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Abstract. We prove that for every n ∈ N there exists a metric space (X, dX), an n-point subset
S ⊆ X, a Banach space (Z, ‖ · ‖Z) and a 1-Lipschitz function f : S → Z such that the Lipschitz
constant of every function F : X → Z that extends f is at least a constant multiple of

√
logn. This

improves a bound of Johnson and Lindenstrauss [JL84]. We also obtain the following quantitative
counterpart to a classical extension theorem of Minty [Min70]. For every α ∈ (1/2, 1] and n ∈ N
there exists a metric space (X, dX), an n-point subset S ⊆ X and a function f : S → `2 that is
α-Hölder with constant 1, yet the α-Hölder constant of any F : X → `2 that extends f satisfies

‖F‖Lip(α) & (logn)
2α−1
4α +

(
logn

log log n

)α2− 1
2

.

We formulate a conjecture whose positive solution would strengthen Ball’s nonlinear Maurey exten-
sion theorem [Bal92], serving as a far-reaching nonlinear version of a theorem of König, Retherford
and Tomczak-Jaegermann [KRTJ80]. We explain how this conjecture would imply as special cases
answers to longstanding open questions of Johnson and Lindenstrauss [JL84] and Kalton [Kal04].

1. Introduction

Given two metric spaces (X, dX) and (Z, dZ), the Lipschitz constant of a mapping f : X → Z
will be denoted below by ‖f‖Lip. For every subset S ⊆ X, let e(X,S,Z) denote the infimum over
those K ∈ (0,∞] with the property that for every f : S → Z there exists F : X → Z with
‖F‖Lip 6 K‖f‖Lip and whose restriction to S satisfies F |S = f . In its most general form, the
Lipschitz extension problem asks for estimates on the quantity e(X,S,Z).

It is of great interest to obtain geometric conditions on the metric spaces (X, dX) and (Z, dZ)
ensuring that e(X,S,Z) < ∞ for every S ⊆ X. Formally, define e(X,Z) to be the supremum
of e(X,S, Y ) over all S ⊆ X. When e(X,Z) = ∞, it is natural to refine the Lipschitz extension
problem by taking n ∈ N and defining en(X,Z) to be the supremum of e(X,S,Z) over all S ⊆ X
of cardinality at most n, and asking for the asymptotic behavior of en(X,Z) as n → ∞. Another
natural quantitative refinement of the parameter e(X,Z) is to fix ε ∈ (0, 1] and define eε(X,Z) to be
the supremum of e(X,S,Z) over all S ⊆ X that are ε-discrete in the sense that dX(x, y) > ε·diam(S)
for every distinct x, y ∈ S, and asking for the asymptotic behavior of eε(X,Z) as ε→ 0.

Denote the supremum of en(X,Z) over all metric spaces (X, dX) and all Banach spaces (Z, ‖·‖Z)
by ae(n). Here “ae” stands for “absolute extendability,” where we are following the notation and
terminology that was introduced in [LN04]. Thus, if ae(n) < K then for every n-point metric space
(M,dM ), every Banach-space valued 1-Lipschitz function defined on M can be extended to any
metric space that (isometrically) contains (M,dM ) so that the Lipschitz constant of the extended
function is at most K. One can similarly define for ε > 0 the quantity ae(ε) by considering the
supremum of eε(X,Z) over all metric spaces (X, dX) and all Banach spaces (Z, ‖ · ‖Z).
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The finiteness of ae(n) and ae(ε) for every n ∈ N and ε ∈ (0, 1] is well-known. Johnson, Lin-
denstrauss and Schechtman proved in [JLS86] that ae(n) . log n, where here, and in what fol-
lows, the notation A . B (respectively A & B) stands for A 6 CB (respectively A > CB) for
some universal constant C ∈ (0,∞). We shall also use the notation A � B when A . B and
A & B. The above upper bound of [JLS86] on ae(n) was more recently improved [LN04, LN05]
to ae(n) . (log n)/ log logn, which is the best-known upper bound on ae(n) to date. Determin-
ing the asymptotic behavior of ae(n) as n → ∞ remains a major open problem. The previously

best-known lower bound on ae(n) is ae(n) &
√

(log n)/ log log n, obtained over thirty years ago by
Johnson and Lindenstrauss [JL84] (see also [MM10] for a variant of the construction of Johnson and
Lindenstrauss that also yields the same lower bound). Here we obtain the following improvement.

Theorem 1. For every n ∈ N we have ae(n) &
√

log n.

Thus, the best-known bounds for ae(n) are now√
log n . ae(n) .

log n

log logn
. (1)

It would be very interesting to improve any of the bounds in (1), the ultimate goal being to
determine the rate at which ae(n) tends to ∞ as n→∞.

In [JL84] it was shown that ae(ε) . 1/ε, and a different and very simple proof of this fact was
given in [JLS86]. In [MN13a] it was proved that ae(ε) & 1/ε, via a quantitative refinement of a
beautiful argument of Kalton [Kal12]. Thus ae(ε) � 1/ε. The example that leads to Theorem 1 also
yields a new proof that ae(ε) & 1/ε which some may find to be somewhat simpler than the proof
in [MN13a]; see Remark 14 below. We note, however, that the example of [MN13a] has important
properties (see the discussion in Section 1.6 of [MN13a]) that Theorem 1 does not imply.

The value of Theorem 1 does not stem only from the fact that it yields an asymptotic improve-
ment over the best known bound, but rather because this improvement relies on a conceptually
different approach than that of [JL84]. In fact, as emphasized explicitly in [JL84], the difficulty to
improve the lower bound on ae(n) to a constant multiple of

√
log n is not purely technical, and the

approach of [JL84] inherently cannot yield a lower bound that is better than o(
√

log n).

To explain the above assertions, we need to briefly sketch the argument of [JL84]. Fix k ∈ N,
L > 0 and ε ∈ (0, 1/2). Suppose that (X, ‖ · ‖X) is a Banach space and Y ⊆ X is a k-dimensional
linear subspace of X. Let Nε be an ε-net in the unit sphere of Y and denote Sε = Nε ∪ {0}.
Taking f : Sε → Sε ⊆ Y to be the identity mapping, it is proved in [JL84] that if F : X → Y
is an L-Lipschitz extension of f and ε is sufficiently small then there exists a linear projection
P : X → Y with ‖P‖ . L. Hence, if for some Λ > 0 one knows that ‖P‖ > Λ for every linear

projection P : X → Y then one concludes that L & Λ. Suppose that Λ &
√
k; since the classical

Kadec′–Snobar theorem [KS71] (see also [Woj91, §III.B]) asserts that we always have Λ 6
√
k,

this lower bound on Λ is the best one could hope for. By standard bounds on the size of ε-nets
(e.g. [MS86]), if we set n = |Sε| then log n � k log(1/ε), so we have L &

√
(log n)/ log(1/ε). For

this strategy to yield a lower bound that is a constant multiple of
√

log n, one needs to take ε to be
a universal constant, but in this case we would have L . ae(2ε) . 1/ε = O(1). So, in order to get
a lower bound on L that tends to ∞ with n one must have ε = o(1) as k → ∞ (indeed, in [JL84]
the choice of ε is log(1/ε) � log k � log logn). This explains why one cannot prove Theorem 1 via
the above strategy of reduction to the nonexistence of linear projections of small norm. Note also
that due to the Kadec′–Snobar theorem [KS71], this “linearization” approach cannot yield a lower
bound on ae(n) that tends to ∞ at a rate that is faster than a constant multiple of

√
log n.

Here we overcome the above obstacle by abandoning entirely the desire to reduce the problem
to the nonexistence of linear projections of small norm. We consider a family of metric spaces that
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arise from (a modification of) expander graphs, and our poorly extendable functions take values
in their associated Wasserstein 1 spaces. The proof relies on direct geometric considerations, in
particular the use of Banach space-valued Poincaré inequalities (see Lemma 8 below), rather than a
reduction to linear mappings. Our approach is inspired by a certain algorithmic clustering problem
for graphs, specifically by leveraging the difference between two relaxations of the corresponding
combinatorial optimization problem. This motivation is explained in Section 2 below, though the
proof of Theorem 1 (in Section 3) is direct and does not rely on any algorithmic background.

1.1. Hilbert space-valued Hölder functions. Suppose that (X, dX) and (Z, dZ) are metric
spaces and α ∈ (0, 1]. We shall denote below the α-Hölder constant of a mapping f : X → Z by
‖f‖Lip(α). Thus ‖f‖Lip(α) is the infimum over those L ∈ (0,∞] for which every x, y ∈ X satisfy
dZ(f(x), f(y)) 6 LdX(x, y)α. Equivalently, ‖f‖Lip(α) is the Lipschitz constant of f when it is
viewed as a mapping between from the metric space (X, dαX) to the metric space (Z, dZ). Denote

eα(X,Z)
def
= e

(
(X, dαX), (Z, dZ)

)
and ∀n ∈ N, eαn(X,Z)

def
= en

(
(X, dαX), (Z, dZ)

)
.

Thus, eα(X,Z) is the infimum over those K ∈ [1,∞] such that for every S ⊆ X and every f : S → Z
there exists F : X → Z with F |S = f and ‖F‖Lip(α) 6 K‖f‖Lip(α), and analogously for eαn(X,Z).

A classical theorem of Minty [Min70] asserts that if H is a Hilbert space then eα(X,H) = 1 for
every metric space (X, dX) and α ∈ (0, 1/2] (equivalently, eαn(`∞, `2) = 1 for all n ∈ N). Minty’s
theorem fails when α ∈ (1/2, 1] (see [HW71]), but understanding what happens when α ∈ (1/2, 1]
remains a mystery. Specifically, Kalton conjectured in [Kal04] that for every α ∈ [1/2, 1] and every
m ∈ N we have

eα(`∞, `
m
2 ) . mα− 1

2 . (2)

This conjecture appears as Problem 11.3 in [Kal04]1. See the discussion immediately following
Problem 11.3 in [Kal04] for an interesting geometric application that (2) would imply. The esti-
mate (2) holds true when α = 1/2 due to Minty’s theorem, and also when α = 1 by the fact that `m2
is
√
m-isomorphic to `m∞, combined with an application of the nonlinear Hahn–Banach theorem (see

e.g. [BL00, Lemma 1.1]). Thus (2) is a natural conjectural interpolation between Minty’s theorem
and the nonlinear Hahn-Banach theorem.

Kalton’s conjecture (2) remains an interesting open problem, and in Section 1.2 we formulate a
conjecture whose validity would imply the validity of (2). In the reverse direction, to the best of
our knowledge its isn’t known whether (2) would be sharp. We therefore ask the following question.

Question 2. Is it true that eα(`∞, `
m
2 ) & mα− 1

2 for every α ∈ (1/2, 1)?

We also ask the following variant of Question 2 for the parameter eαn(`∞, `2).

Question 3. Is it true that eαn(`∞, `2) & (log n)α−
1
2 for every α ∈ (1/2, 1)?

By mimicking an argument of [JL84] one sees that a positive answer to Question 3 would imply
a positive answer to Question 2. Indeed, for every metric space (X, dX) and α ∈ (0, 1] we have

eα27m(X, `2) 6 3eα(`∞, `
m
2 ). (3)

(The choice of constants in (3) is somewhat arbitrary; see below.) Since (3) is not stated explicitly
in [JL84], we shall now briefly explain how it is proved. Fix S ⊆ X with |S| 6 27m and f : S → `2.
Since f(S) is a subset of a Hilbert space of cardinality at most 27m, by the Johnson–Lindenstrauss
dimensionality reduction lemma [JL84] there exists a mapping g : f(S)→ `m2 such that

∀ a, b ∈ f(S), ‖a− b‖2 6 ‖g(a)− g(b)‖2 6 3‖a− b‖2. (4)

1We note in passing that there is a misprint in [Kal04, Problem 11.3]: in the two displayed equations that appear
there the exponent α erroneously appears in the left hand side of the inequality rather than in its right hand side.
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The specific parameters in the Johnson–Lindenstrauss lemma that we take here are valid due to
the bounds in [Ach03, Theorem 1.1]. By the Kirszbraun extension theorem [Kir34],

∃ g̃−1 : `m2 → `2 such that g̃−1
∣∣∣
g◦f(S)

= g−1 and
∥∥∥g̃−1

∥∥∥
Lip
6
∥∥g−1

∥∥
Lip
6 1, (5)

where the last step of (5) uses the left hand inequality in (4). Also, by the definition of eα(`∞, `
m
2 ),

∃ g̃ ◦ f : X → `m2 such that g̃ ◦ f
∣∣∣
S

= g ◦ f and
∥∥∥g̃ ◦ f∥∥∥

Lip(α)
6 eα(`∞, `

m
2 ) ‖g ◦ f‖Lip(α) . (6)

Thus, the following diagram commutes.

X

g̃◦f

''g̃−1◦̃g◦f // `2 `m2
g̃−1

oo

S
?�

⊆

OO

f // f(S)
?�

⊆

OO
g

''
g ◦ f(S)

g−1

gg

?�

⊆

OO

The mapping g̃−1 ◦ g̃ ◦ f : X → `2 therefore extends f and satisfies∥∥∥g̃−1 ◦ g̃ ◦ f
∥∥∥

Lip(α)
6
∥∥∥g̃−1

∥∥∥
Lip
·
∥∥∥g̃ ◦ f∥∥∥

Lip(α)

(5)∧(6)

6 eα(`∞, `
m
2 ) ‖g ◦ f‖Lip(α)

6 eα(`∞, `
m
2 )‖g‖Lip‖f‖Lip(α) 6 3eα(`∞, `

m
2 )‖f‖Lip(α), (7)

where the last step of (7) uses the right hand inequality in (4). Clearly (7) implies (3).

The link between Question 2 and Theorem 1 is twofold. Firstly, Question 2 presents another
situation in which the linearization strategy of [JL84] for proving extension lower bounds seems
to be insufficient, because bounded linear maps are Lipschitz rather than α-Hölder for α ∈ (0, 1).
Nevertheless, in Section 4.2 we do show how to use a linearization procedure in the spirit of [JL84]
to bound eα(`∞, `

m
2 ) from below. However, our approach requires a substantial modification of the

argument of [JL84] and at present we do not see how it could yield a nontrivial result for the entire
range α ∈ (1/2, 1] (the argument of Section 4.2 yields nontrivial bounds only when α > 1/

√
2). The

second link between Question 2 and Theorem 1 is that the bounds that we obtain in Theorem 4
below are based on a modification of a construction of [JLS86] which is part of a general family of
constructions that were used in related contexts also in [Lan99, CKR05], and to which the example
that underlies Theorem 1 belongs as well. We elaborate further on this in Remark 19 below.

Here we obtain the best known lower bounds in the context of Question 2 and Question 3.

Theorem 4. For every α ∈ (1/2, 1] and every m,n ∈ N we have

eα(`∞, `
m
2 ) & m

2α−1
4α +mα2− 1

2 and eαn(`∞, `2) & (log n)
2α−1
4α +

(
log n

log log n

)α2− 1
2

. (8)

Importantly, the lower bounds in (8) tend to ∞ with n for every α ∈ (1/2, 1]. A positive answer
to Question 2 (respectively, Question 3) for α = 1

2 +ε would yield the lower bound eα(`∞, `
m
2 ) & mε

(respectively, eαn(`∞, `2) & (log n)ε), while Theorem 4 implies that

e
1
2

+ε(`∞, `
m
2 ) & mε−2ε2 and e

1
2

+ε
n (`∞, `2) & (log n)ε−2ε2 ,
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i.e., the exponents of Theorem 4 match what Kalton’s conjecture predicts up to lower order terms
as α → 1/2+. The exponent α2 − 1/2 in the second summands in (8) becomes positive only
when α > 1/

√
2, and it becomes greater than the exponent of the first summands in (8), namely

(2α − 1)/(4α), only when α ∈ (α0, 1], where α0 = 0.837... is the largest root of the polynomial
4x3 − 4x + 1. As α tends to 1 the exponent α2 − 1/2 tends to 1/2, so the bounds in (8) yield
an alternative possible interpolation between Minty’s theorem and the nonlinear Hahn–Banach
theorem. We do not believe that this interpolation is sharp and it seems more likely that Kalton’s
conjecture, and correspondingly Question 2 and Question 3, have positive answers. It may very
well be the case that the example that we analyse in Section 4.2 is itself an example that yields a
positive answer to Question 2, but at present we do not know how to prove this.

1.2. A conjectural strengthening of Ball’s extension theorem. A longstanding open prob-
lem posed by Johnson and Lindenstrauss in [JL84, Problem 1] asks whether or not for every
p ∈ (1, 2) and every m ∈ N we have

e(`p, `
m
2 ) .p m

1
p
− 1

2 . (9)

Here, and in what follows, the notation A .p B stands for A 6 C(p)B, where C(p) ∈ (0,∞) is
allowed to depend only on p. The notations A &p B and A �p B are defined analogously.

Johnson and Lindenstrauss were motivated to ask whether (9) holds true by a Lipschitz extension
theorem of Marcus and Pisier [MP84], which states that for every p ∈ (1, 2) and n ∈ N we have

en(`p, `2) .p (log n)
1
p
− 1

2 . (10)

Specifically, the validity of (9) would yield a new proof of the Marcus–Pisier theorem (10) through
an application of the Johnson–Lindenstrauss dimensionality reduction lemma (we recalled how
such arguments are carried out in the proof of (3) above). Thus, the validity of (9) would yield
an illuminating new perspective on the work of Marcus and Pisier [MP84], who proved that (10)
holds true via an entirely different argument.

Our goal in this section is to formulate a conjecture that implies both Kalton’s conjecture on
the validity of (2) and the Johnson–Lindenstrauss conjecture on the validity of (9), in addition
to a wealth of yet unknown Lipschitz extension results. In order to do so, we need to quickly
recall Ball’s work [Bal92] (itself addressing another open question that was posed by Johnson and
Lindenstrauss in [JL84]) on the nonlinear version of Maurey’s extension theorem [Mau74].

For p, q ∈ [1,∞], the Rademacher type p constant and Rademacher cotype q constant of a
Banach space (X, ‖ · ‖X), denoted Tp(X) and Cq(X), respectively, are defined to be the infima of
those T,C ∈ [1,∞] such that for every n ∈ N and every x1, . . . , xn ∈ X we have

1

2n

∑
ε∈{−1,1}n

∥∥∥ n∑
j=1

εjxj

∥∥∥p
X
6 T p

n∑
j=1

‖xj‖pX and
n∑
j=1

‖xj‖qX 6
Cq

2n

∑
ε∈{−1,1}n

∥∥∥ n∑
j=1

εjxj

∥∥∥q
X
.

Maurey’s extension theorem [Mau74] asserts that if (X, ‖·‖X) and (Z, ‖·‖Z) are Banach spaces and
E ⊆ X is a linear subspace then for every linear operator U : E → Z there exists a linear operator
V : X → Z that extends U and satisfies the operator norm bound ‖V ‖X→Z . T2(X)C2(Z)‖U‖E→Z .

In [Bal92], Ball discovered a powerful nonlinear version of the Maurey extension theorem. In
order to do so, he introduced notions of type and cotype for metric spaces that have since proven
to be useful in several contexts beyond their original use for the Lipschitz extension problem. For
p ∈ (0,∞), the Markov type p constant of a metric space (X, dX), denoted Mp(X), is defined to be
the infimum over those M ∈ [1,∞] such that for every n, t ∈ N, every n× n symmetric stochastic
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matrix A = (aij), and every x1, . . . , xn ∈ X we have

n∑
i=1

n∑
j=1

(At)ijdX(xi, xj)
p 6 tMp

n∑
i=1

n∑
j=1

aijdX(xi, xj)
p.

For q ∈ (0,∞), the metric Markov cotype q constant of a metric space (X, dX), denoted Np(X), is
defined to be the infimum over those N ∈ (0,∞] such that for every n, t ∈ N, every n×n symmetric
stochastic matrix A = (aij), and every x1, . . . , xn ∈ X, there exist y1, . . . , yn ∈ X such that

n∑
i=1

dX(xi, yi)
p + t

n∑
i=1

n∑
j=1

aijdX(yi, yj)
p 6 Np

n∑
i=1

n∑
j=1

1

t

t∑
s=1

(As)ijdX(xi, xj)
p.

Ball’s extension theorem [Bal92] asserts that for every metric space (X, dX) and every Banach
space (Z, ‖ · ‖Z) we have

e(X,Z∗∗) .M2(X)N2(Z).

This formulation is not the strongest known version of Ball’s theorem, but it suffices for our pur-
poses; see [MN13a] for a more complete discussion.

Remark 5. In the setting of Ball’s extension theorem one actually needs to know the Markov type
of the complement of the subset from which one wishes to extend rather than the Markov type of
the entire ambient space. Namely, we actually have

e(X,S,Z∗∗) .M2(X r S)N2(Z).

This assertion holds true also for the more general version of Ball’s extension theorem that was
obtained in [MN13a]. The above stronger statement follows effortlessly from an inspection of the
proofs in [Bal92, MN13a], though it has never been stated in the literature; we believe that it is
worthwhile to record it here for potential future applications.

A beautiful strengthening of Maurey’s extension theorem for finite-dimensional targets was dis-
covered by König, Retherford and Tomczak-Jaegermann [KRTJ80], who proved that for every
p ∈ [1, 2], q ∈ [2,∞) and m ∈ N, if (X, ‖ · ‖X) and (Z, ‖ · ‖Z) are Banach spaces with dim(Z) = m
and E ⊆ X is a linear subspace, then for every linear operator U : E → Z there exists a linear
operator V : X → Z that extends U and satisfies

‖V ‖X→Z .p,q Tp(X)Cq(Z)m
1
p
− 1
q ‖U‖E→Z . (11)

See also the expository article of Pisier [Pis79] for an elegant proof of (11). Important earlier special
cases of the above result (other than Maurey’s extension theorem itself) can be found (via different
proofs) in the works of Lewis [Lew78] and Figiel and Tomczak-Jaegermann [FTJ79].

In light of (11), we ask the following question.

Question 6. Suppose that 1 6 p 6 q <∞ and that (X, dX) is a metric space with Markov type p,
i.e., Mp(X) <∞. Suppose also that m ∈ N and that (Z, ‖ · ‖Z) is an m-dimensional normed space.
Is it true that there exists a constant K = K(Mp(X), Nq(Z), p, q) ∈ (0,∞), which may depend
only on the parameters Mp(X), Nq(Z), p, q, such that

e(X,Z) 6 Km
1
p
− 1
q ?

Since, by a straightforward application of the triangle inequality, every metric space (X, dX) has
Markov type 1 with M1(X) = 1, for every α ∈ (0, 1] the Markov type 1/α constant of (X, dαX)
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equals 1. Also, by [Bal13, MN13a], for every q ∈ (1,∞) we have Nmax{q,2}(`q) .
√
q/(q − 1).

Hence, a positive answer to Question 6 would imply that for every k ∈ N we have

1

max{q, 2}
6 α 6 1 =⇒ eα(`∞, `

m
q ) .q m

α− 1
max{q,2} . (12)

The case q = 2 of (12) is the same as (2), i.e., Kalton’s conjecture is a special case of Question 6.
By [Bal92, NPSS06], for every p ∈ [1,∞) we have Mmin{p,2}(`p) .

√
p. This implies formally

(directly from the definition of Markov type) that for α ∈ (0, 1] the Markov type min{p, 2}/α
constant of the metric space (`p, ‖x− y‖αp ) is at most a constant multiple of pα/2. Hence, a positive
answer to Question 6 would also imply that for every p, q ∈ (1,∞) and every k ∈ N we have

min{p, 2}
max{q, 2}

6 α 6 1 =⇒ eα(`p, `
m
q ) .p,q m

α
min{p,2}−

1
max{q,2} . (13)

The case p ∈ (1, 2), q = 2 and α = 1 of (13) is the same as (9), i.e., the above conjecture of Johnson
and Lindenstrauss is a special case of Question 6. The validity of (13) would complement the fact
that eα(`p, `q) <∞ for every α ∈ (0,min{p, 2}/max{q, 2}], as shown in [Nao01, NPSS06].

At present we see several obstacles to adapting the proofs in [Bal92, MN13a] so as to incorporate
the finite dimensionality of the target in order to answer Question 6. We therefore leave Question 6
as an intriguing direction for future research, itself part of the Ribe program (see [Bal13, Nao12]).

1.3. Lipschitz extension between `p spaces. Theorem 1 yields the best known lower bound on
ae(n) as n→∞, but there are several cases of special interest where the best known lower bound
on en(X,Z) is o(

√
log n). Here we recall the best known bounds when X = `p and Y = `q for

p, q ∈ [1,∞], as a survey of very basic questions on Lipschitz extension that remain open.

The case of Hilbert space-valued functions was famously studied by Johnson and Lindenstrauss
in [JL84], answering a question posed by Marcus and Pisier in [MP84]. The bounds on en(`∞, `2)
that were obtained in [JL84] are as follows, and they remain the best known bounds to date.

√
log n√

log logn
. en(`∞, `2) .

√
log n. (14)

In the special case of Hilbert space-valued functions defined on finite subsets of `p for p ∈ (1, 2),
the best known bounds are (

log n

log logn

) 1
p
− 1

2

. en(`p, `2) .p (log n)
1
p
− 1

2 . (15)

The right hand inequality in (15) is due to [MP84] and the left hand inequality in (15) is due
to [JL84], where it is shown to hold for every p ∈ [1, 2].

As shown by Makarychev and Makarychev in [MM10], the parameters en(`∞, `1) and en(`1, `1)
have a special algorithmic significance. The best known bounds for these quantities are

√
log n√

log log n
. en(`∞, `1) .

log n

log log n
, (16)

and √
log n

log log n
. en(`1, `1) .

log n

log logn
. (17)

The right hand inequalities in (16) and (17) are a special case of the general upper bound of [LN05].
The left hand inequalities in (16) and (17) appear in [MM10], with the left hand inequality of (17)
being based on the work of Figiel, Johnson and Schechtman [FJS88] (an asymptotically weaker
lower bound in (17) follows from earlier work of Bourgain [Bou81]).
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By Ball’s extension theorem [Bal92], combined with the fact [NPSS06] that `p has Markov type 2
when p ∈ [2,∞), if 1 < q 6 2 6 p <∞ then e(`p, `q) 6 C(p, q) for some C(p, q) ∈ (0,∞). Here the
asymptotic dependence of C(p, q) as p → ∞ or q → 1 remains unknown. In particular, a famous
and longstanding open question of Ball [Bal92] asks whether e(`2, `1) is finite or infinite. The best
known bounds on en(`p, `q) for the remaining values of p, q ∈ [1,∞] are as follows.

p, q ∈ [1, 2] and q 6= 1 =⇒
(

log n

log logn

) 1
p
− 1

2

.q en(`p, `q) .p (log n)
1
p , (18)

1 6 p 6 2 =⇒ (log n)
1
p
− 1

2

(log log n)
1
p

. en(`p, `1) .p (log n)
1
p . (19)

p, q ∈ (2,∞) =⇒
(

log n

log log n

) q−2

q2

. en(`p, `q) .
log n

log logn
, (20)

1 6 p 6 2 6 q <∞ =⇒
(

log n

log logn

)max
{

1
p
− 1

2
, q−p
q2

}
.q en(`p, `q) .p (log n)

1
p . (21)

The right hand inequalities in (18), (19), (21) are due to [LN05]. More generally, it was shown

in [LN05] that for p ∈ (1, 2] we have en(`p, Z) .p (log n)1/p for every Banach space Z. It would be
interesting to determine the best exponent of log n in this context of general Banach space targets,
as well as when the target Z is allowed to range over some special classes of Banach spaces (e.g.,
for Banach spaces of cotype 2 it is known [MN13a] that this exponent cannot be smaller than 1/4).

No upper bound on en(`p, `q) that is asymptotically smaller than the general upper bound [LN05]
of O((log n)/ log log n) is known when p, q ∈ (2,∞), and similarly for en(`1, `q) for q ∈ (2,∞).

Let (Z, ‖ · ‖Z) be a Banach space that has Rademacher type p for some p > 1. By a theorem
of Figiel and Tomczak-Jaegermann [FTJ79] there exists K(Z) ∈ (0,∞) such that for every n ∈ N
one can find an n-dimensional subspace Zn of Z that is 2-isomorphic to `n2 and there exists a
projection from Z onto Zn of norm at most K(Z). This implies that for any metric space X we
have en(X,Z) &Z en(X, `2). In particular, en(Z, `q) &q en(X, `2) for every q > 1. This implies the
validity of the left hand inequality in (18), as a consequence of the left hand inequality of (15).
However, this reasoning does not apply when the target space is `1, i.e., in order to prove the
left hand inequality in (19). For this purpose, one argues by adapting the proof of the left hand
inequality in (17) that appears in [MM10] (the key tool being [FJS88]); the adaptation of this
argument is simple and we omit it (the result itself, however, is far from trivial).

If (X, ‖ · ‖X) is an infinite dimensional Banach space then, by Dvoretzky’s theorem [Dvo61], X
contains a 2-isomorphic copy of `n2 for every n ∈ N. Consequently, en(X,Z) & en(`2, Z) for every
metric space Z. In particular, the left hand inequality in (20) follows from the special case p = 2
of the left hand inequality in (21). The latter inequality consists of two lower bounds, one with
the exponent 1/p − 1/2 and the other with the exponent (q − p)/q2. Since, as explained in the
previous paragraph, en(`p, `q) &q en(`p, `2), the lower bound with exponent 1/p− 1/2 follows from
the left hand inequality in (15). The lower bound with exponent (q− p)/q2 is due to [Nao01], with
the explicit asymptotic dependence being computed when p = 2 in [LN05, Lemma 1.13], and when
p ∈ (1, 2) the corresponding bound follows mutatis mutandis by the same argument.

It is worthwhile to point out here an interesting feature of the left hand inequality in (21).
Suppose that p ∈ [1, 2]. For every n-dimensional subspace Y of `p there exists a projection from `p
onto Y of norm at most cpn

1/p−1/2. This assertion follows from the work of Lewis [Lew78], and it is
also a consequence (11). Thus, for every Banach space Z, every linear operator U : Y → Z can be

extended to a linear operator V : `p → Z with ‖V ‖`p→Z .p n1/p−1/2‖U‖Y→Z . Consequently, the
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linearization method of Johnson and Lindenstrauss [JL84] cannot yield a lower bound on en(`p, Z)

that is at least a constant multiple of (log n)1/p−1/2. However, (q− p)/q2 > 1/p− 1/2 if and only if

3

2
< p 6 2 and 2 +

(
1−
√

2p− 3
)2

1 +
√

2p− 3
< q < 2 +

(
1−
√

2p− 3
)3

2(2− p)
. (22)

So, if p, q satisfy (22) then the left hand inequality in (21) shows that

lim
n→∞

en(`p, `q)

(log n)
1
p
− 1

2

=∞, (23)

i.e., we have a lower bound on en(`p, `q) that is asymptotically larger than any bound that can
be deduced by reducing the problem to the extension problem for linear operators. We conjecture
that the restrictions in (22) are not needed here, i.e., (23) holds true whenever 1 6 p 6 2 < q <∞.
It even seems to be unknown whether for every p ∈ [1, 2] there exists a Banach space Z for which

lim
n→∞

en(`p, Z)

(log n)
1
p
− 1

2

=∞. (24)

The best-known result towards (24) seems to follow from [MN13a], where it is shown that there

exists a Banach space Z for which en(`2, Z) & 4
√

(log n)/ log log n. Hence, by Dvoretzky’s theo-

rem [Dvo61], for every infinite dimensional Banach space X we have en(X,Z) & 4
√

(log n)/ log log n,
implying that (24) holds true if p ∈ [1, 2] satisfies 1/p− 1/2 < 1/4, i.e., for every p ∈ (4/3, 2].

2. Algorithmic clustering

An algorithmic optimization problem called 0-Extension, which we describe below, served as
inspiration for our proof of Theorem 1. In this section we shall survey this background so as to
clarify the context and explain the “twist” over the existing approaches to 0-Extension that we
introduce in order to prove Theorem 1. We stress, however, that our present work does not have
new algorithmic implications, and the sole purpose of this section is to explain how this context
motivated our approach to Theorem 1. Those who are interested only in the proof of Theorem 1
can skip this section on first reading: the proof itself appears in Section 3 below and is entirely
self-contained, with none of the algorithmic background that we describe here being used.

In what follows, the vertices of a combinatorial graph G are denoted VG and its edges are denoted
EG. The 0-Extension problem is a clustering framework for finite graphs that was introduced
by Karzanov [Kar98]. The input of the 0-Extension problem is a graph G with edge weights
w : EG → [0,∞), and a subset T ⊆ VG equipped with a metric dT : T × T → [0,∞). The subset T
is called in the literature the set of terminals. The output of the 0-Extension problem is a partition
of VG into |T | subsets {Cx ⊆ VG}x∈T with the requirement that x ∈ Cx for every x ∈ T . The cost
of this partition is defined as follows. Every edge {u, v} ∈ EG with |{u, v}∩Cx| = |{u, v}∩Cy| = 1
for some distinct x, y ∈ T contributes its weight w(u, v) times dT (x, y) to the total cost, and all
other edges (i.e., edges that are entirely within one cluster Cx for some x ∈ T ) do not contribute to
the total cost. The goal is to find efficiently (in polynomial time) such a partition with minimum
cost, or with cost that is guaranteed to be close to the minimum possible cost. Formally, define

COST(G,w,dT ) ({Cx}x∈T )
def
=
∑
x,y∈T
x 6=y

∑
{u,v}∈EG

|{u,v}∩Cx|=|{u,v}∩Cy |=1

w(u, v)dT (x, y),

and

OPT(G,w, dT )
def
= min
{Cx}x∈T partition of VG

∀x∈T, x∈Cx

COST(G,w,dT ) ({Cx}x∈T ) . (25)
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The goal is to find efficiently a partition {Cx}x∈T of VG with x ∈ Cx for every x ∈ T such that

COST(G,w,dT ) ({Cx}x∈T )

OPT(G,w, dT )

is guaranteed to be at most a (hopefully small) value α ∈ [1,∞).

Obtaining α = 1 here would imply that P = NP , since in the special when w(u, v) = 1 and
dT (x, y) = 1 for every {u, v} ∈ EG and every distinct x, y ∈ T , the quantity COST(G,w,dT ) ({Cx}x∈T )
is nothing more than the total number of edges that are incident to distinct elements of the partition
{Cx}x∈T . Computing the minimum cost in this special case is the MULTIWAY CUT problem, and
it was shown in [DJP+94] that if P 6= NP then there exists α0 > 1 such that no polynomial-
time algorithm outputs a partition whose cost is guaranteed to be less than α0 times the minimum
possible cost. For the 0-Extension problem in its full generality, it was shown in [KKMR09] that for
every ε ∈ (0, 1) there exists C(ε) ∈ (0,∞) such that the existence of a polynomial-time algorithm

for 0-Extension whose approximation factor on instances of size n is α 6 (log n)1/4−ε would imply

that any problem in NP of size n could be solved in time exp((log n)C(ε)).

Due to the above evidence for the nonexistence of a constant-factor approximation algorithm for
0-Extension, the literature has focused on the design of approximation algorithms with potentially
unbounded approximation factor, based on two competing continuous relaxations of the discrete
optimization problem. The first is the metric relaxation, which was formulated in [Kar98] and
studied extensively in [CKR05]. Given an instance of 0-Extension, i.e., an n-vertex graph G, a
metric dT : T × T → [0,∞) on a subset T ⊆ VG, and edge weights w : EG → [0,∞), define

MET(G,w, dT )
def
= min

d:VG×VG→[0,∞)
d|T=dT

d is a semi−metric

∑
{u,v}∈EG

w(u, v)d(u, v). (26)

The minimization in the right hand side of (26) amounts to a linear program because the constraint
that d : VG×VG → [0,∞) is a semi-metric that extends dT corresponds to O(n3) linear inequalities
in the variables {d(u, v)}u,v∈VG . Therefore MET(G,w, dT ) can be computed in polynomial time.

A second relaxation for the 0-Extension problem, called the earthmover relaxation, was proposed
in [CKNZ05] and studied extensively in [AFH+04, KKMR09]. The idea is similar to (26), except
that the semi-metric d : VG×VG → [0,∞) is further restricted to a special class of semi-metrics, over
which the corresponding minimization can still be cast as a linear program. Given two measures
µ, ν on T with the same total mass, i.e., µ(T ) = ν(T ), let Π(µ, ν) be the set of all couplings of
µ and ν. Thus, Π(µ, ν) consists of all the measures π on T × T such that

∑
y∈T π(x, y) = µ(x)

and
∑

y∈T π(y, x) = ν(x) for every x ∈ T . The assumption that µ and ν have the same total mass

ensures that Π(µ, ν) 6= ∅; specifically (µ× ν)/µ(T ) ∈ Π(µ, ν). The Wasserstein 1 distance between
µ and ν (also known as the earthmover distance between µ and ν) is defined to be

W dT
1 (µ, ν)

def
= min

π∈Π(µ,ν)

∑
x,y∈T

dT (x, y)π(x, y). (27)

Let PT denote the set of all probability measures on T and define

EMD(G,w, dT )
def
= min
{µu}u∈VG⊆PT
∀x∈T, µx=δx

∑
{u,v}∈EG

w(u, v)W dT
1 (µu, µv). (28)

Here for x ∈ T the point mass at x is denoted δx. The minimization in the right hand side of (28)
also amounts to a linear program, with variables corresponding to couplings πuv of the probability
measures µu and µv for each {u, v} ∈ EG, and objective

∑
{u,v}∈EG

∑
x,y∈T w(u, v)dT (x, y)πuv(x, y);
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the requirements of being a probability measure or a coupling are clearly linear constraints. The
quantity EMD(G,w, dT ) can therefore be computed in polynomial time.

If {µu}u∈VG ⊆ PT are such that µx = δx for every x ∈ T then d(u, v) = W dT
1 (µu, µv) is a semi-

metric on VG that extends dT . Consequently, the minimization in (28) is over a smaller set than
the minimization in (26). At the same time, if {Cx}x∈T is a partition of VG with x ∈ Cx for every
x ∈ T , then by defining µu = δx for every (u, x) ∈ VG × T we see that the minimization in (25) is
over a smaller set than the minimization in (28). These observations show that every instance of
0-Extension satisfies

MET(G,w, dT ) 6 EMD(G,w, dT ) 6 OPT(G,w, dT ). (29)

Building on ideas of [CKR05], it was shown in [FHRT03] that every instance of 0-Extension
satisfies OPT(G,w, dT )/MET(G,w, dT ) . (log |T |)/ log log |T |. This yields the best known ap-
proximation algorithm for the 0-Extension problem, the algorithm being to compute the quantity
MET(G,w, dT ), i.e., to apply the metric relaxation. It follows from (29) that by using the earth-
mover relaxation, i.e., by computing EMD(G,w, dT ), one could potentially obtain an even better
algorithm. This was realized in [AFH+04] in special cases (e.g. when (T, dT ) is a planar graph),
but in [LN03] it was shown that the same approximation guarantees as in [AFH+04] can be ob-
tained by using the metric relaxation. Nevertheless, in [KKMR09] it was shown that in a certain
sense the earthmover relaxation of 0-Extension does perform better than the metric relaxation: the
earthmover relaxation behaves better than the metric relaxation if one measures the approximation
factor in term of the ratio between the largest distance and the smallest nonzero distance in (T, dT ).

On the negative side, it was shown in [CKR05] that there exist instances of 0-Extension with

|T | arbitrarily large and OPT(G,w, dT )/MET(G,w, dT ) &
√

log |T |. More recently, in [KKMR09]

it was shown that there also exist such instances with OPT(G,w, dT )/EMD(G,w, dT ) &
√

log |T |.
As described above, the earthmover relaxation of 0-Extension is in principle better than the

metric relaxation, but at present the general bounds that are available in the literature are to a
large extent the same for both relaxations. Nevertheless, our approach to Theorem 1 is based on
exploiting the differences between the metric relaxation and the earthmover relaxation. The idea is
that if an instance of 0-Extension behaves significantly worse for the metric relaxation than for the
earthmover relaxation then the terminal metric (T, dT ) can be embedded isometrically into a larger
semi-metric (VG, d) for which

∑
{u,v}∈EG w(u, v)d(u, v) is much smaller than OPT(G,w, dT ), yet

whenever one assigns to every vertex u ∈ VG a probability measure µu ∈ PT such that µx = δx for

every x ∈ T , then
∑
{u,v}∈EG w(u, v)W dT

1 (µu, µv) must be close to OPT(G,w, dT ). This discrepancy

between the two relaxations can be used to show that the mapping that assigns to every x ∈ T the

point mass δx ∈ PT cannot be extended to a function from (VG, d) to (PT ,W
dT
1 ) that has a small

Lipschitz constant. Here the target space (PT ,W
dT
1 ) is not a normed space, but this idea can be

modified so as to yield a poorly extendable function with values in a related normed space, namely
the dual of the space of real-valued Lipschitz functions on (T, dT ) that vanish at a fixed point. In the
end, the entire argument as presented in Section 3 uses geometric and combinatorial considerations
that are self-contained and do not make any reference to the clustering objective OPT(G,w, dT ).
The examples of metric spaces that we use to prove Theorem 1 are modifications of the examples
that were considered in [CKR05], which are themselves in the spirit of an example that was used
in [JLS86] (and, we use yet another variant of the example of [JLS86] to prove Theorem 4).

3. Proof of Theorem 1

Before passing to the proof of Theorem 1, which appears in Section 3.4 below, we need to recall
some (simple) background and to introduce some basic constructions.
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3.1. The r-magnification of a metric space. Given a metric space (X, dX) and r > 0, for every
subset S ⊆ X we shall define a new metric space Xr(S) that we call the r-magnification of (X, dX)
at S. As a set, Xr(S) equals X. The new metric dXr(S) on X is defined by setting dXr(S)(x, x) = 0
for every x ∈ X, and by defining for every distinct x, y ∈ X,

dXr(S)(x, y)
def
= dX(x, y) + r|{x, y} ∩ S|. (30)

It is immediate to check that dXr(S) is indeed a metric on S. Note that this construction increases
all the positive pairwise distances within S while keeping the pairwise distances within X r S
unchanged. This is the reason for our choice of terminology. If G is a connected graph then dG
will always stand for the shortest-path metric on VG, and for S ⊆ VG and r > 0, the metric space
Gr(S) will always be understood to be the r-magnification of (VG, dG) at S.

The relevance of the r-magnification of (X, dX) at S ⊆ X to potentially proving impossibility
results for Lipschitz extension is simple to explain. By making the positive pairwise distances
within S larger, we make it easier for functions that are defined on S to be Lipschitz, so there are
more “potential counterexamples” on (S, dXr(S)) than there were on (S, dX). At the same time, by
keeping the pairwise distances within X r S unchanged, we do not make the Lipschitz condition
on V r S any less stringent. However, there is a limitation to this reasoning because as r becomes
larger the minimum positive distance in (S, dXr(S)) becomes closer to the diameter of (S, dXr(S)),
in which case bounds on ae(ε) become relevant. Indeed, by (30) any distinct x, y ∈ S satisfy

dXr(S)(x, y) > 2r + 1 =
2r + 1

2r + diam(S, dX)
diam(S, dXr(S)). (31)

Since ae(ε) . 1/ε, it follows that any 1-Lipschitz function from (S, dXr(S)) to any Banach space can
be extended to a function defined on (X, dXr(S)) whose Lipschitz constant is at most a constant
multiple of (2r + diam(S, dX))/(2r + 1) 6 1 + diam(S, dX)/r. There is therefore a tradeoff that
limits how large r could be if one wishes to use the r-magnification for the purpose of obtaining
a lower bound on ae(n). Below we shall balance these constraints, for an appropriate choice of an
initial metric space (X, dX), so as to yield Theorem 1.

3.2. The Wasserstein 1 norm. For a finite set X we denote (as usual) by RX the |X|-dimensional
vector space of all f : X → R. We also denote by RX0 the subspace of RX consisting of those
f : X → R that satisfy

∑
x∈X f(x) = 0. The standard basis of RX will be denoted by {ex}x∈X ,

i.e., ex(y) = 1{x=y} for every x, y ∈ X. For f ∈ RX we shall use the (standard) notation

‖f‖`1(X)
def
=
∑
x∈X
|f(x)|.

If (X, dX) is a finite metric space then let K(X,dX) ⊆ RX0 be the the following convex hull.

K(X,dX)
def
= conv

{
ex − ey
dX(x, y)

: x, y ∈ X and x 6= y

}
. (32)

K(X,dX) is clearly an origin-symmetric convex body, so it is a unit ball of a norm on RX0 , called the
Wasserstein 1 norm induced by X, which we denote by ‖·‖W1(X,dX). By the Kantorovich–Rubinstein

duality theorem (see [Vil03, Thm. 1.14]), denoting as usual f+ = max{f, 0} and f− = max{−f, 0}
for every f ∈ RX , and recalling (27), we have

∀ f ∈ RX0 , ‖f‖W1(X,dX) = W dX
1 (f+, f−) = inf

π∈Π(f+,f−)

∑
x,y∈X

dX(x, y)π(x, y). (33)

12



Observe that this makes sense because the assumption f ∈ RX0 , i.e., that
∑

x∈X f(x) = 0, implies
that the nonnegative functions f+ and f− satisfy,

∑
x∈X f

+(x) =
∑

x∈X f
−(x). So, f+ and f− are

nonnegative measures with the same total mass.

We record for future use the following very simple lemma.

Lemma 7. Let (X, dX) be a finite metric space. Then ‖ex − ey‖W1(X,dX) = dX(x, y) for every
x, y ∈ X and

∀ f ∈ RX0 ,
1

2
min
x,y∈X
x 6=y

dX(x, y)‖f‖`1(X) 6 ‖f‖W1(X,dX) 6
1

2
diam(X)‖f‖`1(X). (34)

In particular, for every r > 0 and S ⊆ X we have

∀ f ∈ RS0 , r‖f‖`1(S) 6 ‖f‖W1(S,dXr(S))
6

(
r +

diam(X)

2

)
‖f‖`1(S). (35)

Proof. The fact that ‖ex−ey‖W1(X,dX) = dX(x, y) for every distinct x, y ∈ X is immediate from (33),
and also directly from (32), which says that (ex − ey)/dX(x, y) has unit norm in W1(X, dX). To
prove (34), denote by m the minimum nonzero value that dX attains. For distinct x, y ∈ X,

max
x,y∈X
x 6=y

∥∥∥∥ ex − eydX(x, y)

∥∥∥∥
`1(X)

6 max
x,y∈X
x 6=y

‖ex − ey‖`1(X)

m
=

2

m
.

This means that for every distinct x, y ∈ X we have (ex−ey)/dX(x, y) ∈ (2/m)B`1(X), where B`1(X)

is the unit ball of `1(X). By (32) we therefore have K(X,dX) ⊆ (2/m)B`1(X), which is the same as
the first inequality in (34). The second inequality in (34) follows directly from (33), noting that
the sum in the right hand side of (33) is at most diam(X)

∑
x∈X f

+(x) = diam(X)‖f‖`1(X)/2. The
estimate (35) is a special case of (34) because by (30) the minimum nonzero distance within S of
the r-magnification of X at S is at least 2r, and the diameter of Xr(S) is at most 2r+diam(X). �

3.3. Properties of expanders. In the proof of Theorem 1 we shall use several properties of
graphs in general, and expander graphs in particular. Here we collect these facts for ease of later
reference. Fix two integers n, d > 3 and let G be a connected n-vertex d-regular graph. Recall that
the shortest-path metric that G induces on VG is denoted dG. The following estimate is standard.

∀ ∅ 6= S ⊆ VG,
1

|S|2
∑
x,y∈S

dG(x, y) >
log |S|
4 log d

. (36)

To quickly verify the validity of (36), observe that since the smallest nonzero distance in G is at least
1, the average that appears in the left hand side of (36) is always at least |S|(|S|−1)/|S|2 = 1−1/|S|.
One checks directly that 1 − 1/a > (log a)/(4 log 3) for every a ∈ {1, . . . , 15}, so in order to
establish (36) we may assume that |S| > 16. Denote k = 1 + blogd(|S|/4)c and observe that for
every x ∈ VG the number of y ∈ VG with dG(x, y) 6 k−1 is at most 1+d+. . .+dk−1 6 2dk−1 6 |S|/2.
The average that appears in the left hand side of (36) is therefore at least k/2, and it remains to
note that k > logd(|S|/4) > (log |S|)/(2 log d), since |S| > 16.

Fixing S ⊆ VG and r > 0, we shall need later the following straightforward evaluation of the
average length of edges of G in the r-magnification of (G, dG) at S.

1

|EG|
∑

{x,y}∈EG

dGr(S)(x, y) = 1 +
2r|S|
n

. (37)

Indeed, let E1 be those edges in EG that are contained in S and let E2 be those edges in EG
that contain exactly one element of S. Because G is d-regular, we have 2|E1| + |E2| = d|S|.

13



Recalling (30), for every {x, y} ∈ E1 we have dGr(S)(x, y) = 2r + 1, for every {x, y} ∈ E2 we have
dGr(S)(x, y) = r+ 1, and for every {x, y} ∈ EGr (E1∪E2) we have dGr(S)(x, y) = 1. Consequently,

1

|EG|
∑

(x,y)∈EG

dGr(S)(x, y) =
(|EG| − |E1| − |E2|) + (2r + 1)|E1|+ (r + 1)|E2|

|EG|

= 1 +
r(2|E1|+ |E2|)

dn/2
= 1 +

2r|S|
n

.

Given two disjoint subsets S, T ⊆ VG, denote the number of edges in EG that intersect both S
and T by EG(S, T ). The edge-expansion of G, denoted φ(G), is the largest φ ∈ [0,∞) such that

∀S ⊆ VG, EG(S, VG r S) > φ
|S|(n− |S|)

n2
|EG|. (38)

It is well known that (38) is equivalent to the assertion that every h : VG → `1 satisfies.

φ

n2

∑
x,y∈VG

‖h(x)− h(y)‖1 6
1

|EG|
∑

{x,y}∈EG

‖h(x)− h(y)‖1. (39)

The equivalence of (38) and (39) is a standard application of the cut-cone decomposition of subsets
of `1; see e.g. inequality (4) in [Mat97] or [NRS05, Fact 2.1]. The following simple combination
of (39) and Lemma 7 will be used later.

Lemma 8. Fix n ∈ N and φ ∈ (0, 1]. Suppose that G be an n-vertex graph with φ(G) > φ. For
every ∅ 6= S ⊆ VG and r > 0, every F : VG → RS0 satisfies

1

n2

∑
x,y∈VG

‖F (x)− F (y)‖W1(S,dGr(S))
6

2r + diam(S, dG)

(2r + 1)φ
· 1

|EG|
∑

{x,y}∈EG

‖F (x)− F (y)‖W1(S,dGr(S))
.

Proof. By (39) we have

1

n2

∑
x,y∈VG

‖F (x)− F (y)‖`1(S) 6
1

φ|EG|
∑

{x,y}∈EG

‖F (x)− F (y)‖`1(S) (40)

Recalling (30), we have diam(S, dGr(S)) = 2r + diam(S, dG) and the smallest positive distance in
(S, dGr(S)) equals 2r + 1. So, by Lemma 7, every x, y ∈ VG satisfy

2r + 1

2
‖F (x)− F (y)‖`1(S) 6 ‖F (x)− F (y)‖W1(S,dGr(S))

6
2r + diam(S, dG)

2
‖F (x)− F (y)‖`1(S) .

Lemma 8 now follows by substituting these estimates for pairwise distances into (40). �

We end by recording for future use the following direct consequence of Menger’s theorem [Men27].

Lemma 9. Let G be an n-vertex graph and A,B ⊆ VG satisfy A ∩ B = ∅. Fix φ ∈ (0,∞)
and suppose that φ(G) > φ. Then the number of edge-disjoint paths joining A and B is at least
φmin{|A|, |B|}|EG|/(2n). In other words, there exists an integer m > φmin{|A|, |B|}|EG|/(2n),
k1, . . . , km ∈ N and {ui,1, ui,2, . . . , ui,ki}mi=1 ⊆ VG such that {ui,1}mi=1 ⊆ A, {ui,ki}mi=1 ⊆ B. More-
over, {ui,s, ui,s+1} ∈ EG for every i ∈ {1, . . . ,m} and s ∈ {1, . . . , ki − 1}, and if for some
i, j ∈ {1, . . . ,m}, s ∈ {1, . . . , ki − 1} and t ∈ {1, . . . , kj − 1} we have {ui,s, ui,s+1} = {uj,t, uj,t+1}
then necessarily i = j and s = t.

Proof. Let m be the maximal number of edge-disjoint paths joining A and B. By the classical
Menger theorem [Men27] (see also e.g. [Die10, Chapter 3]) there exists a subset of edges E∗ ⊆ EG
with |E∗| = m such that every path in G that joins a vertex in A with a vertex in B contains an
edge from E∗. Since in the graph G∗ = (VG, EG r E∗) there is no path that joins an element of A
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with an element of B, if we let C ⊆ VG be the union of all the connected components of G∗ that
contain an element of A then C ⊇ A and C ∩B = ∅. Since C is a union of connected components
of G∗, all the edges of EG joining C and VGrC belong to E∗. Hence, EG(C, VGrC) 6 |E∗| = m.
It remains to note that by (38) we have

m > EG(C, VG r C) > φ
max{|C|, n− |C|} ·min{|C|, n− |C|}

n2
|EG| >

φmin{|A|, |B|}|EG|
2n

, (41)

where the last step of (41) holds true because clearly max{|C|, n − |C|} > n/2, and since C ⊇ A
and VG r C ⊇ B we have min{|C|, n− |C|} > min{|A|, |B|}. �

3.4. A Wasserstein-valued poorly extendable function. Fix d, n ∈ N and φ ∈ (0, 1). Through-
out this section, G will be fixed to be an n-vertex d-regular graph with φ(G) > φ. We shall also
fix ∅ 6= S ⊆ VG and r > 0. Define a mapping

f :
(
S, dGr(S)

)
→
(
RS0 , ‖ · ‖W1(S,dGr(S))

)
by

∀x ∈ S, f(x)
def
= ex −

1

|S|
∑
z∈S

ez. (42)

Thus f is an isometry (recall Lemma 7). Suppose that F : VG → RS0 extends f and for some
L ∈ (0,∞) we have

∀x, y ∈ VG, ‖F (x)− F (y)‖W1(S,dGr(S))
6 LdGr(S)(x, y). (43)

Our goal is to bound L from below.

For every x ∈ VG and s ∈ (0,∞) define Bs(x) ⊆ VG to be the inverse image under F of the
W1(S, dGr(S))-ball of radius s centered at F (x), i.e.,

Bs(x)
def
=
{
y ∈ VG : ‖F (x)− F (y)‖W1(S,dGr(S))

6 s
}
.

By Lemma 9 there exists an integer

m >
φd

4
min {|S rBs(x)| , |Bs(x)|} , (44)

and m edge-disjoint paths joining SrBs(x) and Bs(x). This means that we can find k1, . . . , km ∈ N
and {zj,1, zj,2, . . . , zj,kj}mj=1 ⊆ VG such that {zj,1}mj=1 ⊆ S r Bs(x), {zj,kj}mj=1 ⊆ Bs(x), and such

that {{zj,i, zj,i+1} : j ∈ {1, . . . ,m} ∧ i ∈ {1, . . . , kj − 1}} are distinct edges in EG.

Let J ⊆ {1, . . . ,m} be such that {zj,1}j∈J are distinct and {zj,1}j∈J = {zi,1}mi=1. For every j ∈ J
denote the number of those i ∈ {1, . . . ,m} for which zj,1 = zi,1 by dj . Since {{zi,1, zi,2}}mi=1 are
distinct edges in EG, and G is d-regular, maxj∈J dj 6 d. Because

∑
j∈J dj = m, it follows that

|J | > m

d

(44)

>
φ

4
min {|S rBs(x)| , |Bs(x)|} . (45)

The following lemma provides an upper bound on |J | that we will later contrast with (45).

Lemma 10. Under the above notation and assumptions we have

|J | 6 max

{
d16(s−r),

16nLd log d

log n

(
1 +

2r|S|
n

)}
. (46)

15



Proof. If |J | 6 d16(s−r) then we are done, so we may assume that |J | > d16(s−r), or equivalently

s− r < log |J |
16 log d

. (47)

Observe that because {zj,1}j∈J ⊆ S and F |S = f is an isometry on (S, dGr(S)),

∀ i, j ∈ J, ‖F (zi,1)− F (zj,1)‖W1(S,dGr(S))
= dGr(S)(zi,1, zj,1)

(30)
= 2r + dG(zi,1, zj,1). (48)

Hence, ∑
j∈J

∥∥F (zj,1)− F (zj,kj )
∥∥
W1(S,dGr(S))

(49)

=
1

2|J |
∑
i,j∈J

(
‖F (zi,1)− F (zi,ki)‖W1(S,dGr(S))

+
∥∥F (zj,1)− F (zj,kj )

∥∥
W1(S,dGr(S))

)
>

1

2|J |
∑
i,j∈J

(
‖F (zi,1)− F (zj,1)‖W1(S,dGr(S))

−
∥∥F (zi,ki)− F (zj,kj )

∥∥
W1(S,dGr(S))

)
>

1

2|J |
∑
i,j∈J

dG(zi,1, zj,1)− (s− r)|J | (50)

>
|J | log |J |

8 log d
− (s− r)|J | > |J | log |J |

16 log d
, (51)

where in (50) we used (48) and the fact that, because {zj,kj}j∈J ⊆ Bs(x), it follows from the
definition of Bs(x) that for every i, j ∈ J we have

‖F (zi,ki)−F (zj,kj )‖W1(S,dGr(S))
6 ‖F (zi,ki)−F (x)‖W1(S,dGr(S))

+‖F (x)−F (zj,kj )‖W1(S,dGr(S))
6 2s.

The penultimate inequality in (51) is an application of (36), and the final inequality in (51) uses (47).

The quantity in (49) can be bounded from above using the Lipschitz condition (43) and the
triangle inequality as follows.

∑
j∈J

∥∥F (zj,1)− F (zj,kj )
∥∥
W1(S,dGr(S))

6 L
∑
j∈J

dGr(S)(zj,1, zj,kj ) 6 L
∑
j∈J

kj−1∑
i=1

dGr(S)(zj,i, zj,i+1). (52)

Since {{zj,i, zj,i+1} : j ∈ J ∧ i ∈ {1, . . . , kj − 1}} are distinct edges in EG,

∑
j∈J

kj−1∑
i=1

dGr(S)(zj,i, zj,i+1) 6
∑

{u,v}∈EG

dGr(S)(u, v)
(37)
=

nd

2

(
1 +

2r|S|
n

)
. (53)

A substitution of (53) into (52), and contrasting the resulting estimate with (51), yields

Lnd

2

(
1 +

2r|S|
n

)
>
|J | log |J |
16 log d

. (54)

It is elementary to check that if a ∈ [1,∞) and b ∈ (1,∞) satisfy a log a 6 b then a 6 2b/ log b. By
applying this with a = |J | and b = 8Lnd log d(1 + 2r|S|/n) > n, we see that (54) implies that

|J | 6 16nLd log d

log n

(
1 +

2r|S|
n

)
,

thus completing the proof of (46). �
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Corollary 11. Suppose that the following conditions hold true.

d16(s−r) 6
φ|S|

8
and L 6

φ|S| log n

128
(

1 + 2r|S|
n

)
nd log d

. (55)

Then

max
x∈VG

|Bs(x)| < |S|
2
. (56)

Proof. Fix x ∈ VG. If Bs(x)∩S 6= ∅ then it follows from (36) that there exist y, z ∈ Bs(x)∩S with

dG(y, z) >
log |Bs(x) ∩ S|

4 log d
. (57)

At the same time, since y, z ∈ S and F |S = f is an isometry on (S, dGr(S)), we know that

dG(y, z) + 2r
(30)
= dGr(S)(y, z) = ‖F (y)− F (z)‖W1(S,dGr(S))

6 ‖F (y)− F (x)‖W1(S,dGr(S))
+ ‖F (x)− F (z)‖W1(S,dGr(S))

6 2s, (58)

where in the last step of (58) we used the fact that y, z ∈ Bs(x). Contrasting (57) and (58) yields

|Bs(x) ∩ S| 6 d8(s−r) 6

√
φ|S|

8
6

2|S|
5
, (59)

where we used the first assumption in (55) (and that φ 6 1 6 |S|). It follows from (59) that
|SrBs(x)| > 3|S|/5. By combining (45) and (46) with this lower bound on |SrBs(x)| we see that

min

{
3|S|

5
, |Bs(x)|

}
< max

{
4d16(s−r)

φ
,
64nLd log d

φ log n

(
1 +

2r|S|
n

)}
. (60)

But, the two assumptions in (55) imply that 3|S|/5 is greater than the right hand side of (60), so

|Bs(x)| 6 max

{
4d16(s−r)

φ
,
64nLd log d

φ log n

(
1 +

2r|S|
n

)}
(55)

6
|S|
2
. �

Corollary 12. If the conditions in (55) are satisfied then

L >
φs

2
(

1 + diam(G,dG)
2r

)(
1 + 2r|S|

n

) . (61)

Proof. For every x ∈ VG and y ∈ VG rBs(x) we have ‖F (x)− F (y)‖W1(S,dGr(S))
> s. Hence,

1

n2

∑
x,y∈VG

‖F (x)− F (y)‖W1(S,dGr(S))
>

1

n2

∑
x∈VG

∑
y∈VGrBs(x)

‖F (x)− F (y)‖W1(S,dGr(S))

>
s

n2

∑
x∈VG

(n− |Bs(x)|) > s
(

1− maxx∈VG |Bs(x)|
n

)
(56)

>
s

2
. (62)

At the same time, by Lemma 8 we have

1

n2

∑
x,y∈VG

‖F (x)− F (y)‖W1(S,dGr(S))
6

2r + diam(S, dG)

(2r + 1)φ|EG|
∑

{x,y}∈EG

‖F (x)− F (y)‖W1(S,dGr(S))

(43)

6
L
(

1 + diam(G,dG)
2r

)
φ|EG|

∑
{x,y}∈EG

dGr(S)(x, y)
(37)
=

L
(

1 + diam(G,dG)
2r

)(
1 + 2r|S|

n

)
φ

. (63)
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The desired estimate (61) follows by contrasting (62) with (63). �

Theorem 13. Continuing with the same notation as above, if 0 < r 6 diam(G, dG) then

L &
φ

1 + r|S|
n

·min

{
|S| log n

nd log d
,
16r2 log d+ r log(φ|S|/8)

diam(G, dG) log d

}
. (64)

Proof. If 16r log d+log(φ|S|/8) 6 0 then (64) is vacuous. Supposing that 16r log d+log(φ|S|/8) > 0,

choose s = r+ (log(φ|S|/8))/(16 log d), so s > 0 and d16(s−r) = φ|S|/8. The first inequality of (55)
is therefore satisfied, so either the second inequality in (55) fails, corresponding to a lower bound
on L, or by Corollary 12 the lower bound on L in (61) is satisfied. This simplifies to give (64). �

For a wide range of the parameters (i.e., n, d, φ, diam(G, dG), |S|, r), Theorem 13 yields a nontriv-
ial lower bound on the Lipschitz constant of any mapping F that extends the 1-Lipschitz function
f given in (42). Rather than treating the general case, we shall now proceed to compute an optimal
setting of the parameters in (64) when G has the property that diam(G, dG) � (log n)/ log d and
φ(G) � 1. Such graphs exist for any degree d > 3 and arbitrarily large n ∈ N, and in fact this holds
true with probability tending to 1 as n→∞ when G is chosen uniformly at random from the finite
set of all n-vertex d-regular graphs; for the diameter of random regular graphs see e.g. [BFdlV82]
and for the expansion of random regular graphs see e.g. [HLW06, Theorem 4.16].

So, if φ � 1 and diam(G, dG) � (log n)/ log d, and continuing with the assumption of Theorem 13
that 0 < r 6 diam(G, dG), the lower bound (64) becomes

L &
1

1 + r|S|
n

·min

{
|S| log n

nd log d
,
r (r log d+ log |S|)

log n

}
.

The optimal choice (up to constant factors) is to take S ⊆ VG with |S| = bn
√
d log d/

√
log nc (this

is allowed provided n is large enough so as to ensure that |S| 6 n, specifically it suffices to assume
that n > dd) and r �

√
log n/

√
d log d. With these choices we see that L &

√
log n/

√
d log d. Thus,

ebn
√
d log d/

√
lognc

(
Gr(S),W1

(
S, dGr(S)

))
&

√
log n√
d log d

. (65)

For fixed d (say, d = 4), the estimate (65) implies Theorem 1. �

Remark 14. The above reasoning also provides a new example showing that ae(ε) & 1/ε. Recall-
ing (31), every distinct x, y ∈ S satisfy dGr(S)(x, y) > εdiam(S, dGr(S)) where ε � r/diam(G, dG).

When diam(G, dG) � (log n)/ log d and r �
√

log n/
√
d log d, this becomes ε �

√
log d/

√
d log n.

The lower bound L &
√

log n/
√
d log d therefore becomes L & 1/(εd).

4. Proof of Theorem 4

In Section 1.1 we defined the parameters eα(X,Z) and eαn(X,Z), for every α ∈ (0, 1], n ∈ N and
every two metric spaces (X, dX) and (Z, dZ). Below it will be convenient to also use the analogous
notation eα(X,S,Z) for S ⊆ X, i.e.,

eα(X,S,Z)
def
= e

(
(X, dαX), S, (Z, dZ)

)
.

Theorem 4 asserts the validity of the following four lower bounds for every m,n ∈ N.

eα(`∞, `
m
2 ) & m

2α−1
4α and eαn(`∞, `2) & (log n)

2α−1
4α , (66)

and

eα(`∞, `
m
2 ) & mα2− 1

2 and eαn(`∞, `2) &

(
log n

log logn

)α2− 1
2

. (67)
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The proof of (66) appears in Section 4.1 below, and the proof of (67) appears in Section 4.2 below.

4.1. Twisted unions of hypercubes. For m ∈ N we identify the discrete hypercube {0, 1}m with
Fm2 , the vector space of dimension m over the field of size two F2. We let e1, . . . , em denote the
standard basis of Fm2 and write e = e1 + . . .+ em.

Lemma 15. Suppose that α ∈ (1
2 , 1] and r, s ∈ (0,∞) satisfy

(2α)2αs(2r)2α−1 >
(

(2α)
2α

2α−1 − 1
)2α−1

. (68)

Define for every (x, i), (y, j) ∈ Fm2 × F2,

d((x, i), (y, j))
def
=


min

{
s‖x− y‖1, 2r + ‖x− y‖

1
2α
1

}
if i = j = 1,

‖x− y‖
1
2α
1 if i = j = 0,

r + min

{
s‖x− y‖1, ‖x− y‖

1
2α
1

}
if i 6= j.

(69)

Then d is a metric on Fm2 × F2.

Proof. Recall that if ω : [0,∞) → [0,∞) is concave, nondecreasing, and satisfies ω(0) = 0, then
ω ◦ dX is a metric on X for every metric space (X, dX). An application of this observation to the

mapping t 7→ t1/(2α), which is concave because α > 1
2 , shows that d is a metric on Fm2 × {0}. Also,

since both of the mappings t 7→ st and t 7→ 2r + t1/(2α) are concave and increasing, the mapping
t 7→ min{st, 2r + t1/(2α)} is concave and increasing. Consequently, d is a metric on Fm2 × {1}.

It therefore remains to show that if i, j, k ∈ {0, 1} satisfy {i, j, k} = {0, 1} and x, y, z ∈ Fm2 then
d((x, i), (y, j)) 6 d((x, i), (z, k))+d((z, k), (y, j)). By translation and permutation of the coordinates
we may assume that x = 0 and y = e1 + . . .+ea for some a ∈ {1, . . . ,m}. In this case, note that if z
has a nonzero entry outside {1, . . . , a} then both ‖z‖1 and ‖y− z‖1 will decrease if we change that
entry of z from 1 to 0. By the definition of d in (69), this shows that d((x, i), (z, k))+d((z, k), (y, j))
will decrease if we set all the entries of z that are outside {1, . . . , a} to be equal 0. It therefore
suffices to prove that for every a ∈ {1, . . . ,m} and b ∈ {1, . . . , a− 1} we have

d((0, i), (e1 + . . .+ ea, j)) 6 d((0, i), (e1 + . . .+ eb, k)) + d((e1 + . . .+ eb, k), (e1 + . . .+ ea, j)). (70)

We shall establish the validity of (70) through the following case analysis.

Case 1: i = j = 0. In this case necessarily k = 1, so by (69) the desired inequality (70) becomes

a
1
2α 6 2r + min

{
sb, b

1
2α

}
+ min

{
s(a− b), (a− b)

1
2α

}
. (71)

The mapping ω : [0,∞) → [0,∞) given by ω(t)
def
= min{st, t1/(2α)} is concave, increasing and

satisfies ω(0) = 0. Consequently, ω(b)+ω(a−b) > ω(a). So, in order to prove (71) it suffices to show

that a1/(2α) 6 2r+ω(a) = 2r+ min{sa, a1/(2α)}. We therefore need to show that a1/(2α) 6 2r+ sa.

Define φ : [0,∞) → [0,∞) by φ(t) = 2r + st− t1/(2α). The minimum of φ on [0,∞) is attained at

tmin = 1/(2αs)2α/(2α−1). Hence, by our assumption (68) we have

φ(a) > φ(tmin) = 2r +
s

(2αs)
2α

2α−1

− 1

(2αs)
1

2α−1

= 2r − (2α)
2α

2α−1 − 1

((2α)2αs)
1

2α−1

(68)

> 0.

Case 2: i = j = 1. In this case necessarily k = 0, so by (69) the desired inequality (70) becomes

min
{
sa, 2r + a

1
2α

}
6 2r + min

{
sb, b

1
2α

}
+ min

{
s(a− b), (a− b)

1
2α

}
. (72)
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As in Case 1, by the subadditivity of ω we see that in order to prove (72) it suffices to show that

min{sa, 2r + a1/(2α)} 6 2r + ω(a) = 2r + min{sa, a1/(2α)}, which is immediate.

Case 3: {i, j} = {0, 1}. In this case, by interchanging the roles of b and a− b, if necessary, in order
to prove the desired inequality (70) one must show that the following two inequalities hold true

r + min
{
sa, a

1
2α

}
6 b

1
2α + r + min

{
s(a− b), (a− b)

1
2α

}
,

and
r + min

{
sa, a

1
2α

}
6 r + min

{
sb, b

1
2α

}
+ min

{
s(a− b), 2r + (a− b)

1
2α

}
.

Thus, we need to check that

min
{
sa, a

1
2α

}
6 b

1
2α + min

{
s(a− b), (a− b)

1
2α

}
, (73)

and
min

{
sa, a

1
2α

}
6 min

{
sb, b

1
2α

}
+ min

{
s(a− b), 2r + (a− b)

1
2α

}
. (74)

Inequality (74) follows immediately from the subadditivity of ω as follows.

min
{
sb, b

1
2α

}
+ min

{
s(a− b), 2r + (a− b)

1
2α

}
> ω(b) + ω(a− b) > ω(a) = min

{
sa, a

1
2α

}
.

Since the mapping t 7→ t1/(2α) is subadditive, we have b1/(2α) + (a− b)1/(2α) > a1/(2α). Therefore, in

order to prove (73) it suffices to show that b1/(2α)+s(a−b) > min{sa, a1/(2α)}. Define ψ : [0, a]→ R
by ψ(t) = t1/(2α)+s(a−t). Then ψ is concave. It follows that the minimum of ψ on the interval [0, a]

is attained at one of its endpoints, and therefore ψ(b) > min{ψ(0), ψ(a)} = min{sa, a1/(2α)}. �

The proof of the following theorem is a variant of an argument of [JLS86].

Theorem 16. Continuing with the notation of Lemma 15 and assuming from now on that the
condition (68) is satisfied, define f : Fm2 ×{0} → `m2 by setting f(x, 0) = x for every x ∈ Fm2 . Then
‖f(x, 0)− f(y, 0)‖2 = d((x, 0), (y, 0))α for every x, y ∈ Fm2 . At the same time, if F : Fm2 × F2 → `m2
extends f and satisfies ‖F (u)− F (v)‖2 6 Ld(u, v)α for some L ∈ (0,∞) and every u, v ∈ Fm2 × F2

then we necessarily have

L >

√
m

sα
√
m+ 2rα

. (75)

Proof. Note that for every x, y ∈ Fm2 we have

‖f(x, 0)− f(y, 0)‖2 = ‖x− y‖2 =
√
‖x− y‖1 = d((x, 0), (y, 0))α,

by the definition of d in (69). Next, the assumptions on F imply that for every x, y ∈ Fm2 and every
j ∈ {1, . . . ,m} we have

‖F (x+ ej , 1)− F (x, 1)‖2 6 Ld((x+ ej , 1), (x, 1))α
(69)
= Lmin {sα, (2r + 1)α} 6 Lsα.

Hence,
m∑
j=1

∑
x∈Fm2

‖F (x+ ej , 1)− F (x, 1)‖22 6 m2mL2s2α. (76)

Also, the following estimate holds true for every x ∈ Fm2 .

‖F (x+ e, 1)− F (x, 1)‖2
> ‖F (x+ e, 0)− F (x, 0)‖2 − ‖F (x+ e, 1)− F (x+ e, 0)‖2 − ‖F (x, 1)− F (x, 0)‖2
> ‖f(x+ e, 0)− f(x, 0)‖2 − Ld((x+ e, 1), (x+ e, 0))α − Ld((x, 1), (x, 0))α

=
√
m− 2Lrα.
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Hence, ∑
x∈Fm2

‖F (x+ e, 1)− F (x, 1)‖22 > 2m
(
max

{√
m− 2Lrα, 0

})2
. (77)

By a classical inequality of Enflo [Enf69] (see also [Mat02, § 15.4]),∑
x∈Fm2

‖F (x+ e, 1)− F (x, 1)‖22 6
m∑
j=1

∑
x∈Fm2

‖F (x+ ej , 1)− F (x, 1)‖22. (78)

A substitution of (76) and (77) into (78) now yields the estimate

√
m− 2Lrα 6 Lsα

√
m =⇒ L >

√
m

sα
√
m+ 2rα

. �

One should clearly choose those r, s ∈ (0,∞) that satisfy the constraint (68) and maximize the
right hand side of (68). This yields better dependence (in terms of an α-dependent constant factor
but not in term of dependence on n) than the following sub-optimal choices.

r
def
= m

1
4α2 and s

def
= m−

2α−1

4α2 . (79)

It is elementary to check that under these choices the constraint (68) is satisfied, yielding the

estimate L & m(2α−1)/(4α) in Theorem 16. This implies the validity of (66), i.e., the first half of
Theorem 4. Namely, the following bounds hold true.

Corollary 17. Continuing with the notation of Lemma 15, we have

eα(`∞, `
m
2 ) > eα

(
(Fm2 × F2, d),Fm2 × {0}, `m2

)
& m

2α−1
4α .

Also, since m � log |Fm2 |, it follows that for arbitrarily large n ∈ N we have

eαn(`∞, `2) & (log n)
2α−1
4α .

Remark 18. Consider the mappings ω0, ω1 : [0,∞)→ [0,∞) given by

∀ t > 0, ω0(t) = t1/(2α) and ω1(t) = min{st, 2r + ω0(t)}.
Both ω0 and ω1 are concave, increasing and vanish at the origin. The metric d given in (69) satisfies
d((x, 0), d(y, 0)) = ω0(‖x − y‖1) and d((x, 1), (y, 1)) = ω1(‖x − y‖1). As explained in Remark 5.5
of [MN15], it follows that both of the metric spaces (Fm2 × {0}, d) and (Fm2 × {1}, d) embed into `1
with O(1) distortion. We do not know whether the metric space (Fm2 ×F2, d) admits an embedding
into `1 with O(1) distortion. If it were the case that any embedding of (Fm2 × F2, d) (say, when
α = 1) into `1 must incur bi-Lipschitz distortion that tends to ∞ as n → ∞, this would be the
first known example of a metric space that can be partitioned into two subsets, each of which
well-embeds into `1 yet the entire space does not. For more on such questions, see [MN13b].

Remark 19. The metric d in (69), as well as the magnification of a metric space that was described
in Section 3.1, are both special cases of a generalization of a construction that was used in [JLS86]
for the purpose of proving a Lipschitz-nonextendability result. Variants of this construction were
also used in [Lan99, CKR05]. The general idea is the following procedure to “glue” two metric
spaces. Suppose that (X, dX) and (Y, dY ) are finite metric spaces with X and Y disjoint as sets.
Suppose also that we are given a mapping σ : X → Y and r ∈ (0,∞). Define a weighted graph
structure on X ∪ Y as follows. If x1, x2 ∈ X then join x1 and x2 by an edge of weight dX(x1, x2).
Similarly, if y1, y2 ∈ Y then join y1 and y2 by an edge of weight dY (y1, y2). Also, for every x ∈ X
join x and σ(x) by an edge of weight r (a further generalization of this procedure could allow
the weight of the edge {x, σ(x)} to depend on x). Consider now the shortest-path metric that this
weighted graph induces on X∪Y . One can check that the above metric spaces can also be described
as subsets of this general construction, whose usefulness is probably yet to be fully exploited.
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4.2. Linearization. Our goal here is to prove (67), thus completing the proof of Theorem 4. The
argument below is based on the linearization procedure of [JL84], with several modifications that
yield quantitative improvements and, more importantly, allow us to to treat Hölder mappings.

In what follows, given a Banach space (W, ‖ · ‖W ) we denote

BW
def
= {x ∈W : ‖x‖W 6 1} and SW

def
= ∂BW = {x ∈W : ‖x‖W = 1}.

If V ⊆ W is a linear subspace then we will always consider it as being equipped with the norm
inherited from W , thus slightly abusing notation by denoting the sets V ∩BW and V ∩ SW by BV
and SV , respectively. A mapping h : W1 → W2 between two real vector spaces W1,W2 is said to
be positively homogeneous if h(λx) = λh(x) for every λ ∈ [0,∞).

Lemma 20 below is a variant of Lemma 5 in [JL84], with the difference being that in [JL84] the
conclusion corresponding to (81) is weaker in the sense that the factor

√
mD is replaced by m. The

difference between our proof and the proof in [JL84] is that we perform averaging in the image of
T rather than in X itself, allowing for a more refined estimate that we shall use later.

Lemma 20. Fix m ∈ N and D ∈ [1,∞). Let (Y, ‖·‖Y ) and (Z, ‖·‖Z) be Banach spaces and X ⊆ Y
an m-dimensional linear subspace of Y . Suppose that T : X → `m2 is a linear operator that satisfies

∀x ∈ X, ‖x‖Y 6 ‖Tx‖2 6 D‖x‖Y . (80)

Suppose also that we are given a positively homogeneous Lipschitz mapping ψ : X → Z and a linear
operator U : X → Z. Then there exists a positively homogeneous mapping Ψ : Y → Z that satisfies

‖Ψ‖Lip . ‖ψ‖Lip and ‖Ψ|X − U‖Lip .
√
mD sup

z∈SX
‖ψ(z)− Uz‖Z . (81)

Proof. Write Bm
2 = B`m2 and

vm = vol (Bm
2 ) =

π
m
2

Γ
(
1 + m

2

) . (82)

Define φ : Y → Z as follows.

∀ y ∈ Y, φ(y)
def
=

1

vm

∫
Bm2

ψ
(
y + T−1w

)
dw =

1

vm

∫
Ty+Bm2

ψ
(
T−1w

)
dw.

Then, because φ is obtained by applying an averaging operator to ψ, we have

‖φ‖Lip 6 ‖ψ‖Lip. (83)

Also, because ψ(0) = 0 (recall that ψ is positively homogeneous), we have

sup
y∈SY

‖φ(y)‖Z 6 ‖ψ‖Lip sup
(y,w)∈SY ×Bm2

‖y + T−1w‖Y
(80)

6 2‖ψ‖Lip. (84)

Similarly,

sup
y∈SX

‖φ(y)− Uy‖Z = sup
y∈SX

∥∥∥ 1

vm

∫
Bm2

(ψ − U)
(
y + T−1w

)
dw
∥∥∥
Z

6 sup
(y,w)∈SX×Bm2

‖(ψ − U)(y + T−1w)‖Z 6 sup
z∈2BX

‖ψ(z)− Uz‖Z = 2 sup
z∈SX

‖ψ(z)− Uz‖Z , (85)

where the penultimate step in (85) holds true because, due to (80), we have T−1Bm
2 ⊆ BX , so

SX + T−1Bm
2 ⊆ 2BX . The final step of (85) holds true because ψ − U is positively homogeneous.
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Fix distinct x, y ∈ SX and write 2r
def
= ‖x− y‖Y . Then, since U and T are linear,

(φ− U)(x)− (φ− U)(y)

=
1

vm

∫
(Tx+Bm2 )r(Ty+Bm2 )

(ψ − U)(T−1(w))dw − 1

vn

∫
(Ty+Bm2 )r(Tx+Bn2 )

(ψ − U)(T−1(w))dw.

Consequently,

‖(φ− U)(x)− (φ− U)(y)‖Z 6
1

vm

∫
(Tx+Bm2 )4(Ty+Bm2 )

‖(ψ − U)(T−1(w))‖Zdw

6
vol ((Tx+Bm

2 )4(Ty +Bm
2 ))

vn
· sup
z∈(x+T−1Bm2 )4(y+T−1Bm2 )

‖ψ(z)− Uz‖Z . (86)

We note that
vol ((Tx+Bm

2 ) ∪ (Ty +Bm
2 )) 6 vm + ‖Tx− Ty‖2vm−1. (87)

Indeed, by rotation invariance, it suffices to verify (87) when Tx = re1 and Ty = −re1, where
e1, . . . , em is the standard basis of Rm and we recall that ‖Tx − Ty‖2 = 2r. Identifying Rm with
R×Rm−1, the estimate (87) is a consequence of the fact that (re1 +Bm

2 )∪(−re1 +Bm
2 ) is contained

in the union of the three sets ([r,∞)×Rm−1)∩ (re1 +Bm
2 ), ((−∞,−r]×Rm−1)∩ (−re1 +Bm

2 ) and

[−r, r]×Bm−1
2 , whose interiors are disjoint.

Now, due to (87) we have

vol ((Tx+Bm
2 )4(Ty +Bm

2 )) = 2vol ((Tx+Bm
2 ) ∪ (Ty +Bm

2 ))− vol (Tx+Bm
2 )− vol (Ty +Bm

2 )

6 2‖Tx− Ty‖2vm−1.

So, the first term in the right hand side of (86) can be bounded as follows.

vol ((Tx+Bm
2 )4(Ty +Bm

2 ))

vn
6

2vm−1

vm
‖Tx− Ty‖2

(80)

6
√
mD‖x− y‖Y , (88)

where we used the fact that 2vm−1/vm 6
√
m, which follows from (82) and Stirling’s formula (in

addition, we actually have limm→∞ 2vm−1/vm =
√

2/π).

To bound the second term in the right hand side of (86), note that T−1Bm
2 ⊆ BX , by (80).

Therefore (x+ T−1Bm
2 )4(y + T−1Bm

2 ) ⊆ 2BX , since x, y ∈ SX . So,

sup
z∈(x+T−1Bm2 )4(y+T−1Bm2 )

‖ψ(z)− Uz‖Z 6 sup
z∈2BX

‖ψ(z)− Uz‖Z = 2 sup
z∈SX

‖ψ(z)− Uz‖Z , (89)

where we used the fact that ψ − U is positively homogeneous.

A substitution of (88) and (89) into (86) shows that

‖(φ− U)|SX‖Lip 6 4
√
mD sup

z∈SX
‖ψ(z)− Uz‖Z . (90)

Define Ψ : Y → Z to be the positively homogeneous extension of φ|SY , i.e., Ψ(y)
def
= ‖y‖Y φ(y/‖y‖Y )

for every y ∈ Y r {0} and Ψ(0) = 0. Then a simple computation (that is carried out in detail
in [JL84, Lemma 2]) shows that

‖Ψ‖Lip 6 2‖φ|SY ‖Lip + sup
y∈SY

‖φ(y)‖Z
(83)∧(84)

6 4‖ψ‖Lip.

For the same reason, since Ψ− U is the positively homogeneous extension of (φ− U)|SX to X,

‖Ψ|X −U‖Lip 6 2‖(φ−U)|SX‖Lip + sup
y∈SX

‖φ(y)−Uy‖Z
(85)∧(90)

6 10
√
mD sup

z∈SX
‖ψ(z)−Uz‖Z . �
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We shall use below the following lemma of Begun [Beg99]; alternatively one could use below an
argument of Bourgain [Bou87] that Begun significantly simplified in [Beg99].

Lemma 21. Fix δ, L, τ ∈ (0,∞) and m ∈ N. Suppose that (Y, ‖ · ‖Y ) is an m-dimensional normed
space and that (Z, ‖ · ‖Z) is a Banach space. Let K ⊆ Y be a convex set and suppose that we are
given a mapping F : K + τBY → Z that satisfies

∀x, y ∈ K + τBY , ‖F (x)− F (y)‖Z 6 L(‖x− y‖Y + δ).

Define h : K → Z by

∀x ∈ K, h(x)
def
=

1

vol(τBY )

∫
τBY

F (x+ y)dy, (91)

where the integration and vol(·) are interpreted through an identification of Y with Rm. Then

‖h‖Lip 6 L

(
1 +

δm

2τ

)
.

Corollary 22. Fix τ ∈ (0,∞), α ∈ (0, 1] and m ∈ N. Suppose that (Y, ‖ · ‖Y ) is an m-dimensional
normed space and that (Z, ‖ · ‖Z) is a Banach space. Let K ⊆ Y be a convex set and suppose that
F : K + τBY → Z is α-Hölder. Then there exists h : K → Z that satisfies

sup
x∈K
‖h(x)− F (x)‖Z 6 τα‖F‖Lip(α) and ‖h‖Lip 6

α2(m/τ)1−α + 1

α
‖F‖Lip(α).

Proof. Denote L = ‖F‖Lip(α). Note that for every δ ∈ (0,∞) and every x, y ∈ K + τBY we have

‖F (x)− F (y)‖Z 6 L‖x− y‖αY 6 L(‖x− y‖Z + δ) sup
t>0

tα

t+ δ
=

(1− α)1−αααL

δ1−α (‖x− y‖Z + δ).

We may therefore apply Lemma 21, deducing that for h defined as in (91) we have

‖h‖Lip 6
(1− α)1−αααL

δ1−α

(
1 +

δm

2τ

)
. (92)

The value of δ that minimizes the right hand side of (92) is δ = 2τ(1− α)/(αm), which gives

‖h‖Lip 6 (1− α)1−ααα
(

α1−α

(1− α)1−α

(m
2τ

)1−α
+

1− α
α

)
L 6

α2(m/τ)1−α + 1

α
L.

It remains to note that for every x ∈ K we have

‖h(x)−F (x)‖Z =
∥∥∥ 1

vol(τBY )

∫
τBY

(F (x+y)−F (x))dy
∥∥∥
Z
6

1

vol(τBY )

∫
τBY

L‖y‖αY dy 6 Lτα. �

Theorem 23. There is a universal constant κ ∈ (0, 1) with the following properties. Fix α ∈ (0, 1],
M,m ∈ N and C,D ∈ [1,∞). Suppose that (Y, ‖ · ‖Y ) is an M -dimensional normed space and
that (Z, ‖ · ‖Z) is an m-dimensional normed space. Let X ⊆ Y be an m-dimensional subspace of Y
whose Banach–Mazur distance to `m2 is at most D, i.e., there exists a linear operator T : X → `m2
satisfying (80). Suppose also that U : X → Z is a linear operator with

∀x ∈ X, ‖x‖Y 6 ‖Ux‖Z 6 C‖x‖Y . (93)

For every ε ∈ (0, 1) let Nε be an ε-net in SX . Then, under the additional assumption that

ε 6

(
κ√

mCDeα(Y,Nε, Z)

) 1
α

, (94)
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there exists a linear operator V : Y → Z that extends U and whose operator norm satisfies

‖V ‖Y→Z . αM1−αm
1−α
2α C

1
αD

1−α
α eα(Y,Nε, Z)

1
α +

C

α
eα(Y,Nε, Z). (95)

Proof. If x, y ∈ BX then ‖x− y‖Y 6 2, hence ‖Ux− Uy‖Z 6 C‖x− y‖Y 6 21−αC‖x− y‖αY . This
implies that the restriction of U to Nε is α-Hölder with constant 2C. Denoting L = eα(Y,Nε, Z),
it follows that there exists g : Y → Z that extends U |Nε and is α-Hölder with constant 2CL.

Let ρ : Z → CBZ be the radial retraction of Z onto CBZ , i.e., ρ(z) = z if ‖z‖Z 6 C and
ρ(z) = Cz/‖z‖Z if ‖z‖Z > C. It is straightforward to check that ρ is 2-Lipschitz. Therefore, if we
define F = ρ ◦ g then ‖F‖Lip(α) 6 2‖g‖Lip(α) 6 4CL and ‖F (y)‖Z 6 C for every y ∈ Y . Moreover,
for every a ∈ Nε we have ‖g(a)‖Z = ‖Ua‖Z 6 C, so F (a) = ρ(g(a)) = g(a). Thus F : Y → CBZ
is also an extension of U |A. Fix τ ∈ (0, 1) that will be determined later. By Corollary 22 (applied
with K = Y ) there exists h : Y → Z that satisfies

∀ y ∈ Y ‖h(y)− F (y)‖Z 6 4CLτα, (96)

and

‖h‖Lip 6 4
α2(M/τ)1−α + 1

α
CL. (97)

Then

sup
y∈SY

‖h(y)‖Z
(96)

6 sup
y∈SY

‖F (y)‖Z + 4CLτα 6 C + 4CLτα, (98)

where in the last step of (98) we used the fact that F takes values in CBZ .

Denote by ψ : Y → Z the positively homogeneous extension of h|SY to Y . By [JL84, Lemma 2],

‖ψ‖Lip 6 2‖h|SY ‖Lip + sup
y∈SY

‖h(y)‖Z
(97)∧(98)

6 4
α2(M/τ)1−α + 1

α
CL+ C + 4CLτα. (99)

Take x ∈ SX (thus ψ(x) = h(x)) and a ∈ Nε with ‖a− x‖Y 6 ε. Then h(a) = F (a) = Ua. Hence,

‖ψ(x)− Ux‖Z 6 ‖h(x)− F (x)‖Z + ‖F (x)− F (a)‖Z + ‖Ua− Ux‖Z
6 4CLτα + 4CL‖x− a‖αY + C‖x− a‖Y 6 4CLτα + 4CLεα + Cε 6 5CL(τα + εα). (100)

Due to (99) and (100), Lemma 20 implies that there exists Ψ : Y → Z that satisfies

‖Ψ‖Lip .
α2(M/τ)1−α + 1

α
CL+ C + CLτα .

α2(M/τ)1−α + 1

α
CL,

and

‖Ψ|X − U‖Lip .
√
mCDL(τα + εα).

By Proposition 1 in [JL84], which relies on an important linearization result due to Linden-
strauss [Lin64], there exists a linear operator S : Y → Z such that

‖S‖Y→Z 6 ‖Ψ‖Lip .
α2(M/τ)1−α + 1

α
CL, (101)

and

‖S|X − U‖X→Z 6 ‖Ψ|X − U‖Lip .
√
mCDL(τα + εα). (102)

Our assumption (94) says that
√
mCDLεα 6 κ. So, if we choose τ = (κ/(

√
mCDL))1/α and κ > 0

is a small enough universal constant then it would follow from (101) and (102) that

‖S‖Y→Z . αM1−αm
1−α
2α C

1
αD

1−α
α L

1
α +

CL

α
and ‖S|X − U‖X→Z 6

1

2
. (103)
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Letting IZ : Z → Z denote the identity mapping on Z, we have∥∥(S|X)U−1 − IZ
∥∥
Z→Z =

∥∥(S|X − U)U−1
∥∥
Z→Z 6 ‖S|X − U‖X→Z‖U

−1‖Z→X
(93)∧(103)

6
1

2
.

Consequently, the operator (S|X)U−1 : Z → Z is invertible and ‖((S|X)U−1)−1‖Z→Z 6 2. Define

V
def
= ((S|X)U−1)−1S : Y → Z.

Then V extends S and

‖V ‖Y→Z 6
∥∥((S|X)U−1)−1

∥∥
Z→Z ‖S‖Y→Z 6 2‖S‖Y→Z

(103)

. αM1−αm
1−α
2α C

1
αD

1−α
α L

1
α +

CL

α
. �

Given a normed space (Y, ‖ · ‖Y ) and a linear subspace X ⊆ Y , the projection constant of X
relative to Y is denoted λ(X,Y ). Thus λ(X,Y ) is the infimum over those λ ∈ [1,∞] for which
there exists a linear projection P from Y onto X with ‖P‖Y→X 6 λ.

Corollary 24. Let κ be the universal constant from Theorem 23. Fix α ∈ (0, 1], M,m ∈ N and
D ∈ [1,∞). Let X ⊆ Y be an m-dimensional subspace of Y whose Banach–Mazur distance to `m2
is at most D. For every ε ∈ (0, 1) let Nε be an ε-net in SX . Then,

ε 6
κ

1
αM1−α

√
mDλ(X,Y )

=⇒ eα(Y,Nε, `
m
2 ) &

λ(X,Y )α

m
1−α
2 Mα(1−α)D2−α

. (104)

In particular, there exists n ∈ N satisfying log n � m
(

1
α + logm

)
for which

min {eα(Y, `m2 ), eαn(Y, `m2 )} & λ(X,Y )α

m
1−α
2 Mα(1−α)D2−α

. (105)

Proof. Since the Banach–Mazur distance of X to `m2 is at most D, the lower bound on eα(Y,Nε, `
m
2 )

that appears in (104) will follow if we show that

eα(Y,Nε, X) &
λ(X,Y )α

m
1−α
2 Mα(1−α)D1−α

. (106)

We may assume from now on that

eα(Y,Nε, X) 6
λ(X,Y )α

m
1−α
2 Mα(1−α)D1−α

, (107)

since otherwise there is nothing to prove. By the assumption on ε in (104) combined with (107),

ε 6
κ

1
αM1−α

√
mDλ(X,Y )

6

(
κ√

mDeα(Y,Nε, Z)

) 1
α

.

We can therefore apply Theorem 23 with Z = X and U = IX being the identity on X (in particular,
C = 1). The operator V : Y → X thus obtained is a projection onto X, since V |X = IX . Hence,

λ(X,Y ) 6 ‖V ‖Y→X
(95)

. αM1−αm
1−α
2α D

1−α
α eα(Y,Nε, X)

1
α +

eα(Y,Nε, X)

α

.
M1−αm

1−α
2α D

1−α
α eα(Y,Nε, X)

1
α

α
,

which simplifies to give the desired estimate (106).

To deduce (105), note that by the Kadec′–Snobar theorem [KS71] we have λ(X,Y ) 6
√
m and

by John’s theorem [Joh48] we have D 6
√
m. Therefore, if we choose ε = κ1/α/m3/2 then the

upper bound on ε that appears in (104) holds true. It remains to note that if we set n = |Nε| then
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min{eα(X, `m2 ), eαn(X, `m2 )} > eα(Y,Nε, X), and by standard estimates (e.g. [MS86]) on the size of
ε-nets in m-dimensional normed spaces we have log n � m log(1/ε) � m(logm+ 1/α). �

The following corollary implies (67), thus completing the proof of Theorem 4.

Corollary 25. For arbitrarily large m,n ∈ N and every α ∈ (1/2, 1] we have

eα(`1, `
m
2 ) & mα2− 1

2 and eαn(`1, `2) &

(
log n

log log n

)α2− 1
2

.

Proof. By [FLM77, Kaš77], for every m ∈ N there exists an integer M = O(m) and an m-
dimensional subspace X of `M1 whose Banach–Mazur distance to `m2 is O(1). By [Rut65], we
have λ(X, `M1 ) &

√
m. Therefore, an application of Corollary 24 with D = O(1), and M = O(m)

shows that there exists n ∈ N with log n � m logm such that

min
{
eα(`M1 , `m2 ), eαn(`M1 , `m2 )

}
&

m
α
2

m
1−α
2

+α(1−α)
= mα2− 1

2 �
(

log n

log logn

)α2− 1
2

. �
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[Pis79] G. Pisier. Estimations des distances à un espace euclidien et des constantes de projection des espaces de

Banach de dimension finie; d’après H. König et al. In Séminaire d’Analyse Fonctionnelle (1978–1979),
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