compression exponents improved our understanding of issues in
analysis and metric geometry as well (e.g. in [47] compression exponents were used to make progress on the
theory of non-linear type). In the present paper we apply our new compression exponent calculations to the
Lipschitz extension problem, and relate them to the Jones Traveling Salesman problem. These applications
will be described in detail presently.

In [57] it was shown that for all d ∈ N we have α∗
(
C2 o Z

d
)
≥ 1

d . A different embedding yielding this lower
bound was obtained in [47], together with the matching upper bound when d = 2. Thus, as stated above,
α∗

(
C2 o Z

2
)
= 1

2 . In Section 3 we investigate the value of α∗p(G o H) when G is a general group and H is a
group of polynomial growth. A key feature of our result is that we obtain a lower bound on α∗p(G oH) which
is independent of the growth rate of H. In combination with the upper bounds obtained in [47], our lower
bound implies the following result:

Theorem 1.1. For every p ∈ [1,∞) and every group H of polynomial growth whose growth is at least
quadratic, we have:

α∗p(Z o H) = α∗p(C2 o H) = max
{

1
p
,

1
2

}
. (1)

As we explain in Remark 3.3 below, the embedding from [47] which yielded the identity α∗2
(
C2 o Z

2
)
= 1

2
was based on the trivial fact, which is special to 2 dimensions, that for every A ⊆ Z2 of diameter D, the
shortest path in Z2 which covers A has length at most O

(
D2

)
. It therefore turns out that the previous method

for bounding α∗p
(
C2 o Z

d
)

yields tight bounds only when p = d = 2 (this is made precise in Remark 3.3).
Hence in order to prove (1) we devise a new embedding which is in the spirit of (but simpler than) the
multi-scale arguments used in the proof of the Jones Traveling Salesman Theorem [38] (see also [50] and
the survey [53]).

To explain the connection between our proof and the Jones Traveling Salesman Theorem take two elements
( f , x), (g, y) in the “planar lamplighter group” C2 o Z

2, i.e., x, y ∈ Z2 and f , g : Zd → {0, 1} with finite
support. The distance between ( f , x) and (g, y) in C2 o Z

2 is, up to a factor of 2, the shortest path in the
integer grid Z2 which starts at x, visits all the sites w ∈ Z2 at which f (w) and g(w) differ, and terminates at
y. Jones [38] associates to every set A ⊆ R2 of diameter 1 a sequence of numbers, known as the (squares
of the) Jones β numbers, whose appropriately weighted sum is (up to universal factors) the length of the
shortest Lipschitz curve covering A, assuming such a curve exists. Focusing on our proof of the fact that
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α∗1

(
C2 o Z

2
)
= 1, in our setting we do something similar: we associate to every ( f , x) ∈ C2 o Z

2 a sequence
of real numbers such that if we wish to estimate (up to logarithmic terms) the shortest traveling salesman
tour starting at x, ending at y, and covering the symmetric difference of the supports of f and g, all we have
to do is to compute the `1 norm of the difference of the sequences associated to ( f , x) and (g, y). Since the
statement α∗1

(
C2 o Z

2
)
= 1 does not necessarily imply that C2 o Z

2 admits a bi-Lipschitz embedding into
L1, our result falls short of obtaining a constant-factor approximation of the length of this tour, which, if
possible, would be an interesting equivariant version of the Jones Traveling Salesman Theorem (note that
if one wishes to estimate the length of the shortest Lipschitz curve covering the symmetric difference A4B
for some A, B ⊆ R2 one cannot “read” this just from the Jones β numbers of A and B without recomputing
the Jones β numbers of A4B). In view of such a potential strengthening of the Jones Traveling Salesman
Theorem, the question whether C2 oZ

2 admits a bi-Lipschitz embedding into L1 remains an interesting open
problem that arises from our work (which currently only yields a “compression 1” version of this statement).

In Section 6 we compute the Lp compression of Z o Z, answering a question posed in [47]:

Theorem 1.2. For every p ∈ [1,∞) we have:

α∗p(Z o Z) = max
{

p
2p − 1

,
2
3

}
. (2)

The fact that α∗p(Z o Z) is at least the right-hand side of (2) was proved in [47], so the key issue in (2) is to
show that no embedding of Z o Z can have a compression exponent bigger than the right-hand side of (2).
We do so via a non-trivial enhancement of the Markov type method for bounding compression exponents
that was introduced in [7]. In order to explain the new idea used in proving (2) we first briefly recall the
basic bound from [7].

A Markov chain {Zt}
∞
t=0 with transition probabilities ai j B P(Zt+1 = j | Zt = i) on the state space {1, . . . , n} is

stationary if πi B P(Zt = i) does not depend on t and it is reversible if πi ai j = π j a ji for every i, j ∈ {1, . . . , n}.
Given a metric space (X, dX) and p ∈ [1,∞), we say that X has Markov type p if there exists a constant K > 0
such that for every stationary reversible Markov chain {Zt}

∞
t=0 on {1, . . . , n}, every mapping f : {1, . . . , n} → X

and every time t ∈ N,

E
[
dX( f (Zt), f (Z0))p] ≤ K p t E

[
dX( f (Z1), f (Z0))p]. (3)

The least such K is called the Markov type p constant of X, and is denoted Mp(X). This important concept
was introduced by Ball in [9] and has since found a variety of applications in metric geometry, including
applications to the theory of compression exponents [7, 47]. We refer to [48] for examples of spaces which
have Markov type p. For our purposes it suffices to mention that Banach spaces whose modulus of uniform
smoothness has power type p have Markov type p [48], and therefore the Markov type of Lp, p ∈ [1,∞), is
min{p, 2}.

In [47] a parameter β∗(G) is defined to be the supremum over all β ≥ 0 for which there exists a symmetric
set of generators S of G and c > 0 such that for all t ∈ N,

E
[
dG(Wt, e)

]
≥ ctβ, (4)

where {Wt}
∞
t=0 is the canonical simple random walk on the Cayley graph of G determined by S , starting at

the identity element eG. The proof in [7] shows that if (X, dX) has Markov type p and G is amenable then:

α∗X(G) ≤
1

pβ∗(G)
. (5)
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In order to prove (2) we establish in Section 5 a crucial strengthening of (5). Given a symmetric probability
measure µ on G let {gk}

∞
k=1 be i.i.d. elements of G which are distributed according to µ. The µ-random walk

{Wµ
t }
∞
t=0 is defined as Wµ

0 = eG and Wµ
t = g1g2 · · · gt for t ∈ N. Let ρ be a left-invariant metric on G such that

Bρ(eG, r) = {x ∈ G : ρ(x, e) ≤ r} is finite for all r ≥ 0. Define β∗p(G, ρ) to be the supremum over all β ≥ 0
such that there exists an increasing sequence of integers {tk}∞k=1 and a sequence of symmetric probability
measures {µk}

∞
k=1 on G satisfying:

∀k ∈ N
∫

G
ρ(x, eG)pdµk(x) < ∞ and lim

k→∞

(
tkµk (G \ {eG})

)
= ∞, (6)

such that for all k ∈ N,
Eµk

[
ρ
(
Wµk

tk , eG
)]
≥ tβk

(
Eµk

[
ρ
(
Wµk

1 , eG
)p])β

.

In Section 5 we prove the following result:

Theorem 1.3. If G is amenable, ρ is a left-invariant metric on G with respect to which all balls are finite,
and (X, dX) has Markov type p, then:

α∗X(G, ρ) ≤
1

pβ∗p(G, ρ)
. (7)

In (7), α∗X(G, ρ) denotes the supremum of those α ≥ 0 for which there exists a ρ-Lipschitz map f : G → X
which satisfies dX( f (x), f (y)) ≥ cρ(x, y)α (we previously defined this parameter only when ρ = dG). We
refer to the discussion in Section 5 for more information on the parameter β∗p(G, ρ). At this point it suffices
to note that β∗p(G, dG) ≥ β∗(G), and therefore (7) is stronger than (5), since we now consider a variant of (4)
where the walk can be induced by an arbitrary symmetric probability measure, and the measure itself is
allowed to depend on the time t. It turns out that (7) is a crucial strict improvement over (5), and we require
the full force of this strengthening: we shall use non-standard random walks (i.e., not only the canonical
walk on the Cayley graph of G), as well as an adaptation of the walk to the time t in (4), in addition to
invariant metrics ρ other than the word metric dG.

We establish (2) by showing that for every p ∈ [1, 2) we have β∗p(ZoZ, dZoZ) =
2p−1

p2 > 3
4 = β

∗(ZoZ) (it follows
in particular that (7) is indeed strictly stronger than (5). Note that ZoZ is amenable and Lp has Markov type p,
so we are allowed to use (7)). This is achieved by considering a random walk induced on ZoZ from a random
walk on Z whose increments are discrete versions of q-stable random variables for every q > p. We refer to
Section 6 for the details. We believe that there is a key novel feature of our proof which highlights the power
of random walk techniques in embedding problems: we adapt the random walk on G to the target space Lp.
Previously [44, 10, 48, 7, 47] Markov type was used in embedding problems by considering a Markov chain
on the space we wish to embed which arises intrinsically, and “ignored” the intended target space: such
chains are typically taken to be the canonical random walk on some graph, but a different example appears
in [10], where embeddings of arbitrary subsets A of the Hamming cube ({0, 1}n, ‖ · ‖1) are investigated via a
construction of a special random walk on A which captures the “largeness” of A. Nevertheless, in all known
cases the geometric object which was being embedded dictated the study of some natural random walk,
while in our computation of α∗p(Z o Z) the target space Lp influences the choice of the random walk.

Recall that we mentioned above that prior to [7] the best known upper bound [4] on α∗(Z o Z) was 3
4 . An

inspection of the proof of this bound in [4] reveals that it considered only points in the normal subgroup of
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Z o Z consisting of all configurations where the lamplighter is at 0, i.e., the zero section of Z o Z:

(Z o Z)0 B {( f , x) ∈ Z o Z : x = 0} C Z o Z.

Thus [4] actually establishes the bound α∗ ((Z o Z)0, dZoZ) ≤ 3
4 . More generally, an obvious variant of the

proof of this fact in [4] (see Lemma 7.8 in [47]) shows that for p ∈ [1, 2] we have α∗p ((Z o Z)0, dZoZ) ≤
p+1
2p .

Here we obtain the following result:

Theorem 1.4. For every p ∈ [1,∞) we have:

α∗p ((Z o Z)0, dZoZ) = max
{

p + 1
2p

,
3
4

}
. (8)

An alternative proof of the fact that the right-hand side of (8) is greater than α∗p ((Z o Z)0, dZoZ), which
belongs to the framework of (7), is given in Section 7, where we show that for every p ∈ [1, 2] we have
β∗p ((Z o Z)0, dZoZ) = 2

p+1 . The heart of (8) is the construction of an embedding into Lp of the zero section
(Z o Z)0 which achieves the claimed compression exponent. This turns out to be quite delicate: a Fourier
analytic argument establishing this fact is presented in Section 4.

It is worthwhile to note at this point that in all of our new compression computations, namely (1), (2)
and (8), we claim that for some group G equipped with an invariant metric ρ and for every p ∈ [2,∞) we
have α∗p(G, ρ) = α∗2(G, ρ). This is true since because L2 is isometric to a subset of Lp we obviously have
α∗p(G, ρ) ≥ α∗2(G, ρ). In the reverse direction, all of our upper bounds on Lp compression exponents are
based on (7), and since both L2 and Lp have Markov type 2 [48] the resulting upper bound for Lp coincides
with the upper bound for L2. For this reason it will suffice to prove all of our results when p ∈ [1, 2].

In Section 8 we apply the fact that α∗ ((Z o Z)0, dZoZ) , α∗(Z o Z) to the Lipschitz extension problem. This
classical problem asks for geometric conditions on a pair of metric spaces (X, dX) and (Y, dY ) which ensure
that for any subset A ⊆ X, any Lipschitz mapping f : A → Y can be extended to all of X. Among
the motivating themes for research on the Lipschitz extension problem is the belief that many classical
extension theorems for linear operators between Banach spaces have Lipschitz analogs. Two examples of
this phenomenon are the non-linear Hahn-Banach theorem (see for example [59, 11]), which corresponds to
extension of real valued functions while preserving their Lipschitz constant, and the non-linear version of
Maurey’s extension theorem [9, 48]. It turns out that our investigation of the Hilbert compression exponent
of the zero section of Z o Z implies the existence of a Lipschitz function f : (Z o Z)0 → L2 which cannot be
extended to a Lipschitz function defined on all of Z o Z:

Theorem 1.5. There exists a Lipschitz function F : (Z o Z)0 → L2 which cannot be extended to a Lipschitz
function from Z o Z to L2.

For those who believe in the above analogy between the Lipschitz extension problem and the extension
problem for linear operators, Theorem 1.5 might seem somewhat surprising: after all H = (Z o Z)0 is a
normal subgroup of G = Z o Z with G/H � Z, so it resembles a non-commutative version of a subspace of
co-dimension 1 in a Banach space, for which the Lipschitz extension problem is trivial (again by the Hahn-
Banach theorem). Nevertheless, the analogy with Banach spaces stops here, as our result shows that the
normal subgroup H sits in G in an “entangled” way which makes it impossible to extend certain Lipschitz
functions while preserving the Lipschitz property.
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To explain the connection with the Lipschitz extension problem take ψ : (Z o Z)0 → L2 which is 1-Lipschitz
and ‖ψ(x)−ψ(y)‖2 ≥ cdZoZ(x, y)3/4 for all x, y ∈ (Z oZ)0, where c > 0 is a universal constant4. We claim that
ψ cannot be extended to a Lipschitz functionΨ defined on all of ZoZ, so assume for the sake of contradiction
that Ψ extends ψ and is Lipschitz. To arrive at a contradiction we need to contrast the 3

4 lower bound on the
compression exponent of ψ with the Markov type 2 proof of the fact that Ψ cannot have compression larger
than 2

3 from [7]. Let {Wt}
∞
t=0 be the canonical random walk on Z o Z starting at the identity element. Writing

Wt = ( ft, xt) ∈ Z o Z one can see that with high probability |xt| .
√

t, while the distance between Wt and
the identity element is & t3/4. The fact that L2 has Markov type 2 and Ψ is Lipschitz says that we expect
‖Ψ(Wt) − Ψ(W0)‖2 to be .

√
t. But, if we move Wt to its closest point in the zero section (Z o Z)0 then the

image under Ψ will (using the Lipschitz condition) move .
√

t. Using the compression inequality for ψ we
deduce that for large enough t we have

√
t & ‖Ψ(Wt)−Ψ(W0)‖2 &

(
t3/4

)3/4
= t9/16, which is a contradiction.

This argument is, of course, flawed, since we are allowed to use the fact that L2 has Markov type 2 only
for Markov chains which are stationary and reversible, and this is not the case for the canonical random
walk starting at the identity element. Nevertheless, this proof can be salvaged using the same intuition: in
Section 8 we consider a certain finite subset of Z o Z which lies within a narrow tubular neighborhood of
(Z o Z)0. We then apply the same ideas to the random walk obtained by choosing a point in this subset
uniformly at random and preforming a random walk on the subset with appropriate boundary conditions.
We refer to Section 8 for the full details. It is perhaps somewhat amusing to note here that while the notion of
Markov type was introduced by Ball [9] in order to prove an extension theorem (Ball’s extension theorem),
here we use Markov type for the opposite purpose—to prove a non-extendability result.

Thus far we did not discuss the relation between the parameters α∗X(G) and α#
X(G) for some Banach space

X. This is, in fact, a subtle issue: it is unclear when α∗X(G) = α#
X(G). Since for every p ∈ [1,∞) the free

group Fn on n ≥ 2 generators satisfies α∗p(Fn) = 1 yet α#
p(Fn) = max

{
1
p ,

1
2

}
(see [33, 47]) it follows that

the compression exponent and equivariant compression exponent can be different from each other, while in
many cases we know that these two invariants coincide: for example α∗p(C2 oFn) = α#

p(C2 oFn) = max
{

1
p ,

1
2

}
(see [22, 47]). A useful result of Aharoni, Maurey and Mityagin [1] for Abelian groups, and Gromov
(see [24]) for general amenable groups, says that for any amenable group G we have α∗2(G) = α#

2(G). This
is an obviously useful fact (examples of applications can be found in [24, 8]): for example in [47] it was
shown that if X is a Banach space whose modulus of uniform smoothness has power type p then for every
finitely generated group G we have:

α#
X(G) ≤

1
pβ∗(G)

. (9)

The bound (9) implies the bound (5) when G is amenable and X is Hilbert space due to the above reduction
to equivariant mappings for amenable groups and Hilbertian targets. At the time of writing of [47] it was
unclear whether (9) implies (5) in general, since an Aharoni-Maurey-Mityagin/Gromov type result was not
known in non-Hilbertian settings. In Section 5 we further improve (9) by showing that if X is a Banach
space whose modulus of uniform smoothness has power type p then:

α#
X(G) ≤

1
pβ∗p(G)

. (10)

In Section 9 we prove the following theorem:

4It isn’t quite accurate that the fact that α∗ ((Z o Z)0, dZoZ) = 3
4 implies the existence of such a function ψ, since all we are

assured is a compression exponent lower bound of 3
4 − ε for all ε > 0. This is immaterial for the sake of the argument here in the

introduction—a precise proof is given in Section 8
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Theorem 1.6. For every p ∈ [1,∞), if G is an amenable group and X is a Banach space, then there exists a
Banach space Y which is finitely representable5 in `p(X) and:

α#
Y (G) ≥ α∗X(G). (11)

Moreover, if X = Lp then we can also take Y = Lp in (11), and thus α∗p(G) = α#
p(G) when G is amenable.

Note also that if X has modulus of uniform smoothness of power type p then so does `p(X), and hence
so does the space Y of Theorem 1.6. Therefore, by virtue of (11), the inequalities (9) and (10) are indeed
stronger than the inequalities (5) and (7) in full generality.

We end this introduction by commenting on why so much of the literature (and also the present paper) fo-
cused on compression exponents of wreath products. The obvious answer is that groups such as Z o Z are
among the simplest examples of groups for which it was unknown for a long time how to compute their
compression exponents. As it turns out, understanding such groups in this context required new ideas and
new connections between geometric group theory and other mathematical disciplines. But, there is also a
deeper reason for our interest in embeddings of wreath products. Každan’s example [40] (see also [25]) of
Z2 o S L2(Z) shows that there can be two groups, each of which has positive equivariant compression expo-
nent, yet their semidirect product fails to have a positive equivariant compression exponent, and even fails
the Haagerup property. It seems challenging to characterize which semidirect products preserve the property
of having positive compression exponents, and wreath products, as examples of semidirect products, are a
good place to start trying to understand this fundamental question. The literature on compression exponents
of wreath products shows that in many cases this operation preserves the property of having positive com-
pression exponent, but we do not know if this is always true, even for amenable groups: the simplest such
example is the groups C2 o (C2 oZ) for which we do not know if it has positive Hilbert compression exponent,
even though both C2 and C2 o Z have Hilbert compression exponent 1.

2 Preliminaries

In what follows we fix two groups G and H, which are generated by the symmetric finite sets S G and S H ,
respectively. The corresponding left invariant word metrics will be denoted dG and dH , respectively. The
canonical generating set of the wreath product G o H is

{(eG, x) : x ∈ S H} ∪
{(
δy, eH

)
: y ∈ S G

}
,

where eG : H → G denotes the constant eG function and for y ∈ G the function δy : H → G takes the value
y at eH and the value eH elsewhere.

Given a function f : H → G we denote its support by supp( f ) B {x ∈ H : f (x) , eG}. For a finite subset
A ⊆ H and x, y ∈ H we let TSP(A; x, y) denote the length of the shortest path in H which starts at x, covers
A, and terminates at y, i.e.,

TSP(A; x, y) B inf


k−1∑
j=0

dH(x j, x j+1) : k ∈ N, x = x0, . . . , xk = y ∈ H ∧ A ⊆ {x0, . . . , xk}

 .
5A Banach space U is said to be finitely representable in a Banach space V if for every ε > 0 and every finite dimensional

subspace F ⊆ U there is a linear operator T : F → V such that for every x ∈ F we have ‖x‖U ≤ ‖T x‖V ≤ (1 + ε)‖x‖U .
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Thus
|A| + TSP(A, x, y) = dC2oH

((
1y−1A, y

−1x
)
, (0, 0)

)
,

where 0 : H → C2 denotes the constant 0 function. Following [47] we let LG(H) denote the wreath
product of G with H where the set of generators of G is taken to be G \ {eG} (i.e. any two distinct elements
of G are at distance 1 from each other). In other words, the difference between LG(H) and the classical
lamplighter group C2 o H is that we allow the “lamps” to have G types of different “lights”, where the cost
of switching from one type of light to another is 1. Thus, with this definition it is immediate that for every
( f , x), (g, y) ∈ LG(Z) we have

dLG(Z)
(
( f , x), (g, y)

)
= dC2oH

(
(1y−1supp( f g−1), y

−1x), (0, 0)
)
=

∣∣∣∣supp
(

f g−1
)∣∣∣∣ + TSP

(
supp

(
f g−1

)
; x, y

)
. (12)

Moreover, distances in the wreath product GoH, equipped with the canonical generating set, can be computed
as follows:

dGoH
(
( f , x), (g, y)

)
= TSP

(
supp

(
f g−1

)
; x, y

)
+

∑
x∈H

dG( f (x), g(x)). (13)

The following lemma generalizes Lemma 3.1 in [47], which deals with the special case H = Z (in which
case the proof is easier).

Lemma 2.1. Assume that G contains at least two elements. Then for any p ≥ 1 we have

α∗p
(
LG(H)

)
= α∗p (C2 o H) .

Proof. Obviously α∗p (LG(H)) ≤ α∗p (C2 o H), since LG(H) contains an isometric copy of C2 o H. To prove
the reverse direction we may assume that α∗p (C2 o H) > 0. Fix 0 < α < α∗p (C2 o H) and a mapping
θ : C2 o Z→ Lp satisfying

( f , x), (g, y) ∈ C2 o H =⇒ dC2oH
(
( f , x), (g, y)

)α . ‖θ( f , x) − θ(g, y)‖p . dC2oH
(
( f , x), (g, y)

)
. (14)

Let {εz}z∈G\{eG} be i.i.d. {0, 1}-valued Bernoulli random variables, defined on some probability space (Ω,P).
For every f : H → G define a random mapping ε f : H → C2 by

ε f (z) B
{
ε f (z) if f (z) , eG,

0 if f (z) = eG.

We now define an embedding F : LG(H)→ Lp(Ω, Lp) by

F( f , x) B θ(ε f , x).

Given ( f , x), (g, y) ∈ G o H denote A B supp
(

f g−1
)
= {z ∈ H : f (z) , g(z)}. We also denote by Aε ⊆ H the

random subset supp(ε f − εg). By definition Aε ⊆ A, so that TSP(Aε; x, y) ≤ TSP(A; x, y). Hence:

‖F( f , x) − F(g, y)‖pLp(Ω,Lp) = E
[∥∥∥θ(ε f , x) − θ(εg, y)

∥∥∥p
p

] (14)
. E

[
dC2oH

(
(ε f , x), (εg, y)

)p
]

= E
[
TSP(Aε; x, y)p] ≤ E [

TSP(A; x, y)p] (12)
= dLG(Z)

(
( f , x), (g, y)

)p.
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In the reverse direction, observe that

TSP(A; x, y) ≤ 2TSP(Aε; x, y) + TSP(A \ Aε; x, y), (15)

since given a path γ that starts at x, ends at y, and covers Aε, and a path δ that starts at x, ends at y, and covers
A \ Aε, we can consider the path that starts as γ, retraces γ’s steps from y back to x, and then continues as δ
from x to y. Hence,

dLG(Z)
(
( f , x), (g, y)

)pα (12)
= TSP(A; x, y)pα (15)

. TSP(Aε; x, y)pα + TSP(A \ Aε; x, y)pα. (16)

But by the symmetry of our construction the random subsets Aε and A \ Aε are identically distributed. So,
taking expectation in (16) we see that

dLG(Z)
(
( f , x), (g, y)

)pα . E
[
TSP(Aε; x, y)pα] = E [

dC2oH
(
(ε f , x), (εg, y)

)pα
]

(14)
. E

[
‖θ(ε f , x) − θ(εg, y)‖pp

]
= ‖F( f , x) − F(g, y)‖pLp(Ω,Lp).

Thus G o H embeds into Lp(Ω, Lp) with compression α, as required. �

A combination of Lemma 2.1 and Theorem 3.3 in [47] yields the following corollary:

Corollary 2.2. Let G,H be nontrivial groups and p ≥ 1. Then

min
{
α∗p(G), α∗p(C2 o H)

}
≥

1
p
=⇒ α∗p(G o H) ≥

pα∗p(G)α∗p(C2 o H)

pα∗p(G) + pα∗p(C2 o H) − 1
,

and

min
{
α∗p(G), α∗p(C2 o H)

}
≤

1
p
=⇒ α∗p(G o H) ≥ min

{
α∗p(G), α∗p(C2 o H)

}
.

We end this section with a simple multi-scale estimate for the length of traveling salesmen tours (see for
example [55] for a similar estimate). For r ≥ 0 and x ∈ H we let BH(x, r) B {y ∈ H : dH(x, y) ≤ r} be the
closed ball centered at x with radius r. For a bounded set A ⊆ H and r > 0 we let N(A, r) be the smallest
integer n ∈ N such that there exists x1, . . . , xn ∈ H for which A ⊆

⋃n
m=1 BH(xm, r). Finally, for ` ≥ 0 let

TSP`(A) denote the length of the shortest path starting from eH , coming within a distance of at most 2`−1

from every point in A, and returning to eH , i.e.

TSP`(A) B inf


k−1∑
j=0

dH(x j, x j+1) : k ∈ N, eH = x0, . . . , xk = eH ∈ H, A ⊆
k⋃

j=0

BH
(
x j, 2`−1

) .
Thus TSP(A) B TSP(A; eH , eH) = TSP0(A) = dC2oH

(
(1A, eH), (0, eH)

)
is the length of the shortest path

starting from eH , covering A, and returning to eH . We shall use the following easy bound, which holds for
every k, ` ∈ N ∪ {0}:

A ⊆ BH
(
eH , 2k

)
=⇒ TSP`(A) ≤ 3

k∑
j=`

2 jN
(
A, 2 j−1

)
. (17)
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The inequality (17) is valid when ` ≥ k + 1 since in that case TSP`(A) = 0. Now (17) follows by induction
from the inequality TSP`−1(A) ≤ TSP`(A)+3 ·2`−1N

(
A, 2`−2

)
. This inequality holds true since we can take a

set C ⊆ H of size N
(
A, 2`−2

)
such that

⋃
x∈C BH

(
x, 2`−2

)
⊇ A, and also take a path Γ ⊆ H of length TSP`(A)

which starts from eH , comes within a distance of at most 2`−1 from every point in A, and returns to eH . If
we append to Γ a shortest path from each x ∈ C to its closest neighbor in Γ (and back) we obtain a new path
of length at most TSP`(A) + 2

(
2`−1 + 2`−2

)
|C| ≤ TSP`(A) + 3 · 2`−1|C| which starts from eH , comes within

a distance of at most 2`−2 from every point in A, and returns to eH , as required.

3 Wreath products of groups with polynomial growth

The goal of this section is to prove the following theorem:

Theorem 3.1. Let G,H be nontrivial finitely generated groups, and assume that H has polynomial growth.
Then for every p ∈ [1, 2] we have:

α∗p(G o H) ≥ min
{

1
p
, α∗p(G)

}
. (18)

In particular, if the growth rate of H is at least quadratic then for every p ∈ [1, 2] we have

α∗p(Z o H) = α∗p(C2 o H) =
1
p
. (19)

Proof. We shall first explain how to deduce the identity (19). The lower bound α∗p(Z o H) = α∗p(C2 o H) ≥ 1
p

is a consequence of (18). Since for p ∈ [1, 2] the Banach space Lp has Markov type p (see [9]), the result of
Austin, Naor and Peres [7] implies that α∗p(G o H) ≤ 1

pβ∗(GoH) . But, as we proved in [47], since the growth of
H is at least quadratic we have β∗(G o H) = 1.

To prove (18) note that by Corollary 2.2 it is enough to show that

α∗p(C2 o H) ≥
1
p
. (20)

Recall that for r ≥ 0 and x ∈ H we let BH(x, r) B {y ∈ H : dH(x, y) ≤ r} be the closed ball centered at x
with radius r. Assume that H has polynomial growth d, i.e., that for every r ≥ 1 we have

ard ≤ |BH(e, r)| ≤ brd (21)

for some a, b > 0 which do not depend on r. We shall show that for every 1 < p ≤ 2 and ε ∈ (0, 1/p) there
is a function F : C2 o H → Lp such that for all ( f , x), (g, y) ∈ C2 o H we have

dC2oH
(
( f , x), (g, y)

) 1
p−ε . ‖F( f , x) − F(g, y)‖p . dC2oH

(
( f , x), (g, y)

)
, (22)

where here, and in the remainder of the proof of Theorem 3.1, the implied constants depend only on
a, b, p, d, ε. Moreover, we will show that we can take ε = 0 in (22) if (H, dH) admits a bi-Lipschitz em-
bedding into Lp. Note that (22) implies also the case p = 1 of Theorem 3.1 since Lp is isometric to a
subspace of L1 for all p ∈ (1, 2] (see e.g. [59]).
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Let Ω be the disjoint union of the sets of functions f : A → C2 where A ranges over all finite subsets of H,
i.e.,

Ω B
⋃
A⊆H
|A|<∞

CA
2 .

We will work with the Banach space `∞(Ω), and denote its standard coordinate basis by{
v f : f : A→ C2, A ⊆ H, |A| < ∞

}
.

Fix a 1-Lipschitz function ϕ : [0,∞) → [0, 1] which equals 0 on [0, 1] and equals 1 on [2,∞). For every
( f , x) ∈ C2 o H define a function Ψ0( f , x) ∈ `∞(Ω) by

Ψ0( f , x) B
∞∑

k=0

2−(d−1)k/p
∑
y∈H

ϕ

(
dH(x, y)

2k

)
v f�BH (y,2k )

. (23)

We shall first check that Ψ0 −Ψ0(0, eH) ∈ Z1(H, π) for an appropriately chosen action π of C2 o H on `p(Ω).
Recall that the product on C2 oH is given by ( f , x)(g, y) = ( f + Tx(g), xy), where Tx(g)(z) B g

(
x−1z

)
. Given

( f , x) ∈ C2 o H and a finite subset A ⊆ H define a bijection τA
( f ,x) : CA

2 → CxA
2 by τA

( f ,x)(h) B f + Tx(h). Note
that for all ( f , x), (g, y) ∈ C2 o H and every finite A ⊆ H we have

τA
( f ,x)(g,y) = τ

yA
( f ,x) ◦ τ

A
(g,y). (24)

Hence if we define

π( f , x)


∑
A⊆H
|A|<∞

∑
h∈CA

2

αhvh

 B
∑
A⊆H
|A|<∞

∑
h∈CA

2

αhvτA
( f ,x)(h),

then π is a linear isometric action of C2 o H on `p(Ω) for all p ∈ [1,∞] (π( f , x) corresponds to a per-
mutation of the coordinates and hence is an isometry. The fact that π

(
( f , x)(g, y)

)
= π( f , x)π( f , y) is an

immediate consequence of (24)). The definition (23) ensures that for every ( f , x), (g, y) ∈ C2 o H we have
Ψ0

(
( f , x)(g, y)

)
= π( f , x)Ψ0(g, y). Hence, if we define Ψ( f , x) B Ψ0( f , x) − Ψ0(0, eH) then Ψ ∈ Z1(H, π).

Note that Ψ(0, eH) = 0 and

Ψ(1{eH}, eH) =
∞∑

k=0

2−(d−1)k/p
∑

y∈BH(eH ,2k)

ϕ

(
dH(eH , y)

2k

) (
vδeH �BH (y,2k )

− v0�BH (y,2k )

)
= 0,

where we used the fact that ϕ(t) = 0 for t ∈ [0, 1]. Moreover, for every s ∈ S H we have:

‖Ψ(0, s)‖pp =

∞∑
k=0

2−(d−1)k
∑
y∈H

∣∣∣∣∣∣ϕ
(
dH(s, y)

2k

)
− ϕ

(
dH(eH , y)

2k

)∣∣∣∣∣∣p

=

∞∑
k=0

2−(d−1)k
∑
y∈H

2k−1≤dH(eH ,y)≤2k+1+1

∣∣∣∣∣∣ϕ
(
dH(s, y)

2k

)
− ϕ

(
dH(eH , y)

2k

)∣∣∣∣∣∣p

≤

∞∑
k=0

2−(d−1)k · 2−kp
∣∣∣∣{y ∈ H : 2k − 1 ≤ dH(eH , y) ≤ 2k+1 + 1

}∣∣∣∣
≤

∞∑
k=0

2−(d−1)k · 2−kp · b
(
2k+1 + 1

)d
≤ 4db

∞∑
k=0

2−k(p−1) . 1,
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Where we used the fact that p > 1. Since Ψ is equivariant and the set {(1{eH}, eH)} ∪ {(0, s) : s ∈ S H}

generates C2 o H, we deduce that

‖Ψ‖Lip . 1. (25)

Suppose now that f : H → C2 and let m ∈ N be the minimum integer such that supp( f ) ⊆ BH(eH , 2m).
Then

‖Ψ( f , eH)‖pp ≥
∞∑

k=0

2−(d−1)k
∑
y∈H

f�BH (y,2k ),0�BH (y,2k )

ϕ

(
dH(eH , y)

2k

)p

≥

∞∑
k=0

2−(d−1)k
∣∣∣∣{y ∈ H : dH(eH , y) ≥ 2k+1 ∧ supp( f ) ∩ BH(y, 2k) , ∅

}∣∣∣∣ . (26)

Fix k ≤ m − 3 and denote n = N
(
supp( f ), 2k−1

)
. Let x1, . . . , xn ∈ H satisfy

supp( f ) ⊆
n⋃

i=1

BH
(
xi, 2k−1

)
. (27)

By the minimality of n we are ensured that the balls
{
BH

(
xi, 2k−2

)}n

i=1
are disjoint and that there exists

yi ∈ BH
(
xi, 2k−1

)
∩ supp( f ). Write

I B
{
i ∈ {1, . . . , n} : dH(y, eH) ≥ 2k+1 ∀y ∈ BH

(
xi, 2k−2

)}
.

Note that if i ∈ I and y ∈ BH
(
xi, 2k−2

)
then dH(yi, y) ≤ dH(yi, xi) + dH(y, xi) ≤ 2k−1 + 2k−2 < 2k. Thus in this

case supp( f ) ∩ BH(y, 2k) , ∅, and therefore∣∣∣∣{y ∈ H : dH(eH , y) ≥ 2k+1 ∧ supp( f ) ∩ BH(y, 2k) , ∅
}∣∣∣∣ ≥ |I| ∣∣∣∣BH

(
eH , 2k−2

)∣∣∣∣ & 2kd |I|. (28)

We shall now bound |I| from below. By the minimality of m there exists z ∈ supp( f ) such that dH(eH , z) >
2m−1. By (27) there is some i ∈ {1, . . . n} for which dH(z, xi) ≤ 2k−1. If y ∈ BH

(
xi, 2k−2

)
then

dH(y, eH) ≥ dH(eH , z) − dH(z, xi) − dH(xi, y) > 2m−1 − 2k−1 − 2k−2 ≥ 2k+1,

since by assumption k ≤ m − 3. This shows that |I| ≥ 1. Write J B {1, . . . , n} \ I. For each i ∈ J there
is some y ∈ BH

(
xi, 2k−2

)
for which dH(eH , y) < 2k+1. Hence BH

(
xi, 2k−2

)
⊆ BH

(
eH , 2k+2

)
. Since the balls{

BH
(
xi, 2k−2

)}n

i=1
are disjoint it follows that

|J|a2(k−2)d (21)
≤ |J|

∣∣∣∣BH
(
eH , 2k−2

)∣∣∣∣ ≤ ∣∣∣∣BH
(
eH , 2k+2

)∣∣∣∣ (21)
≤ b2(k+2)d.

Thus n − |I| = |J| . 1, which implies that |I| & n. Plugging this bound into (28) we see that for every
k ≤ m − 3 we have∣∣∣∣{y ∈ H : dH(eH , y) ≥ 2k+1 ∧ supp( f ) ∩ BH(y, 2k) , ∅

}∣∣∣∣ & 2kdN
(
supp( f ), 2k−1

)
.
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In combination with (26) we see that

‖Ψ( f , eH)‖pp &
m−3∑
k=0

2−(d−1)k · 2kdN
(
supp( f ), 2k−1

)
=

m−3∑
k=0

2kN
(
supp( f ), 2k−1

)
. (29)

We claim that

|supp( f )| +
m−3∑
k=0

2kN
(
supp( f ), 2k−1

)
& dC2oH

(
( f , eH), (0, eH)

)
. (30)

Indeed, by combining (17) (with ` = 0) and (13) we see that

|supp( f )| +
m∑

k=0

2kN
(
supp( f ), 2k−1

)
& dC2oH

(
( f , eH), (0, eH)

)
. (31)

To check that (31) implies (30) note that is is enough to deal with the case supp( f ) , ∅, and that the
fact that supp( f ) ⊆ BH (eH , 2m), combined with the doubling condition for (H, dH), implies that for k ∈
{m − 2,m − 1,m} we have N

(
supp( f ), 2k−1

)
. 1. Thus (31) implies (30) by inspecting the cases m < 3 and

m ≥ 3 separately.

Fix ε ∈ (0, 1). By Assouad’s theorem [5] (see also the exposition of this theorem in [35]), since H has
polynomial growth, and hence is a doubling metric space, there is a function θ : H → Lp such that for all
x, y ∈ H we have

dH(x, y)1−ε ≤ ‖θ(x) − θ(y)‖p . dH(x, y)1−ε ≤ dH(x, y). (32)

By translation we may assume that θ(eH) = 0. We can now define our embedding

F : C2 o H → `p(Ω) ⊕ `p(H) ⊕ Lp

by F = Ψ⊕ f ⊕ θ (here we identify a finitely supported function f : H → C2 as a member of RH , and hence
a member of `p(H)). Then ‖F‖Lip B L . 1. Thus in order to prove (22), and hence to complete the proof of
Theorem 3.1, it remains to show that for all ( f , x) ∈ C2 o H we have

dC2oH
(
( f , x), (0, eH)

)(1−ε)/p . ‖F( f , x) − F(0, eH)‖p =
(
‖Ψ( f , x)‖pp + |supp( f )| + ‖θ(x)‖pp

)1/p
. (33)

A combination of (29) and (30) implies that there exists η > 0 which depends only on a, b, d, p, ε such that

ηdC2oH
(
( f , eH), (0, eH)

)1/p
≤

(
‖Ψ( f , eH)‖pp + |supp( f )|

)1/p
= ‖F( f , eH) − F(0, eH)‖p.

Hence

‖F( f , x) − F(0, eH)‖p ≥ ‖F( f , eH) − F(0, eH)‖p − ‖F( f , x) − F( f , eH)‖p
≥ ηdC2oH

(
( f , eH), (0, eH)

)1/p
− LdH(x, eH)

≥ η
[
max

{
0, dC2oH

(
( f , x), (0, eH)

)
− dC2oH

(
( f , x), ( f , eH)

)}]1/p
− LdH(x, eH)

= η
[
max

{
0, dC2oH

(
( f , x), (0, eH)

)
− dH(x, eH)

}]1/p
− LdH(x, eH)

≥
η

4
dC2oH

(
( f , x), (0, eH)

)1/p

≥
η

4
dC2oH

(
( f , x), (0, eH)

)(1−ε)/p,
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provided that

dH(x, eH) ≤ min
{
η

4L
dC2oH

(
( f , x), (0, eH)

)1/p,
1
2

dC2oH
(
( f , x), (0, eH)

)}
. (34)

But if (34) fails then dH(x, eH) & dC2oH
(
( f , x), (0, eH)

)1/p, in which case we can use (32) to deduce that

‖θ(x)‖p ≥ dH(eH , x)1−ε & dC2oH
(
( f , x), (0, eH)

)(1−ε)/p,

which implies (33) and concludes the proof of (22). �

Remark 3.2. Since the only reason for the loss of ε in (22) is the use of Assouad’s embedding in (32) we
see that if p > 1 and (H, dH) admits a bi-Lipschitz embedding into Lp and has at least quadratic growth then
α∗p(C2 o H) = 1

p is attained. C

Remark 3.3. In [47] it was shown that α∗2(C2 o Z
2) ≥ 1

2 via an embedding which we now describe. We
are doing so for several reasons. First of all there are some typos in the formulae given for the embedding
in [47] and we wish to take this opportunity to publish a correct version. Secondly, the embedding was given
in [47] without a detailed proof of its compression bounds, and since it is based on a different and simpler
approach than our proof of Theorem 3.1 it is worthwhile to explain it here. Most importantly, there are
several “coincidences” which allow this approach to yield sharp bounds on α∗p(C2 oZ

d) only when p = 2 and
d = 2, and we wish to explain these subtleties here. We will therefore first describe the embedding scheme
in [47] for general p ∈ [1, 2] and d ≥ 2 and then specialize to the case p = d = 2.

Let
{
vy,r,g : y ∈ Zd, r ∈ N ∪ {0}, g : y + [−r, r]d → {0, 1}

}
be a system of disjoint unit vectors in Lp. Fix a

parameter γ > 0 which will be determined later and define for every ( f , x) ∈ C2 o Z
d a vector F( f , x) =

F0( f , x) − F0(0, 0) ∈ Lp, where

F0( f , x) B
∑
y∈Zd

∞∑
r=0

max
{
1 − 2r

1+‖x−y‖∞
, 0

}
1 + ‖x − y‖γ∞

vy,r, f�y+[−r,r]d

One checks as in the proof of Theorem 3.1 that F is equivariant with respect to an appropriate action of
C2 o Z

d on Lp. Moreover, one checks that ‖F(10, 0)‖p . 1 and that for x ∈ {(±1, 0), (0,±1)} we have

‖F(0, x)‖pp .
∑
y∈Zd

∑
r∈[0,1+‖y‖∞/2]

(
1 + r

(1 + ‖y‖∞)2+γ

)p

.
∞∑

r=0

∑
k≥0

k≥2(r−1)

∑
‖y‖∞=k

(1 + r)p

(1 + k)(3+γ)p

.
∞∑

r=1

rp
∑
k≥r

kd−1

(1 + k)(2+γ)p .
∞∑

r=0

1
rp+γp−d < ∞, (35)

where in (35) we need to assume that

γ >
d + 1 − p

p
. (36)

It follows that as long as (36) holds true F is Lipschitz.

For the lower bound fix ( f , x) ∈ C2 o Z
d such that f , 0 and let R ≥ 0 be the smallest integer for which there

exists z ∈ supp( f ) such that ‖z − x‖∞ = R, i.e., R is the smallest integer such that supp( f ) ⊆ x + [−R,R]d.
Note that for every y ∈ Zd such that ‖y − z‖∞ ∈ [0,R] and every r ∈ [‖y − z‖∞, (1 + R − ‖y − z‖∞)/4] we have
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z ∈ y + [−r, r]d, and hence supp( f ) ∩
(
y + [−r, r]d

)
, ∅, and ‖y − x‖∞ ≥ R − ‖y − z‖∞, which implies that

2r
1+‖y−x‖∞

≤ 1
2 . Thus:

‖F( f , x)‖pp &
R∑

k=0

∑
y∈Zd

‖y−z‖∞=k

∑
r∈[k,(1+R−k)/4]

1
(1 + (k + R)γ)p

&
∑

k∈[0,(1+R)/5]

(
1 + kd−1

)
·

1 + R − 5k
4

·
1

(1 + (k + R)γ)p & Rd+1−γp. (37)

Note the trivial bound:
TSP(supp( f ); x, x) ≤ TSP

(
x + [−R,R]d; x, x

)
. Rd. (38)

Assuming also that γ < d+1
p we see that a combination of (37) and (38) implies that:

‖F( f , x)‖p & TSP(supp( f ); x, x)
d+1−γp

dp . (39)

Hence if we define Ψ(x) = x ⊕ F(x) ∈ `d
p ⊕ Lp we get the lower bound

‖Ψ( f , x)‖p & ‖x‖1 + TSP(supp( f ); x, x)
d+1−γp

dp &
(
dZd (x, 0) + TSP(supp( f ); x, x)

) d+1−γp
dp

&
(
dC2oZd (( f , x), (0, 0))

) d+1−γp
dp . (40)

Letting γ tend from above to d+1−p
p in (40) we get the lower bound

α∗p
(
C2 o Z

d
)
≥

1
d
. (41)

While (41) reproduces the result of [57], it yields the sharp bound α∗p
(
C2 o Z

d
)
= 1

p only when p = d = 2,
in which case the above embedding coincides with the embedding used in [47]. This is why we needed to
use a new argument in our proof of Theorem 3.1. Note that if one attempts to use the above reasoning while
replacing the group Zd by a general group H of growth rate d one realizes that it used the bound

|BH(eH , r + 1)| − |BH(eH , r)| � rd−1. (42)

Unfortunately the validity of (42) is open for general groups H of growth rate d. To the best of our knowledge
the best known general upper bound on the growth rate of spheres is the following fact: there exists β > 0
(depending on the group H and the choice of generators) such that for every r ∈ N we have

|BH(eH , r + 1)| − |BH(eH , r)| . rd−β. (43)

This is an immediate corollary of a well known (simple) result in metric geometry: since |BH(e, r)| � rd the
metric space (H, dH) is doubling (moreover, the counting measure on H is Ahlfors-David d-regular. See [35]
for a discussion of these notions). By Lemma 3.3 in [19] (see also Proposition 6.12 in [16]) if (X, d, µ) is a
geodesic doubling metric measure space then for all x ∈ X, r > 0 and δ ∈ (0, 1) we have

µ (BX(x, r) \ BX(x, (1 − δ)r)) ≤ (2δ)βµ (BX(x, r)) , (44)

where β > 0 depends only on the doubling constant of the measure µ (see [19, 16] for a bound on β. In [49]
it is shown that the bound on β from [19, 16] is asymptotically sharp as the doubling constant tends to
∞). Clearly (44) implies (43) if we let µ be the counting measure on H and δ = 1

r . While it is natural
to conjecture that it is possible to take β = 1 in (43), this has been proved when H is a 2-step nilpotent
group [56], but it is unknown in general. C
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4 The zero section of Z o Z

This section is devoted to the proof of the following theorem:

Theorem 4.1. Let (Z o Z)0 be the zero section of Z o Z, i.e. the subset of Z o Z consisting of all ( f , x) ∈ Z o Z
with x = 0, with the metric inherited from Z o Z. Then for all p ∈ [1, 2] we have:

α∗p ((Z o Z)0, dZoZ) =
p + 1
2p

.

Proof. The fact that α∗p ((Z o Z)0, dZoZ) ≤
p+1
2p follows from a variant of an argument from [4]—see Lemma

7.8 in [47]. We present an alternative proof of this fact in Section 7 below.

Fix ε ∈ (0, 1). In [47] we have shown that there exists a function F0 : Z o Z → Lp such that the metric
‖F0( f,x1) − ( f2, x2)‖p is Z o Z-invariant and for all ( f , x) ∈ Z o Z we have

|x|(1−ε)p +
∑
j∈Z

| f ( j)|p +max
{
| j|(1−ε)p : f (x + j) , 0

}
. ‖F0( f , x) − F0(0, 0)‖pp . dZoZ

(
( f , x), (0, 0)

)p, (45)

where here, and in what follows, the implied constants depend only on p and ε. We note that while (45) was
not stated as a separate result in [47], it is contained in the proof of Theorem 3.3 there—see equation (28)
in [47] with a = 1 and b = 1 − ε. Alternatively (45) is explained in detail for the case p = 2 in Remark 2.2
of [7]—the same argument works when we replace in that proof L2 by Lp and let α be arbitrarily close to
(p − 1)/p (instead of arbitrarily close to 1/2).

Let {e j,k,` : j, k, ` ∈ Z} be the standard basis of `p(Z × Z × Z). For every ( f , 0) ∈ (Z o Z)0 define

Φ( f , 0) =
∞∑
`=1

∞∑
k=0

∑
j∈Z

| j|∈[2`−1−1,2`−1)

2(k+(p−1)`)/p

k + 1
exp

(
2πi f ( j)

2k

)
e j,k,`.

Our embedding of (Z o Z)0 will be

F B F0 ⊕ Φ ∈ `p(Z × Z × Z) ⊕ Lp.

Observe that for every ( f , 0), (g, 0) ∈ (Z o Z)0 we have ‖Φ( f , 0) − Φ(g, 0)‖p = ‖Φ( f − g, 0) − Φ(0, 0)‖p, so it
will suffice to prove the required compression bounds for ‖F( f , 0) − F(g, 0)‖p when g = 0.

¿From now on we shall fix ( f , 0) ∈ (Z o Z)0. For every `,m ∈ Z denote

E(`,m) =
{
j :∈ Z : | j| ∈ [2`−1 − 1, 2` − 1) ∧ | f ( j)| ∈ [2m, 2m+1)

}
.

We also write M B max{| j| : f ( j) , 0}, so that

dZoZ
(
( f , 0), (0, 0)

)
� M + ‖ f ‖1 = M +

∑
j∈Z

| f ( j)| � M +
∞∑
`=1

∞∑
m=0

2m|E(`,m)|. (46)

17



Now,

‖Φ( f , 0) − Φ(0, 0)‖pp =
∞∑
`=1

∞∑
k=0

∑
j∈Z

| j|∈[2`−1−1,2`−1)

2k+(p−1)`

(k + 1)p

∣∣∣∣∣∣1 − exp
(
2πi f ( j)

2k

)∣∣∣∣∣∣p

=

∞∑
`=1

∞∑
k=0

2k+(p−1)`

(k + 1)p

∞∑
m=0

∑
j∈E(`,m)

∣∣∣∣∣∣1 − exp
(
2πi f ( j)

2k

)∣∣∣∣∣∣p . (47)

Note that

m ≤ k − 2 =⇒
∑

j∈E(`,m)

∣∣∣∣∣∣1 − exp
(
2πi f ( j)

2k

)∣∣∣∣∣∣p � 2p(m−k)|E(`,m)|. (48)

and for all m, k ∈ Z, ∑
j∈E(`,m)

∣∣∣∣∣∣1 − exp
(
2πi f ( j)

2k

)∣∣∣∣∣∣p . |E(`,m)|. (49)

Plugging (48) and (49) into (47) we see that

‖Φ( f , 0) − Φ(0, 0)‖pp .
∞∑
`=1

∞∑
m=0

m+1∑
k=0

2k+(p−1)`

(k + 1)p |E(`,m)| +
∞∑

k=m+2

2k+(p−1)`

(k + 1)p 2p(m−k)|E(`,m)|


.
∞∑
`=1

∞∑
m=0

2m+(p−1)`

(m + 1)p |E(`,m)| ≤

 ∞∑
`=1

∞∑
m=0

(
2m+(p−1)`

(m + 1)p |E(`,m)|
)1/p

p

. (50)

Using the fact that for all a, b ≥ 0 we have abp−1 ≤
(

a+b
2

)p
we can bound the summands in (50) as follows:(

2m+(p−1)`

(m + 1)p |E(`,m)|
)1/p

.

 2m|E(`,m)| + 2`
(m+1)p/(p−1) if E(`,m) , ∅,

2m|E(`,m)| otherwise.
(51)

Note that if E(`,m) , ∅ then there exists j ∈ Z with | j| ∈ [2`−1 − 1, 2` − 1) such that f ( j) , 0. By the
definition of M this implies that 2` < M. Using this observation while substituting the the estimates (51)
in (50) we see that

‖Φ( f , 0) − Φ(0, 0)‖p .
∞∑

m=0

∞∑
`=1

2m|E(`,m)| +
blog2 Mc∑
`=1

2`
∞∑

m=0

1
(m + 1)p/(p−1)

.
∞∑
`=1

∞∑
m=0

2m|E(`,m)| + M
(46)
� dZoZ

(
( f , 0), (0, 0)

)
. (52)

This shows that ‖F‖Lip . 1.

In the reverse direction write

D B dZoZ
(
( f , 0), (0, 0)

) (46)
� M +

∑
2`<M

∑
| j|∈[2`−1−1,2`−1)

| f ( j)| �
∑

2`<M

2` + ∑
| j|∈[2`−1−1,2`−1)

| f ( j)|
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It follows that there exists an integer ` < log2 M such that

D . log(M + 1) ·

2` + ∑
| j|∈[2`−1−1,2`−1)

| f ( j)|

 . (53)

We shall fix this ` from now on. Observe that∑
| j|∈[2`−1−1,2`−1)

| f ( j)| �
∑

2m+1<‖ f ‖1

2m|E(`,m)|.

Hence there exists an integer m . log(1 + ‖ f ‖1) such that∑
| j|∈[2`−1−1,2`−1)

| f ( j)| . 2m|E(`,m)| · log(1 + ‖ f ‖1). (54)

We shall fix this m form now on. Combining (53) with (54) yields the bound:

D . log(M + 1) ·
(
2` + 2m|E(`,m)| · log(1 + ‖ f ‖1)

) (46)
.

(
log(D + 1)

)2
·
(
2` + 2m|E(`,m)|

)
. (55)

Substitute (48) into (47) to get the lower bound

‖Φ( f , 0) − Φ(0, 0)‖pp &
∞∑

k=m+2

2k+(p−1)`

(k + 1)p 2p(m−k)|E(`,m)| &
2m+(p−1)`

(m + 1)p |E(`,m)| &
2m+(p−1)`

(log(D + 1))p |E(`,m)|.

Also (45) implies that

‖F0( f , 0) − F0(0, 0)‖pp & M(1−ε)p + 2mp|E(`,m)| & 2(1−ε)`p + 2mp|E(`,m)|.

Thus

‖F( f , 0) − F(0, 0)‖p & 2(1−ε)` + 2m|E(`,m)|1/p +
1

log(D + 1)
· 2m/p|E(`,m)|1/p2`(p−1)/p

&
1

log(D + 1)
·
(
2` + 2m|E(`,m)|1/p + 2m/p|E(`,m)|1/p2`(p−1)/p

)1−ε
. (56)

We claim that

2` + 2m|E(`,m)|1/p + 2m/p|E(`,m)|1/p2`(p−1)/p ≥
2` + (2m|E(`,m)|)

p+1
2p

2
. (57)

Indeed, if (2m|E(`,m)|)
p+1
2p ≤ 2` then (57) is trivial, so assume that a B (2m|E(`,m)|)

p+1
2p ≥ 2`. Since

|E(`,m)| = 2−m · a2p/(p+1) we see that

2` + 2m|E(`,m)|1/p + 2m/p|E(`,m)|1/p2`(p−1)/p ≥ 2(p−1)m/pa2/(p+1) + a2/(p+1)2`(p−1)/p. (58)

Note that by definition 2−m · a2p/(p+1) = |E(`,m)| ≤ 2`, so 2m ≥ 2−` · a2p/(p+1). Substituting this bound
into (58) we see that

2` + 2m|E(`,m)|1/p + 2m/p|E(`,m)|1/p2`(p−1)/p ≥ 2−`(p−1)/p · a2p/(p+1) + a2/(p+1)2`(p−1)/p

≥ 2a = 2
(
2m|E(`,m)|

) p+1
2p ,
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where we used the arithmetic mean/geometric mean inequality. This completes the proof of (57).

A combination of (55), (56) and (57) yields

‖F( f , 0) − F(0, 0)‖p &
1

log(D + 1)
·

(
2` +

(
2m|E(`,m)|

) p+1
2p

)1−ε

&
1

log(D + 1)
·
(
2` + 2m|E(`,m)|

)(1−ε) p+1
2p &

D(1−ε) p+1
2p

(log(D + 1))1+2(1−ε) p+1
2p

& D(1−2ε) p+1
2p .

This completes the proof of Theorem 4.1. �

5 General compression upper bounds for amenable groups

Let Γ be a group which is generated by the finite symmetric set S ⊆ Γ. Let ρ be a left-invariant metric
on Γ such that Bρ(eΓ, r) = {x ∈ Γ : ρ(x, e) ≤ r} is finite for all r ≥ 0. In most of our applications of the
ensuing arguments the metric ρ will be the word metric induced by S , but we will also need to deal with
other invariant metrics (see Section 7).

Given a symmetric probability measure µ on Γ let {gk}
∞
k=1 be i.i.d. elements of Γ which are distributed

according to µ. The µ-random walk {Wµ
t }
∞
t=0 is defined as Wµ

0 = eΓ and Wµ
t = g1g2 · · · gt for t ∈ N. Fix p ≥ 1

and assume that ∫
Γ

ρ(x, eΓ)pdµ(x) = Eµ
[
ρ
(
Wµ

1 , eΓ
)p]

< ∞. (59)

Let {µt}
∞
t=1 be a sequence of symmetric probability measures satisfying the integrability condition (59) and

define

β∗p
(
{µt}
∞
t=1, ρ

)
B lim sup

t→∞

log
(
Eµt

[
ρ
(
Wµt

t , eΓ
)])

log
(
tEµt

[
ρ
(
Wµt

1 , eΓ
)p]) . (60)

Finally we let β∗p(Γ, ρ) be the supremum of β∗p
(
{µt}
∞
t=1, ρ

)
over all sequences of symmetric probability mea-

sures {µt}
∞
t=1 on Γ satisfying

∀t ∈ N
∫
Γ

ρ(x, eΓ)pdµt(x) < ∞ and lim
t→∞

(
tµt (Γ \ {eΓ})

)
= ∞. (61)

When ρ is the word metric induced by the symmetric generating set S we will use the simplified notation
β∗p(Γ, ρ) = β∗p(Γ). This convention does not create any ambiguity since clearly β∗p(Γ, ρ) does not depend on
the choice of the finite symmetric generating set S (this follows from the fact that due to (61) the denominator
in (60) tends to∞ with t—we establish this fact below).

To better explain the definition (60) we shall make some preliminary observations before passing to the main
results of this section. We first note that

β∗p(Γ, ρ) ≤ 1. (62)

Indeed, since we are assuming that all the ρ-balls are finite there exists ρ0 > 0 such that for every distinct
x, y ∈ Γ we have ρ(x, y) ≥ ρ0. Hence for every symmetric probability measure µ on Γ which satisfies (59)
we have

Eµ
[
ρ
(
Wµ

1 , eΓ
)p]
≥ ρ

p
0µ (Γ \ {eΓ}) . (63)
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Hölder’s inequality therefore implies that:

Eµ
[
ρ
(
Wµ

1 , eΓ
)]
= Eµ

[
ρ
(
Wµ

1 , eΓ
)

1Γ\{eγ}
]

≤ µ (Γ \ {eΓ})(p−1)/p
(
Eµ

[
ρ
(
Wµ

1 , eΓ
)p])1/p (63)

≤
1

ρ
p−1
0

Eµ
[
ρ
(
Wµ

1 , eΓ
)p]

. (64)

On the other hand, by the triangle inequality we have:

Eµ
[
ρ
(
Wµ

t , eΓ
)]
≤

t∑
i=1

Eµ
[
ρ
(
Wµ

i ,W
µ
i−1

)]
= tEµ

[
ρ
(
Wµ

1 , eΓ
)] (64)
≤

t

ρ
p−1
0

Eµ
[
ρ
(
Wµ

1 , eΓ
)p]

. (65)

It follows that if {µt}
∞
t=1 are symmetric probability measures on Γ satisfying (61) then

lim sup
t→∞

log
(
Eµt

[
ρ
(
Wµt

t , eΓ
)])

log
(
tEµt

[
ρ
(
Wµt

1 , eΓ
)p]) (63)∧(65)

≤ lim sup
t→∞

(
1 −

(p − 1) log ρ0

log (tµt (Γ \ {eΓ})) + p log ρ0

)
(61)
= 1,

implying (62).

We also claim that if 1 ≤ q ≤ p < ∞ then

β∗p(Γ, ρ) ≤ β∗q(Γ, ρ). (66)

Indeed, let {µt}
∞
t=1 be symmetric probability measures on Γ satisfying (61) and note that

Eµt

[
ρ
(
Wµt

1 , eΓ
)q]
≤ µt(Γ \ {eΓ})(p−q)/p

(
Eµt

[
ρ
(
Wµt

1 , eΓ
)p])q/p (63)

≤
1

ρ
p−q
0

Eµt

[
ρ
(
Wµt

1 , eΓ
)p]

. (67)

Hence,

lim sup
t→∞

log
(
Eµt

[
ρ
(
Wµt

t , eΓ
)])

log
(
tEµt

[
ρ
(
Wµt

1 , eΓ
)p]) (67)

≤ lim sup
t→∞

log
(
Eµt

[
ρ
(
Wµt

t , eΓ
)])

log
(
tEµt

[
ρ
(
Wµt

1 , eΓ
)q]) · 1

1 + (p−q) log ρ0

log
(
tEµt

[
ρ(Wµt

1 ,eΓ)q])
(63)
≤ lim sup

t→∞

log
(
Eµt

[
ρ
(
Wµt

t , eΓ
)])

log
(
tEµt

[
ρ
(
Wµt

1 , eΓ
)q]) · 1

1 + (p−q) log ρ0
log(tµt(Γ\{eΓ}))+q log ρ0

(61)
≤ β∗q(Γ, ρ),

implying (66).

The main result of this section is the following theorem:

Theorem 5.1. Assume that Γ is amenable and that X is a metric space with Markov type p. Then for every
left-invariant metric ρ on Γ such that |Bρ(eΓ, r)| < ∞ for all r ≥ 0 we have:

α∗X(Γ, ρ) ≤
1

pβ∗p(Γ, ρ)
.

Remark 5.2. In [7, 47] it was essentially shown that the bound in Theorem 5.1 holds true with β∗p(Γ, ρ)
replaced by β∗∞(Γ, ρ), which is a weaker bound due to (66). More precisely [7, 47] dealt with the case when
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all the measures µt equal a fixed measure µ, in which case the second requirement of (61) is simply that µ is
not supported on {eΓ}. If we restrict to this particular case we can define an analogous parameter by

β̃∗p(µ, ρ) = β∗p ({µ, µ, µ, . . .}, ρ) B lim sup
t→∞

log
(
Eµ

[
ρ
(
Wµ

t , eΓ
)])

log t
.

and similarly by taking the supremum over all symmetric probability measures measures µ satisfying (61) we
can define the parameter β̃∗p(Γ, ρ). An inspection of the results in [7, 47] shows that a variant of Theorem 5.1
is established there with β∗p(Γ, ρ) replaced by β̃∗∞(Γ, ρ). Thus Theorem 5.1 is formally stronger than the
results of [7, 47]. As we shall see in Section 6, this is a strict improvement which is crucial for our proof of
the bound α∗p(Z o Z) ≤ p

2p−1 , and in Section 7 we will also need to use a family of non-identical measures
{µt}
∞
t=1. C

Proof of Theorem 5.1. Let {Fn}
∞
n=0 be a Følner sequence for Γ, i.e., for every ε > 0 and any finite K ⊆ Γ, we

have |Fn4(FnK)| ≤ ε|Fn| for large enough n. Fix β < β∗p(Γ, ρ). Then there exists a sequence of symmetric
probability measures {µt}

∞
t=1 on Γ which satisfy (61) and β < β∗p

(
{µt}
∞
t=1, ρ

)
. This implies that there exists an

increasing sequence of integers {tk}∞k=1 for which

Eµtk

[
ρ
(
W

µtk
tk , eΓ

)]
≥ tβk

(
Eµtk

[
ρ
(
W

µtk
1 , eΓ

)p])β
,

for all k. For every t, r ∈ N consider the event

Λt(r) B
t⋂

j=1

{
Wµt

j ∈ Bρ(eΓ, r)
}
.

By the monotone convergence theorem for every k ∈ N there exists rk ∈ N such that

Eµtk

[
ρ
(
W

µtk
tk , eΓ

)
1Λtk (rk)

]
≥

1
2

tβk
(
Eµtk

[
ρ
(
W

µtk
1 , eΓ

)p])β
. (68)

Since |Bρ(eΓ, rk)| < ∞ for every k ∈ N we can find nk ∈ N such that if we denote A B Fnk Bρ(eΓ, rk) ⊇ Fnk

then we have (by the Følner condition with ε = 1),

|A \ Fnk | ≤ |Fnk | =⇒ |Fnk | ≥
1
2
|A|. (69)

Fix k ∈ N and let {gi}
∞
i=1 ⊆ Γ be i.i.d. group elements distributed according to µtk such that W

µtk
t = g1g2 · · · gt

for every t ∈ N. Let Z0 be uniformly distributed over A and independent of {gi}
∞
i=1. For t ∈ N define

Zt B

{
Zt−1gt if Zt−1gt ∈ A,
Zt−1 otherwise.

Consider the event Ω B {Z0 ∈ Fnk } ∩Λtnk
(rk). By construction when Ω occurs we have Ztk = Z0W

µtk
tk . Hence

Eµtk

[
ρ
(
Ztk ,Z0

)]
≥ Eµtk

[
ρ
(
Z0W

µtk
tk ,Z0

)
1Ω

]
(∗)
= P

[
Z0 ∈ Fnk

]
· Eµtk

[
ρ
(
W

µtk
tk , eΓ

)
1Λtk (rk)

] (68)∧(69)
≥

1
4

tβk
(
Eµtk

[
ρ
(
W

µtk
1 , eΓ

)p])β
, (70)
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where in (∗) we used the independence of Z0 and {gi}
∞
i=1 and the left-invariance of ρ.

On the other hand fix α ∈ (0, 1) and assume that there exists an embedding f : Γ → X and c,C ∈ (0,∞)
such that

x, y ∈ Γ =⇒ cρ(x, y)α ≤ dX( f (x), f (x)) ≤ Cρ(x, y). (71)

Our goal is to show that α ≤ 1
pβ . Since β < 1 this inequality is vacuous if pα < 1. We may therefore assume

that pα ≥ 1. Since {Zt}
∞
t=0 is a stationary reversible Markov chain, for every M > Mp(X) and k ∈ N we have

E
[
dX( f (Ztk ), f (Z0))p] ≤ MptkE

[
dX( f (Z1), f (Z0))p]

(71)
≤ MpCptkE

[
ρ(Z1,Z0)p] (∗∗)

≤ MpCptkEµtk

[
ρ
(
W

µtk
1 , eΓ

)p]
, (72)

Where in (∗∗) we used the point-wise inequality ρ(Z1,Z0) ≤ ρ(g1, eΓ) = ρ
(
W

µtk
1 , eΓ

)
. On the other hand,

E
[
dX( f (Ztk ), f (Z0))p] (71)

≥ cpE
[
ρ
(
Ztk , f Z0

)αp]
αp≥1
≥ cp (

E
[
ρ(Ztk ,Z0)

])αp (70)
≥

cptαβp
k

4αp

(
Eµtk

[
ρ
(
W

µtk
1 , eΓ

)p])αβp
. (73)

Combining (72) and (73) we deduce that(
ρ

p
0 tkµtk (Γ \ {eΓ})

)αβp−1 (63)
≤

(
tkEµtk

[
ρ
(
W

µtk
1 , eΓ

)p])αβp−1
≤

4αpMpCp

cp . (74)

Taking k → ∞ in (74) while using the assumption (61) we conclude that αβp ≤ 1, as required. �

The following theorem is a variant of Theorem 5.1 which deals with equivariant embeddings of general
groups (not necessarily amenable) into uniformly smooth Banach spaces. Its proof is an obvious modifica-
tion of the proof of Theorem 2.1 in [47]: one just has to notice that in that proof the i.i.d. group elements
{σk}

∞
k=1 need not be uniformly distributed over a symmetric generating set S ⊆ Γ—the argument goes

through identically if they are allowed to be distributed according to any symmetric probability measure µ
satisfying the integrability condition (59).

Theorem 5.3. Let Γ be a group and ρ a left-invariant metric on Γ such that |Bρ(eΓ, r)| < ∞ for all r ≥ 0.
Assume that X is a Banach space whose modulus of uniform smoothness has power-type p ∈ [1, 2]. Then:

α#
X(Γ, ρ) ≤

1
pβ∗p(Γ, ρ)

.

By the results of Section 9 Theorem 5.3 implies Theorem 5.1 when X is a Banach space whose modulus of
uniform smoothness has power-type p rather than a general metric space with Markov type p. Note that the
former assumption implies the latter assumption as shown in [48].

6 Stable walks and the Lp compression of Z o Z

This section is devoted to the proof of the following theorem:
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Theorem 6.1. For every p ∈ (1, 2) we have

β∗p(Z o Z) =
2p − 1

p2 .

Note that since in [47] we proved that α∗p(Z o Z) ≥ p
2p−1 , Theorem 5.1 implies that β∗p(Z o Z) ≤ 2p−1

p2 .

Thus in order to prove Theorem 6.1 it suffices to show that β∗p(Z o Z) ≥ 2p−1
p2 , which would also imply that

α∗p(Z o Z) = p
2p−1 . In order to establish this lower bound on β∗p(Z o Z) we will analyze certain symmetric

random walks on Z o Z which arise from discrete approximations of q-stable random variables for some
q ∈ (p, 2).

6.1 Some general properties of symmetric walks on Z

Let X be a Z-valued symmetric random variable and let X1, X2, . . . be i.i.d. copies of X. For each n ∈ N
define S n = X1 + · · · + Xn (and set S 0 = 0). We also define S [o,n] to be the random set {S 0, . . . , S n}. We will
record here for future use some general properties of the walk S n. These are simple facts which appeared in
various guises in the literate (though we did not manage to pinpoint cleanly stated references for them). We
include this brief discussion for the sake of completeness.

Lemma 6.2. For S n as above we have

E [|S n|] ≥
1
4
E

[∣∣∣S [0,n]
∣∣∣] . (75)

Proof. Fix R ≥ 0 and denote τ B min{t ≥ 0 : |S t| ≥ R}. Note the following inclusion of events:

{|S n| ≥ R} ⊇

τ ≤ n ∧ sign

 n∑
k=τ+1

Xk

 = sign(S τ)

 .
It follows that:

P [|S n| ≥ R] ≥
n∑

m=0

P

τ = m ∧ sign

 n∑
k=m+1

Xk

 = sign(S m)

 = n∑
m=0

P [τ = m] · P [S n−m ≥ 0]

(?)
≥

1
2

n∑
m=0

P [τ = m] =
1
2
P [τ ≤ n] , (76)

where in (?) we used the symmetry of S n−m. Note that if
∣∣∣S [0,n]

∣∣∣ ≥ 2R then one of the numbers {|S 0|, . . . , |S n|}

must be at least R. Thus
P [τ ≤ n] ≥ P

[∣∣∣S [0,n]
∣∣∣ ≥ 2R

]
. (77)

It follows that:

E [|S n|] =
∞∑

R=0

P [|S n| ≥ R]
(76)∧(77)
≥

1
2

∞∑
R=0

P
[∣∣∣S [0,n]

∣∣∣ ≥ 2R
]

≥
1
2

∞∑
R=0

P
[∣∣∣S [0,n]

∣∣∣ ≥ 2R
]
+ P

[∣∣∣S [0,n]
∣∣∣ ≥ 2R + 1

]
2

=
1
4
E

[∣∣∣S [0,n]
∣∣∣] ,

as required. �
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The proof of the following lemma is a slight variant of the argument used to prove the first assertion of
Lemma 6.3 in [47].

Lemma 6.3. Let S n be as above and denote Rn B |{k ∈ {0, . . . , n} : S k = 0}|. Then

P

Rn ≥
1
2

n∑
`=0

P[S ` = 0]

 ≥ 1
8
. (78)

Proof. Since Rn =
∑n
`=0 1{S `=0} we have E[Rn] =

∑n
`=0 P[S ` = 0] and:

E
[
R2

n

]
=

n∑
`=0

P[S ` = 0] + 2
∑

i, j∈{0,...,n}
i< j

P
[
S i = S j = 0

]
= E [Rn] + 2

∑
i, j∈{0,...,n}

i< j

P [S i = 0] · P
[
S j−i = 0

]
≤ E [Rn] + (E [Rn])2 ≤ 2 (E [Rn])2 .

Since for every nonnegative random variable Z we have P
[
Z ≥ 1

2E[Z]
]
≥ 1

4
(E[Z])2

E[Z2] (which is an easy con-

sequence of the Cauchy-Schwartz inequality—see [51, 2]) we deduce that P
[
Rn ≥

1
2E[Rn]

]
≥ 1

8 , as re-
quired. �

The proof of the following lemma is a slight variant of the argument used to prove the second assertion of
Lemma 6.3 in [47].

Lemma 6.4. For S n as above we have:

E
[∣∣∣S [0,n]

∣∣∣] ≥ n + 1
2
∑n
`=0 P [S ` = 0]

. (79)

Proof. Fix k ∈ {1, . . . , n + 1} and denote k̃ B min
{
k,

∣∣∣S [0,n]
∣∣∣}. Let V1, . . . ,Vk̃ be the first distinct k̃ integers

that were visited by the walk S 0, S 1, . . . , S n. For simplicity of notation we also set V j = n + 1 when
j ∈ {̃k + 1, . . . , n}. Write

τ j B

{
min{0 ≤ τ ≤ n : S τ = V j} j ≤ k̃,
n + 1 j > k̃.

Denote Yk B
∣∣∣∣{0 ≤ j ≤ n : S j ∈ {V1, . . . ,Vk̃}

}∣∣∣∣. Then

E [Yk] =
k∑

j=1

E
[∣∣∣∣{0 ≤ ` ≤ n : S ` = V j

}∣∣∣∣] = k∑
j=1

E

 n∑
`=0

1{S `=V j}

 = k∑
j=1

E

 n∑
`=τ j

P
[
S ` = S τ j

]∣∣∣∣∣∣∣∣ τ j


=

k∑
j=1

E

 n∑
`=τ j

P
[
S `−τ j = 0

]∣∣∣∣∣∣∣∣ τ j

 ≤ k
n∑
`=0

P [S ` = 0] . (80)

Hence

P
[∣∣∣S [0,n]

∣∣∣ ≤ k
]
≤ P [Yk ≥ n + 1] ≤

E[Yk]
n + 1

(80)
≤

k
n + 1

n∑
`=0

P [S ` = 0] . (81)
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It follows that if we denote m = n+1∑n
`=0 P[S `=0] then

E
[∣∣∣S [0,n]

∣∣∣] = n+1∑
k=1

P
[∣∣∣S [0,n]

∣∣∣ ≥ k
]
=

n+1∑
k=1

(
1 − P

[∣∣∣S [0,n]
∣∣∣ ≤ k − 1

]) (81)
≥

dme∑
k=1

(
1 −

k − 1
m

)
= dme −

dme(dme − 1)
2m

≥
dme
2
≥

n + 1
2
∑n
`=0 P [S ` = 0]

,

as required. �

6.2 An analysis of a particular discrete stable walk on Z

In this section we will analyze a specific random walk on Zwhich will be used in estimating β∗p(ZoZ). Similar
bounds are known to hold in great generality for arbitrary walks which are in the domain of attraction of
q-stable random variables, and not only for the walk presented below. Specifically, such general results can
be deduced from Gnedenko’s local central limit theorem for convergence to stable laws (see Theorem 4.2.1
in [37]), in combination with some estimates on such walks from [29] (see section IX.8, Theorem 1 there).
Since for the purpose of proving compression bounds all we need is to construct one such walk, we opted
for the sake of concreteness to present here a simple self-contained proof of the required properties of a
particular walk which is perfectly suited for the purpose of our applications to embedding theory.

In what follows fix q ∈ (p, 2). Define a1 = a−1 = 0 and for n ∈ (N \ {1}) ∪ {0},

an = a−n =
(−1)n

2q

(
q
n

)
=

(−1)n

2q
·

q(q − 1) · · · (q − n + 1)
n!

. (82)

Note that since q ∈ (1, 2) the definition (82) implies that for n , 1 we have an > 0. Since we defined a±1 to
be equal 0 it follows that {an}n∈Z ⊆ [0,∞). An application of Stirling’s formula implies that as n → ∞ we
have

an =
1
2q

(
n − q − 1

n

)
�

1
nq+1 , (83)

where the implicit constants depend only on q (and are easily estimated if so desired). Note in particular
that since q > p, (83) implies that ∑

n∈Z

an|n|p < ∞, (84)

and
ϕ(θ) B

∑
n∈Z

aneinθ (85)

converges uniformly on [−π, π]. Moreover it is easy to compute ϕ(θ) explicitly:

ϕ(θ) =
eiθ + e−iθ

2
+

1
2q

∞∑
n=0

(−1)n
(
q
n

) (
einθ + e−inθ

)
= cos θ +

(
1 − eiθ

)q
+

(
1 − e−iθ

)q

2q

= cos θ +
2q/2

q
(1 − cos θ)q/2 cos

(
q(π − θ)

2

)
∈ R. (86)
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An immediate consequence of (86) is that
∑

n∈Z an = ϕ(0) = 1. Thus we can define a symmetric random
variable X on Z by P[X = n] = an. With this notation (84) becomes E|X|p < ∞. Another corollary of the
identity (86) is that there exits ε = ε(q) ∈ (0, 1) and c = c(q) > 0 such that for every θ ∈ [−ε, ε] we have
E

[
eiθX

]
= ϕ(θ) ∈

[
e−2c|θ|q , e−c|θ|q

]
. Note also that since for every θ , 0 we have |ϕ(θ)| <

∑
n∈Z an = 1 there

exists some δ = δ(q) ∈ (0, 1) such that for every θ ∈ [−π,−ε] ∪ [ε, π] we have |ϕ(θ)| ≤ 1 − δ.

Now let X1, X2, . . . be i.i.d. copies of X. Denote S n = X1 + · · · + Xn. Then the above bounds imply that

P [S n = 0] =
1

2π

∫ π

−π

(
E

[
eiθS n

])
dθ =

1
2π

∫ π

−π
ϕ(θ)ndθ

∈
1

2π

[∫ ε

−ε
e−2cn|θ|qdθ −

∫
[−π,−ε]∪[ε,π]

(1 − δ)ndθ,
∫ ε

−ε
e−cn|θ|qdθ +

∫
[−π,−ε]∪[ε,π]

(1 − δ)ndθ
]
.

This implies that as n→ ∞ we have

P [S n = 0] �
1

n1/q . (87)

Substituting (87) into (79) we see that

E
[∣∣∣S [0,n]

∣∣∣] = E [|{S 0, . . . , S n}|] & n1/q. (88)

In combination with (79) it follows that
E [|S n|] & n1/q. (89)

Additionally, if we let Rn be as in Lemma 6.3 (for the particular symmetric walk S n studied here) then by
plugging (87) into (78) we get the bound

E
[
R1/q

n

]
& n(q−1)/q2

. (90)

6.3 The induced walk on Z o Z and the lower bound on β∗p(Z o Z)

In this section we will conclude the proof of Theorem 6.1. Modulo the previous preparatory sections, the
argument below closely follows the proof of Theorem 6.2 in [47].

For every n1, n2, n3 ∈ Z define f n3
n1,n2 : Z→ Z by

f n3
n1,n2(k) B n11{0} + n21{n3} =


n1 if k = 0,
n2 if k = n3 ∧ n3 , 0,
n1 + n2 if k = 0 = n3,

0 otherwise.

Denote
xn1,n2,n3 B

(
f n3
n1,n2 , n3

)
∈ Z o Z. (91)

To better understand the meaning of this group element, note that for every (g, `) ∈ ZoZwe have (g, `)xn1,n2,n3 =

(h, ` + n3) where

h(k) =


g(k) + n1 if k = `,
g(k) + n2 if k = ` + n3 ∧ n3 , 0,
g(`) + n1 + n2 if k = ` ∧ n3 = 0,
g(k) otherwise.
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Thus if we let µ be the symmetric probability measure on Z o Z given by µ({xn1,n2,n3}) = an1an2an3 , where
{an}n∈Z are the coefficients from Section 6.2, then the walk {Wµ

t }
∞
t=0 can be described in words as follows:

start at (0, 0) and at each step choose three i.i.d. numbers n1, n2, n3 ∈ Z distributed according to the random
variable X from Section 6.2. Add n1 to the current location of the lamplighter, move the lamplighter n3 units
and add n2 to the new location of the lamplighter.

Write Wµ
t = ( ft,mt). By the above description mt has the same distribution as the walk S t from Section 6.2.

Fix n ∈ N and for m ∈ Z denote Tm B |{t ∈ {0, . . . , n} : mt = m}|. The above description of the walk Wµ
t

ensures that conditioned on {Tm}m∈Z and on “terminal point” mn, if k ∈ Z \ {0,mn} then fn(m) has the same
distribution as S 2Tm , if m ∈ {0,mn} and mn , 0 then fn(m) has the same distribution as S max{2Tm−1,0}, and if
m ∈ {0,mn} and mn = 0 then fn(m) has the same distribution as S 2Tm . Thus using (89) we see that

E
[
| fn(m)|

]
& E

[
T 1/q

m

]
. (92)

Fix m ∈ Z and for t ∈ {0, . . . , n} define the event At B {mt = m ∧ m < {0, . . . ,m`−1}. Note that conditioned
on At the random variable Tm has the same distribution as RTm , where {Rk}

n
k=0 is as in (90). Hence,

E
[
T 1/q

m

]
≥

bn/2c∑
t=0

P(At) · E
[
T 1/q

m

∣∣∣∣ At

]
&
bn/2c∑
t=0

P(At) · n(q−1)/q2
= n(q−1)/q2

P
[
m ∈ {m0, . . . ,mbn/2c}

]
. (93)

It follows that

E
[
dZoZ

(
Wµ

n , (0, 0)
)]
&

∑
m∈Z

E
[
| fn(m)|

] (92)
&

∑
m∈Z

E
[
T 1/q

m

] (93)
& n(q−1)/q2

∑
m∈Z

P
[
m ∈ {m0, . . . ,mbn/2c}

]
= n(q−1)/q2

E
[∣∣∣{S 0, . . . , S bn/2c}

∣∣∣] (88)
& n(q−1)/q2

· n1/q = n(2q−1)/q2
. (94)

On the other hand it follows from (84) that E
[
dZoZ

(
Wµ

1 , (0, 0)
)p]

< ∞ so we deduce from the definition of
β∗p(Z o Z) that

β∗p(Z o Z) ≥
2q − 1

q2 .

Letting q→ p+ we deduce Theorem 6.1. �

Remark 6.5. The same argument as above actually shows that for every finitely generated group G and
every p ∈ (1, 2] we have

β∗p(G o Z) ≥
1
p
+

(
1 −

1
p

)
β∗p(G). (95)

This implies Theorem 6.1 since the computations in Section 6.2 show that β∗p(Z) ≥ 1
p . Note of course that

due to Theorem 5.1 we actually know that β∗p(Z) = 1
p . We also observe that if H is a finitely generated group

whose growth is at least quadratic then β∗p(G oH) = 1. Indeed we have established the fact that β∗p(G oH) ≤ 1
in (62), while the lower bound follows from Theorem 6.1 in [47] which states that β∗(G o H) = 1, combined
with the obvious fact that β∗(G o H) ≤ β∗p(G o H). C

Remark 6.6. Define inductively Z(1) = Z and Zk+1 = Z(k) o Z. Then for p ∈ (1, 2] we have β∗p(Z(1)) = 1
p

and (95) implies that β∗p(Z(k+1)) ≥ 1
p +

(
1 − 1

p

)
β∗p(Z(k)). It follows by induction that for all k ∈ N we have

β∗p(Z(k)) ≥ 1 −
(
1 −

1
p

)k

. (96)
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Note that α∗p(Z(1)) = 1 and by [57] α∗p(C2 o Z) = 1 (see also the different proof of this fact in [47]). Thus
Corollary 2.2 implies that

α∗p(Z(k+1)) ≥
pα∗p(Z(k))

pα∗p(Z(k)) + p − 1
.

It follows by induction that

α∗p(Z(k)) ≥
1

p
(
1 −

(
1 − 1

p

)k
) . (97)

By combining (96) and (97) with Theorem 5.1 we see that

α∗p(Z(k)) =
1

p
(
1 −

(
1 − 1

p

)k
) and β∗p(Z(k)) = 1 −

(
1 −

1
p

)k

.

For p ∈ (2,∞) the same reasoning (using the fact that Lp has Markov type 2 [48]) shows that α∗p(Z(k)) =
α∗2(Z(k)) and β∗p(Z(k)) = β∗2(Z(k)). C

7 A computation of β∗p ((Z o Z)0, dZoZ)

The purpose of this section is to prove the following result:

Theorem 7.1. Let G,H be infinite groups generated by the finite symmetric sets S G ⊆ G and S H ⊆ H,
respectively. Let (G o H)0 = {( f , x) ∈ G o H : x = eH} be the zero section of G o H. Then for all p ∈ [1, 2] we
have

β∗p ((G o H)0, dGoH) ≥
2

p + 1
. (98)

Specializing to the case G = H = Z we can apply Theorem 5.1 when ρ is the metric induced from Z o Z on
the amenable group (Z o Z)0 to deduce that

p + 1
2p

≥
1

pβ∗p ((Z o Z)0, dZoZ)
≥ α∗p ((Z o Z)0, dZoZ)

(Thm. 4.1)
=

p + 1
2p

. (99)

Thus in particular there is equality in (98) when G = H = Z.

Proof of Theorem 7.1. For every k ∈ N let gk ∈ G and hk ∈ H be elements satisfying dG(gk, eG) = k and
dH(hk, eH) = k. Such elements exists since G,H are assumed to be infinite. We shall write below h−1

k = h−k.
Fix an even integer n ∈ N. For every k ∈ [1, n/2] ∪ [−n/2,−1] and ε, δ ∈ {−1, 1} define fk,ε,δ : H → G by

fk,ε,δ(x) B


gεn if x = eH ,

gδn if x = hk,

eG otherwise.

Let µn be the symmetric measure on (G o H)0 which is uniformly distributed on the 4n elements{
( fk,ε,δ, eH) : k ∈ [1, n/2] ∪ [−n/2,−1], ε, δ ∈ {−1, 1}

}
⊆ (G o H)0.
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Then the following point-wise inequality holds true:

0 < dGoH
(
Wµn

1 , eGoH
)
≤ 3n. (100)

It follows in particular that the conditions in (61) hold true for the sequence {µn}
∞
n=1. Moreover, for each

k ∈ [1, n/2] ∪ [−n/2,−1] the probability that in exactly one of the first n steps of the walk
{
Wµn

t

}∞
t=0

the hk

coordinate was altered is
(
1 − 1

n

)n−1
> 1

3 . Therefore the expected number of of coordinates hk that were
altered exactly once is greater than n/3. Each such coordinate contributes n to the distance between Wµn

n and
eGoH . Hence

Eµn

[
dGoH

(
Wµn

n , eGoH
)]
≥

n2

3
. (101)

It follows from the definition (60) that

β∗p ((G o H)0, dGoH) ≥ β∗p
(
{µn}

∞
n=1 , dGoH

) (100)∧(101)
≥ lim sup

n→∞

log(n2/3)
log(3pn1+p)

=
2

p + 1
,

as required. �

8 An application to the Lipschitz extension problem

The purpose of this section is to prove the following theorem:

Theorem 8.1. There exists a Lipschitz function F : (Z o Z)0 → L2 which cannot be extended to a Lipschitz
function from Z o Z to L2.

The key step in the proof of Theorem 8.1 is the use of the function constructed in Theorem 4.1. The other
fact that we will need is Lemma 8.2 below. Recall that a Markov chain {Zt}

∞
t=0 is called a symmetric Markov

chain on Z oZ if there exists an N-point subset {z1, . . . , zN} ⊆ Z oZ and an N ×N symmetric stochastic matrix
A = (ai j) such that P[Z0 = zi] = 1

N for all i ∈ {1, . . . ,N} and for all i, j ∈ {1, . . . ,N} and t ∈ N we have
P[Zt+1 = x j|Zt = zi] = ai j.

The following lemma asserts that there is a fast-diverging symmetric Markov chain on Z o Z which remains
within a relatively narrow tubular neighborhood around the zero section (Z o Z)0.

Lemma 8.2. For every ε > 0 there exists an integer n0(ε) ∈ N such that for all n ≥ n0(ε) there is a symmetric
Markov chain {Zt}

∞
t=0 on Z o Z which satisfies the following conditions:

1. dZoZ(Z1,Z0) ≤ 4 (point-wise),

2. dZoZ (Zt, (Z o Z)0) ≤ 2n(1+ε)/2 for all t ≥ 0 (point-wise),

3. E [dZoZ (Zn,Z0)] & n3/4.

Assuming Lemma 8.2 for the moment we shall prove Theorem 8.1.
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Proof of Theorem 8.1. Fix ε ∈ (0, 1/11). By Theorem 4.1 there exists a function F : (Z o Z)0 → L2 and
c = c(ε) > 0 such that ‖F‖Lip = 1 and for every x, y ∈ (Z o Z)0 we have

‖F(x) − F(y)‖2 ≥ cdZoZ(x, y)(3−ε)/4. (102)

Assume for the sake of contradiction that there exists a function F̃ : Z o Z → L2 such that F̃ �(ZoZ)0= F and∥∥∥F̃
∥∥∥

Lip = L < ∞.

Let n0(ε) and {Zt}
∞
t=0 be as in Lemma 8.2 and fix n ≥ n0(ε). Write Zt = ( ft, kt) and define Z0

t = ( ft, 0) ∈
(Z o Z)0. The second assertion of Lemma 8.2 implies that for all t ≥ 0 we have

dZoZ
(
Zt,Z0

t

)
≤ 2n(1+ε)/2. (103)

Using the Markov type 2 property of L2 [9] (with constant 1) and the first assertion of Lemma 8.2 we see
that:

E
[∥∥∥F̃(Zn) − F̃(Z0)

∥∥∥2
2

]
≤ nE

[∥∥∥F̃(Z1) − F̃(Z0)
∥∥∥2

2

]
≤ nL2E

[
dZoZ (Z1,Z0)2

]
≤ 16nL2. (104)

Note the following elementary corollary of the triangle inequality which holds for every metric space (X, d),
every p ≥ 1 and every a1, a2, b1, b2 ∈ X:

d(a1, b1)p ≥
1

3p−1 d(a2, b2)p − d(a1, a2)p − d(b1, b2)p. (105)

Hence we have the following point-wise inequality:∥∥∥F̃(Zn) − F̃(Z0)
∥∥∥2

2

(105)
≥

1
3

∥∥∥∥F
(
Z0

n

)
− F

(
Z0

0

)∥∥∥∥2

2
−

∥∥∥∥F̃(Zn) − F̃
(
Z0

n

)∥∥∥∥2

2
−

∥∥∥∥F̃(Z0) − F̃
(
Z0

0

)∥∥∥∥2

2

(102)
≥

c2

3
dZoZ

(
Z0

n ,Z
0
0

)(3−ε)/2
− L2dZoZ

(
Zn,Z0

n

)2
− L2dZoZ

(
Z0,Z0

0

)2

(105)∧(103)
≥

c2

3

(
1
3

dZoZ (Zn,Z0)(3−ε)/2 − dZoZ
(
Zn,Z0

n

)(3−ε)/2
− dZoZ

(
Z0,Z0

0

)(3−ε)/2
)
− 8L2n1+ε

(103)
≥

c2

9
dZoZ (Zn,Z0)(3−ε)/2 − 10L2n1+ε. (106)

Taking expectation in (106) and using the third assertion of Lemma 8.2 we see that:

16nL2 ≥ E
[∥∥∥F̃(Zn) − F̃(Z0)

∥∥∥2
2

]
≥

c2

9
E

[
dZoZ (Zn,Z0)(3−ε)/2

]
− 10L2n1+ε

≥ (E [dZoZ (Zn,Z0)])(3−ε)/2 − 10L2n1+ε & n3(3−ε)/8 − 10L2n1+ε,

which is a contradiction for large enough n since the assumption ε < 1/11 implies that 3(3−ε)
8 > 1 + ε. �

It remains to prove Lemma 8.2.

Proof of Lemma 8.2. Fix an integer n ∈ N and ε ∈ (0, 1/4). Define two subsets Un,Vn ⊆ Z o Z by

Un B
{
( f , k) ∈ Z o Z : supp( f ) ⊆ [−n, n] , |k| ≤ 2n(1+ε)/2, | f (`)| ≤ n2 ∀ ` ∈ Z

}
,

Vn B
{
( f , k) ∈ Z o Z : supp( f ) ⊆ [−n, n] , |k| ≤ n(1+ε)/2, | f (`)| ≤ n2 − 2n ∀ ` ∈ Z

}
.
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Then |Un| �
(
2n2 + 1

)2n+1 (
4n(1+ε)/2 + 1

)
and |Vn| �

(
2n2 − 4n + 1

)2n+1 (
2n(1+ε)/2 + 1

)
so that

|Vn|

|Un|
& 1. (107)

Consider the set S = {xn1,n2,n3 : n1, n2, n3 ∈ {−1, 1}}, where xn1,n2,n3 are as defined in (91). Then S is
a symmetric generating set of Z o Z consisting of 8 elements. Let g1, g2, . . . be i.i.d. elements of Z o Z
which are uniformly distributed over S and denote Wm B g1 · · · gm = ( fm, km). Then by construction the
sequence {km}

∞
m=1 has the same distribution as the standard random walk on Z, i.e., the same distribution as

{S m = ε1 + · · · + εm}
∞
m=1 where ε1, ε2, . . . are i.i.d. Bernoulli random variables (this fact was explained in

greater generality in Section 6.3). Also, as shown by Èrschler [28], we have

E [dZoZ (Wn, (0, 0))] ≥ cn3/4, (108)

where c > 0 is a universal constant. Note that since dZoZ(xn1,n2,n3 , (0, 0)) ≤ 4 for every n1, n2, n3 ∈ {−1, 1} we
have point-wise bound

dZoZ (Wn, (0, 0)) ≤ 4n. (109)

Now let Z0 be uniformly distributed over Un and independent of {gi}
∞
i=1. For t ∈ N define

Zt B

{
Zt−1gt if Zt−1gt ∈ Un,

Zt−1 otherwise.

The first two assertions of Lemma 8.2 hold true by construction. It remains to establish the third assertion
of Lemma 8.2.

Consider the events E B {Z0 ∈ Vn} and F B
{
maxm≤n |km| ≤ n(1+ε)/2

}
. Note that if the event E ∩ F occurs

then Zn = Z0Wn since by design in this case Z0 ∈ Vn and therefore Z0Wt cannot leave Un for all t ≤ n. It
follows that

E [dZoZ (Zn,Z0)] ≥ E
[
dZoZ (Wn, (0, 0)) 1E∩F

]
= P [E]

(
E [dZoZ (Wn, (0, 0))] − E

[
dZoZ (Wn, (0, 0)) 1F c

])
(108)∧(109)
≥

|Vn|

|Un|

(
cn3/4 − 4n(1 − P[F ])

) (107)
& cn3/4 − 4n(1 − P[F ]). (110)

For large enough n (depending on ε) we have

4n(1 − P[F ]) ≤
c
2

n3/4, (111)

since Doob’s maximal inequality (see e.g. [27]) implies that for every p > 1 we have

1 − P[F ] = P
[
max
m≤n
|km| > n(1+ε)/2

]
≤

(
p

p − 1

)p
E [|ε1 + · · · + εn|

p]
np(1+ε)/2

(♣)
.

(
p

p − 1

)p (10np)p/2

np(1+ε)/2 =
C(p)
npε/2 , (112)

where in (♣) we used Khinchine’s inequality (see e.g. [46]) and C(p) depends only on p. Hence choosing p
large enough in (112) (depending on ε) implies (111). Combining (110) and (111) implies that

E [dZoZ (Zn,Z0)] & n3/4,

which completes the proof of Lemma 8.2. �
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9 Reduction to equivariant embeddings

Recall that a Banach space (X, ‖ · ‖X) is said to be finitely representable in a Banach space (Y, ‖ · ‖Y ) if for
every ε > 0 and every finite dimensional subspace F ⊆ X there is a linear operator T : F → Y such that for
every x ∈ F we have ‖x‖X ≤ ‖T x‖Y ≤ (1 + ε)‖x‖X .

Theorem 9.1. Let Γ be an amenable group which is generated by a finite symmetric set S ⊆ Γ. Fix p ≥ 1,
two functions ω,Ω : [0,∞)→ [0,∞) and a Banach space (X, ‖ · ‖X) such that there is a mapping ψ : Γ→ X
which satisfies:

g, h ∈ Γ =⇒ ω (dΓ(g, h)) ≤ ‖ψ(g) − ψ(h)‖X ≤ Ω (dΓ(g, h)) . (113)

Then there exists a Banach space Y which is finitely representable in `p(X) and an equivariant mapping
Ψ : Γ→ Y such that

g, h ∈ Γ =⇒ ω (dΓ(g, h)) ≤ ‖Ψ(g) − Ψ(h)‖Y ≤ Ω (dΓ(g, h)) . (114)

Moreover, if X = Lp(µ) for some measure µ then Y can be taken to be isometric to Lp.

Note that as a special case of Theorem 9.1 we conclude that for every p ≥ 1 if Γ is an amenable group then
α∗p(Γ) = α#

p(Γ).

In what follows given a Banach space X we denote by Isom(X) the group of all linear isometric automor-
phims of X. We shall require the following lemma in the proof of Theorem 9.1:

Lemma 9.2. Fix p ∈ [1,∞). Let G be a finitely generated group and (Ω,F , µ) be a measure space (thus
Ω is a set, F is a σ algebra, and µ is a measure on F ). Assume that π0 : G → Isom

(
Lp(µ,F )

)
is a

homomorphism and that f0 ∈ Z1(G, π0) a 1-cocycle. Then there exists a homomorphism π : G → Isom
(
Lp

)
and a 1-cocycle f ∈ Z1(G, π) such that ‖ f (x)‖Lp = ‖ f0(x)‖Lp(µ,F ) for all x ∈ G.

Proof. Given A ⊆ Lp(µ,F ) we denote as usual the smallest sub-σ algebra of F with respect to which all
the elements of A are measurable by σ(A). Define inductively a sequence {Fn}

∞
n=1 of sub-σ algebras of F

and two sequences {Un}
∞
n=1, {Vn}

∞
n=1 of linear subspaces of Lp(µ,F ) as follows:

U1 = span

⋃
x∈G

π0(x) f0(G)

 , F1 B σ (U1) , V1 = Lp(µ,F1),

and inductively

Un+1 B span

⋃
x∈G

π0(x)Vn

 , Fn+1 B σ(Un+1), Vn+1 = Lp(µ,Fn+1).

By construction for each n ∈ N we have Un ⊆ Vn ⊆ Un+1, the measure space (Ω,Fn, µ) is separable (since
G is countable) and Fn+1 ⊇ Fn. Let F∞ be the σ-algebra generated by

⋃∞
n=1 Fn. Note that for every ε > 0

and every A ∈ F∞ there is some n ∈ N and B ∈ Fn such that µ(A4B) ≤ ε (this is because the set of all such
A ∈ F forms a σ algebra, and therefore contains F∞). By considering approximations by simple functions
we deduce that

Lp(µ,F∞) =
∞⋃

n=1

Vn, (115)
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where the closure is taken in Lp(µ,F ). We claim that for each x ∈ G we have π0(x) ∈ Isom
(
Lp(µ,F∞)

)
.

Indeed, by construction π0(x)Un = Un for all n ∈ N, and therefore Vn ⊆ π0(x)Vn+1 ⊆ Vn+2, which implies
that π0(x)Lp(µ,F∞) = Lp(µ,F∞), as required. Note also that f (G) ⊆ Lp(µ,F∞).

Since Lp(µ,F∞) is separable it is isometric to one of the spaces:

Lp, `p, ,
{
`n

p

}∞
n=1

, Lp ⊕ `p,
{
Lp ⊕ `

n
p

}∞
n=1

, (116)

where the direct sums in (116) are `p direct sums (see [60]). In what follows we will slightly abuse notation
by saying that Lp(µ,F∞) is equal to one of the spaces listed in (116). The standard fact (116) follows from
decomposing the measure µ �F∞ into a non-atomic part and a purely atomic part, and noting that the purely
atomic part can contain at most countably many atoms while the non-atomic part is isomorphic to [0, 1]
(equipped with the Lebesgue measure) by Lebesgue’s isomorphism theorem (see [34]).

If Lp(µ,F∞) = Lp then we are done, since we can take π = π0 �Lp(µ,F∞), so assume that Lp(µ,F∞) is
not isometric to Lp. We may therefore also assume that p , 2. If Lp(µ,F∞) = `p then by Lamperti’s
theorem [41] (see also Chapter 3 in [30]) for every x ∈ G, since π0(x) is a linear isometric automorphism of
`p (and p , 2) we have π0(x)ei = θ

x
i eτx(i) for all i ∈ N, where {ei}

∞
i=1 is the standard coordinate basis of `p,

the function τx : N → N is one-to-one and onto and |θx| ≡ 1. Define π(x) ∈ Isom
(
Lp

)
and f : G → Lp by

setting for h ∈ Lp and t ∈
[
2−i, 2−i+1

]
,

π(x)h(t) B θx
i h

(
2i−τx(i)t

)
and f (x)(t) = 2i/p〈 f0(x), ei〉.

It is immediate to check that π, f satisfy the assertion of Lemma 9.2.

It remains to deal with the case Lp(µ,F∞) = Lp ⊕ `p(S ) where S is a nonempty set which is finite or
countable. In this case we use Lamperti’s theorem once more to deduce that for each x ∈ G the linear
isometric automorphism π0(x) maps disjoint functions to disjoint functions, and therefore it maps indicators
of atoms to indicators of atoms. Hence π0(x)Lp = Lp and π0(x)`p(S ) = `p(S ). Now, as above π0(x) �`p(S )
must correspond (up to changes of sign) to a permutation of the coordinates. Hence, denoting the projection
from Lp ⊕ `p(S ) onto Lp by Q, the same reasoning as above shows that there exists a homomorphism
π′ : G → Lp and f ′ ∈ Z1(G, π′) such that for all x ∈ G we have ‖ f ′(x)‖Lp = ‖ f0(x) − Q f0(x)‖`p(S ). It follows
that if we define π(x) ∈ Isom

(
Lp ⊕ Lp

)
by π(x) = π0(x) �Lp ⊕π

′ and f : G → Lp ⊕ Lp by f (x) = (Q f ) ⊕ f ′

then (using the fact that Lp ⊕ Lp is isometric to Lp) the assertion of Lemma 9.2 follows in this case as
well. �

Proof of Theorem 9.1. Let {Fn}
∞
n=0 be a Følner sequence for Γ and let U be a free ultrafilter on N. Define

M : `∞(Γ)→ R by

M ( f ) = lim
U

1
|Fn|

∑
x∈Fn

f (x). (117)

It follows immediately from the Følner condition that M is an invariant mean on Γ, i.e., a linear functional
M : `∞(Γ) → R which maps the constant 1 function to 1, assigns non-negative values to non-negative
functions and M (Ry f ) = M ( f ) for every y ∈ Γ, where Ry f (x) = f (xy) (we refer to [58] for proofs and
more information on this topic). Define a semi-norm ‖ · ‖M ,p on `∞(Γ, X) (the space of all X-valued bounded
functions on Γ) by:

f ∈ `∞(Γ, X) =⇒ ‖ f ‖M ,p B
(
M

(
‖ f ‖pX

))1/p
.
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This is indeed a semi-norm since invariant means satisfy Hölder’s inequality (see for example Lemma 2 on
page 119 of Section III.3 in [26]). Hence if we let W = { f ∈ `∞(Γ, X) : ‖ f ‖M ,p = 0} then W is a linear
subspace and Y0 B `∞(Γ, X)/W is a normed space. Let Y be the completion of Y0.

By a slight abuse of notation we denote for y ∈ Γ and f ∈ `∞(Γ, X), Ry( f +W) B Ry f +W, which is a well
defined linear isometric automorphism of Y0 since ‖ · ‖M ,p is Ry-invariant. Moreover R is an action of Γ on
Y0 by linear isometric automorphisms, and it therefore extends to such an action on Y as well.

Note that by virtue of the upper bound in (113) for every g, x ∈ Γ we have ‖ψ(xg) − ψ(x)‖X ≤ Ω (dΓ(g, eΓ)).
Thus Rgψ − ψ ∈ `∞(Γ, X) and we can define Ψ(g) ∈ Y by Ψ(g) = (Rgψ − ψ) + W. Then Ψ ∈ Z1(Γ,R).
Moreover Ψ(eΓ) = 0 and for every g1, g2 ∈ Γ we have

‖Ψ(g1) − Ψ(g2)‖Y =
(
M

(∥∥∥Rg1ψ − Rg2ψ
∥∥∥p

X

))1/p (113)
∈

[
ω (dΓ (g1, g2)) ,Ω (dΓ (g1, g2))

]
.

This establishes (114), so it remains to prove the required properties of Y , i.e., that it is finitely representable
in `p(X) and that it is an Lp(ν) space if X is an Lp(µ) space.

Up to this point we did not use the fact that M was constructed as an ultralimit of averages along Følner
sets as in (117) and we could have taken M to be any invariant mean on Γ. But now we will use the special
structure of M to relate the space Y to a certain ultraproduct of Banach spaces. We do not know whether
the properties required of Y hold true for general invariant means on Γ. We did not investigate this question
since it is irrelevant for our purposes.

For each n ≥ 0 let Xn be the Banach space XFn equipped with the norm:

ψ : Fn → X =⇒ ‖ψ‖Xn =

 1
|Fn|

∑
h∈Fn

‖ψ(h)‖pX

1/p

.

Let X̃ be the ultraproduct
(∏∞

n=0 Xn
)
U

. We briefly recall the definition of X̃ for the sake of completeness

(see [20, 21, 36] for more details and complete proofs of the ensuing claims). Let Z be the space
(∏∞

n=0 Xn
)
∞

,
i.e., the space of all sequences x = (x0, x1, x2, . . .) where xn ∈ Xn for each n and ‖x‖Z B supn≥0 ‖xn‖Xn < ∞.
Let N ⊆ Z be the subspace consisting of sequences (xn)∞n=0 for which limU ‖xn‖Xn = 0. Then N is a closed
subspace of Z and X̃ is the quotient space Z/N, equipped with the usual quotient norm. We shall denote an
element of X̃, which is an equivalence class of elements in Z, by [xn]∞n=0. The norm on X̃ is given by the
concrete formula

∥∥∥[xn]∞n=0

∥∥∥
X̃ = limU ‖xn‖Xn .

Since by construction each of the spaces Xn embeds isometrically into `p(X), by classical ulraproduct theory
(see [36]) X̃ is finitely representable in `p(X). Moreover, if X = Lp(µ) for some measure µ then, as shown
in [20, 21, 36], X̃ = Lp(τ) for some measure τ.

Define T : Y0 → X̃ by T ( f + W) = [ f �Fn]∞n=0. Then by construction (and the definition of W) T is well
defined and is an isometric embedding of Y0 into X̃. Hence also Y embeds isometrically into X̃, and for ease
of notation we will identify Y with T (Y0) ⊆ X̃. It follows in particular that Y is finitely representable in
`p(X).

It remains to show that if X = Lp(µ) then Y = Lp(ν) for some measure ν since once this is achieved we can
apply Lemma 9.2 in order to replace Y by Lp. We know that in this case X̃ = Lp(τ) but we need to recall
the lattice structure on X̃ in order to proceed (since we do not know whether the action of Γ on Y extends
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to an action of Γ on X̃ by isometric linear automorphisms). Since each Xn is of the form Lp(µn) for some
measure µn, the ultraproduct X̃ has a Banach lattice structure whose positive cone is

{
[xn]∞n=0 : xn ≥ 0 ∀n

}
and [xn]∞n=0 ∧ [yn]∞n=0 = [xn ∧ yn]∞n=0, [xn]∞n=0 ∨ [yn]∞n=0 = [xn ∨ yn]∞n=0 (all of this is discussed in detail
in [36]). The explicit embedding of Y0 into X̃ ensures that x ∧ y, x ∨ y ∈ Y0 for all x, y ∈ Y0. Moreover

if x, y ∈ Y0 are disjoint, i.e., |x| ∧ |y| = 0, then ‖x + y‖X̃ =
(
‖x‖p

X̃
+ ‖y‖p

X̃

)1/p
. These identities pass to the

closure Y of Y0 (since, for example, we know that X̃ = Lp(τ) and therefore convergence in X̃ implies almost
everywhere convergence along a subsequence). This shows that the Banach space Y is an abstract Lp space,
and therefore by Kakutani’s representation theorem [39] (see also the presentation in [43]) Y = Lp(ν) for
some measure ν. �

10 Open problems

We list below several of the many interesting open questions related to the computation of compression
exponents.

Question 10.1. Does C2 o Z
2 admit a bi-Lipschitz embedding into L1?

The significance of Question 10.1 was explained in the introduction. Since we know that α∗1
(
C2 o Z

2
)
= 1

the following question is more general then 10.1:

Question 10.2. For which finitely generated groups G and p ≥ 1 is α∗p(G) attained?

Somewhat less ambitiously than Question 10.2 one might ask for meaningful conditions on G which imply
that α∗p(G) is attained. As explained in Remark 3.2, this holds true if p > 1 and G = C2 o H where H is a
finitely generated group with super-linear polynomial growth which admits a bi-Lipschitz embedding into
Lp. In particular this holds true for G = C2 o Z

2 and p > 1. Note that not every group of polynomial growth
H admits a bi-Lipschitz embedding into L1, as shown by Cheeger and Kleiner [17] when H is the discrete
Heisenberg group, i.e. the group of 3 × 3 matrices generated by the following symmetric set S ⊆ GL3(Q)
and equipped with the associated word metric:

S =


1 1 0
0 1 0
0 0 1

 ,
1 −1 0
0 1 0
0 0 1

 ,
1 0 1
0 1 0
0 0 1

 ,
1 0 −1
0 1 0
0 0 1

 ,
1 0 0
0 1 1
0 0 1

 ,
1 0 0
0 1 −1
0 0 1


 .

Similarly to Question 7.1 in [47] one might ask the following question:

Question 10.3. Is it true that for every finitely generated amenable group G and every p ∈ [1, 2] we have
α∗p(G) = 1

pβ∗p(G) ?

It was shown in [3] the for every α ∈ [0, 1] there exists a finitely generated group G such that α∗2(G) = α.
Since there are only countably many finitely presented groups the set

Ω∗p B {α
∗
p(G) : G finitely presented} ⊆ [0, 1]
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is at most countable for every p ∈ [1,∞) (though it seems to be unknown whether or not it is infinite). One
can similarly define the set Ω#

p of possible equivariant compression exponents of finitely presented groups.
Several restrictions on the relations between these sets follow from the following inequalities which hold for
every finitely generated group G: for every p ≥ 1 we have α∗p(G) ≥ α∗2(G) since L2 embeds isometrically into
Lp (see e.g. [60]). Similarly Lemma 2.3 in [47] states that α#

p(G) ≥ α#
2(G). Since Lq embeds isometrically

into Lp for 1 ≤ p ≤ q ≤ 2 (see [59]) we also know that in this case α∗p(G) ≥ α∗q(G). For every 1 ≤ p ≤ q
the metric space

(
Lp, ‖x − y‖p/qp

)
embeds isometrically into Lq (for 1 ≤ p ≤ q ≤ 2 this follows from [13, 59]

and for the remaining range this is proved in Remark 5.10 of [45]). Hence if p ∈ [1, 2] and p ≤ q then
α∗q(G) ≥ max

{
p
q ,

p
2

}
· α∗p(G) and if 2 ≤ p ≤ q then α∗q(G) ≥ p

qα
∗
p(G).

Question 10.4. Evaluate the (at most countable) sets Ω∗p,Ω
#
p. Is Ω∗p finite or infinite? How do the sets

Ω∗p,Ω
#
p vary with p? Is it true that Ω∗p = Ω

#
p?

In this paper we computed α∗p((ZoZ)0, dZoZ). Note that the metric on the zero section (ZoZ)0 is not equivalent
to a geodesic metric. This fact makes it meaningful to consider embeddings of ((Z oZ)0, dZoZ) into Lp which
are not necessarily Lipschitz, leading to the following question:

Question 10.5. For every α1 > 0 evaluate the supremum over α2 ≥ 0 such that there exists an embedding
f : (Z o Z)0 → Lp which satisfies

x, y ∈ (Z o Z)0 =⇒ cdZoZ(x, y)α2 ≤ ‖ f (x) − f (y)‖p ≤ dZoZ(x, y)α1 ,

for some constant c.

We believe that the methods of the present paper can be used to answer Question 10.5 at least for some
additional values of α1 (we dealt here only with α1 = 1), but we did not pursue this research direction.

Question 10.6. The present paper contributes methods for evaluating compression exponents of wreath
products G o H in terms of the compression exponents of G and H. This continues the lines of research that
originated in [4] and continued in [31, 57, 54, 7, 47, 22]. It would be of great interest (and probably quite
challenging) to design such methods for more general semi-direct products G o H.

In Theorem 3.1 we computed α∗p(C2 o H) when H has polynomial growth. It seems likely that our methods
yield non-trivial compression bounds also when H has intermediate growth. But, it would be of great interest
to design methods which deal with the case when H has exponential growth. A simple example of this type
is the group C2 o (C2 o Z), for which we do not even know whether the Hilbert compression exponent is
positive.

Question 10.7. In our definition of Lp compression we considered embeddings into Lp because it contains
isometrically all separable Lp(µ) spaces. Nevertheless, the embeddings that we construct take values in
the sequence space `p. Does there exist a finitely generated group G for which α∗p(G) , α∗`p

(G)? Is the `p

compression exponent of a net in Lp equal to 1? Note that for p , 2 the function space Lp does not admit
a bi-Lipschitz embedding into the sequence space `p—this follows via a differentiation argument (see [11])
from the corresponding statement for linear isomorphic embeddings (see [52]).

The subtlety between embeddings into Lp and embeddings into `p which is highlighted in Question 10.7
was pointed out to us by Marc Bourdon.
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Subsequent developments

Since the posting of this article, several interesting results were posted on problems that were discussed here.
In the breakthrough result [23], de Cornulier, Stalder and Valette proved that if G and H have the Haagerup
property then so does G o H. In [42], Li proved that for p ∈ [1, 2], if α∗p(G) > 0 and α∗p(H) > 0 then also
α∗p(G o H) > 0. In [6], Austin constructed an example of a finitely generated amenable group G such that
α∗p(G) = 0 for all p ∈ [1,∞).
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[25] P. de la Harpe and A. Valette. La propriété (T ) de Kazhdan pour les groupes localement compacts
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