
COMPARISON OF METRIC SPECTRAL GAPS

ASSAF NAOR

Abstract. Let A = (aij) ∈ Mn(R) be an n by n symmetric
stochastic matrix. For p ∈ [1,∞) and a metric space (X, dX), let
γ(A, dpX) be the infimum over those γ ∈ (0,∞] for which every
x1, . . . , xn ∈ X satisfy

1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p 6

γ

n

n∑
i=1

n∑
j=1

aijdX(xi, xj)
p.

Thus γ(A, dpX) measures the magnitude of the nonlinear spectral
gap of the matrix A with respect to the kernel dpX : X×X → [0,∞).
We study pairs of metric spaces (X, dX) and (Y, dY ) for which there
exists Ψ : (0,∞) → (0,∞) such that γ(A, dpX) 6 Ψ (γ(A, dpY )) for
every symmetric stochastic A ∈Mn(R) with γ(A, dpY ) <∞. When
Ψ is linear a complete geometric characterization is obtained.

Our estimates on nonlinear spectral gaps yield new embeddabil-
ity results as well as new nonembeddability results. For example, it
is shown that if n ∈ N and p ∈ (2,∞) then for every f1, . . . , fn ∈ Lp

there exist x1, . . . , xn ∈ L2 such that

∀ i, j ∈ {1, . . . , n}, ‖xi − xj‖2 . p‖fi − fj‖p, (1)

and
n∑

i=1

n∑
j=1

‖xi − xj‖22 =

n∑
i=1

n∑
j=1

‖fi − fj‖2p.

This statement is impossible for p ∈ [1, 2), and the asymptotic de-
pendence on p in (1) is sharp. We also obtain the best known lower
bound on the Lp distortion of Ramanujan graphs, improving over
the work of Matoušek. Links to Bourgain–Milman–Wolfson type
and a conjectural nonlinear Maurey–Pisier theorem are studied.
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1. Introduction

The decreasing rearrangement of the eigenvalues of an n by n sym-
metric stochastic matrix A = (aij) ∈Mn(R) is denoted below by

1 = λ1(A) > λ2(A) > . . . > λn(A).

We also set

λ(A)
def
= max

i∈{2,...,n}
|λi(A)| = max {λ2(A),−λn(A)} . (2)

For p ∈ [1,∞) and a metric space (X, dX), we denote by γ(A, dpX) the
infimum over those γ ∈ (0,∞] for which every x1, . . . , xn ∈ X satisfy

1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p 6

γ

n

n∑
i=1

n∑
j=1

aijdX(xi, xj)
p. (3)

Thus for p = 2 and X = (R, dR), where we denote dR(x, y)
def
= |x − y|

for every x, y ∈ R, we have

γ(A, d2
R) =

1

1− λ2(A)
. (4)

For this reason one thinks of γ(A, dpX) as measuring the magnitude of
the nonlinear spectral gap of the matrix A with respect to the kernel
dpX : X ×X → [0,∞). See [MN12] for more information on the topic
of nonlinear spectral gaps.
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Suppose that (X, dX) is a metric space with |X| > 2 and fix distinct
points a, b ∈ X. Fix also p ∈ [1,∞), n ∈ N, and an n by n symmetric
stochastic matrix A = (aij). By considering x1, . . . , xn ∈ {a, b} in (3),
we see that

γ(A, dpX) > max
∅6=S({1,...,n}

|S|(n− |S|)
n
∑

(i,j)∈S×({1,...,n}rS) aij
.

It therefore follows from Cheeger’s inequality [Che70] (in our context,
see [JS88] and [LS88]) that

γ(A, dpX) &
1√

1− λ2(A)
. (5)

Consequently, any finite upper bound on γ(A, dpX) immediately implies
a spectral gap estimate for the matrix A. The ensuing discussion always
tacitly assumes that metric spaces contain at least two points.

In (5), and in what follows, the notations U . V and V & U mean
that U 6 CV for some universal constant C ∈ (0,∞). If we need to
allow C to depend on parameters, we indicate this by subscripts, thus
e.g. U .β V means that U 6 C(β)V for some C(β) ∈ (0,∞) which
is allowed to depend only on the parameter β. The notation U � V
stands for (U . V ) ∧ (V . U), and correspondingly the notation
U �β V stands for (U .β V ) ∧ (V .β U).

A simple application of the triangle inequality (see [MN12, Lem. 2.1])
shows that γ(A, dpX) is finite if and only if λ2(A) < 1 (equivalently, the
matrix A is ergodic, or the graph on {1, . . . , n} whose edges are the
pais {i, j} for which aij > 0 is connected).

It is often quite difficult to obtain good estimates on nonlinear spec-
tral gaps. This difficulty is exemplified by several problems in metric
geometry that can be cast as estimates on nonlinear spectral gaps:
see [Laf08, Laf09, MN12, MN13a, Lia13, dlS13] for some specific exam-
ples, as well as the ensuing discussion on nonlinear type. In this general
direction, here we investigate the following basic “meta-problem.”

Question 1.1 (Comparison of nonlinear spectral gaps). Given p ∈ [1,∞),
characterize those pairs of metric spaces (X, dX) and (Y, dY ) for which
there exists an increasing function Ψ = ΨX,Y : (0,∞) → (0,∞)
such that for every n ∈ N and every ergodic symmetric stochastic
A ∈Mn(R) we have

γ(A, dpX) 6 Ψ (γ(A, dpY )) . (6)

The case p = 2 and (Y, dY ) = (R, dR) of Question 1.1 is especially
important, so we explicitly single it out as follows. See also the closely
related question that Pisier posed as Problem 3.1 in [Pis10].
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Question 1.2 (Bounding nonlinear gaps by linear gaps). Characterize
those metric spaces (X, dX) for which there exists an increasing func-
tion Ψ = ΨX : (0,∞) → (0,∞) such that for every n ∈ N and every
ergodic symmetric stochastic A ∈Mn(R) we have

γ(A, dpX) 6 Ψ

(
1

1− λ2(A)

)
. (7)

Question 1.1 and Question 1.2 seem to be difficult, and they might
not have a useful simple-to-state answer. As an indication of this,
in [MN13a] it is shown that there exists a CAT (0) metric space (X, dX),
and for each k ∈ N there exist nk ∈ N with limk→∞ nk =∞ such that
there are symmetric stochastic matrices Ak, Bk ∈Mnk

(R) with

sup
k∈N

λ2(Ak) < 1 and sup
k∈N

λ2(Bk) < 1,

yet

sup
k∈N

γ(Ak, d
2
X) <∞ and sup

k∈N
γ(Bk, d

2
X) =∞.

Such questions are difficult even in the setting of Banach spaces: a well-
known open question (see e.g. [Pis10]) asks whether (7) holds true when
X is a uniformly convex Banach space. If true, this would yield a re-
markable “linear to nonlinear transference principle for spectral gaps,”
establishing in particular the existence of super-expanders (see [MN12])
with logarithmic girth, a result which could then be used in conjunc-
tion with Gromov’s random group construction [Gro03] to rule out the
success of an approach to the Novikov conjecture that was discovered
by Kasparov and Yu [KY06]. There is little evidence, however, that
every uniformly convex Banach space admits an inequality such as (7),
and we suspect that (7) fails for some uniformly convex Banach spaces.

When the function Ψ appearing in (6) can be taken to be linear,
i.e., Ψ(t) = Kt for some K ∈ (0,∞), Theorem 1.3 below provides the
following geometric answer to Question 1.1. Given p ∈ [1,∞) and a
metric space (Y, dY ), for every m ∈ N we denote by `mp (Y ) the metric
space Y m equipped with the metric

∀x, y ∈ Y m, d`mp (Y )(x, y)
def
=

(
m∑
i=1

dY (xi, yi)
p

) 1
p

.

Recall also the standard notation `mp = `mp (R). A coordinate-wise ap-
plication of (3) shows that every symmetric stochastic A satisfies

∀m ∈ N, γ(A, dpY ) = γ
(
A, dp`mp (Y )

)
. (8)
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Fixing D ∈ [1,∞), suppose that (X, dX) is a metric space such that
for every n ∈ N and x1, . . . , xn ∈ X there exists m ∈ N and a non-
constant mapping f : {x1, . . . , xn} → `mp (Y ) such that

n∑
i=1

n∑
j=1

d`mp (Y )(f(xi), f(xj))
p >
‖f‖pLip

D

n∑
i=1

n∑
j=1

dX(xi, xj)
p, (9)

where ‖f‖Lip denotes the Lipschitz constant of f , i.e.,

‖f‖Lip
def
= max

x,y∈{x1,...,xn}
x 6=y

d`mp (Y )(f(x), f(y))

dX(x, y)
.

Then for every symmetric stochastic matrix A ∈Mn(R),

1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p

(9)

6
D

n2‖f‖pLip

n∑
i=1

n∑
j=1

d`mp (Y )(f(xi), f(xj))
p

(8)

6
Dγ(A, dpY )

n

n∑
i=1

n∑
j=1

aij
d`mp (Y )(f(xi), f(xj))

p

‖f‖pLip

6
Dγ(A, dpY )

n

n∑
i=1

n∑
j=1

aijdX(xi, xj)
p. (10)

Consequently, γ(A, dpX) 6 Dγ(A, dpY ).
The above simple argument, combined with standard metric embed-

ding methods, already implies that a variety of metric spaces satisfy
the spectral inequality (7) with Ψ linear. This holds in particular
when (X, dX) belongs to one of the following classes of metric spaces:
doubling metric spaces, compact Riemannian surfaces, Gromov hyper-
bolic spaces of bounded local geometry, Euclidean buildings, symmetric
spaces, homogeneous Hadamard manifolds, and forbidden-minor (edge-
weighted) graph families; this topic is treated in Section 7. We will also
see below that the same holds true for certain Banach spaces, including
Lp(µ) spaces for p ∈ [2,∞).

The following theorem asserts that the above reasoning using metric
embeddings is the only way to obtain an inequality such as (6) with Ψ
linear. Its proof is a duality argument that is inspired by the proof of
a lemma of K. Ball [Bal92, Lem. 1.1] (see also [MN13b, Lem 5.2]).

Theorem 1.3. Fix n ∈ N and p,K ∈ [1,∞). Given two metric spaces
(X, dX) and (Y, dY ), the following assertions are equivalent.

(1) For every symmetric stochastic n by n matrix A we have

γ(A, dpX) 6 Kγ(A, dpY ). (11)
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(2) For every D ∈ (K,∞) and every x1, . . . , xn ∈ X there exists
m ∈ N and a nonconstant mapping f : {x1, . . . , xn} → `mp (Y )
that satisfies
n∑
i=1

n∑
j=1

d`mp (Y )(f(xi), f(xj))
p >
‖f‖pLip

D

n∑
i=1

n∑
j=1

dX(xi, xj)
p.

It is worthwhile to single out the special case of Theorem 1.3 that
corresponds to Question 1.2, in which case the embeddings are into `2.

Corollary 1.4. Fix n ∈ N and K ∈ [1,∞). Given a metric space
(X, dX), the following assertions are equivalent.

(1) For every symmetric stochastic matrix A ∈Mn(R) we have

γ(A, d2
X) 6

K

1− λ2(A)
.

(2) For every D ∈ (K,∞) and every x1, . . . , xn ∈ X there exists a
nonconstant mapping f : {x1, . . . , xn} → `2 that satisfies
n∑
i=1

n∑
j=1

‖f(xi)− f(xj)‖2
`2
>
‖f‖2

Lip

D

n∑
i=1

n∑
j=1

dX(xi, xj)
2.

In Section 4 below we prove the following theorem.

Theorem 1.5. For every p ∈ [2,∞), every n ∈ N and every symmetric
stochastic matrix A ∈Mn(R) we have

γ
(
A, ‖ · ‖2

`p

)
.

p2

1− λ2(A)
. (12)

Inequality (12) is proved in Section 4 via a direct argument using
analytic and probabilistic techniques, but once this inequality is estab-
lished one can use duality through Corollary 1.4 to deduce the following
new Hilbertian embedding result for arbitrary finite subsets of `p.

Corollary 1.6. If n ∈ N and p ∈ (2,∞) then for every x1, . . . , xn ∈ `p
there exist y1, . . . , yn ∈ `2 such that

∀ i, j ∈ {1, . . . , n}, ‖yi − yj‖`2 . p‖xi − xj‖`p , (13)

and
n∑
i=1

n∑
j=1

‖yi − yj‖2
`2

=
n∑
i=1

n∑
j=1

‖xi − xj‖2
`p .

The dependence on p in (13) is sharp up to the implicit universal
constant, and the conclusion of Corollary 1.6 is false for p ∈ [1, 2) even
if one allows any dependence on p in (13) (provided it is independent of
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n): for the former statement see Lemma 1.11 below and for the latter
statement see Lemma 1.12 below. It would be interesting to find a
constructive proof of Corollary 1.6, i.e., a direct proof that does not
rely on duality to show that the desired embedding exists.

Remark 1.7. Questions in the spirit of Theorem1.5 have been previously
studied by Matoušek [Mat97], who proved that there exists a universal
constant C ∈ (0,∞) such that for every n ∈ N and every n by n
symmetric stochastic matrix A ∈Mn(R),

p ∈ [2,∞) =⇒ γ
(
A, ‖ · ‖p`p

)
6

(Cp)p

(1− λ2(A))p/2
. (14)

See [BLMN05, Lem. 5.5] and [NS11, Lem. 4.4] for the formulation
and proof of this fact (which is known as Matoušek’s extrapolation
lemma for Poincaré inequalities) in the form stated in (14). In order to
obtain an embedding result such as Corollary 1.6 one needs to bound
γ(A, ‖ · ‖2

`p
) rather than γ(A, ‖ · ‖p`p) by a quantity that grows linearly

with 1/(1 − λ2(A)). We do not see how to use Matoušek’s approach
in [Mat97] to obtain such an estimate, and we therefore use an entirely
different method (specifically, complex interpolation and Markov type)
to prove Theorem 1.5.

As stated above, when p ∈ [1, 2) the analogue of Theorem 1.5 can
hold true only if we allow the right hand side of (12) to depend on n.
Specifically, we ask the following question.

Question 1.8. Is it true that for every p ∈ [1, 2], every n ∈ N and every
n by n symmetric stochastic matrix A we have

γ(A, ‖ · ‖2
`p) .

(log n)
2
p
−1

1− λ2(A)
?

Due to Theorem 1.3, an affirmative answer to Question 1.8 is equiv-
alent to the assertion that if p ∈ [1, 2] then for every x1, . . . , xn ∈ `p
there exist y1, . . . , yn ∈ `2 that satisfy

n∑
i=1

n∑
j=1

‖yi − yj‖2
2 =

n∑
i=1

n∑
j=1

‖xi − xj‖2
p,

and

∀ i, j ∈ {1, . . . , n}, ‖yi − yj‖2 . (log n)
1
p
− 1

2‖xi − xj‖p.
We conjecture that the answer to Question 1.8 is positive. As partial
motivation for this conjecture, we note that by an important theorem
of Arora, Rao and Vazirani [ARV09] the answer is positive when p = 1.
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A possible approach towards proving this conjecture for p ∈ (1, 2) is to
investigate whether the quantity γ(A, ‖ · ‖2

X) behaves well under inter-
polation. In our case one would write 1

p
= θ

2
+ 1−θ

1
for an appropriate

θ ∈ (0, 1) and ask whether or not it is true that for every n ∈ N every
n by n symmetric stochastic matrix A satisfies

γ(A, ‖ · ‖2
p) . γ(A, ‖ · ‖2

2)θ · γ(A, ‖ · ‖2
1)1−θ. (15)

Investigating the possible validity such interpolation inequalities for
nonlinear spectral gaps is interesting in its own right; in Section 4.3 we
derive a weaker interpolation inequality in this spirit.

1.1. Applications to bi-Lipschitz embeddings. The (bi-Lipschitz)
distortion of a metric space (X, dX) in a metric space (Y, dY ), denoted
cY (X), is define to be the infimum over those D ∈ [1,∞) for which
there exists s ∈ (0,∞) and a mapping f : X → Y that satisfies

∀x, y ∈ X, sdX(x, y) 6 dY (f(x), f(y)) 6 DsdX(x, y).

Set cY (x) = ∞ if no such D exists. When Y = `p for some p ∈ [1,∞]
we use the simpler notation cp(X) = c`p(X). The parameter c2(X) is
known in the literature as the Euclidean distortion of X.

The Fréchet–Kuratowski embedding (see e.g. [Hei01]) shows that
c∞(X) = 1 for every separable metric space X. We therefore define
p(X) to be the infimum over those p ∈ [2,∞] such that cp(X) < 10.
The choice of the number 10 here is arbitrary, and one can equally
consider any fixed number bigger than 1 in place of 10 to define the
parameter p(X); we made this arbitrary choice rather than adding an
additional parameter only for the sake of notational simplicity.

For n ∈ N and d ∈ {3, . . . , n − 1} let p(n, d) be the expectation of
p(G) when G is distributed uniformly at random over all connected n-
vertex d-regular graphs, equipped with the shortest-path metric. Thus,
if p = p(n, d) then in expectation a connected n-vertex d-regular graph
G satisfies cp(G) 6 10. In [Mat97] Matoušek evaluated the asymptotic
dependence of the largest possible distortion of an n-point metric space
in `p, yielding the estimate p(n, d) & logd n, which is an asymptotically
sharp bound if d = O(1). As a consequence of our proof of Theorem 1.5,
it turns out that Matoušek’s bound is not sharp as a function of the
degree d. Specifically, in Section 4.1 we prove the following result.

Proposition 1.9. For every n ∈ N and d ∈ {3, . . . , n− 1} we have

d 6 e(logn)2/3 =⇒ p(n, d) &
log n√
log d

, (16)
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and
d > e(logn)2/3 =⇒ p(n, d) & (logd n)2 . (17)

The significance of the quantity logd n appearing in Matoušek’s bound
is that up to universal constant factors it is the typical diameter of
a uniformly random connected n-vertex d-regular graph [BFdlV82].
Thus, in (16) there must be some restriction on the size of d relative to
n since when d is at least a constant power of n the typical diameter
of G is O(1), and therefore cp(G) 6 c2(G) = O(1). Both (16) and (17)
assert that p(n, d) tends to ∞ faster than the typical diameter of G
when no(1) = d → ∞ (note also that (17) is consistent with the fact
that p(n, d) must become bounded when d is large enough). While
we initially expected Matoušek’s bound to be sharp, Proposition (1.9)
indicates that the parameter p(n, d), and more generally the parameter
p(X) for a finite metric space (X, dX), deserves further investigation.
In particular, we make no claim that Proposition (1.9) is sharp.

The link between Theorem 1.5 and Proposition 1.9 is that our proof
of Theorem 1.5 yields the following bound, which holds for every n ∈ N,
every n by n symmetric stochastic matrix A, and every p ∈ [2,∞).

γ
(
A, ‖ · ‖2

`p

)
.

p

1− λ(A)2/p
, (18)

where we recall that λ(A) was defined in (2). Proposition 1.9 is de-
duced in Section 4.1 from (18) through a classical argument of Linial,
London and Rabinovich [LLR95]. The bounds appearing in Proposi-
tion 1.9 hold true with p(n, d) replaced by p(G) when G is an n-vertex
d-regular Ramanujan graph [LPS88, Mar88], and it is an independently
interesting open question to evaluate cp(G) up to universal constant
factors when G is Ramanujan. Some estimates in this direction are
obtained in Section 4.1, where a similar question is also studied for
Abelian Alon–Roichman graphs [AR94].

1.2. Ozawa’s localization argument for Poincaré inequalities.
Theorem 1.10 below provides a partial answer to Question 1.1 when
X and Y are certain Banach spaces. Its proof builds on an elegant
idea of Ozawa [Oza04] that was used in [Oza04] to rule out coarse
embeddings of expanders into certain Banach spaces. While Ozawa’s
original argument did not yield a nonlinear spectral gap inequality
in the form that we require here, it can be modified so as to yield
Theorem 1.10; this is carried out in Section 5.

Throughout this article the unit ball of a Banach space (X, ‖ · ‖X) is
denoted by

BX
def
= {x ∈ X : ‖x‖X 6 1}.
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Theorem 1.10. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Sup-
pose that α, β : [0,∞)→ [0,∞) are increasing functions, β is concave,
and

lim
t→0

α(t) = lim
t→0

β(t) = 0.

Suppose also that there exists a mapping φ : BX → Y that satisfies

∀x, y ∈ BX , α (‖x− y‖X) 6 ‖φ(x)− φ(y)‖Y 6 β (‖x− y‖X) . (19)

Then for every q ∈ [1,∞), every n ∈ N, and every symmetric stochastic
matrix A ∈Mn(R) we have

γ(A, ‖ · ‖qX) 6 8q+1γ(A, ‖ · ‖qY ) +
8q

β−1

(
α(1/4)

8γ(A,‖·‖qY )
1/q

)q . (20)

The key point of Theorem 1.10 is that one can use local information
such as (19) in order to deduce a Poincaré-type inequality such as (3).

Certain classes of Banach spaces X are known to satisfy the assump-
tions of Theorem 1.10 when Y is a Hilbert space. These include: Lp(µ)
spaces for p ∈ [1,∞), as shown by Mazur [Maz29] (see [BL00, Ch. 9,
Sec. 1]); Banach spaces of finite cotype with an unconditional basis,
as shown by Odell and Schlumprecht [OS94]; more generally, Banach
lattices of finite cotype, as shown by Chaatit [Cha95] (see [BL00, Ch. 9,
Sec. 2]); Schatten classes of finite cotype (and more general noncom-
mutative Lp spaces), as shown by Raynaud [Ray02]. For these classes
of Banach spaces Theorem 1.10 furnishes a positive answer to Ques-
tion 1.2 with Ψ given by the right hand side of (20).

Mazur proved [Maz29] that for every p ∈ [1,∞), if X = `p and
Y = `2 then there exists a mapping φ : X → Y that satisfies (19)
with α(t) = 2(t/2)p/2 and β(t) = pt if p ∈ [2,∞) and α(t) = t/3
and β(t) = 2tp/2 if p ∈ [1, 2] (these estimates are recalled in Section 3).
Therefore, it follows from Theorem 1.10 that for every p ∈ [1,∞), every
n ∈ N and every symmetric stochastic matrix A ∈Mn(R) we have

1 6 p 6 2 =⇒ γ
(
A, ‖ · ‖2

`p

)
.

1

(1− λ2(A))2/p
, (21)

and

2 6 p <∞ =⇒ γ
(
A, ‖ · ‖2

`p

)
.

p28p

1− λ2(A)
. (22)

As explained in Section 1.3.1, both (21) and (22) are sharp in terms of
the asymptotic dependence on 1−λ2(A), but in terms of the dependence
on p the bound (22) is exponentially worse than the (sharp) bound (12).
In Section 5.1 we show that this exponential loss is inherent to Ozawa’s
method, in the sense that for p ∈ (2,∞), if φ : `p → `2 satisfies (19)
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with β(t) = Kt for some K ∈ (0,∞) and every t ∈ (0,∞) (this is
to ensure that (20) yields an upper bound on γ(A, ‖ · ‖2

`p
) that grows

linearly with (1− λ2(A))−1), then necessarily K/α(1/4) & 23p/2.
Note that (22) suffices via duality (i.e., Corollary 1.4) to obtain an

embedding result for arbitrary subsets of `p as in Corollary 1.6, with
exponentially worse dependence on p. Yet another proof of such an em-
bedding statement appears in Section 7, though it also yields a bound
in terms of p that is exponentially worse than Corollary 1.6. We do
not know how to prove the sharp statement of Corollary 1.6 other than
through Theorem 1.5, whose proof is not as elementary as the above
mentioned proofs that yield an exponential dependence on p.

1.3. Average distortion embeddings and nonlinear type. For
p, q ∈ (0,∞) the (p, q)-average distortion of (X, dX) into (Y, dY ), de-

noted Av
(p,q)
Y (X) ∈ [1,∞), is the infimum over those D ∈ [1,∞] such

that for every n ∈ N and every x1, . . . , xn ∈ X there exists a noncon-
stant Lipschitz function f : {x1, . . . , xn} → Y that satisfies(

1

n2

n∑
i=1

n∑
j=1

dY (f(xi), f(xj))
p

) 1
p

>
‖f‖Lip

D

(
1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
q

) 1
q

.

When p = q we use the simpler notation Av
(p)
Y (X)

def
= Av

(p,p)
Y (X).

The notion of average distortion and its relevance to approximation
algorithms was brought to the fore in the influential work [Rab08] of
Rabinovich. Parts of Section 7 below are inspired by Rabinovich’s
ideas in [Rab08]. Earlier applications of this notion include the work
of Alon, Boppana and Spencer [ABS98] that related average distortion
to asymptotically sharp isoperimetric theorems on products spaces;
see Remark 7.9 below. In the linear theory of Banach spaces average
distortion embeddings have been studied in several contexts; see e.g.
the work on random sign embeddings in [Elt83, FJS88].

With the above terminology, Theorem 1.3 asserts that the linear
dependence (11) holds true if and only if for every finite subset S ⊆ X
there exists m ∈ N such that

Av
(p)
`mp (Y )(S, dX) 6 K1/p.

By Corollary 1.6, if p ∈ [2,∞) then

Av
(2)
`2

(`p) . p. (23)

As stated earlier, the estimate (23) cannot be improved (up to the
implicit constant factor): this is a special case of the following lemma.
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Lemma 1.11. For every p, q, r, s ∈ [1,∞) with 2 6 q 6 p and every
n ∈ N there exist x1, . . . , xn ∈ `p such that if y1, . . . , yn ∈ `q satisfy(

1

n2

n∑
i=1

n∑
j=1

‖yi − yj‖r`q

) 1
r

=

(
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖s`p

) 1
s

, (24)

then there exist i, j ∈ {1, . . . , n} such that

‖yi − yj‖`q &
p

q + r
· ‖xi − xj‖`p > 0.

The proof of Lemma 1.11 is given in Section 4.3. It suffices to say
at this juncture that the points x1, . . . , xn ∈ `p are the images of the
vertices of a bounded degree expanding n-vertex regular graph under
Matoušek’s `p-variant [Mat97] of Bourgain’s embedding [Bou85].

We also stated earlier that Corollary 1.6 fails for p ∈ [1, 2): this is a
special case of the following lemma.

Lemma 1.12. Fix p, q, r, s ∈ [1,∞) with p ∈ [1, 2) and q ∈ (p,∞).
For arbitrarily large n ∈ N there exist x1, . . . , xn ∈ `p such that for
every y1, . . . , yn ∈ `q with(

1

n2

n∑
i=1

n∑
j=1

‖yi − yj‖r`q

) 1
r

=

(
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖s`p

) 1
s

,

there exist i, j ∈ {1, . . . , n} such that

‖yi − yj‖`q &
(log n)

1
p
− 1

min{q,2}

√
q + r

· ‖xi − xj‖`p > 0. (25)

1.3.1. Bourgain–Milman–Wolfson type. The reason for the validity of
the lower bound (25) is best explained in the context of nonlinear type:
a metric invariant that furnishes an obstruction to the existence of
average distortion embeddings. Let F2 be the field of cardinality 2 and
for n ∈ N let e1, . . . , en be the standard basis of Fn2 . We also write
e = e1 + . . .+ en. Following Bourgain, Milman and Wolfson [BMW86],
given p, T ∈ (0,∞), a metric space (X, dX) is said to have BMW type
p with constant T if for every n ∈ N every f : Fn2 → X satisfies∑
x∈Fn

2

dY (f(x), f(x+e))2 6 T 2n
2
p
−1

n∑
i=1

∑
x∈Fn

2

dY (f(x), f(x+ ei))
2 . (26)

(X, dX) has BMW type p if it has BMW type p with constant T for
some T ∈ (0,∞); in this case the infimum over those T ∈ (0,∞) for
which (26) holds true is denoted BMWp(X). For background on this
notion we refer to [BMW86], as well as [Pis86, NS02, Nao12a]. These
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references also contain a description of the closely related important
notion of Enflo type [Enf76], a notion whose definition is recalled below
but will not be further investigated here.

The simple proof of the following lemma appears in Section 6.

Lemma 1.13. Fix p ∈ (0,∞). For every two metric spaces (X, dX)
and (Y, dY ) we have

BMWp(X) 6 2Av
(2)
Y (X) · BMWp(Y ).

The case r = s = 2 of Lemma 1.12 follows from Lemma 1.13 and
the computations of BMW type that appear in the literature. The
remaining cases of Lemma 1.12 are proved using similar ideas.

The Hamming cube is the Cayely graph on Fn2 corresponding to
the set of generators {e1, . . . , en}. The shortest path metric on this
graph coincides with the `n1 metric under the identification of Fn2 with
{0, 1}n ⊆ Rn. Let Hn be the 2n by 2n symmetric stochastic matrix
which is the normalized adjacency matrix of the Hamming cube. Thus
for x, y ∈ Fn2 the (x, y)-entry of Hn equals 0 unless x−y ∈ {e1, . . . , en},
in which case it equals 1/n. It is well known (and easy to check) that
λ2(Hn) = 1 − 2/n, so γ(Hn, d

2
R) � n. A simple argument (that is

explained in Section 6) shows that the definition (26) is equivalent to
the requirement that γ(Hn, d

2
X) .X n2/p for every n ∈ N. The notion of

Enflo type p that was mentioned above is equivalent to the requirement
that γ(Hn, d

p
X) .X n for every n ∈ N.

For p ∈ [1, 2], by considering the identity mapping of Fn2 into `np
(observe that ‖x − y‖pp = ‖x − y‖1 for every x, y ∈ Fn2 ) one sees that

γ(Hn, ‖ · ‖2
p) & n2/p � 1/(1− λ2(Hn))2/p. Thus (21) is sharp.

1.3.2. Towards a nonlinear Maurey–Pisier theorem. Every metric space
has BMW type 1 and no metric space has BMW type greater than 2;
see Remark 6.4 below. Thus, for a metric space (X, dX) define

pX
def
= sup {p ∈ [1, 2] : BMWp(X) <∞} . (27)

Maurey and Pisier [MP76] associate a quantity pX to every Banach
space X, which is defined analogously to (27) but with BMW type re-
placed by Rademacher type. The (linear) notion of Rademacher type
is recalled in Section 6.2 below; at this juncture we just want to state,
for the sake of readers who are accustomed to the standard Banach
space terminology, that despite the apparent conflict of notation be-
tween (27) and [MP76], a beautiful theorem of Bourgain, Milman and
Wolfson [BMW86] asserts that actually the two quantities coincide.

The following theorem is due to Bourgain, Milman and Wolfson.
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Theorem 1.14 ([BMW86]). Suppose that (X, dX) is a metric space
with pX = 1. Then cX(Fn2 , ‖ · ‖1) = 1 for every n ∈ N.

Thus, the only possible obstruction to a metric space (X, dX) hav-
ing BMW type p for some p > 1 is the presence of arbitrarily large
Hamming cubes. This is a metric analogue of a classical theorem of
Pisier [Pis73] asserting that the only obstruction to a Banach space hav-
ing nontrivial Rademacher type is the presence of `n1 for every n ∈ N.

In light of the Maurey–Pisier theorem [MP76] for Rademacher type,
it is natural to ask if a similar result holds true for a general metric
space X even when pX > 1: Is it true that for every metric space
(X, dX) we have

sup
n∈N

cX(Fn2 , ‖ · ‖pX ) <∞?

The answer to this question is negative if pX = 2. Indeed, we have
pR = 2 yet cR(Fn2 , ‖ · ‖2) tends to infinity exponentially fast as n→∞
because there is an exponentially large subset S of Fn2 with the property
that ‖x−y‖2 �

√
n for every distinct x, y ∈ S. If, however, pX ∈ (1, 2)

then the above question, called the Maurey–Pisier problem for BMW
type, remains open.

The Maurey–Pisier problem for BMW type was posed by Bourgain,
Milman and Wolfson in [BMW86], where they obtained a partial result
about it: they gave a condition on a metric space (X, dX) that involves
its BMW type as well as an additional geometric restriction that en-
sures that supn∈N cX(Fn2 , ‖ · ‖pX ) <∞; see Section 4 of [BMW86].

In Section 6.1 we prove the following theorem.

Theorem 1.15. For every metric space (X, dX) and every d ∈ N there
exists N = N(d,X) ∈ N such that

c`N2 (X)

(
Fd2, ‖ · ‖pX

)
6 BMWpX (X)2.

Thus, if BMWpX (X) <∞, i.e., the supremum defining pX in (27) is
attained, then for every d ∈ N one can embed (Fd2, ‖ · ‖pX ) into `N2 (X)
for sufficiently large N ∈ N. Note that it follows immediately from (27)
that BMWp(`

N
2 (X)) = BMWp(X) for every N ∈ N, so Theorem 1.15

is a complete metric characterization of the parameter pX when the
supremum defining pX in (27) is attained. Note also that by passing to
`N2 (X) we overcome the issue that was described above if pX = 2, since
trivially (Fn2 , ‖ · ‖2) is isometric to a subset of `n2 (R). This indicates
why Theorem 1.15 is easier than the actual Maurey–Pisier problem for
BMW type, whose positive solution would require using the assumption
pX < 2. We therefore ask whether or not it is true that for every metric
space (X, dX) and every p ∈ (1, 2), if there is K ∈ (0,∞) such that
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for every d ∈ N there exists N ∈ N for which (Fd2, ‖ · ‖p) embeds with
distortion K into `N2 (X), then supd∈N cX(Fd2, ‖ · ‖p) < ∞? For p = 1
the answer to this question is positive due to Theorem 1.14, and by
virtue of Theorem 1.15 a positive answer to this question would imply
an affirmative solution of the Maurey–Pisier problem for BMW type.

Recalling Lemma 1.13, given the relation between BMW type and av-
erage distortion embeddings, it is natural to study the following weaker
version of the Maurey–Pisier problem for BMW type: Is it true that
for every metric space (X, dX) we have

pX < 2 =⇒ sup
n∈N

Av
(2)
X (Fn2 , ‖ · ‖pX ) <∞? (28)

In (28) we restrict to pX < 2 because one can show that

Av
(2)
R (Fn2 , ‖ · ‖2) � 4

√
n. (29)

See Remark 6.9 below for the proof of (29).
By Theorem 1.14 and Lemma 1.13, for every metric space (X, dX),

sup
n∈N

Av
(2)
X (Fn2 , ‖ · ‖1) <∞ =⇒ sup

n∈N
cX (Fn2 , ‖ · ‖1) = 1. (30)

Given p ∈ (1,∞), it is therefore natural to ask whether or not for every
metric space (X, dX) we have

sup
n∈N

Av
(2)
X (Fn2 , ‖ · ‖p) <∞ =⇒ sup

n∈N
cX (Fn2 , ‖ · ‖p) <∞? (31)

If (31) were true for every p ∈ (1, 2) then a positive answer to the
question that appears in (28) would imply a positive solution to the
Maurey–Pisier problem for BMW type.

More generally, in light of the availability of results such as (31),
it would be of interest to relate average distortion embeddings to bi-
Lipschitz embeddings. For example, is it true that if a metric space

(X, dX) satisfies Av
(2)
`2

(X) < ∞ then for every finite subset S ⊆ X we
have c2(S) = oX(log |S|)? If the answer to this question is positive
then Corollary 1.6 would imply that for p ∈ (2,∞) any n-point subset
of `p embeds into Hilbert space with distortion op(log n). No such
improvement over Bourgain’s embedding theorem [Bou85] is known
for finite subsets of `p if p ∈ (2,∞); for p ∈ [1, 2) see [CGR08, ALN08].

Acknowledgements. I thank Noga Alon, Manor Mendel, and espe-
cially Yuval Rabani for very helpful discussions. I am also grateful
for the hospitality of Université Pierre et Marie Curie, Paris, France,
where part of this work was completed.
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2. Absolute spectral gaps

Fix n ∈ N and an n by n symmetric stochastic matrix A = (aij).
Following [MN12], for p ∈ [1,∞) and a metric space (X, dX), denote
by γ+(A, dpX) the infimum over those γ+ ∈ (0,∞] for which every
x1, . . . , xn, y1, . . . , yn ∈ X satisfy

1

n2

n∑
i=1

n∑
j=1

dX(xi, yj)
p 6

γ+

n

n∑
i=1

n∑
j=1

aijdX(xi, yj)
p. (32)

Note that by definition γ(A, dpX) 6 γ+(A, dpX). Recalling (2), we have

γ+(A, d2
R) =

1

1− λ(A)
.

For this reason one thinks of γ+(A, dpX) as measuring the magnitude
of the nonlinear absolute spectral gap of the matrix A with respect to
the kernel dpX : X ×X → [0,∞).

The parameter γ+(A, dpX) is useful in various contexts (see [MN12]),
and in particular it will be used in some of the ensuing arguments. It
is natural to ask for the analogue of Question 1.1 with γ(·, ·) replaced
by γ+(·, ·). However, it turns out that this question is essentially the
same as Question 1.1, as explained in Proposition 2.1 below.

Proposition 2.1. Fix p ∈ [1,∞) and metric spaces (X, dX), (Y, dY ).
Suppose that there exists an increasing function Ψ : (0,∞) → (0,∞)
such that for every n ∈ N and every n by n symmetric stochastic matrix
A we have

γ(A, dpX) 6 Ψ (γ(A, dpY )) . (33)

Then for every n ∈ N and every n by n symmetric stochastic matrix A
we also have

γ+(A, dpX) 6 2Ψ (2pγ+(A, dpY )) . (34)

Conversely, suppose that Φ : (0,∞)→ (0,∞) is an increasing func-
tion such that for every n ∈ N and every n by n symmetric stochastic
matrix A we have

γ+(A, dpX) 6 Φ (γ+(A, dpY )) . (35)

Then for every n ∈ N and every n by n symmetric stochastic matrix A
we also have

γ(A, dpX) 6
1

2
Φ
(
22p+1γ(A, dpY )

)
. (36)

Before passing to the (simple) proof of Proposition 2.1, we record for
future use some basic facts about nonlinear spectral gaps.
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Lemma 2.2. Fix p ∈ [1,∞), n ∈ N and a metric space (X, dX). Then
every symmetric stochastic matrix A = (aij) ∈Mn(R) satisfies

γ(A, dpX) > 1− 1

n
and γ+(A, dpX) > 1. (37)

Proof. Fix distinct a, b ∈ X and let x1, . . . , xn ∈ X be i.i.d. points,
each of which is chosen uniformly at random from {a, b}. Then every
symmetric stochastic A ∈Mn(R) satisfies

E

[
1

n

n∑
i=1

n∑
j=1

aijdX(xi, xj)
p

]
=
dX(a, b)p

2n

∑
i,j∈{1,...,n}

i 6=j

aij 6
dX(a, b)p

2
,

while

E

[
1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p

]
=
n(n− 1)

2n2
dX(a, b)p.

the desired conclusion now follows from the definition (3). The right-
most inequality in (37) follows by substituting x1 = . . . = xn = a and
y1 = . . . = yn = b into (32). �

Lemma 2.3. Fix p ∈ [1,∞) and a metric space (X, dX). Then for
every integer n > 2, every n by n symmetric stochastic matrix A = (aij)
satisfies

2γ(A, dpX) 6 γ+

(
I + A

2
, dpX

)
6 22p+1γ(A, dpX). (38)

Proof. Since the diagonal entries of A play no role in the definition of
γ(A, d2

X), it follows immediately from (3) that

γ

(
I + A

2
, dpX

)
= 2γ(A, dpX). (39)

Because γ+

(
I+A

2
, dpX

)
> γ

(
I+A

2
, dpX

)
, this implies the leftmost inequal-

ity in (38).
Next, fix x1, . . . , xn, y1, . . . , yn ∈ X. By the triangle inequality and

the convexity of t 7→ |t|p, for every i, j ∈ {1, . . . , n} we have

dX(xi, yj)
p 6 2p−1 (dX(xi, xj)

p + dX(xj, yj)
p) , (40)

and

dX(xi, yj)
p 6 2p−1 (dX(xi, yi)

p + dX(yi, yj)
p) . (41)
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By averaging (40) and (41), and then averaging the resulting inequality
over i, j ∈ {1, . . . , n}, we see that

1

n2

n∑
i=1

n∑
j=1

dX(xi, yj)
p

6
2p

2n

n∑
i=1

dX(xi, yi)
p +

2p

4n2

n∑
i=1

n∑
j=1

(dX(xi, xj)
p + dX(yi, yj)

p) . (42)

Now, by the definition of γ(A, dpX) we have

1

n2

n∑
i=1

n∑
j=1

(dX(xi, xj)
p + dX(yi, yj)

p)

6
γ(A, dpX)

n

n∑
i=1

n∑
j=1

aij (dX(xi, xj)
p + dX(yi, yj)

p) . (43)

Next, for every i, j ∈ {1, . . . , n} we have

dX(xi, xj)
p 6 2p−1 (dX(xi, yj)

p + dX(yj, xj)
p) , (44)

dX(xi, xj)
p 6 2p−1 (dX(xi, yi)

p + dX(yi, xj)
p) , (45)

dX(yi, yj)
p 6 2p−1 (dX(yi, xj)

p + dX(xj, yj)
p) , (46)

and

dX(yi, yj)
p 6 2p−1 (dX(yi, xi)

p + dX(xi, yj)
p) . (47)

By averaging (44), (45), (46) and (47) we see that

dX(xi, xj)
p + dX(yi, yj)

p

6 2p−1 (dX(xi, yj)
p + dX(yi, xj)

p + dX(xi, yi)
p + dX(xj, yj)

p) . (48)

By multiplying (48) by aij/n and summing over i, j ∈ {1, . . . , n} while
using the fact that A is symmetric and stochastic we conclude that

1

n

n∑
i=1

n∑
j=1

aij (dX(xi, xj)
p + dX(yi, yj)

p)

6
2p

n

n∑
i=1

dX(xi, yi)
p +

2p

n

n∑
i=1

n∑
j=1

aijdX(xi, yj)
p. (49)
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A substitution of (49) into (43), and then a substitution of the resulting
inequality into (42), yields the following estimate.

1

n2

n∑
i=1

n∑
j=1

dX(xi, yj)
p

6
2p−1 + 22p−2γ(A, dpX)

n

n∑
i=1

dX(xi, yi)
p

+
22p−2γ(A, dpX)

n

n∑
i=1

n∑
j=1

aijdX(xi, yj)
p

6
2p + 22p−1γ(A, dpX)

n

n∑
i=1

n∑
j=1

(
I + A

2

)
ij

dX(xi, yj)
p. (50)

Since (50) holds true for every x1, . . . , xn, y1, . . . , yn ∈ X, we deduce
from the definition of γ+(·, ·) in (32) that

γ+

(
I + A

2
, dpX

)
6 2p + 22p−1γ(A, dpX). (51)

The rightmost inequality in (38) is a consequence of (51) since by
Lemma 2.2 we have γ(A, dpX) > 1

2
. �

Proof of Proposition 2.1. Fix n ∈ N and an n by n symmetric stochas-
tic matrix A. Assuming the validity of (35) for the matrix (I + A)/2,
we deduce (36). Next, by [MN12, Lem. 2.3] for every metric space
(W,dW ) we have

2

2p + 1
γ(( 0 A

A 0 ) , dpW ) 6 γ+(A, dpW ) 6 2γ(( 0 A
A 0 ) , dpW ) . (52)

Therefore, assuming the validity of (33) for the matrix ( 0 A
A 0 ) ∈M2n(R),

the desired estimate (34) follows from (52). �

3. Duality

The implication (2) =⇒ (1) of Theorem 1.3 was already proved
in (10). Below we prove the more substantial implication (1) =⇒ (2).

Proof of Theorem 1.3. Fix D ∈ (K,∞) and let ε ∈ (0,∞) be given by
(1 + ε)(K + 2ε) = D. Fixing also x1, . . . , xn ∈ X, let C ⊆ Mn(R)
be the set of n by n symmetric matrices (cij) for which there exists
y1, . . . , yn ∈ Y with |{y1, . . . , yn}| > 2 and

∀ i, j ∈ {1, . . . , n}, cij =

∑n
r=1

∑n
s=1 dX(xr, xs)

p∑n
r=1

∑n
s=1 dY (yr, ys)p

· dY (yi, yj)
p.
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Letting P ⊆ Mn(R) be the set of all symmetric n by n matrices with
nonnegative entries and vanishing diagonal, denote

M
def
= conv (C + P ) .

For every i, j ∈ {1, . . . , n} write tij
def
= (K + 2ε)dX(xi, xj)

p. We first
claim that the matrix T = (tij) ∈ Mn(R) belongs to M . Indeed, if
this were not the case then by the separation theorem (Hahn–Banach)
there would exist a symmetric matrix H = (hij) ∈ Mn(R) which has
at least one nonzero off-diagonal entry and whose diagonal vanishes,
satisfying

inf
B=(bij)∈M

n∑
i=1

n∑
j=1

hijbij > (K + 2ε)
n∑
i=1

n∑
j=1

hijdX(xi, xj)
p. (53)

Since P ⊆M , the fact that the left hand side of (53) is bounded from
below implies that hij > 0 for all i, j ∈ {1, . . . , n}. Fixing δ ∈ (0, 1), if
we define

σ
def
= max

i∈{1,...,n}

∑
j∈{1,...,n}r{i}

(hij + δ),

and for every i, j ∈ {1, . . . , n},

aij
def
=

1

2σ

{
2σ −

∑
r∈{1,...,n}r{i}(hir + δ) if i = j,

hij + δ if i 6= j,

then, provided δ ∈ (0, 1) is small enough, A = (aij) ∈ Mn(R) is a
symmetric stochastic matrix all of whose entries are positive such that

inf
B=(bij)∈M

n∑
i=1

n∑
j=1

aijbij
(53)

> (K + ε)
n∑
i=1

n∑
j=1

aijdX(xi, xj)
p

(11)

>
K + ε

nγ(A, dpX)

n∑
i=1

n∑
j=1

dX(xi, xj)
p. (54)

By the definition of C ⊆Mn(R) and γ(A, dpY ) we have

inf
B=(bij)∈C

n∑
i=1

n∑
j=1

aijbij

= inf
y1,...,yn∈Y
|{y1,...,yn}|>2

∑n
r=1

∑n
s=1 dX(xr, xs)

p∑n
r=1

∑n
s=1 dY (yr, ys)p

·
n∑
i=1

n∑
j=1

aijdY (yi, yj)
p

=
1

nγ(A, dpY )

n∑
r=1

n∑
s=1

dX(xr, xs)
p. (55)
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Because M ⊇ C it follows from (54) and (55) that

1

nγ(A, dpY )

n∑
r=1

n∑
s=1

dX(xr, xs)
p >

K + ε

nγ(A, dpX)

n∑
i=1

n∑
j=1

dX(xi, xj)
p

>
K + ε

Knγ(A, dpY )

n∑
i=1

n∑
j=1

dX(xi, xj)
p, (56)

Since all the entries of A are positive, γ(A, dpY ) ∈ (0,∞), and there-
fore (56) furnishes the desired contradiction.

Having proved that T ∈ M , it follows that there exist N ∈ N and
µ1, . . . , µN ∈ (0, 1] with

∑N
k=1 µk = 1, and for every k ∈ {1, . . . , N}

there are yk1 , . . . , y
k
n ∈ Y with |{yk1 , . . . , ykn}| > 2, such that for every

i, j ∈ {1, . . . , n} we have

(K+2ε)dX(xi, xj)
p >

N∑
k=1

µk

∑n
r=1

∑n
s=1 dX(xr, xs)

p∑n
r=1

∑n
s=1 dY (ykr , y

k
s )p
·dY (yki , y

k
j )p. (57)

There are integers q1, . . . , qN , Q ∈ N such that

∀ k ∈ {1, . . . , N}, qk
Q
6 µk

∑n
r=1

∑n
s=1 dX(xr, xs)

p∑n
r=1

∑n
s=1 dY (ykr , y

k
s )p
6 (1 + ε)

qk
Q
. (58)

Setting q0
def
= 0 and m

def
=
∑N

k=1 qk, define f : {x1, . . . , xn} → `mp (Y ) by

∀ k ∈ {1, . . . , N}, ∀u ∈

[
1 +

k−1∑
j=0

qj,
k∑
j=0

qj

]
∩ N, f(xi)u = yki . (59)

Then for every i, j ∈ {1, . . . , n},

d`mp (Y )(f(xi), f(xj))
(59)
=

(
N∑
k=1

qkdY (yki , y
k
j )p

) 1
p

(57)∧(58)

6 Q1/p(K + 2ε)1/pdX(xi, xj).

Consequently,
‖f‖Lip 6 Q1/p(K + 2ε)1/p. (60)

Hence,

n∑
i=1

n∑
j=1

dY (f(xi), f(xj))
p (59)

=
n∑
i=1

n∑
j=1

N∑
k=1

qkdY (yki , y
k
j )p

(58)

>
Q

1 + ε

n∑
i=1

n∑
j=1

dX(xi, xj)
p

(60)

>
‖f‖pLip

(1 + ε)(K + 2ε)

n∑
i=1

n∑
j=1

dX(xi, xj)
p.
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Since (1 + ε)(K + 2ε) = D, the proof of Theorem 1.3 is complete. �

4. Interpolation and Markov type

Fix p ∈ [1,∞) and m ∈ N. Following K. Ball [Bal92], given a metric
space (X, dX) define its Markov type p constant at time m, denoted
Mp(X;m), to be the infimum over those M ∈ (0,∞) such that for every
n ∈ N, every x1, . . . , xn ∈ X and every n by n symmetric stochastic
matrix A = (aij) ∈Mn(R) we have

n∑
i=1

n∑
j=1

(Am)ijdX(xi, xj)
p 6Mpm

n∑
i=1

n∑
j=1

aijdX(xi, xj)
p. (61)

X is said to have Markov type p if Mp(X)
def
= supm∈NMp(X;m) <∞.

Note that it follows from the triangle inequality that

∀m ∈ N, Mp(X;m) 6 m1− 1
p .

Remark 4.1. In Section 1.3 we recalled the notions of BMW type
and Enflo type. The link between these notions and Ball’s notion of
Markov type is that Markov type p implies Enflo type p (see [NS02]).
One can also define natural variants of Markov type that imply BMW
type (see the inequalities appearing in Theorem 4.4 of [NPSS06]). Re-
cently Kondo proved [Kon11] that there exists a Hadamard space (see
e.g. [BH99]) that fails to have Markov type p for any p > 1, answering
a question posed in [NPSS06]. Since Hadamard spaces have Enflo type
2 (see [Oht09a]), this yields the only known example of a metric space
that has Enflo type 2 but fails to have nontrivial Markov type (observe
that the notions of Enflo type 2 and BMW type 2 coincide).

Lemma 4.2. Fix p ∈ [1,∞) and m,n ∈ N. Let (X, dX) be a metric
space and A = (aij) ∈Mn(R) be a symmetric stochastic matrix. Then

γ(A, dpX) 6Mp(X;m)pmγ(Am, dpX) .

Proof. This is immediate from the definitions: for every x1, . . . , xn ∈ X
we have

1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p

(3)

6
γ(Am, dpX)

n

n∑
i=1

n∑
j=1

(Am)ijdX(xi, xj)
p

(61)

6
Mp(X;m)pmγ(Am, dpX)

n

n∑
i=1

n∑
j=1

aijdX(xi, xj)
p. �
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The modulus of uniform smoothness of a Banach space (X, ‖ · ‖X) is
defined for τ ∈ (0,∞) as

ρX(τ)
def
= sup

{
‖x+ τy‖X + ‖x− τy‖X

2
− 1 : x, y ∈ BX

}
.

X is said to be uniformly smooth if limτ→0 ρX(τ)/τ = 0. Furthermore,
X is said to have modulus of smoothness of power type q ∈ (0,∞)
if there exists a constant C ∈ (0,∞) such that ρX(τ) 6 Cτ q for all
τ ∈ (0,∞). It is straightforward to check that in this case necessarily
q ∈ [1, 2]. It is shown in [BCL94] that X has modulus of smoothness
of power type q if and only if there exists a constant S ∈ [1,∞) such
that for every x, y ∈ X

‖x+ y‖qX + ‖x− y‖qX
2

6 ‖x‖qX + Sq‖y‖qX . (62)

The infimum over those S ∈ [1,∞) for which (62) holds true is called
the q-smoothness constant of X, and is denoted Sq(X). Observe that
every Banach space satisfies S1(X) = 1.

The following theorem is due to [NPSS06].

Theorem 4.3. Fix q ∈ [1, 2] and p ∈ [q,∞). Suppose that (X, ‖·‖X) is
a Banach space whose modulus of smoothness has power type q. Then

∀m ∈ N, Mp(X;m) .
(
p

1
q + Sq(X)

)
m

1
q
− 1

p . (63)

The statement corresponding to Theorem 4.3 in [NPSS06] (specifi-
cally, see Theorem 4.4 there), allows for a multiplicative constant with
unspecified dependence on p and q, while in (63) we stated an explicit
dependence on these parameters that will serve us later on several oc-
casions. We shall therefore proceed to sketch the proof of Theorem 4.3
so as to explain why the dependence on p and q in (63) is indeed valid.

Proof of Theorem 4.3 (sketch). For every measure space (Ω, µ) we have

Sq (Lp(µ,X)) . p
1
q + Sq(X). (64)

The case q = 2 of (64) appears in [Nao12b], and the proof for general
q ∈ [1, 2] follows mutatis mutandis from the proof in [Nao12b]. This has
been carried out explicitly in Lemma 6.3 of [MN12], whose statement
asserts the weaker bound Sq (Lp(µ,X)) . p1/qSq(X), but the proof
of [MN12, Lem. 6.3] without any change whatsoever yields (64).

As explained in the proof of Theorem 4.4 in [NPSS06], by a result
of [Lin63] (see also [Pis75, Prop. 2.2]) it follows from (64) that every
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X-valued martingale {Mk}mk=0 satisfies

E [‖Mm −M0‖pX ]

6 Kp
(
p

p
q + Sq(X)p

)( m∑
k=1

(E [‖Mk −Mk−1‖pX ])
q
p

) p
q

6 Kp
(
p

p
q + Sq(X)p

)
m

p
q
−1

m∑
k=1

E [‖Mk −Mk−1‖pX ] , (65)

where K ∈ (0,∞) is a universal constant. Now, substituting the mar-
tingale inequality (65) into the proof of Theorem 2.3 in [NPSS06], in
place of the use of Pisier’s martingale inequality [Pis75], yields (63). �

We record for future use the following corollary, which is an imme-
diate consequence of Lemma 4.2 and Theorem 4.3.

Corollary 4.4. Fix q ∈ (1, 2] and p ∈ [q,∞). Suppose that (X, ‖ · ‖X)
is a Banach space whose modulus of smoothness has power type q. Then
for every m,n ∈ N and every symmetric stochastic A = (aij) ∈Mn(R),

γ(A, ‖ · ‖pX) . Cp
(
p

p
q + Sq(X)p

)
m

p
qγ(Am, ‖ · ‖pX) , (66)

where C ∈ (0,∞) is a universal constant.

We refer to [Cal64] for the background on complex interpolation that
is used below. We also recall the definition of λ(A) in (2). The following
theorem is the main result of this section.

Theorem 4.5. Let (H,Z) be a compatible pair of Banach spaces with
H being a Hilbert space. Suppose that θ ∈ [0, 1] and consider the com-
plex interpolation space X = [H,Z]θ. Fix q ∈ [1, 2] and suppose that
X has modulus of smoothness of power type q. Then for every n ∈ N
and every n by n symmetric stochastic matrix A ∈Mn(R) we have

γ
(
A, ‖ · ‖2

X

)
.

Sq(X)2

(1− λ(A)θ)2/q
. (67)

Before proving Theorem 4.5 we present some of its immediate corol-
laries. First, since in the setting of Theorem 4.5 we always have
Sq(X) . 1 for q = 2/(1+θ) (see [Pis79, CR82]), the following corollary
is a special case of Theorem 4.5.

Corollary 4.6. Under the assumptions of Theorem 4.5 we have

γ
(
A, ‖ · ‖2

X

)
.

1

(1− λ(A)θ)1+θ
.
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In order for the above results to fit into the framework of Ques-
tion 1.2, we need to bound γ(A, ‖ · ‖2

X) in terms of λ2(A) rather than
λ(A). This is the content of the next corollary.

Corollary 4.7. Under the assumptions of Theorem 4.5 we have

γ
(
A, ‖ · ‖2

X

)
.
Sq(X)2

θ2/q
· 1

(1− λ2(A))2/q
. (68)

Proof. Since A is symmetric and stochastic, all of its eigenvalues are in
the interval [−1, 1]. Consequently, all the eigenvalues of the symmetric
stochastic matrix (I + A)/2 are nonnegative, and hence

λ

(
I + A

2

)
=

1 + λ2(A)

2
. (69)

An application of Theorem 4.5 to the matrix (I + A)/2 while taking
into account the identities (69) and (39) implies that

γ(A, ‖ · ‖2
X) .

Sq(X)2(
1−

(
1+λ2(A)

2

)θ)2/q
.

This yields the desired estimate (68) due to the elementary inequality

∀x ∈ [−1, 1], 1−
(

1 + x

2

)θ
>
θ(1− x)

2
. �

We can now complete the proof of Theorem 1.5, and consequently
also its corresponding dual statement Corollary 1.6.

Proof of Theorem 1.5. Fix p ∈ [2,∞) and apply Corollary 4.7 when
X = `p. Then X = [`2, `∞]θ for θ = 2/p. Moreover, by [Fig76, BCL94]
we have S2(`p) =

√
p− 1, and therefore the desired estimate (12) fol-

lows from (68) (with q = 2). �

As in the above proof of Theorem 1.5, by specializing Theorem 4.5
to X = `p for p ∈ [2,∞), we obtain the following corollary, which was
stated in the Introduction as inequality (18).

Corollary 4.8. For every p ∈ [2,∞), every n ∈ N and every n by n
symmetric stochastic matrix A we have

γ
(
A, ‖ · ‖2

`p

)
.

p

1− λ(A)2/p
.

We now proceed to prove Theorem 4.5.



26 ASSAF NAOR

Proof of Theorem 4.5. In what follows, given a Banach space (Y, ‖·‖Y )
and n ∈ N we let Ln2 (Y ) denote the Banach space whose underlying
vector space is Y n, equipped with the norm

∀ y = (y1, . . . , yn) ∈ Y n, ‖y‖Ln
2 (Y )

def
=

(
1

n

n∑
i=1

‖yi‖2
Y

) 1
2

.

If H is a Hilbert space with scalar product 〈·, ·〉H , then Ln2 (H) is a
Hilbert space whose scalar product is always understood to be given
by 〈x, y〉Ln

2 (H) = 1
n

∑n
i=1〈xi, yi〉H for every x, y ∈ H.

Let e1(A), . . . , en(A) ∈ Ln2 (R) be an orthonormal eigenbasis of A
with e1(A) = (1, . . . , 1) and Aei(A) = λi(A)ei(A) for all i ∈ {1, . . . , n}.
Define an operator T : Ln2 (R) → Ln2 (R) by setting for every x ∈ Rn

and i ∈ {1, . . . , n},

(Tx)i
def
=

n∑
j=1

aij

(
xj −

1

n

n∑
k=1

xk

)
.

Equivalently,

Tx =
n∑
i=2

λi(A)〈x, ei(A)〉Ln
2 (R)ei(A). (70)

The operator T ⊗ IY : Ln2 (Y )→ Ln2 (Y ), where IY denotes the identity
on Y , is then given by

∀ i ∈ {1, . . . , n}, ((T ⊗ IY )y)i
def
=

n∑
j=1

aij

(
yj −

1

n

n∑
k=1

yk

)
. (71)

Recalling (2) and (70), we have the following operator norm bounds.

‖T ⊗ IH‖Ln
2 (H) = ‖T‖Ln

2 (R)→Ln
2 (R) = λ(A). (72)

The norm of T ⊗ IZ : Ln2 (Z) → Ln2 (Z) can be bounded crudely by
using the fact that A is a symmetric stochastic matrix. Indeed, for
every z ∈ Ln2 (Z) we have

‖Tz‖2
Ln
2 (Z) =

1

n

n∑
i=1

∥∥∥∥∥
n∑
j=1

aij

(
zj −

1

n

n∑
k=1

zk

)∥∥∥∥∥
2

Z

6
1

n2

n∑
i=1

n∑
j=1

n∑
k=1

aij‖zj − zk‖2
Z

6
2

n2

n∑
i=1

n∑
j=1

n∑
k=1

aij
(
‖zj‖2

Z + ‖zk‖2
Z

)
= 4‖z‖2

Ln
2 (Z). (73)
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An interpolation of (72) and (73) (see [Cal64]) shows that

‖T ⊗ IX‖Ln
2 (X)→Ln

2 (X) 6 21−θλ(A)θ. (74)

For every x ∈ Ln2 (X) let x ∈ Ln2 (X) be the vector whose ith coordinate
equals xi − S(x), where S(x) = 1

n

∑n
k=1 xk. Then

∥∥(ILn
2 (X) − T ⊗ IX)x

∥∥2

Ln
2 (X)

(71)
=

1

n

n∑
i=1

∥∥∥∥∥
n∑
j=1

aij(xi − xj)

∥∥∥∥∥
2

X

6
1

n

n∑
i=1

n∑
j=1

aij‖xi − xj‖2
X . (75)

At the same time,∥∥(ILn
2 (X) − T ⊗ IX)x

∥∥
Ln
2 (X)

> ‖x‖Ln
2 (X) − ‖(T ⊗ IX)x‖Ln

2 (X)

(74)

>
(
1− 21−θλ(A)θ

)
‖x‖Ln

2 (X). (76)

Hence, if we suppose that

21−θλ(A)θ < 1 ⇐⇒ λ(A) <
1

2(1−θ)/θ , (77)

then

1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖2
X 6

2

n2

n∑
i=1

n∑
j=1

(
‖xi − S(x)‖2

X + ‖xj − S(x)‖2
X

)
= 4‖x‖2

Ln
2 (X)

(75)∧(76)

6
4

(1− 21−θλ(A)θ)2 ·
1

n

n∑
i=1

n∑
j=1

aij‖xi − xj‖2
X .

Equivalently,

γ
(
A, ‖ · ‖2

X

)
6

4

(1− 21−θλ(A)θ)2 . (78)

We shall now apply a trick that was used by Pisier in [Pis10], where
it is attributed to V. Lafforgue: we can ensure that the condition (77)
holds true if we work with a large enough power of A. We will then
be able to return back to an inequality that involves A rather than its
power by using Markov type through Corollary 4.4. Specifically, define

m
def
=

⌈
(2− θ) log 2

θ log(1/λ(A))

⌉
. (79)

This choice of m ensures that

21−θλ(Am)θ = 21−θλ(A)mθ 6
1

2
,
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so we may apply (78) with A replaced by Am to get the estimate

γ(Am, ‖ · ‖2
X) 6 16. (80)

An application of Corollary 4.4 with p = 2 now implies that

γ(A, ‖ · ‖2
X)

(66)∧(80)

. m
2
qSq(X)2

(79)

. Sq(X)2

(
1 +

1

θ log (1/λ(A))

) 2
q

.
Sq(X)2

(1− λ(A)θ)2/q
, (81)

where in (81) we used the elementary inequality

∀x ∈ [0, 1], 1 +
1

log(1/x)
6

2

1− x
,

which holds true because exp
(
−1−x

1+x

)
> 1− 1−x

1+x
= 2x

1+x
> x. �

4.1. Ramanujan graphs and Alon–Roichman graphs. Given a
connected n-vertex graph G = ({1, . . . , n}, EG), let dG(·, ·) denote the
shortest path metric that G induces on {1, . . . , n}. The diameter of
the metric space ({1, . . . , n}, dG) will be denoted below by diam(G).
Suppose that d ∈ {3, . . . , n− 1} and that G is d-regular, i.e., for every
i ∈ {1, . . . , n} the number of j ∈ {1, . . . , n} such that {i, j} ∈ EG
equals d. The normalized adjacency matrix of G will be denoted AG,
i.e., (AG)ij = 1

d
1{i,j}∈EG

for every i, j ∈ {1, . . . , n}. Thus AG is an
n by n symmetric stochastic matrix. We denote λi(G) = λi(AG) for
every i ∈ {1, . . . , n}, and we correspondingly set λ(G) = λ(AG) and
γ(G, dqX) = γ(AG, d

q
X) for every metric space (X, dX) and q ∈ [1,∞).

Setting cX(G)
def
= cX({1, . . . , n}, dG), an important idea of Linial,

London and Rabinovich [LLR95] relates γ(G, dqX) to a lower bound on
cX(G) as follows. Let f : {1, . . . , n} → X be a nonconstant function
and apply (3) with A = AG and xi = f(i) for every i ∈ {1, . . . , n}, thus
obtaining the estimate

1

n2

n∑
i=1

n∑
j=1

dX(f(i), f(j))q 6
γ(G, dqX)

dn

∑
(i,j)∈{1,...,n}2
{i,j}∈EG

dX(f(i), f(j))q

6 γ(G, dqX)‖f‖qLip. (82)

Denoting Av
(q)
X (G)

def
= Av

(q)
X ({1, . . . , n}, dG), it follows from (82) that

cX(G) > Av
(q)
X (G) >

1

γ(G, dqX)1/q

(
1

n2

n∑
i=1

n∑
j=1

dG(i, j)q

) 1
q

. (83)
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For notational simplicity we will assume from now on that G is a
vertex-transitive graph, since in this case we have

diam(G)

21+1/q
6

(
1

n2

n∑
i=1

n∑
j=1

dG(i, j)q

) 1
q

6 diam(G). (84)

One verifies the validity of (84) by arguing as in the proof of Propo-
sition 3.4 of [NR09]: for every i ∈ {1, . . . , n} and r ∈ (0,∞) let
BG(i, r) = {j ∈ {1, . . . , n} : dG(i, j) 6 r} be the closed ball of radius r
centered at i in the metric dG. SinceG is vertex-transitive, the cardinal-
ity of BG(i, r) is independent of i. Hence, if we let r∗ be the minimum
r ∈ N such that |BG(i, r)| > n/2 for every i ∈ {1, . . . , n}, then for every
i ∈ {1, . . . , n} we have |{1, . . . , n}rBG(i, r∗−1)| > n/2. In other words,
for every i ∈ {1, . . . , n} there are at least n/2 vertices j ∈ {1, . . . , n}
with dG(i, j) > r∗. Hence

∑n
i=1

∑n
j=1 dG(i, j)q > n2rq∗/2. At the same

time, by the definition of r∗ we have BG(i, r∗) ∩ BG(j, r∗) 6= ∅ for ev-
ery i, j ∈ {1, . . . , n}, and therefore diam(G) 6 2r∗. This proves the
leftmost inequality in (84) (the remaining inequality in (84) is trivial).

By combining (83) and (84), Matoušek’s argument in [Mat97] de-
duces from his bound (14) that if G = ({1, . . . , n}, EG) is a vertex-
transitive graph such that λ2(G) is bounded away from 1 by a universal
constant then for every p ∈ [2,∞) we have

cp(G) &
diam(G)

p
. (85)

Denote p(G)
def
= p({1, . . . , n}, dG), where we recall that in Section 1.1 we

defined for a separable metric space (X, dX) the quantity p(X, dX) (or
simply p(X) if the metric is clear from the context) to be the infimum
over those p ∈ [2,∞] for which cp(X) 6 10. It follows from (85) that
p(G) & diam(G) (still under the assumption that λ2(G) is bounded
away from 1). Using Corollary 4.8, we now show that it is possible to
improve over this estimate.

Proposition 4.9. Fix p ∈ [2,∞) and let G = ({1, . . . , n}, EG) be a
vertex-transitive graph. Then

p 6 log

(
1

λ(G)

)
=⇒ cp(G) &

diam(G)
√
p

,

and

p > log

(
1

λ(G)

)
=⇒ cp(G) &

diam(G)

p

√
log

(
1

λ(G)

)
.
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Proof. By combining (83) and (84) (for q = 2) with Corollary 4.8 we
see that

cp(G) > Av
(2)
X (G) &

√
1− λ(G)2/p

√
p

diam(G). �

By the definition of p(G), the following corollary is a formal conse-
quence of Proposition 4.9.

Corollary 4.10. Let G = ({1, . . . , n}, EG) be a vertex-transitive graph.
Then

λ(G) 6 e− diam(G)2 =⇒ p(G) & diam(G)2,

and

λ(G) > e− diam(G)2 =⇒ p(G) & diam(G)

√
log

(
1

λ(G)

)
.

For every n ∈ N and d ∈ {3, . . . , n− 1}, if G = ({1, . . . , n}, EG) is a
d-regular graph then by [Chu89] we have

log n

log d
. diam(G) 6 1 +

log n

log(1/λ(G))
.

Consequently, if 1/λ(G) is at least dc for some universal constant c >
0 then diam(G) � logd n. This happens in particular when G is a
Ramanujan graph, i.e., λ(G) 6 2

√
d− 1/d. Such graphs have been

constructed in [LPS88, Mar88]. It is natural to ask for the asymptotic
evaluation of cp(G) when G is an n-vertex d-regular Ramanujan graph.
While this question remains open, Proposition 4.11 below contains a
lower bound on cp(G) that improves over Matoušek’s bound.

Proposition 4.11. Fix n ∈ N and d ∈ {3, . . . , n − 1}. Suppose that
G = ({1, . . . , n}, EG) is a Ramanujan graph. Then

2 6 p 6 log d =⇒ cp(G) &
log n
√
p log d

. (86)

p > log d =⇒ cp(G) &
log n

p
√

log d
. (87)

Proof. By combining (83) and (84) with Corollary 4.8 we see that

cp(G) &

√
1− λ(G)2/p

√
p

(
1

n2

n∑
i=1

n∑
j=1

dG(i, j)2

) 1
2

&

√
1−

(
2/
√
d
)2/p

√
p

logd n,
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where we used the fact that 1
n2

∑n
i=1

∑n
j=1 dG(i, j)2 & (logd n)2 and that

λ(G) 6 2/
√
d. The latter bound uses the fact that G is a Ramanujan

graph (in fact, weaker bounds on λ(G) suffice for our purposes), and
the former bound holds true for any connected n-vertex d-regular graph
(see [Mat97] for a simple proof of this). �

If G is a uniformly random n-vertex d-regular graph then by [BS87]

λ(G) 6 2/ 4
√
d with high probability (for the best known bound on λ(G)

when G is a random d-regular graph, see [Fri08]). By arguing identi-
cally to the proof of Proposition 4.11, we see that with high probabil-
ity (86) and (87) hold true for such G, implying Proposition 1.9.

Corollary 4.8 also implies new distortion bounds for Abelian Alon–
Roichman graphs [AR94]. These are graphs that are obtained from
the following random construction. Let Γ be a finite Abelian group,
and think of Γ as the set {1, . . . , n}, equipped with an Abelian group
operation. Fix ε ∈ (0, 1/2) and set k =

⌈
3
ε2

log n
⌉
. Let g1, . . . , gk ∈ Γ be

chosen independently and uniformly at random. This induces a random
Cayley graph G whose generating multi-set is {g1, g

−1
1 , . . . , gk, g

−1
k }. As

explained in [AR94], with probability that tends to 1 as n → ∞ the
graph G is connected. Note that since G is a Cayley graph it is vertex-
transitive. It follows from [CM08] that provided n is large enough
we have λ(G) 6 ε with probability at least 1

2
. Moreover, by [NR09,

Prop. 3.5] we have diam(G) & (log n)/(log 1/ε). A substitution of these
estimates into Proposition 4.9 shows that

2 6 p 6 log(1/ε) =⇒ cp(G) &
log n

√
p log(1/ε)

,

and

p > log(1/ε) =⇒ cp(G) &
log n

p
√

log(1/ε)
.

Remark 4.12. We warn that there is some subtlety in the definition of
the parameter p(X) for a separable metric space (X, dX). Given that
X is isometric to a subset of `∞, it is indeed natural to ask for the
smallest p ∈ [2,∞] such that X embeds with bounded distortion, say,
distortion 10, into `p. As an example of an application that was shown
to us by Yuval Rabani, one can use the methods of [KOR00] to prove
that subsets of `p admit an efficient approximate nearest neighbor data
structure with approximation guarantee eO(p), so the parameter p(X)
relates to approximate nearest neighbor search in X (it would be very
interesting to determine the correct asymptotic dependence on p here).
But, understanding the set of p ∈ [2,∞) for which X admits a bi-
Lipschitz embedding into `p can be subtle. In particular, it is not true
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that if X embeds into `p then for every q > p it also embeds into `q. In
fact, we have the following estimates for every n ∈ N and p, q ∈ (2,∞).

2 < q < p =⇒ cq
(
`np
)
� n

1
q
− 1

p , (88)

and

2 < p < q =⇒ cq
(
`np
)
�p,q n

(q−p)(p−2)

(q−2)p2 . (89)

The asymptotic identity (88) is a standard consequence of the fact that
Lq has Rademacher cotype q (see e.g. [Woj91]). The remarkable asymp-
totic identity (89) is due to [FJS88] (using a computation of [GPP80]).
The implicit dependence on p, q in (89) is unknown, and it would be
of interest to evaluate it up to a universal constant factor. Observe
that the exponent of n in (89) tends to (p− 2)/p2 > 0 as q →∞, and
therefore the implicit constant in (89) must tend to 0 as q →∞.

4.2. Curved Banach spaces in the sense of Pisier. Motivated by
his work on nonlinear spectral gaps [Laf08], V. Lafforgue associated
the following modulus to a Banach space (X, ‖ · ‖X), a modulus has
been investigated extensively by Pisier in [Pis10]. Given ε ∈ (0,∞) let
∆X(ε) denote the infimum over those ∆ ∈ (0,∞) such that for every
n ∈ N, every matrix T = (tij) ∈Mn(R) with

‖T‖Ln
2 (R)→Ln

2 (R) 6 ε and ‖abs(T )‖Ln
2 (R)→Ln

2 (R) 6 1,

where abs(T )
def
= (|tij|) is the entry-wise absolute value of T , satisfies

‖T ⊗ IX‖Ln
2 (X)→Ln

2 (X) 6 ∆.

Pisier introduced the following terminology in [Pis10]: X is said to
be curved if ∆X(ε) < 1 for some ε ∈ (0, 1). X is said to be fully curved
if ∆X(ε) < 1 for all ε ∈ (0, 1), and X is said to be uniformly curved
if limε→0 ∆X(ε) = 0. It is shown in [Pis10] that if X is either fully
curved or uniformly curved then it admits an equivalent uniformly con-
vex norm. A remarkable characterization of Pisier [Pis10] shows that
∆X(ε) . εα for some α ∈ (0,∞) if and only if X arises from complex
interpolation with Hilbert space: formally, this happens if and only
if X is isomorphic to a quotient of a subspace of an ultraproduct of
θ-Hilbertian Banach spaces for some θ ∈ (0, 1); we refer to [Pis10] for
the definition of these notions. A more complicated structural charac-
terization of uniformly curved spaces (based on real interpolation) is
also obtained in [Pis10].

One can use the above notions to give a generalized abstract treat-
ment of results in the spirit of Theorem 4.5. Fix ε ∈ (0, 1) and
suppose that ∆X(ε) < 1

2
. Let A ∈ Mn(R) be symmetric and sto-

chastic and let T = (tij) ∈ Mn(R) be given as in (70). By (72) we
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have ‖T‖Ln
2 (R)→Ln

2 (R) = λ(A). Moreover, since abs(T ) = (|aij − 1/n|)
and A is symmetric and stochastic, it is immediate to check that
‖abs(T )‖Ln

2 (R)→Ln
2 (R) 6 2. By the definition of the modulus ∆X(·) we

therefore have ‖T ⊗ IX‖Ln
2 (X)→Ln

2 (X) 6 2∆X(λ(A)/2). Define

m
def
=

⌈
log(1/(2ε))

log(1/λ(A))

⌉
, (90)

so that λ(Am)/2 = λ(A)m/2 6 ε, and apply the above reasoning with
A replaced by Am. Arguing as in (75) and (76), we obtain the estimate

γ
(
Am, ‖ · ‖2

X

)
6

4

(1− 2∆X(ε))2 .

We can now use the notion of Markov type through Lemma 4.2 to
deduce the following statement.

Theorem 4.13. Fix ε ∈ (0, 1) and let (X, ‖ · ‖X) be a Banach that
satisfies ∆X(ε) < 1

2
. Then for every n ∈ N and every symmetric

stochastic matrix A ∈Mn(R) we have

γ
(
A, ‖ · ‖2

X

)
6

4

(1− 2∆X(ε))2 ·M2

(
X;

⌈
log(1/(2ε))

log(1/λ(A))

⌉)2

·
⌈

log(1/(2ε))

log(1/λ(A))

⌉
.

In particular, using Theorem 4.3 and arguing as in the proof of Corol-
lary 4.7, if X has modulus of smoothness of power type 2 then every
symmetric stochastic matrix A ∈Mn(R) satisfies

γ
(
A, ‖ · ‖2

X

)
.X

1

1− λ2(A)
.

In conjunction with Theorem 1.3 we deduce the following geomet-
ric embedding result for uniformly curved Banach space that can be
renormed so as to have modulus of smoothness of power type 2.

Corollary 4.14. Suppose that (X, ‖ · ‖X) is a uniformly curved Ba-
nach space that admits an equivalent norm whose modulus of uniform
smoothness has power type 2. Then for every x1, . . . , xn ∈ X there exist
y1, . . . , yn ∈ `2 such that

n∑
i=1

n∑
j=1

‖xi − xj‖2
X =

n∑
i=1

n∑
j=1

‖yi − yj‖2
2,

and

∀ i, j ∈ {1, . . . , n}, ‖yi − yj‖2 .X ‖xi − xj‖X .
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4.3. An interpolation inequality for nonlinear spectral gaps.
The modulus of uniform convexity of a Banach space (X, ‖ · ‖X) is
defined for ε ∈ [0, 2] as

δX(ε)
def
= inf

{
1− ‖x+ y‖X

2
: x, y ∈ BX ∧ ‖x− y‖X = ε

}
.

X is said to be uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. Further-
more, X is said to have modulus of convexity of power type p if there
exists a constant c ∈ (0,∞) such that δX(ε) > c εp for all ε ∈ [0, 2].
It is straightforward to check that in this case necessarily p > 2. By
Proposition 7 in [BCL94] (see also [Fig76]), X has modulus of convex-
ity of power type p if and only if there exists a constant K ∈ [1,∞)
such that for every x, y ∈ X(

‖x‖pX +
1

Kp
‖y‖pX

) 1
p

6

(
‖x+ y‖pX + ‖x− y‖pX

2

) 1
p

. (91)

The infimum over those K for which (91) holds true is called the p-
convexity constant of X, and is denoted Kp(X). Note that every Ba-
nach space satisfies K∞(X) = 1. Below we shall use the convention
Kp(X) =∞ if p ∈ [1, 2). For 1 6 q 6 2 6 p, the p-convexity constant
of X is related to the q-smoothness constant of X (recall (62)) via the
following duality relation [BCL94, Lem. 5].

1

p
+

1

q
= 1 =⇒ Kp(X) = Sq(X

∗).

Theorem 4.15. Let (X, Y ) be a compatible pair of Banach spaces. Fix
θ ∈ [0, 1] and consider the complex interpolation space Z = [X, Y ]θ. Fix
also p, q ∈ [1,∞] and r ∈ [1, 2]. Then for every n ∈ N and every n by
n symmetric stochastic matrix A we have

γ(A, ‖ · ‖sZ)

cs
(
s

s
r + Sr(Z)s

)
6

(
min

{
(9Kp(X))pγ(A, ‖ · ‖pX)

θ
,
(9Kq(Y ))qγ(A, ‖ · ‖qY )

1− θ

}) s
r

,

where c ∈ (0,∞) is a universal constant and s ∈ [2,∞] is given by

1

s
=
θ

p
+

1− θ
q

.

Observe that for every a, b ∈ (0,∞) and every θ ∈ (0, 1) we have

min

{
a

θ
,

b

1− θ

}
6

2
θ
a

+ 1−θ
b

6 aθb1−θ.
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Consequently, the conclusion of Theorem 4.15 implies that

γ(A, ‖ · ‖sZ) .X,Y,Z,s γ(A, ‖ · ‖pX)θs/rγ(A, ‖ · ‖qY )(1−θ)s/r.

Such an estimate is in the spirit of the interpolation inequality (15),
but it is insufficient for the purpose of addressing Question 1.8. Theo-
rem 4.15 does suffice to prove Lemma 1.11, so we assume the validity of
Theorem 4.15 for the moment and proceed now to prove Lemma 1.11.

Proof of Lemma 1.11. Matoušek proved in [Mat97] that if (X, dX) is
an n-point metric space then for p ∈ [2,∞) we have

cp(X) . 1 +
log n

p
. (92)

The case p = 2 of (92) is Bourgain’s embedding theorem [Bou85]. Now,
for every n ∈ N let Gn = ({1, . . . , n}, EGn) be a 4-regular graph with
supn∈N λ2(Gn) < 1, i.e., {Gn}∞n=1 forms an expander sequence. Fixing
n > ep, by (92) we know that there exist x1, . . . , xn ∈ `p such that

∀ i, j ∈ {1, . . . , n}, dGn(i, j) 6 ‖xi − xj‖`p .
log n

p
dGn(i, j). (93)

Suppose that y1, . . . , yn ∈ `q satisfy (24), i.e.,(
1

n2

n∑
i=1

n∑
j=1

‖yi − yj‖r`q

) 1
r

=

(
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖s`p

) 1
s

, (94)

If ‖yi− yj‖`q 6 D‖xi−xj‖`p for every i, j ∈ {1, . . . , n} then we need to
show that D & p/(q + r). Note that since Gn is 4-regular, a constant
fraction of the pairs (i, j) ∈ {1, . . . , n}2 satisfy dGn(i, j) & log n (the
standard argument showing this appears in e.g. [Mat97]). Hence, due
to the leftmost inequality in (93), it follows from (94) that(

1

n2

n∑
i=1

n∑
j=1

‖yi − yj‖r`q

) 1
r

& log n. (95)

Case 1. r 6 q. In this case we have(
1

n2

n∑
i=1

n∑
j=1

‖yi − yj‖r`q

) 1
r

6

(
1

n2

n∑
i=1

n∑
j=1

‖yi − yj‖q`q

) 1
q

6 γ(Gn, ‖ · ‖q`q)
1
q

 1

4n

∑
(i,j)∈{1,...,n}2
{i,j}∈EGn

‖yi − yj‖q`q


1
q

.
Dq log n

p
, (96)
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where in (96) we bounded γ(Gn, ‖·‖q`q) using (14), and we used the fact

that if {i, j} ∈ EGn then ‖yi − yj‖`q 6 D‖xi − xj‖`p . D(log n)/p, due
to (93). By contrasting (96) with (95) we have D & p/q, as required.

Case 2. r > q. Write θ
def
= 1/(r − 1) and t

def
= 2q(r − 2)/(2r − q − 2).

Recalling that we are assuming in Lemma 1.11 that q > 2, it follows
that θ ∈ (0, 1) and t ∈ [q, 2r]. Consequently, K2r(`t) 6 Kt(`t) 6 1
(see [BCL94]). Note also that 1/q = θ/2 + (1 − θ)/t, so `q = [`2, `t]θ.
Since 1/r = θ/2 + (1 − θ)/(2r) and S2(`q) =

√
q − 1 (see [BCL94]), it

follows from Theorem 4.15 that for every n ∈ N we have

γ(Gn, ‖ · ‖r`q)
1/r .

√
r ·min

{
rγ(Gn, ‖ · ‖2

`2
),γ(Gn, ‖ · ‖2r

`t
)
}
. r.

Hence, if we argue as in (96) we see that D & p/r, as required. �

We now prove Theorem 4.15.

Proof of Theorem 4.15. We may assume that A is ergodic, implying
that γ(A, ‖ · ‖pX),γ(A, ‖ · ‖qY ) < ∞, since otherwise the conclusion of
Theorem 4.15 is vacuous. So, by Lemma 2.3 we have

γ+

(
I + A

2
, ‖ · ‖pX

)
6 22p+1γ(A, ‖ · ‖pX) <∞, (97)

and

γ+

(
I + A

2
, ‖ · ‖qY

)
6 22q+1γ(A, ‖ · ‖qX) <∞, (98)

For a Banach space (W, ‖ · ‖W ) and t ∈ [1,∞] let Lnt (W )0 be the
subspace of Lnt (W ) consisting of mean-zero vectors, i.e.,

Lnt (W )0
def
=

{
(w1, . . . , wn) ∈ Lnt (W ) :

n∑
i=1

wi = 0

}
.

Let Q : Lnt (R) → Lnt (R)0 be the canonical projection, i.e, for every
v ∈ Lnt (R) and i ∈ {1, . . . , n},

(Qv)i
def
= vi −

1

n

n∑
j=1

vj.

Then by the triangle inequality, ‖Q⊗ IW‖Ln
t (W )→Ln

t (W )0 6 2, and con-
sequently for every B ∈Mn(R) such that B(Lnt (R)0) ⊆ Lnt (R)0,

‖(BQ)⊗ IW‖Ln
t (W )→Ln

t (W ) 6 2‖B ⊗ IW‖Ln
t (R)0→Ln

t (R)0 . (99)

Note that if B is symmetric and stochastic then B(Lnt (R)0) ⊆ Lnt (R)0,
and by [MN12, Lem. 6.6] for every t ∈ [1,∞] we have

‖B ⊗ IW‖Ln
t (R)0→Ln

t (R)0 6 e−2/(t(2Kt(W ))tγ+(B,‖·‖tW )). (100)
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(Observe that we always have ‖B ⊗ IW‖Ln
t (R)0→Ln

t (R)0 6 1 because B is
symmetric and stochastic, so (100) is most meaningful when t ∈ [2,∞)
and Kt(W ) <∞.) Consequently, for every m ∈ N we have

‖Bm ⊗ IW‖Ln
t (R)0→Ln

t (R)0
6

(
‖B ⊗ IW‖Ln

t (R)0→Ln
t (R)0

)m
6 e−2m/(t(2Kt(W ))tγ+(B,‖·‖tW )). (101)

Define T ∈Mn(R) by

T
def
=

(
I + A

2

)m
Q.

An application of (101) and (99) with W = X and t = p while us-
ing (97) shows that

‖T ⊗ IX‖Ln
p (X)→Ln

p (X) 6 2e−m/(4(9Kp(X))pγ(A,‖·‖pX)). (102)

The same reasoning applied to W = Y and t = q while using (98)
shows that

‖T ⊗ IY ‖Ln
q (Y )→Ln

q (Y ) 6 2e−m/(4(9Kq(Y ))qγ(A,‖·‖qY )). (103)

Interpolation of (102) and (103) yields the following estimate.∥∥∥∥(I + A

2

)m
⊗ IZ

∥∥∥∥
Ln
s (Z)0→Ln

s (Z)0

6 ‖T ⊗ IY ‖Ln
s (Z)→Ln

s (Z)

6 2e−mθ/(4(9Kp(X))pγ(A,‖·‖pX))−m(1−θ)/(4(9Kq(Y ))qγ(A,‖·‖qY )). (104)

Let m be given by

m
def
=

⌈
7 min

{
(9Kp(X))pγ(A, ‖ · ‖pX)

θ
,
(9Kq(Y ))qγ(A, ‖ · ‖qY )

1− θ

}⌉
.

Then by (104) we have∥∥∥∥(I + A

2

)m
⊗ IZ

∥∥∥∥
Ln
s (Z)0→Ln

s (Z)0

6
1

2
.

By [MN12, Lem. 6.1] this implies that

γ

((
I + A

2

)m
, ‖ · ‖sZ

)
6 γ+

((
I + A

2

)m
, ‖ · ‖sZ

)
6 9s. (105)
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Hence, using Corollary 4.4 we deduce that

2γ(A, ‖ · ‖sZ)
(39)
= γ

(
I + A

2
, ‖ · ‖sZ

)
(66)

. Cs
(
s

s
r + Sr(Z)s

)
m

s
rγ

((
I + A

2

)m
, ‖ · ‖sZ

)
(105)

6 (9C)s
(
s

s
r + Sr(Z)s

)
m

s
r ,

where C is the universal constant from Corollary 4.4. Recalling our
choice of m, this completes the proof of Theorem 4.15. �

5. Proof of Theorem 1.10

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. We first note that
the assumptions of Theorem 1.10 are equivalent to the assertion that
BX is uniformly homeomorphic to a subset of Y , i.e, that there is
an injection φ : BX → Y such that both φ and φ−1 are uniformly
continuous. Indeed, since BX is metrically convex, the modulus of
continuity of φ, namely the mapping ωφ : [0,∞)→ [0,∞) given by

ωφ(t)
def
= sup{‖φ(x)− φ(y)‖Y : x, y ∈ BX ∧ ‖x− y‖X 6 t},

is sub-additive (see for example [BL00, Ch. 1, Sec. 1]). Consequently,
as explained in [BL00, Ch. 1, Sec. 2], there exists an increasing concave
function β : [0,∞)→ [0,∞) such that ωφ 6 β 6 2ωφ.

Since β : [0,∞) → [0,∞) is concave, increasing, and β(0) = 0, for
every q ∈ [1,∞) the mapping t 7→ β(t1/q)q is concave. Indeed, it suffices
to verify this when β is differentiable. Denote f(t) = β(t1/q)q. Then

f ′(t) =

(
β(t1/q)

t1/q

)q−1

β′(t1/q). (106)

By our assumptions β′ is nonnegative and decreasing, and s 7→ β(s)/s
is decreasing on (0,∞). It therefore follows from (106) that f ′ is de-
creasing on (0,∞), as required.

The canonical radial retraction of X onto BX is denoted below by
ρ : X → BX , i.e.,

ρ(x)
def
=

{
x if ‖x‖X 6 1,
x
‖x‖X

if ‖x‖X > 1. (107)

It is straightforward to check that ρ is 2-Lipschitz.
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Lemma 5.1. Under the assumptions of Theorem 1.10, fix n ∈ N,
q ∈ [1,∞) and x1, . . . , xn ∈ X with

1

n

n∑
i=1

n∑
j=1

aij‖xi − xj‖qX = 1. (108)

For every i ∈ {1, . . . , n} let ri ∈ (0,∞) be the smallest r > 0 such that∣∣{j ∈ {1, . . . , n} : ‖xj − xi‖X 6 r}
∣∣ > n

2
. (109)

Then for every n by n symmetric stochastic matrix A = (aij) ∈Mn(R),

min
i∈{1,...,n}

ri 6 max

2(8γ(A, ‖ · ‖qY ))1/q,
2

β−1

(
α(1/4)

8γ(A,‖·‖qY )
1/q

)
 . (110)

Proof. Note that the fact that the function x 7→ β(x1/q)q is concave on
[0,∞) implies that for every λ ∈ (0,∞) we have(

1

n

n∑
i=1

n∑
j=1

aijβ (λ‖xi − xj‖X)q
) 1

q

6 β

λ( 1

n

n∑
i=1

n∑
j=1

aij‖xi − xj‖qX

) 1
q

 (108)
= β(λ). (111)

By relabeling the points if necessary we may also assume without loss
of generality that

r1 = min
i∈{1,...,n}

ri. (112)

Denote
B

def
= {j ∈ {1, . . . , n} : ‖xj − x1‖X 6 r1}. (113)

So, by definition,

|B| > n

2
. (114)

For the sake of simplicity we denote below

γ
def
= γ(A, ‖ · ‖qY ) . (115)

For i ∈ {1, . . . , n} define

yi
def
= x1 + r1ρ

(
xi − x1

r1

)
,

where ρ : X → BX is given in (107). Since ρ is 2-Lipschitz,

∀ i, j ∈ {1, . . . , n}, ‖yi − yj‖X 6 2‖xi − xj‖X . (116)
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By definition yi ∈ x1 + r1BX , so we may consider the vectors

zi
def
= φ

(
yi − x1

r1

)
∈ Y. (117)

Now,

1

n2

n∑
i=1

n∑
j=1

‖zi − zj‖qY
(115)

6
γ

n

n∑
i=1

n∑
j=1

aij‖zi − zj‖qY

(19)∧(117)∧(116)

6
γ

n

n∑
i=1

n∑
j=1

aijβ

(
2‖xi − xj‖X

r1

)q (111)

6 γβ

(
2

r1

)q
. (118)

Denoting

w
def
=

1

n

n∑
j=1

zj ∈ Y,

by the convexity of ‖ · ‖qY we have

1

n

n∑
i=1

‖zj − w‖qY 6
1

n2

n∑
i=1

n∑
j=1

‖zi − zj‖qY
(118)

6 γβ

(
2

r1

)q
. (119)

It follows from (119) and Markov’s inequality that if we set

C
def
=

{
i ∈ {1, . . . , n} : ‖zi − w‖Y 6 (4γ)1/qβ

(
2

r1

)}
, (120)

then |C| > 3n/4. By (114) it follows that

|B ∩ C| > n

4
. (121)

Recalling the definitions (113), (120) and (117), for every i ∈ B ∩C
we have

zi = φ

(
xi − x1

r1

)
and ‖zi − w‖Y 6 (4γ)1/qβ

(
2

r1

)
. (122)

Hence, for every i, j ∈ B ∩ C,

α

(
‖xi − xj‖X

r1

)
(19)

6

∥∥∥∥φ(xi − x1

r1

)
− φ

(
xj − x1

r1

)∥∥∥∥
Y

(122)
= ‖zi − zj‖Y 6 ‖zi − w‖Y + ‖zj − w‖Y

(122)

6 2(4γ)1/qβ

(
2

r1

)
.

Consequently,

i, j ∈ B ∩C =⇒ ‖xi−xj‖X 6 r
def
= r1α

−1

(
2(4γ)1/qβ

(
2

r1

))
. (123)
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Fix an arbitrary index k ∈ B ∩ C and define

S
def
= {j ∈ {1, . . . , n} : ‖xk − xj‖X 6 r}. (124)

It follows from (123) that S ⊇ B ∩ C, and therefore by (121) we have

|S| > n

4
. (125)

Moreover, by the definition (124),

1

n

∑
i∈S

‖xi − xk‖qX 6
|S|rq

n
. (126)

Now, define for every i ∈ {1, . . . , n},

vi
def
= max {0, ‖xi − xk‖X − r} ∈ [0,∞). (127)

Then for every i ∈ {1, . . . , n}r S and j ∈ S,

‖xi − xk‖qX 6 2q−1 (‖xi − xk‖X − r)q + 2q−1rq

(127)
= 2q−1|vi − vj|q + 2q−1rq. (128)

Hence,

1

n

∑
i∈{1,...,n}rS

‖xi − xk‖qX

(128)

6
2q−1

n|S|

n∑
i=1

n∑
j=1

|vi − vj|q +
2q−1(n− |S|)rq

n

(125)

6
2q+1γ(A, dqR)

n

n∑
i=1

n∑
j=1

aij|vi − vj|q +
2q−1(n− |S|)rq

n

6 2q+1γ +
2q−1(n− |S|)rq

n
, (129)

where the last step of (125) uses the trivial fact γ(A, dqR) 6 γ (since Y
contains an isometric copy of R) and

1

n

n∑
i=1

n∑
j=1

aij|vi − vj|q
(127)

6
1

n

n∑
i=1

n∑
j=1

aij‖xi − xj‖qX
(108)
= 1.

A combination of (126) and (129) yields the estimate

1

n

n∑
i=1

‖xi − xk‖qX 6 2q+1γ + 2q−1rq.

Consequently, an application of Markov’s inequality shows that∣∣∣{i ∈ {1, . . . , n} : ‖xi − xk‖X 6 21/q
(
2q+1γ + 2q−1rq

)1/q
}∣∣∣ > n

2
.
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Recalling the definition of rk (see (109)), it follows that

r1

(112)

6 rk 6 21/q
(
2q+1γ + 2q−1rq

)1/q
. (130)

If (2r)q 6 rq1/2 then it follows from (130) that rq1 6 2q+3γ, implying
the desired estimate (110). So, suppose that (2r)q > rq1/2, which, by
recalling the definition of r in (123), is the same as

rq1
2
<

(
2r1α

−1

(
2(4γ)1/qβ

(
2

r1

)))q
,

or

α

(
1

4

)
6 α

(
1

21+1/q

)
6 2(4γ)1/qβ

(
2

r1

)
6 8γ1/qβ

(
2

r1

)
,

implying the validity of (110) in this case as well. �

Proof of Theorem 1.10. We continue to use the notation that was in-
troduced in the statement and the proof of Lemma 5.1. In particular,
the assumptions (108) and (112) are (without loss of generality) still
in force.

Recalling the definition of B in (113), we have

1

n

∑
i∈B

‖xi − x1‖qX 6
rq1|B|
n

. (131)

For i ∈ {1, . . . , n} define

ui
def
= max{0, ‖xi − x1‖X − r1} ∈ [0,∞). (132)

Then for every i ∈ {1, . . . , n}rB and j ∈ B we have

‖xi − x1‖qX 6 2q−1 (‖xi − x1‖X − r1)q + 2q−1rq1
(132)
= 2q−1|ui − uj|q + 2q−1rq1.

Arguing exactly as in (129) (with the use of (125) replaced by the use
of (114)), it follows that

1

n

∑
i∈{1,...,n}rB

‖xi − x1‖qX 6 2qγ +
2q−1(n− |B|)rq1

n
. (133)

Consequently,

1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖qX 6
2q−1

n2

n∑
i=1

n∑
j=1

(‖xi − x1‖qX + ‖x1 − xj‖qX)

=
2q

n

n∑
i=1

‖xi − x1‖qX
(131)∧(133)

6 4qγ +
4qrq1

2
. (134)
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The desired estimate (20) now follows substituting (110) into (134). �

5.1. Limitations of Ozawa’s method. In the discussion immedi-
ately preceding the estimates (21) and (22) we stated that for every
p ∈ [1,∞) there exists a mapping φ : `p → `2 such that for every
x, y ∈ `p we have

p ∈ (2,∞) =⇒
‖x− y‖p/2`p

2(p−2)/2
6 ‖φ(x)− φ(y)‖`2 6 p‖x− y‖`p , (135)

and

p ∈ [1, 2) =⇒
‖x− y‖`p

3
6 ‖φ(x)− φ(y)‖`2 6 2‖x− y‖p/2`p

. (136)

The estimates (135) and (136) are a special case of the following bounds
on the modulus of uniform continuity of the Mazur map [Maz29] (see
also [BL00, Ch.9]). Let (Ω, µ) be a measure space and fix p, q ∈ [1,∞).
Define Mp,q : Lp(µ)→ Lq(µ) by

∀ f ∈ Lp(µ), Mp,q(f)
def
= |f |p/qsign(f).

If p > q then for every f, g ∈ Lp(µ) with ‖f‖Lp(µ), ‖g‖Lp(µ) 6 1 we have

‖f − g‖p/qLp(µ)

2(p−q)/q 6 ‖Mp,q(f)−Mp,q(g)‖Lq(µ) 6
2

1
q
− 1

pp‖f − g‖Lp(µ)

q
. (137)

Note that (135) is a special case of (137), and (136) is also a conse-
quence of (137) because M−1

p,q = Mq,p. While the bounds appearing
in (137) are entirely standard, they seem to have been always stated
in the literature while either using implicit multiplicative constant fac-
tors, or with suboptimal constant factors. These constants play a role
in our context, so we briefly include the proof of (137), following the
lines of the proof of [BL00, Prop. 9.2]. The elementary inequality∣∣|u|θsign(u)− |v|θsign(v)

∣∣ > |u− v|θ
2θ−1

,

which holds for every u, v ∈ R and θ ∈ [1,∞), immediately implies
(with θ = p/q) the leftmost inequality in (137). To prove the rightmost
inequality of (137), note the following elementary inequality, which also
holds for every u, v ∈ R and θ ∈ [1,∞).∣∣|u|θsign(u)− |v|θsign(v)

∣∣ 6 θ|u− v|max
{
|u|θ−1, |v|θ−1

}
.
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Consequently,

‖Mp,q(f)−Mp,q(g)‖qLq(µ)

6
pq

qq

∫
Ω

|f − g|q max {|f |, |g|}p−q dµ

6
pq

qq
‖f − g‖qLp(µ) · ‖max{|f |, |g|}‖p−qLp(µ) (138)

6
pq · 2(p−q)/p

qq
‖f − g‖qLp(µ), (139)

where (138) follows from an application of Hölder’s inequality with
exponents p/q and p/(p − q) and (139) holds true because we have
‖max{|f |, |g|}‖pLp(µ) 6 ‖f‖

p
Lp(µ) + ‖g‖pLp(µ) 6 2.

Returning to Theorem 1.10 (in particular using the notation and
assumptions that were introduced in the statement of Theorem 1.10),
if one wants the bound (20) to be compatible with the assumption of
Theorem 1.3 one needs (20) to yield an upper bound on γ(A, ‖·‖qX) that
grows linearly with γ(A, ‖ · ‖qY ). This is equivalent to the requirement

β−1

(
α(1/4)

8γ(A, ‖ · ‖qY )1/q

)q

&X,Y
1

γ(A, ‖ · ‖qY )
. (140)

Since (140) is supposed to hold for every n ∈ N and every n by n
symmetric stochastic matrix A, (140) is the same as requiring that
β(t) .X,Y t for every t ∈ (0,∞].

Specializing the above discussion to Y = `2 and q = 2, if β(t) 6 Kt
for some K ∈ (0,∞) and every t ∈ (0,∞) then (20) yields the estimate

γ(A, ‖ · ‖qX) .
(K/α(1/4))2

1− λ2(A)
.

By Corollary 1.4, this implies that

Av
(2)
`2

(X) .
K

α(1/4)
.

In particular, if p ∈ (2,∞) then due to (135) we get the estimate

Av
(2)
`2

(`p) . p23p/2,

which is exponentially worse than (23). The following lemma shows
that this exponential loss is inherent to the use of Theorem 1.10 for the
purpose of obtaining average distortion embedding of finite subsets of
`p into `2, i.e., that K/α(1/4) must grow exponentially in p as p→∞.
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Lemma 5.2. Suppose that p ∈ (2,∞) and that φ : BX → `2 satisfies

α
(
‖x− y‖`p

)
6 ‖φ(x)− φ(y)‖`2 6 K‖x− y‖`p , (141)

for every x, y ∈ B`p, where α : (0, 2]→ (0,∞) is increasing. Then

∀ ε ∈ (0, 2),
K

α(2− ε)
&

1

(1− ε/2)p/2
. (142)

In particular, for ε = 7/4 we have K/α(1/4) & 23p/2.

Proof. Fix m,n ∈ N and s ∈ (0, 1]. For every x ∈ Zn define ψ(x) ∈ `p
to be the vector whose jth coordinate equals

s

n1/p
e2πxji/m

if j ∈ {1, . . . , n}, and whose remaining coordinates vanish. Then we
have ‖ψ(x)‖`p 6 s 6 1 for every x ∈ Zn.

By the results of Section 3 of [MN08], if m is divisible by 4 and
m > 2

3
π
√
n then we have

1

mn

n∑
j=1

∑
x∈{0,...,m−1}n

∥∥∥φ(ψ (x+
m

2
ej

))
− φ(ψ(x))

∥∥∥2

`2

.
m2

(3m)n

∑
ω∈{−1,0,1}n

∑
x∈{0,...,m−1}n

‖φ (ψ(x+ ω))− φ(ψ(x))‖2
`2
. (143)

Now, by the leftmost inequality in (141) for every x ∈ {0, . . . ,m− 1}n
and j ∈ {1, . . . , n} we have∥∥∥φ(ψ (x+

m

2
ej

))
− φ(ψ(x))

∥∥∥
`2
> α

(
s
∣∣e2π(xj+m/2)i/m − e2πxji/m

∣∣
n1/p

)

= α

(
2s

n1/p

)
. (144)

Also, by the rightmost inequality in (141), for every x ∈ {0, . . . ,m−1}n
and ω ∈ {−1, 0, 1}n we have

‖φ (ψ(x+ ω))− φ(ψ(x))‖`2 6
Ks

n1/p

(
n∑
j=1

∣∣e2π(xj+ωj)i/m − e2πxji/m
∣∣p) 1

p

.
Ks

m
. (145)

Choose n
def
= b1/(1− ε/2)pc and s

def
= (1− ε/2)n1/p ∈ (0, 1]. Then, if m

is the smallest integer that is divisible by 4 and satisfies m > 2
3
π
√
n,
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by substituting (145) and (144) into (143) we see that

nα (2− ε)2 . m2 · K
2s2

m2
. n

K2(1− ε/2)2

n1−2/p
. nK2(1− ε/2)p,

which simplifies to give the desired estimate (142). �

6. Bourgain–Milman–Wolfson type

Here we study aspects of nonlinear type in the sense of Bourgain,
Milman and Wolfson [BMW86], proving in particular Lemma 1.12,
Lemma 1.13 and Theorem 1.15 that were stated in the Introduction.

6.1. On the Maurey–Pisier problem for BMW type. In what
follows, for every finite set Ω and p ∈ [1,∞), the space Lp(Ω) consists
of all mappings f : Ω→ R, equipped with the norm

‖f‖Lp(Ω)
def
=

(
1

|Ω|
∑
ω∈Ω

|f(ω)|p
) 1

p

.

For every k ∈ {1, . . . , n} let Ωn
k ⊆ Fn2 × 2{1,...,n} be defined by

Ωn
k

def
= Fn2 ×

(
{1, . . . , n}

k

)
= Fn2 × {I ⊆ {1, . . . , n} : |I| = k} .

Thus |Ωn
k | = 2n

(
n
k

)
.

Fixing a metric space (X, dX) and f : Fn2 → X, define

∀(z, I) ∈ Fn2 × 2Fn
2 , Df (z, I)

def
= dX (f (z + eI) , f(z)) , (146)

where for I ⊆ {1, . . . , n} we set

eI
def
=
∑
i∈I

ei ∈ Fn2 .

Thus, using the notation of the Introduction, we have e{1,...,n} = e.

For q ∈ (0,∞) define E
(q)
k (f) ∈ [0,∞) by

E
(q)
k (f)q

def
= ‖Df‖qLq(Ωn

k )

=
1

2n
(
n
k

) ∑
I⊆{1,...,n}
|I|=k

∑
z∈Fn

2

dX (f (z + eI) , f(z))q . (147)

Note that since for every I, J ⊆ {1, . . . , n} with |I| = |J | the number
of permutations σ ∈ Sn satisfying σ(I) = J equals |I|!(n− |I|)!,

∀ I ⊆ {1, . . . , n}, E
(q)
|I| (f)q =

1

2nn!

∑
x∈Fn

2

∑
σ∈Sn

Df (x, σ(I))q. (148)



COMPARISON OF METRIC SPECTRAL GAPS 47

We also record for future use the following simple consequence of the
triangle inequality in (X, dX).

Lemma 6.1. Fix n ∈ N and q ∈ [1,∞). Suppose that (X, dX) is a
metric space and f : Fn2 → X. Then for every k,m ∈ {1, . . . , n} with
k +m 6 n we have

E
(q)
k+m(f) 6 E

(q)
k (f) + E(q)

m (f). (149)

Proof. Fix I ⊆ {1, . . . , n} with |I| = k +m. Recalling (146), for every
J ⊆ I with |J | = k and every z ∈ Fn2 we have

Df (z, I) 6 Df (z, I r J) +Df (z + eIrJ , J).

Consequently,

∀(z, I) ∈ Ωn
k+m, Df (z, I) 6 Uf (z, I) + Vf (z, I), (150)

where

Uf (z, I)
def
=

1(
k+m
k

) ∑
J⊆I
|J |=k

Df (z, I r J).

and

Vf (z, I)
def
=

1(
k+m
k

) ∑
J⊆I
|J |=k

Df (z + eIrJ , J).

The point-wise estimate (150) combined with the triangle inequality
in Lq(Ω

n
k+m) implies that

E
(q)
k+m(f) = ‖Df‖Lq(Ωn

k+m) 6 ‖Uf‖Lq(Ωn
k+m) + ‖Vf‖Lq(Ωn

k+m) . (151)

By the convexity of t 7→ |t|q we have

‖Uf‖qLq(Ωn
k+m) 6

1

2n
(

n
k+m

) ∑
I⊆{1,...,n}
|I|=k+m

∑
z∈Fn

2

1(
k+m
k

) ∑
J⊆I
|J |=k

Df (z, I r J)q

=
1

2n
(

n
k+m

)(
k+m
k

) ∑
z∈Fn

2

∑
S⊆{1,...,n}
|S|=m

(
n−m
k

)
Df (z, S)q = E(q)

m (f)q, (152)

and

‖Vf‖qLq(Ωn
k+m) 6

1

2n
(

n
k+m

) ∑
I⊆{1,...,n}
|I|=k+m

∑
z∈Fn

2

1(
k+m
k

) ∑
J⊆I
|J |=k

Df (z + eIrJ , J)q

=
1

2n
(

n
k+m

)(
k+m
k

) ∑
I⊆{1,...,n}
|I|=k+m

∑
J⊆I
|J |=k

∑
w∈Fn

2

Df (w, J)q = E
(q)
k (f)q. (153)
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The desired estimate (149) now follows from a substitution of (152)
and (153) into (151). �

For m,n ∈ N with n > m, for every f : Fm2 → X denote its natural
lifting to Fn2 by f ↑n : Fn2 → X, that is,

∀ z ∈ Fn2 , f ↑n(z)
def
= f(z1, . . . , zm).

We then have the following identity for every k ∈ {1, . . . , n}.

E
(q)
k

(
f ↑n
)q

=
1

2n
(
n
k

) ∑
I⊆{1,...,n}
|I|=k

2n−m
∑
w∈Fm

2

Df (w, I ∩ {1, . . . ,m})q (154)

=
1(
n
k

) min{k,m}∑
`=max{1,m+k−n}

(
n−m
k − `

)(
m

`

)
E

(q)
` (f)q, (155)

where (154) uses (146) and (147), and the identity (155) follows by
observing that if I ⊆ {1, . . . , n} satisfies |I ∩ {1, . . . ,m}| = ` then
necessarily ` > m+k−n and for each J ⊆ {1, . . . ,m} with |J | = ` the
number of subsets I ⊆ {1, . . . , n} with I ∩ {1, . . . ,m} = J is

(
n−m
k−`

)
.

Note in particular the following two special cases of (155).

E(q)
n

(
f ↑n
)

= E(q)
n (f) and E

(q)
1

(
f ↑n
)

=
(m
n

)1/q

E
(q)
1 (f). (156)

When q = 2 in (147) we write Ek(f)
def
= E

(2)
k (f). With this notation,

a metric space (X, dX) has BMW type p ∈ (0,∞) if and only if there
exists T ∈ (0,∞) such that for every n ∈ N and every f : Fn2 → X,

En(f) 6 Tn1/pE1(f). (157)

Let BMWn
p (X) denote the infimum over those T ∈ (0,∞) for which (157)

holds true for every f : Fn2 → X. Thus

BMWp(X) = sup
n∈N

BMWn
p (X).

Remark 6.2. By definition we have BMWn
p (X)n1/p = BMWn

q (X)n1/q

for every p, q ∈ (0,∞). Also, unless |X| = 1 we have BMW1
p(X) = 1.

Remark 6.3. By Lemma 6.1 we have En(f) 6 nE1(f), so

∀n ∈ N, BMWn
p (X) 6 n1− 1

p .

Moreover, given m,n ∈ N with n > m and f : Fm2 → X with E1(f) > 0,
by (156) we have

Em(f)

E1(f)
=
En
(
f ↑n
)

E1 (f ↑n)
·
√
n

m
.
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Consequently,

∀m,n ∈ N, m 6 n =⇒ BMWm
p (X)

√
m 6 BMWn

p (X)
√
n. (158)

Remark 6.4. Let (X, dX) be a metric space and p ∈ (1,∞) be such that
X has BMW type p. Then necessarily p 6 2. Indeed, choose distinct
x0, x1 ∈ X and for every n ∈ N define fn : Fn2 → X by fn(z) = xz1 .
Then E1(fn) = dX(x0, x1)/

√
n and En(fn) = dX(x0, x1). This means

that n1/pBMWp(X) >
√
n for all n ∈ N, which implies that p 6 2. A

straightforward application of the triangle inequality (see [BMW86])
implies that every metric space has BMW type 1 with BMW1(X) = 1.

Recalling the definition of pX ∈ [1, 2] in (27), we have the following
lemma that relies on a sub-multiplicativity argument that was intro-
duced by Pisier [Pis73] in the context of Rademacher type of normed
spaces, and has been implemented in the context of nonlinear type by
Bourgain, Milman and Wolfson [BMW86] (see also [Pis86]).

Lemma 6.5. For every metric space (X, dX) we have

∀n ∈ N, BMWn
pX

(X) > 1.

Proof. Write p = pX and suppose for the sake of obtaining a contradic-
tion that there exists m ∈ N and ε ∈ (0, 1) such that BMWm

p (X) < ε.

We may also assume without loss of generality that ε > 1/
√
m. Since

BMW1
p(X) = 1, we have m > 2. If we define

q
def
=

1
1
p
− log(1/ε)

logm

(159)

then q ∈ (p,∞) because p > 1/2 (recall Remark 6.4) and ε > 1/
√
m.

By [BMW86, Lem. 2.3] (see also [Pis86, Lem.7.2]), for every k, n ∈ N,

BMWkn
p (X) 6 BMWk

p(X) · BMWn
p (X).

Consequently, for every i ∈ N we have

BMWmi

p (X) 6 BMWm
p (X)i < εi

(159)
= m−i(

1
p
− 1

q ). (160)

For every n ∈ N choose i ∈ N such that mi−1 6 n < mi. Since,
by (158), BMWn

p (X)
√
n increases with n, it follows from (160) that

BMWn
q (X) = n

1
p
− 1

q
− 1

2 · BMWn
p (X)

√
n 6 n

1
p
− 1

q
− 1

2 · BMWmi

p (X)m
i
2

(160)
< n

1
p
− 1

q
− 1

2 ·m−i(
1
p
− 1

q
− 1

2) 6 m
1
2
− 1

p
+ 1

q
(159)
= ε
√
m,

where we used the fact that 1/2 − 1/p + 1/q > 0 (by (159) and the
assumption ε > 1/

√
m). Consequently BMWq(X) < ∞, i.e., X has

BMW type q. Since q > p, this contradicts the definition of pX = p. �
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Lemma 6.6. Fix p ∈ [1, 2], n ∈ N, and k1, . . . , km ∈ {1, . . . , n} such
that k1 + . . .+ km 6 n. Then for every metric space (X, dX) and every
f : Fn2 → X we have

Ek1+...+km(f) 6 BMWp(X)m
1
p
− 1

2

(
m∑
j=1

Ekj(f)2

) 1
2

. (161)

Proof. Write k0 = 0 and I = {1, . . . , k1 + . . . + km} ⊆ {1, . . . , n}. For
every j ∈ {1, . . . ,m} set Ij = {k1 + . . .+kj−1 +1, . . . , k1 + . . .+kj} ⊆ I.
Fixing x ∈ Fn2 and a permutation σ ∈ Sn, define φσx : Fm2 → X by

φσx(z)
def
= f

(
x+

m∑
s=1

zseσ(Is)

)
.

An application of the definition of BMWp(X) to φσx yields the inequality

1

2m

∑
z∈Fm

2

Df

(
x+

m∑
s=1

zseσ(Is), σ(I)

)2

6
BMWp(X)2m

2
p
−1

2m

∑
z∈Fm

2

m∑
j=1

Df

(
x+

m∑
s=1

zseσ(Is), σ(Ij)

)2

. (162)

Recalling (148), by averaging (162) over x ∈ Fn2 and σ ∈ Sn we obtain

Ek1+...+km(f)2 =
1

2nn!

∑
y∈Fn

2

∑
σ∈Sn

Df (y, σ(I))2

6
BMWp(X)2m

2
p
−1

2nn!

m∑
j=1

∑
y∈Fn

2

∑
σ∈Sn

Df (y, σ(Ij))
2

= BMWp(X)2m
2
p
−1

m∑
j=1

Ekj(f)2. �

Proof of Theorem 1.15. Denote pX = p. Fix ε ∈ (0, 1/3) and define

n
def
=

⌈
BMWp(X)4

ε
d

⌉
. (163)

Since n > d, we can consider Fdp as a subset of Fnp (say, canonically
embedded as the first d coordinates).

By Lemma 6.5 we have BMWn
p (X) > 1, and therefore by the defini-

tion of BMWn
p (X) there exists f : Fnp → X such that

En(f) > (1− ε)n1/pE1(f) > 0. (164)
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Write

Y
def
= `

Fn
2×Sn

2 (X) ∼= `2nn!
2 (X).

Define F : Fn2 → Y by setting

∀(x, z, π) ∈ Fn2 × Fn2 × Sn, F (x)(z,π)
def
= f(π(x) + z),

where π(x)
def
=
∑n

i=1 xπ(i)ei. Recalling (147), every x, y ∈ Fn2 satisfy

dY (F (x), F (y)) =
√

2nn! · E‖x−y‖1(f), (165)

By Lemma 6.6 with m = ‖x− y‖1 and k1 = . . . = km = 1, for every
x, y ∈ Fnp we have

dY (F (x), F (y))√
2nn!

(161)∧(165)

6 BMWp(X)‖x− y‖
1
p
− 1

2

1 ·
√
‖x− y‖1E1(f)

= BMWp(X)E1(f)‖x− y‖p. (166)

Fixing x, y ∈ Fdp ⊆ Fnp , write n = a‖x−y‖1+b for appropriate integers a
and b ∈ [0, ‖x−y‖1). By Lemma 6.6 with m = b and k1 = . . . = km = 1,

Eb(f) 6 BMWp(X)b1/pE1(f) 6 BMWp(X)‖x− y‖1/p
1 E1(f). (167)

Using Lemma 6.6 once more, this time with m = a + 1, k1 = b and
k2 = . . . = ka+1 = ‖x − y‖1, and noting that since ‖x − y‖1 6 d 6 εn
we have m 6 (1 + ε)n/‖x− y‖1, we conclude that

En(f) 6 BMWp(X)

(
(1 + ε)n

‖x− y‖1

) 1
p
− 1

2
√

n

‖x− y‖1

E‖x−y‖1(f)2 + Eb(f)2.

In combination with (167) and our assumption (164), this implies

(1− ε)2n2/pE1(f)2 6 (1 + ε)BMWp(X)2

(
n

‖x− y‖1

)2/p

E‖x−y‖1(f)2

+ (1 + ε)n2/pBMWp(X)4‖x− y‖1

n
E1(f)2. (168)

Recalling (163), we have ‖x − y‖1/n 6 d/n 6 εBMWp(X)4 (since
x, y ∈ Fd2), and it therefore follows from (168) that

dY (F (x), F (y))√
2nn!

(165)
= E‖x−y‖1(f) >

‖x− y‖pE1(f)

BMWp(X)

√
1− 3ε

1 + ε
. (169)

Since ε ∈ (0, 1/3) can be taken to be arbitrarily small, by combin-
ing (166) and (169) we conclude that

cY (Fd2, ‖x− y‖p) 6 BMWp(X)2. �
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6.2. Obstructions to average distortion embeddings of cubes.
We start by proving Lemma 1.13, whose proof is very simple.

Proof of Lemma 1.13. Fix D > Av
(2)
Y (X) and n ∈ N. If f : Fn2 → X

then there exists a nonconstant mapping g : f(Fn2 )→ Y such that∑
(x,y)∈Fn

2×Fn
2

dY (g(f(x)), g(f(y)))2 >
‖g‖2

Lip

D2

∑
(x,y)∈Fn

2×Fn
2

dX(f(x), f(y))2.

Consequently,

1

2n

∑
x∈Fn

2

dX(f(x), f(x+ e))2

6
2

4n

∑
(x,y)∈Fn

2×Fn
2

(
dX(f(x), f(y))2 + dX(f(y), f(x+ e))2

)
=

1

4n−1

∑
(x,y)∈Fn

2×Fn
2

dX(f(x), f(y))2

6
D2

4n−1‖g‖2
Lip

∑
(x,y)∈Fn

2×Fn
2

dY (g(f(x)), g(f(y)))2. (170)

Now,

1

4n

∑
(x,y)∈Fn

2×Fn
2

dY (g(f(x)), g(f(y)))2 (147)
=

1

2n

n∑
k=1

(
n

k

)
Ek(g ◦ f)2

(161)

6
1

2n

n∑
k=1

(
n

k

)
BMWp(Y )2k2/pE1(g ◦ f)2. (171)

Since E1(g ◦ f) 6 ‖g‖LipE1(f), it follows from (170) and (171) that

BMWp(X) 6 2Av
(2)
Y (X)BMWp(Y ). �

Recall that (see e.g. [Mau03]) a Banach space (X, ‖ · ‖X) is said to
have Rademacher type p constant T ∈ (0,∞) if for every m ∈ N and
every x1, . . . , xm ∈ X we haveEε

∥∥∥∥∥
m∑
i=1

εixi

∥∥∥∥∥
2

X

 1
2

6 T

(
m∑
i=1

‖xi‖pX

) 1
p

, (172)

where Eε[·] is the expectation with respect to i.i.d. ±1 Bernoulli ran-
dom variables ε1, . . . , εn. The infimum over those T ∈ (0,∞) for which
X has Rademacher type p constant T is denoted Tp(X). If no such T
exists then we write Tp(X) =∞.
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Lemma 6.7. Assume that p ∈ [1, 2) and fix q ∈ (p, 2] and r, s ∈ [1,∞).
Suppose that (Y, ‖ · ‖Y ) is a Banach space with Tq(Y ) < ∞ and that
f : Fm2 → Y satisfies 1

4m

∑
(x,y)∈Fm

2 ×Fm
2

‖f(x)− f(y)‖rY

 1
r

=

 1

4m

∑
(x,y)∈Fm

2 ×Fm
2

‖x− y‖s`p

 1
s

� m1/p. (173)

Then there exists x ∈ Fm2 and i ∈ {1, . . . , n} such that

‖f(x)− f(x+ ei)‖Y &
1√

rTq(Y )
· m

1
p
− 1

q

logm
. (174)

Proof. By Pisier’s inequality [Pis86] we have

m1/p
(173)

.

 1

4m

∑
(x,y)∈Fm

2 ×Fm
2

‖f(x)− f(y)‖rY

 1
r

. logm

 1

2m

∑
x∈Fn

2

Eε

[∥∥∥∥∥
m∑
i=1

εi(f(x+ ei)− f(x))

∥∥∥∥∥
r

Y

] 1
r

. (175)

For every fixed x ∈ Fm2 it follows from Kahane’s inequality (with asymp-
totically optimal dependence on r; see e.g. [Tal88]) that(

Eε

[∥∥∥∥∥
m∑
i=1

εi(f(x+ ei)− f(x))

∥∥∥∥∥
r

Y

]) 1
r

.
√
r

Eε

∥∥∥∥∥
m∑
i=1

εi(f(x+ ei)− f(x))

∥∥∥∥∥
2

Y

 1
2

6
√
rTq(Y )

(
m∑
i=1

‖f(x+ ei)− f(x)‖qY

) 1
q

.

Combined with (175), this implies that

max
x∈Fm

2
i∈{1,...,m}

‖f(x+ ei)− f(x)‖Y &
1√

rTq(Y )
· m

1
p
− 1

q

logm
. �
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There are classes of Banach spaces Y , including Banach lattices of
nontrivial type and UMD spaces, for which it is known that Pisier’s
inequality (175) holds true with the logm factor replaced by a constant
that may depend on Y and r but not on m; see [NS02, HN13]. For
such spaces we therefore obtain (174) without the logm term.

Lemma 6.8. Assume that p ∈ [1, 2) and fix q ∈ (p, 2] and r, s ∈ [1,∞).
Suppose that (Y, ‖ · ‖Y ) is a Banach space with Sq(Y ) < ∞, i.e., Y
has modulus of uniform smoothness of power type q. If f : Fm2 → Y
satisfies (173) then there exists x ∈ Fm2 and i ∈ {1, . . . , n} such that

‖f(x)− f(x+ ei)‖Y &
m

1
p
− 1

q

r1/q + Sq(Y )
. (176)

Proof. Due to (173), in order to prove (176) it suffices to show that for
every h : Fm2 → Y , 1

4m

∑
(x,y)∈Fm

2 ×Fm
2

‖h(x)− h(y)‖rY

 1
r

.
(
r

1
q + Sq(Y )

)
m

1
q

 1

m2m

m∑
i=1

∑
x∈Fm

2

‖h(x+ ei)− h(x)‖rY

 1
r

. (177)

Note that it suffices to prove (177) when r > 2, since otherwise we
could replace q by r and use the fact that Sr(Y ) 6 Sq(Y ).

By considering the standard random walk on the Hamming cube Fn2
and arguing mutatis mutandis as in [NS02, Sec. 5], (177) is a formal
consequence of the Markov type estimate of Theorem 4.3. Alterna-
tively, once can deduce (177) directly via the martingale argument
in [KN06, Sec. 5], the only difference being the use of the martingale
inequality (65) in place of Pisier’s inequality [Pis75]. �

Proof of Lemma 1.12. Since for q ∈ [2,∞) we have S2(`q) 6
√
q − 1,

Lemma 1.12 is a special case of Lemma 6.8 with Y = `q, n = 2m and
x1, . . . , x2m being an arbitrary enumeration of Fm2 ⊆ Y . �

Remark 6.9. As promised in the Introduction, here we justify (29).
The fact that AvR(Fn2 , ‖ · ‖2) . 4

√
n is simple: consider the mapping

φ : Fn2 → R given by φ(x) =
√

max{‖x‖1 − n/2, 0}. Then φ is 1-
Lipschitz with respect to the metric induced on Fn2 by the Euclidean
norm ‖ · ‖2. By the central limit theorem the average of |φ(x)− φ(y)|2
over (x, y) ∈ Fn2 × Fn2 is of order

√
n.
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The corresponding lower bound AvR(Fn2 , ‖ · ‖2) & 4
√
n is an example

of a lower bound on the average distortion of the cube Fn2 that is not
proved through the use on nonlinear type. Suppose that f : Fn2 → R
satisfies |f(x)−f(y)| 6 ‖x−y‖2 for every x, y ∈ Fn2 . Suppose also that
S ⊆ Fn2 satisfies |S| > 2n−1. Then by Harper’s inequality [Har66] (see
also [Led01, Thm. 2.11]), for every t ∈ (0,∞) we have

|{x ∈ Fn2 : ∀ y ∈ S, ‖x− y‖2 > t}|
2n

=
|{x ∈ Fn2 : ∀ y ∈ S, ‖x− y‖1 > t2}|

2n
6 e−2t4/n.

Consequently, if Mf ∈ R is a median of f then by [Led01, Prop.1.3] we

have |{x ∈ Fn2 : |f(x)−Mf | > t}| /2n 6 2e−2t4/n. Hence, 1

4n

∑
(x,y)∈Fn

2×Fn
2

|f(x)− f(y)|2
 1

2

6 2

 1

2n

∑
(x,y)∈Fn

2×Fn
2

|f(x)−Mf |2
 1

2

6

(∫ ∞
0

4te−2t4/ndt

) 1
2

. 4
√
n.

Remark 6.10. Additional obstructions to average distortion embed-
dings that do not fall into the framework described in this section
have been obtained in the context of integrality gap lower bounds for
the Goemans–Linial semidefinite relaxation for the Uniform Sparsest
Cut Problem. The best known result in this direction is due to [KM13]
(improving over the works [DKSV06, KR09]), where it is shown that
for arbitrarily large n ∈ N there exists an n-point metric space (X, dX)
such that the metric space (X,

√
dX) emebds isometrically into `2, yet

Av
(1)
`1

(X) > exp
(
c
√

log log n
)
, where c ∈ (0,∞) is a universal constant.

Finding the correct asymptotic dependence here remains open.

7. Existence of average distortion embeddings

The main purpose of this section is to state criteria for the existence
of average distortion embeddings. In what follows we often discuss
probability distributions over random subsets or random partitions of
metric spaces. To avoid measurability issues we focus our discussion
on finite metric spaces. Such topics can be treated for infinite spaces
as well, as done in [LN05].

7.1. Random zero sets. Fix ∆, ζ ∈ (0,∞) and δ ∈ (0, 1). Follow-
ing [ALN08], a finite metric space (X, dX) is said to admit a random



56 ASSAF NAOR

zero set at scale ∆ which is ζ-spreading with probability δ if there exists
a probability distribution µ over 2X such that every x, y ∈ X satisfy

dX(x, y) > ∆ =⇒ µ

({
Z ∈ 2X : x ∈ Z ∧ dX(y, Z) >

∆

ζ

})
> δ.

(178)
We denote by ζ(X; δ) the infimum over those ζ ∈ (0,∞) such that for
every scale ∆ ∈ (0,∞) the finite metric space (X, dX) admits a random
zero set at scale ∆ which is ζ-spreading with probability δ. If (X, dX)
is an infinite metric space then we write

ζ(X; δ)
def
= sup

S⊆X
|S|<∞

ζ(X; δ). (179)

The following proposition asserts that random zero sets can be used
to obtain embeddings into the real line R with low average distortion.

Proposition 7.1. Fix n ∈ N and δ ∈ (0, 1). Suppose that (X, dX) is a
metric space with ζ(X; δ) < ∞. Then for every p ∈ [1,∞) and every
x1, . . . , xn ∈ X there exists a 1-Lipschitz function f : X → R such that

n∑
i=1

n∑
j=1

|f(xi)− f(xj)|p >
δ

211pζ(X; δ)p

n∑
i=1

n∑
j=1

dX(xi, xj)
p.

Thus, using the notation of Section 1.3, Av
(p)
R (X) . ζ(X; δ)/δ1/p.

Proposition 7.1 will be proven in Section 7.4 below. We will now
explain how Proposition 7.1 can be applied to a variety of metric spaces.
Due to the discussion preceding Theorem 1.3, such spaces will satisfy
the spectral inequality (7) with Ψ linear.

7.1.1. Random partitions. Many spaces are known to admit good ran-
dom zero sets. Such examples often (though not always) arise from
metric spaces for which one can construct random padded partitions. If
(X, dX) is a finite metric space let P(X) denote the set of all partitions
of X. For P ∈ P(X) and x ∈ X, the unique element of P to which
x belongs is denoted P (x) ⊆ X. Given ε, δ ∈ (0, 1), the metric space
(X, dX) is said to admit an ε-padded random partition with probability
δ if for every ∆ ∈ (0,∞) there exists a probability distribution µ∆ over
partitions of X with the following properties.

• ∀P ∈P(X), µ∆(P ) > 0 =⇒ maxx∈X diamP (x) 6 ∆.
• For every x ∈ X we have

µ∆ ({P ∈P(X) : BX(x, ε∆) ⊆ P (x)}) > δ,

where BX(x, r)
def
= {y ∈ X : dX(x, y) 6 r} for every r ∈ [0,∞).
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Let ε(X; δ) denote the supremum over those ε ∈ (0, 1) for which (X, dX)
admits an ε-padded random partition with probability δ. As in (179),
we extend this definition to infinite metric spaces (X, dX) by setting

ε(X; δ)
def
= inf

S⊆X
|S|<∞

ε(X; δ).

Fact 3.4 in [ALN08] (which itself uses an idea of [Rao99]) asserts
that for every δ ∈ (0, 1), if (X, dX) is a finite metric space then

ε(X; δ) · ζ
(
X;

δ

4

)
6 1. (180)

([ALN08, Fact 3.4] states this for the arbitrary choice δ = 1
2
, but its

proof does not use this specific value of δ in any way.) One should inter-
pret (180) as asserting that a lower bound on ε(X; δ) implies an upper
bound on ζ(X, δ/4). The following classes of metric spaces (X, dX)
are known to satisfy ε(X; δ) > 0 for some δ ∈ (0, 1): doubling met-
ric spaces, compact Riemannian surfaces, Gromov hyperbolic spaces
of bounded local geometry, Euclidean buildings, symmetric spaces, ho-
mogeneous Hadamard manifolds, and forbidden-minor (edge-weighted)
graph families. The case of doubling spaces goes back to [Ass83], with
subsequent improved bounds on ε(X; δ) > 0 obtained in [GKL03]. The
case of forbidden-minor graph families is due to [KPR93], with subse-
quent improved bounds on ε(X; δ) > 0 obtained in [FT03]. The case
of compact Riemannian surfaces is due to [LN05], with subsequent im-
proved bounds on ε(X; δ) > 0 obtained in [LS10]. The remaining cases
follow from the general fact [NS11] that if (X, dX) has bounded Nagata
dimension then ε(X; δ) > 0 for some δ ∈ (0, 1) (see [LS05] for more
information on Nagata dimension of metric spaces). We single out the
following two consequences of Proposition 7.1 and (the easy direction
of) Theorem 1.3, with explicit quantitative bounds arising from the
estimates on ε(X; δ) obtained in [GKL03, LS10].

Corollary 7.2. Suppose that (X, dX) is a metric space that is doubling
with constant K ∈ [2,∞). Then for every n ∈ N and every symmetric
stochastic matrix A ∈Mn(R) we have

γ
(
A, d2

X

)
.

(logK)2

1− λ2(A)
.

Corollary 7.3. Suppose that (X, dX) is a two dimensional Riemannian
manifold of genus g ∈ N ∪ {0}. Then for every n ∈ N and every
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symmetric stochastic matrix A ∈Mn(R) we have

γ
(
A, d2

X

)
.

(log(g + 1))2

1− λ2(A)
.

The fact that the conclusion of Proposition 7.1 holds true under the
assumption that ε(X; δ) > 0 for every δ ∈ (0,∞) (as follows by combin-
ing Proposition 7.1 with (180)) was proved by Rabinovich in [Rab08]
in the case p = 1. It has long been well known to experts (and stated
explicitly in [BLR10]), that the original proof of Rabinovich extends
mutatis mutandis to every p ∈ [1,∞). The (simple) proof of Proposi-
tion 7.1 below builds on the ideas of Rabinovich in [Rab08].

An example of a class of metric spaces that admits good random
zero sets for reasons other than the existence of random padded par-
titions is the class of spaces that admit a quasisymmetric embedding
into Hilbert space. We refer to [Hei01] and the references therein for
more information on quasisymmetric embeddings; it suffices to say here
that L1(µ) spaces provide such examples (see [DL97, Ch. 6]). It follows
from [ALN08] (using in part ideas of [ARV09, NRS05, Lee05, CGR08])
that if (X, dX) is a metric space that admits a quasisymmetric embed-
ding into Hilbert space then there exist ε, δ ∈ (0, 1) (depending only
on the modulus of quasisymmetry of the implicit embedding) such that
for every n ∈ N, any n-point subset S ⊆ X satisfies ε(S; δ) > ε/

√
log n.

Consequently we have the following statement.

Corollary 7.4. Suppose that (X, dX) is a metric space that admits a
quasisymmetric embedding into a Hilbert space. Then there exists a
constant C ∈ (0,∞) (depending only on the modulus of quasisymme-
try of the implicit embedding) such that for every n ∈ N and every
symmetric stochastic matrix A ∈Mn(R) we have

γ
(
A, d2

X

)
6

C log n

1− λ2(A)
. (181)

Note that Bourgain’s embedding theorem [Bou85] implies that (181)
holds true for every metric space (X, dX) if one replaces the term log n
by (log n)2 (in which case C can be taken to be a universal constant).

7.2. Localized weakly bi-Lipschitz embeddings. Following the
terminology of [NPSS06], for D ∈ [1,∞) say that a metric space
(X, dX) admits a weakly bi-Lipschitz embedding with distortion D
into a metric space (Y, dY ) if for every ∆ ∈ (0,∞) there exists a non-
constant Lipschitz mapping f∆ : X → Y such that for every x, y ∈ X,

dX(x, y) > ∆ =⇒ dY (f∆(x), f∆(y)) >
‖f∆‖Lip

D
∆. (182)
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The origin of this terminology is that such embeddings preserve (by
design) weak (p, q) metric Poincaré inequalities. Specifically, a standard
way by which one rules out the existence of bi-Lipschitz embeddings
is via generalized Poincaré-type inequalities as follows. Suppose that
n ∈ N and p, q,K ∈ (0,∞), and there exist two measures µ, ν on
{1, . . . , n}2 such that every y1, . . . , yn ∈ Y satisfy(

n∑
i=1

n∑
j=1

dY (yi, yj)
pµ(i, j)

) 1
p

6

(
n∑
i=1

n∑
j=1

dY (yi, yj)
qν(i, j)

) 1
q

. (183)

Clearly if f : X → Y is a bi-Lipschitz embedding then the inequal-
ity (183) holds for (X, dX) as well, with the right hand side of (183) mul-
tiplied by ‖f‖Lip‖f−1‖Lip. Thus a strong (p, q) inequality such as (183)
are bi-Lipschitz invariants that can be used to show that certain spaces
(X, dX) must incur large distortion in any bi-Lipschitz embedding into
(Y, dY ). The obvious weak (p, q) variant of (183) is the assertion that
for every u ∈ (0,∞) and every y1, . . . , yn ∈ Y we have

µ
({

(i, j) ∈ {1, . . . , n}2 : dY (yi, yj) > u
}) 1

p

6
1

u

(
n∑
i=1

n∑
j=1

dY (yi, yj)
qν(i, j)

) 1
q

. (184)

By definition, if a metric space (X, dX) admits a weakly bi-Lipschitz
embedding with distortionD into a metric space (Y, dY ) satisfying (184)
then for every n ∈ N, any x1, . . . , xn ∈ X satisfy

µ
({

(i, j) ∈ {1, . . . , n}2 : dX(xi, xj) > u
}) 1

p

6
D

u

(
n∑
i=1

n∑
j=1

dX(xi, xj)
qν(i, j)

) 1
q

.

We will see below that one can prove nonlinear spectral gap inequal-
ity such as (6) with Ψ linear by showing that (X, dX) admits a weakly
bi-Lipschitz embedding into (Y, dY ). To this end it suffices to local-
ize the condition (182) to balls of proportional scale, as follows. For
D ∈ [1,∞) say that a metric space (X, dX) admits a localized weakly
bi-Lipschitz embedding with distortion D into a metric space (Y, dY ) if
for every z ∈ X and ∆ ∈ (0,∞) there exists a non-constant Lipschitz
mapping f z∆ : X → Y such that for every x, y ∈ BX(z, 32∆) we have

dX(x, y) > ∆ =⇒ dY (f z∆(x), f z∆(y)) >
‖f z∆‖Lip

D
∆. (185)
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The factor 32 here was chosen to be convenient for the ensuing argu-
ments, but it is otherwise arbitrary.

Proposition 7.5. Fix n ∈ N and p,D ∈ [1,∞). Suppose that (X, dX)
is a metric space that admits a localized weakly bi-Lipschitz embed-
ding with distortion D into a metric space (Y, dY ). Then for every
x1, . . . , xn ∈ X there is a nonconstant mapping f : {x1, . . . , xn} → Z,
for at least one of the spaces Z ∈ {Y,R}, such that(

1

n2

n∑
i=1

n∑
j=1

dZ(f(xi), f(xj))
p

) 1
p

&
‖f‖Lip

D

(
1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p

) 1
p

.

Observe that if (Y, dY ) contains an isometric copy of an interval
[a, b] ⊆ R (in particular if Y is a Banach space) then the conclusion of

Proposition 7.5 can be taken to be Av
(p)
Y (X) . D.

Lemma 3.5 in [ALN08] asserts that for every δ ∈ (0, 1), every finite
metric space (X, dX) admits a weakly bi-Lipschitz embedding into `2

with distortion ζ(X; δ)/
√
δ. Consequently, all the examples that arise

from random padded partitions as described in Section 7.1.1 fall into
the framework of Proposition 7.5, with the only difference being that
an application of Proposition 7.5 rather than Proposition 7.1 yields an
embedding into Hilbert space rather than into the real line. This dif-
ference is discussed further in Section 7.3 below. The following lemma
shows that Proposition 7.5 has wider applicability than Proposition 7.1:
in combination with Proposition 7.5 it yields a different proof of the
case p ∈ (2,∞) of (22) that avoids the use of Theorem 1.3.

Lemma 7.6. Suppose that (X, ‖·‖X) and (Y, ‖·‖Y ) are Banach spaces
that satisfy the assumptions of Theorem 1.10. Suppose furthermore
that there exists K ∈ (0,∞) such that β(t) = Kt for all t ∈ [0,∞).
Then (X, ‖ · ‖X) admits a localized weakly bi-Lipschitz embedding with
distortion 2K/α(1/32) into (Y, ‖ · ‖Y ).

Proof. Fix ∆ ∈ (0,∞) and a mapping f : BX → Y that satisfies (19).
For z ∈ X define f z∆ : X → Y by

f z∆(x)
def
= 32∆f

(
ρ

(
x− z
32∆

))
,

where ρ is given as in (107). Since ρ is 2-Lipschitz, ‖f z∆‖Lip 6 2K. If
x, y ∈ z + 32∆BX satisfy ‖x− y‖X > ∆ then

‖f z∆(x)− f z∆(y)‖Y > ∆α

(
‖x− y‖X

32∆

)
>
α
(

1
32

)
‖f z∆‖Lip

2K
∆. �
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For p ∈ [1, 2), due to Lemma 1.12 and Proposition 7.5, `p does not
admit a localized weakly bi-Lipschitz embedding into Hilbert space
(this can also be proved directly via a shorter argument). Since fi-
nite subsets of `p embed isometrically into `1 (see e.g. [DL97]), it fol-
lows from [ARV09] that every n-point subset of `p admits a weakly bi-
Lipschitz embedding into `2 with distortion O(

√
log n). By [Lee05], it is

also true that every n-point subset of `p admits a weakly bi-Lipschitz

embedding into `2 with distortion O((log n)(2−p)/p2), which is better
than the O(

√
log n) bound of [ARV09] if

√
5 − 1 < p 6 2. Therefore

for every n ∈ N and every n by n symmetric stochastic matrix A,

p ∈
[
1,
√

5− 1
]

=⇒ γ(A, ‖ · ‖2
`p) .

log n

1− λ2(A)
,

and

p ∈
[√

5− 1, 2
]

=⇒ γ(A, ‖ · ‖2
`p) .

(log n)
2(2−p)

p2

1− λ2(A)
.

These are the currently best known bounds towards Question 1.8.

7.3. Dimension reduction. As discussed in Section 7.2, Proposi-
tion 7.1 yields an average distortion embedding into the real line, while
Proposition 7.5, when applied in the context of spaces with random
zero sets, yields an average distortion embedding into Hilbert space.
Here we briefly compare these two notions. The following lemma is
a simple application of the classical Johnson-Lindenstrauss dimension
reduction lemma [JL84].

Lemma 7.7. If (X, dX) is an n-point metric space then

Av
(2)
R (X)√
log n

6 Av
(2)
`2

(X) . Av
(2)
R (X). (186)

Proof. The rightmost inequality in (186) is trivial. Write D = Av
(2)
`2

(X)
and take x1, . . . , xm ∈ X. By the Johnson-Lindenstrauss lemma [JL84]
there exists k ∈ N such that k . log n and there exists a 1-Lipschitz
function f = (f1, . . . , fk) : {x1, . . . , xm} → Rk such that

m∑
i=1

m∑
j=1

‖f(xi)− f(xj)‖2
2 >

1

2D2

m∑
i=1

m∑
j=1

dX(xi, xj)
2.

Therefore there exists s ∈ {1, . . . , k} such that

m∑
i=1

m∑
j=1

|fs(xi)− fs(xj)|2 >
1

2kD2

m∑
i=1

m∑
j=1

dX(xi, xj)
2.
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Since fs : {x1, . . . , xm} → R is also 1-Lipschitz, we conclude that

Av
(2)
R (X) 6

√
2kD .

√
log nD. �

The following lemma shows that Lemma 7.7 is almost asymptotically
sharp.

Lemma 7.8. For arbitrarily large n ∈ N there exists an n-point metric
space Xn such that

Av
(2)
R (Xn) & Av

(2)
`2

(Xn) ·

√
log n

log log n
. (187)

Proof. Fix ε ∈ (0, 1) and an integerm > 2. Let σ denote the normalized
surface measure on the unit sphere Sm−1 ⊆ `m2 . By Lemma 21 in [FS02]
there exists a partition {C1, . . . , Cn} of Sm−1 into nonempty measurable
sets such that σ(Ci) = 1/n and diam(Ci) 6 ε for all i ∈ {1, . . . , n},
and n 6 (κ/ε)m for some universal constant κ ∈ (0,∞).

Choose an arbitrary point xi ∈ Ci and set Xn = {x1, . . . , xn} ⊆ `m−1
2 .

Since Xn is isometric to a subset of Hilbert space, Av
(2)
`2

(Xn) = 1.
Suppose that f : {x1, . . . , xn} → R is a 1-Lipschitz function. By the
nonlinear Hahn-Banach theorem (see [BL00]) we can think of f as the
restriction to Xn of a 1-Lipschitz function defined on all of Sm−1. The
Poincaré inequality on the sphere Sm−1 (see e.g. [Cha84, Led01]) asserts
that∫

Sm−1

∫
Sm−1

|f(x)− f(y)|2dσ(x)dσ(y)

6
2

m− 1

∫
Sm−1

‖∇f(x)‖2
2 dσ(x) 6

4

m
. (188)

For every i, j ∈ {1, . . . , n} and every (x, y) ∈ Ci × Cj we have

|f(xi)− f(xj)|2

3
6 |f(xi)− f(x)|2 + |f(x)− f(y)|2 + |f(y)− f(xj)|2

6 |f(x)− f(y)|2 + diam(Ci)
2 + diam(Cj)

2

6 |f(x)− f(y)|2 + 2ε2, (189)

and similarly,
‖x− y‖2

2 6 3‖xi − xj‖2
2 + 6ε2. (190)

Consequently,

|f(xi)− f(xj)|2 − 6ε2

n2
= σ(Ci)σ(Cj)

(
|f(xi)− f(xj)|2 − 6ε2

)
(189)

6 3

∫
Ci

∫
Cj

|f(x)− f(y)|2dσ(x)dσ(y). (191)
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and

‖xi − xj‖2
2

n2
>

1

3

∫
Ci

∫
Cj

‖x− y‖2
2dσ(x)dσ(y)− 2ε2

n2
. (192)

Hence,

1

n2

n∑
i=1

n∑
j=1

|f(xi)− f(xj)|2

(191)

6 3

∫
Sm−1

∫
Sm−1

|f(x)− f(y)|2dσ(x)dσ(y) + 6ε2
(188)

6
12

m
+ 6ε2,

and

1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖2
2

(192)

>
1

3

∫
Sm−1

∫
Sm−1

‖x− y‖2
2dσ(x)dσ(y)− 2ε2

=
2

3
− 2ε2.

By choosing ε = 1/(2
√
m), we have shown that every 1-Lipschitz func-

tion f : Xn → R satisfies
n∑
i=1

n∑
j=1

|f(xi)− f(xj)|2 .
1

m

n∑
i=1

n∑
j=1

‖xi − xj‖2
2.

Recalling that n 6 (κ/ε)m = (2κ
√
m)m, or m &

√
log n/ log log n, the

proof of (187) is complete. �

Remark 7.9. Given an n-point metric space (X, dX) let S(X) denote
the maximum of 1

2n2

∑
(x,y)∈X×X |f(x)−f(y)|2 over all 1-Lipschitz func-

tions f : X → R. The quantity S(X) was introduced by Alon, Bop-
pana and Spencer in [ABS98], where they called it the spread constant
of X. They proved that the spread constant of X governs the asymp-
totic isoperimetric behavior of `n1 (X) as n→∞. They also state that
“The spread constant appears to be new and may well be of indepen-
dent interest.” We agree with this assertion. In particular, it would be
worthwhile to investigate the computational complexity of the problem
that takes as input an n-point metric space (X, dX) and is supposed to
output in polynomial time a number that is guaranteed to be a good
approximation of its spread constant. We are not aware of hardness of
approximation results for this question. Let S`2(X) denote the max-
imum of 1

2n2

∑
(x,y)∈X×X ‖f(x) − f(y)‖2

2 over all 1-Lipschitz functions

f : X → `2. The quantity S`2(X) can be computed in polynomial
time with arbitrarily good precision, since (by definition) it can be
cast as a semidefinite program (see [GLS93]). The proof of Lemma 7.7
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can be viewed as a simple approximation algorithm to the spread con-
stant, achieving an approximation guarantee of O(log n). Lemma 7.8
can be viewed as yielding an almost matching integrality gap lower
bound for the semidefinite program. Note that the parameter S`2(X)
itself has also been studied in the literature in the context of the prob-
lem of finding the fastest mixing Markov process on a given graph;
see [SBXD06]. See also the works [Fie89, GHW08, GHR12] that study
this quantity in the context of the absolute algebraic connectivity of a

graph. Clearly (Av
(2)
R (X))2 is closely related to S(X): it amounts to

finding the (multi)subset of X with largest spread constant. The same

can be said for the relation between (Av
(2)
`2

(X))2 and S`2(X).

7.4. Proofs of Proposition 7.1 and Proposition 7.5. We start by
recording the following very simple lemma, whose proof is a straight-
forward application of the triangle inequality.

Lemma 7.10. Fix p ∈ [1,∞) and n ∈ N. Let (X, dX) be a metric
space and x1, . . . , xn,∈ X. Define

r
def
= min

i∈{1,...,n}

(
1

n

n∑
j=1

dX(xi, xj)
p

) 1
p

. (193)

Then

r 6

(
1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p

) 1
p

6 2r. (194)

Proof. Choose k ∈ {1, . . . , n} such that

r =

(
1

n

n∑
j=1

dX(xk, xj)
p

) 1
p

. (195)

The rightmost inequality in (194) follows from averaging the estimate
dX(xi, xj)

p 6 2p−1dX(xi, xk)
p + 2p−1dX(xk, xj)

p over i, j ∈ {1, . . . , n}.
The leftmost inequality in (194) follows from the definition of r. �

Lemma 7.11. Continuing with the notation of the statement and proof
of Lemma 7.10, in particular choosing k ∈ {1, . . . , n} so as to sat-
isfy (195), write

B
def
= {i ∈ {1, . . . , n} : dX(xi, xk) 6 4r} , (196)

and

M
def
=
{

(i, j) ∈ B ×B : dX(xi, xj) >
r

8

}
. (197)



COMPARISON OF METRIC SPECTRAL GAPS 65

Then,

|M | 6 n2

27p
=⇒

 1

n

∑
j∈{1,...,n}rB

dX(xj, xk)
p

 1
p

>
r

8
. (198)

Proof. Suppose that

|M | 6 n2

27p
. (199)

Recalling (195) and (196), it follows from Markov’s inequality that

n− |B|
n

6
1

4p
. (200)

Hence,

2

n2

n∑
i=1

∑
j∈{1,...,n}rB

dX(xi, xj)
p

6
2p

n2

n∑
i=1

∑
j∈{1,...,n}rB

(dX(xi, xk)
p + dX(xk, xj)

p)

(195)
=

2p(n− |B|)
n

rp +
2p

n

∑
j∈{1,...,n}rB

dX(xk, xj)
p

(200)

6
rp

2p
+

2p

n

∑
j∈{1,...,n}rB

dX(xk, xj)
p. (201)

Since every i, j ∈ B satisfy dX(xi, xj) 6 dX(xi, xk) + dX(xj, xk) 6 8r,

1

n2

∑
(i,j)∈B×B

dX(xi, xj)
p

(196)∧(197)

6
8prp|M |
n2

+
|B|2 − |M |

n2
· r

p

8p

(199)

6
rp

24p
+
rp

23p
. (202)

It follows that

rp
(194)

6
1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p

(201)∧(202)

6
rp

24p
+
rp

23p
+
rp

2p
+

2p

n

∑
j∈{1,...,n}rB

dX(xk, xj)
p,

which (since p > 1) implies that

1

n

∑
j∈{1,...,n}rB

dX(xk, xj)
p >

rp

8p
. �
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Lemma 7.12. Continuing with the notation of the statements and
proofs of Lemma 7.10 and Lemma 7.11, define

∀ i ∈ {1, . . . , n}, si
def
= max {0, dX(xi, xk)− 2r} .

If |M | 6 n2/27p then
n∑
i=1

n∑
j=1

|si − sj|p >
1

25p

n∑
i=1

n∑
j=1

dX(xi, xk)
p.

Proof. Due to Lemma 7.11 we know that

1

n

∑
j∈{1,...,n}rB

dX(xk, xj)
p >

rp

8p
(203)

Define B′
def
= {i ∈ {1, . . . , n} : dX(xi, xk) 6 2r}. If i ∈ B′ then si = 0,

and if j ∈ {1, . . . , n} r B then sj = dX(xj, xk) − 2r > 1
2
dX(xj, xk).

Also, recalling (195), it follows from Markov’s inequality that

n− |B′|
n

6
1

2p
. (204)

Consequently,
n∑
i=1

n∑
j=1

|si − sj|p > 2|B′|
∑

j∈{1,...,n}rB

dX(xj, xk)
p

2p

(203)∧(204)

>
n
(
1− 1

2p

)
2p−1

· nr
p

8p

(194)

>
1

25p

n∑
i=1

n∑
j=1

dX(xi, xj)
p. �

Proof of Proposition 7.1. Fix n ∈ N. Suppose that x1, . . . , xn ∈ X
and write S = {x1, . . . , xn} ⊆ X. Define r ∈ (0,∞) as in (193) and
let µ be a probability distribution over 2X that satisfies (178) with
∆ = r/8 and ζ = ζ(S; δ). Let M be defined as in (197) and suppose
that |M | > n2/27p. Then

1

n2

n∑
i=1

n∑
j=1

∫
2X
|dX(xi, Z)− dX(xj, Z)|p dµ(Z)

>
1

n2

∑
(i,j)∈M

(
r

8ζ

)p
µ

({
Z ∈ 2X : xi ∈ Z ∧ dX(xj, Z) >

r

8ζ

})

>
|M |
n2
· δr

p

8pζp
(205)

>
δ

211pζp
· 1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p, (206)
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where (205) uses (178) and (197), and (206) uses (194) and the as-
sumption |M | > n2/27p. It follows that there exists Z ⊆ X such that
the 1-Lipschitz function f : X → R given by f(x) = dX(x, Z) satisfies

n∑
i=1

n∑
j=1

|f(xi)− f(xj)|p >
δ

211pζp

n∑
i=1

n∑
j=1

dX(xi, xj)
p.

If, on the hand, |M | 6 n2/27p then the desired estimate follows by
choosing f(x) = max{0, dX(x, xk)−2r} and applying Lemma 7.12. �

Proof of Proposition 7.5. Fix n ∈ N and choose x1, . . . , xn ∈ X. Define
r ∈ (0,∞) as in (193) and k ∈ {1, . . . , n} as in (195). Let M be defined
as in (197) and suppose that |M | > n2/27p. An application of (185)
with ∆ = r/8 and z = xk shows that

n∑
i=1

n∑
j=1

dY (fxk∆ (xi), f
xk
∆ (xj))

p >
∑

(i,j)∈M

dY (fxk∆ (xi), f
xk
∆ (xj))

p

> |M |
‖f‖pLip

Dp
· r

p

8p
>
n2rp‖f‖pLip

210pDp
>
‖f‖pLip

211pDp

n∑
i=1

n∑
j=1

dX(xi, xj)
p.

This yields the desired average distortion embedding into Y . If, on
the hand, |M | 6 n2/27p then the existence of the desired embedding
into R follows by choosing f(x) = max{0, dX(x, xk)−2r} and applying
Lemma 7.12. �

It is natural to ask how the quantities Av
(p)
Y (X) and Av

(q)
Y (X) are

related to each other for distinct p, q ∈ [1,∞) and two metric space
(X, dX) and (Y, dY ). We shall now briefly address this matter.

Suppose that D > Av
(q)
Y (X) and fix x1, . . . , xn ∈ X. Then there

exists a nonconstant mapping f : {x1, . . . , xn} → Y such that
n∑
i=1

n∑
j=1

dY (f(xi), f(xj))
q >
‖f‖qLip

Dq

n∑
i=1

n∑
j=1

dX(xi, xj)
q. (207)

Suppose first that q < p, and continue using the notation of Lemma 7.10
and Lemma 7.11. If |M | > n2/27p then(

1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
q

) 1
q

>

 1

n2

∑
(i,j)∈M

dX(xi, xj)
q

 1
q

(197)

>

(
1

27p
· r

q

8q

) 1
q (194)

&
1

27p/q

(
1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p

) 1
p

. (208)
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Consequently,

(
1

n2

n∑
i=1

n∑
j=1

dY (f(xi), f(xj))
p

) 1
p

>

(
1

n2

n∑
i=1

n∑
j=1

dY (f(xi), f(xj))
q

) 1
q

(207)∧(208)

&
‖f‖Lip

27p/qD

(
1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p

) 1
p

. (209)

By using Lemma 7.12 if |M | 6 n2/27p, we deduce from (209) that

q < p =⇒ Av
(p)
Y×R(X) . 27p/qAv

(q)
Y (X), (210)

where Y ×R is understood to be equipped with, say, the `1-sum metric,
i.e., dY×R((x, s), (y, t)) = d(x, y) + |s− t| for every (x, s), (y, t) ∈ Y ×R
(as in Proposition 7.5, we can conclude here that there exists an average
distortion embedding into either Y or R, but we choose to work with
Y × R for notational simplicity).

If p < q then the following argument establishes an estimate analo-
gous to (210), but under an additional assumption. The Lipschitz ex-
tension constant for the pair of metric spaces (X, Y ), denoted e(X, Y ),
is the infimum over those K ∈ [1,∞) such that for every S ⊆ X every
Lipschitz function f : S → Y admits an extension F : X → Y with
‖F‖Lip 6 K‖f‖Lip. If no such K exists then set e(X, Y ) =∞. Suppose
that p < q and that |M | > n2/27p. By the definition of D there exists
a nonconstant mapping φ : B → Y such that∑

(i,j)∈B×B

dY (φ(xi), φ(xj))
q >
‖φ‖qLip

Dq

∑
(i,j)∈B×B

dX(xi, xj)
q. (211)

Note that since for every i, j ∈ B we have dX(xi, xj) 6 8r,∑
(i,j)∈B×B

dY (φ(xi), φ(xj))
q

6 (8r‖φ‖Lip)q−p
∑

(i,j)∈B×B

dY (φ(xi), φ(xj))
p. (212)

Also, arguing as in (208) we have

1

n2

∑
(i,j)∈B×B

dX(xi, xj)
q & (cr)q, (213)
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where c ∈ (0,∞) is a universal constant. By substituting (212) and (213)
into (211) we therefore have 1

n2

∑
(i,j)∈B×B

dY (φ(xi), φ(xj))
p

 1
p

>
(c/8)q/p‖φ‖Lipr

Dq/p

(194)

>
(c/8)q/p‖φ‖Lip

Dq/p

(
1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p

) 1
p

. (214)

By extending φ to a mapping Φ : X → Y with ‖Φ‖Lip . e(X, Y )‖φ‖Lip

we see that(
1

n2

n∑
i=1

n∑
j=1

dY (Φ(xi),Φ(xj))
p

) 1
p

>

 1

n2

∑
(i,j)∈B×B

dY (φ(xi), φ(xj))
p

 1
p

(214)

>
‖Φ‖Lip

(CD)q/pe(X, Y )

(
1

n2

n∑
i=1

n∑
j=1

dX(xi, xj)
p

) 1
p

, (215)

where C ∈ (0,∞) is a universal constant. By using Lemma 7.12 if
|M | 6 n2/27p, we deduce from (215) that

p < q =⇒ Av
(p)
Y×R(X) . e(X, Y )

(
CAv

(q)
Y (X)

)q/p
. (216)

By [Bal92, NPSS06] for p ∈ [2,∞) we have e(`p, `2) .
√
p. It there-

fore follows from (210) and (216) combined with Corollary 1.6 that for
every p ∈ [2,∞) and q ∈ [1,∞) we have

Av
(q)
`2

(`p) .

{
24qp if q > 2,

p
2
q

+ 1
2 if q < 2.

(217)

It seems unlikely that (217) is sharp.

Appendix: a refinement of Markov type

Below is an application of Theorem 1.5 that I found in collaboration
with Yuval Peres. I thank him for agreeing to include it here.

Fix n ∈ N and an n by n symmetric stochastic matrix A = (aij).
Then for every m ∈ N and x1, . . . , xn ∈ R we have∑n

i=1

∑n
j=1(Am)ij(xi − xj)2∑n

i=1

∑n
j=1 aij(xi − xj)2

6
m−1∑
t=0

λ2(A)t. (218)

(218) becomes evident when one expresses the vector (x1, . . . , xn) ∈ Rn

in an orthonormal eigenbasis of A, showing also that the multiplicative
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factor 1 + λ2(A) + . . . + λ2(A)m−1 is sharp. By using the estimate
|λ2(A)| 6 1, it follows from (218) that Hilbert space has Markov type
2 with M2(`2) = 1; this was Ball’s original proof of this fact in [Bal92].

Suppose that p ∈ (2,∞). In [NPSS06] it was shown that `p has
Markov type 2, and in fact that M2(`p) .

√
p. This is the same as

asserting the following inequality, which holds true for every n by n
symmetric stochastic matrix A = (aij) and every x1, . . . , xn ∈ `p.

∀m ∈ N,
∑n

i=1

∑n
j=1(Am)ij‖xi − xj‖2

`p∑n
i=1

∑n
j=1 aij‖xi − xj‖2

`p

. pm. (219)

It is natural to ask whether or not one can refine inequality (219) in
the spirit of (218) so as to yield an estimate in terms of λ2(A) that
becomes (219) if one uses the a priori bound |λ2(A)| 6 1. Below we
will show how a combination of [NPSS06] and Theorem 1.5 yields the
following estimate, thus answering this question positively.∑n

i=1

∑n
j=1(Am)ij‖xi − xj‖2

`p∑n
i=1

∑n
j=1 aij‖xi − xj‖2

`p

. p
m−1∑
t=0

(
1− 2

p
(1− λ2(A))

)t
. (220)

To explain the similarity of (220) to (218), note that if m > p/2
then (220) has the following equivalent form.∑n

i=1

∑n
j=1(Am)ij‖xi − xj‖2

`p∑n
i=1

∑n
j=1 aij‖xi − xj‖2

`p

. p2

d2m/pe∑
t=1

λ2(A)t. (221)

Also, if λ2(A) is positive and bounded away from 0, say, if λ2(A) > 1/2,
then inequality (220) has the following equivalent form.∑n

i=1

∑n
j=1(Am)ij‖xi − xj‖2

`p∑n
i=1

∑n
j=1 aij‖xi − xj‖2

`p

. p
m−1∑
t=0

λ2(A)2t/p. (222)

The proof of Lemma 7.13 below is a simple variant of an unpublished
argument of Mark Braverman (2009), who proved the same statement
for p = 1; see Exercise 13.10 in [LP13]. The factor 2p in inequality (223)
below is asymptotically sharp as n→∞: this follows mutatis mutandis
from an unpublished argument of Oded Schramm (2007), who proved
the same statement when p = 1; see Exercise 13.10 in [LP13].

Lemma 7.13. Fix p ∈ [1,∞) and a metric space (X, dX). Fix also
n ∈ N and an n by n symmetric stochastic matrix A = (aij). Then for
every s, t ∈ N with t > s and every x1, . . . , xn ∈ X we have

n∑
i=1

n∑
j=1

(A2s)ijdX(xi, xj)
p 6 2p

n∑
i=1

n∑
j=1

(At)ijdX(xi, xj)
p. (223)
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and
n∑
i=1

n∑
j=1

(A2s+1)ijdX(xi, xj)
p 6 3p

n∑
i=1

n∑
j=1

(At)ijdX(xi, xj)
p. (224)

Proof. We have dX(xi, xj)
p 6 2p−1dX(xi, xk)

p + 2p−1dX(xj, xk)
p for ev-

ery i, j, k ∈ {1, . . . , n}. For every ` ∈ {1, . . . , n} multiply this in-
equality by (As)i`(A

s)j`(A
t−s)k` and sum the resulting inequality over

i, j, k, ` ∈ {1, . . . , n}, thus obtaining the following estimate.
n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

(As)i`(A
s)j`(A

t−s)k`dX(xi, xj)
p

6 2p−1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

(As)i`(A
s)j`(A

t−s)k`dX(xi, xk)
p

+ 2p−1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

(As)i`(A
s)j`(A

t−s)k`dX(xj, xk)
p. (225)

Since A is symmetric and stochastic, (225) is the same as (223).
To deduce (224), observe that the convexity of u 7→ |u|p implies that

for every i, j, k ∈ {1, . . . , n} we have

dX(xi, xj)
p 6

(
3

2

)p−1

dX(xi, xk)
p + 3p−1dX(xj, xk)

p. (226)

(224) now follows by multiplying (226) by (A2s)ikakj, summing the
resulting inequality over i, j, k ∈ {1, . . . , n}, and using (223). �

Corollary 7.14. Fix p ∈ [1,∞) and m,n ∈ N. Suppose that A = (aij)
is an n by n symmetric stochastic matrix. Then for every metric space
(X, dX) and every x1, . . . , xn ∈ X we have

n∑
i=1

n∑
j=1

(Am)ijdX(xi, xj)
p 6 3pγ(A, dpX)

n∑
i=1

n∑
j=1

aijdX(xi, xj)
p.

Proof. We may assume without loss of generality that γ(A, dpX) < ∞,
i.e., that A is ergodic. In this case we have limt→∞(At)ij = 1/n for
every i, j ∈ {1, . . . , n}. Therefore by Lemma 7.13 (with t→∞),

n∑
i=1

n∑
j=1

(Am)ijdX(xi, xj)
p 6

3p

n

n∑
i=1

n∑
j=1

dX(xi, xj)
p

(3)

6 3pγ(A, dpX)
n∑
i=1

n∑
j=1

aijdX(xi, xj)
p. �
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The following corollary is an immediate consequence of Corollary 7.14
and the definition of the Markov type p constant Mp(X;m).

Corollary 7.15. Fix p ∈ [1,∞) and let (X, dX) be a metric space with
Markov type p, i.e., Mp(X) < ∞. Then for every m,n ∈ N, every n
by n symmetric stochastic matrix A = (aij) and every x1, . . . , xn ∈ X,∑n

i=1

∑n
j=1(Am)ijdX(xi, xj)

p∑n
i=1

∑n
j=1 aijdX(xi, xj)p

6 min
{
Mp(X;m)pm, 3pγ(A, dpX)

}
.

Assume from now on that n > 3, so that λ2(A) > −1/2 (recall
Lemma 2.2). Since 1 + (1 − u) + . . . + (1 − u)m−1 � min{m, 1/u} for
every u ∈ (0, 3/2] and m ∈ N, inequality (220) is a consequence of
Corollary 7.15 (with X = `p and p = 2), Theorem 1.5, and (219).

To state two additional examples of consequences of this type, fix
K ∈ [2,∞) and let (X, dX) be a metric space that is doubling with
constant K. In [DLP13] it is shown that M2(X) . logK, so in combi-
nation with Corollary 7.2 we deduce from Corollary 7.15 that∑n

i=1

∑n
j=1(Am)ijdX(xi, xj)

2∑n
i=1

∑n
j=1 aijdX(xi, xj)2

. (logK)2

m−1∑
t=0

λ2(A)t. (227)

Similarly, it was shown that if G is a connected planar graph then
M2(G, dG) . 1, so in combination with Corollary 7.2 we deduce from
Corollary 7.15 that∑n

i=1

∑n
j=1(Am)ijdX(xi, xj)

2∑n
i=1

∑n
j=1 aijdX(xi, xj)2

.
m−1∑
t=0

λ2(A)t. (228)

Despite the validity of satisfactory spectral estimates such as (220),
(221), (222), (227) and (228), they do not follow automatically only
from the fact that the metric space in question has Markov type 2.
Specifically, there exists a metric space (X, dX) that has Markov type
2, yet it is not true that γ(A, d2

X) .X 1/(1−λ2(A)) for every symmetric
stochastic matrix A. To see this, by Theorem 1.3 it suffices to prove
the following result.

Theorem 7.16. There is a metric space (X, dX) with Av
(2)
`2

(X) =∞,
yet M2(X) <∞, i.e., X has Markov type 2.

Proof. If Λ ⊆ Rn is a lattice of rank n then denote the length of the
shortest nonzero vector in Λ by N(Λ). Also, let r(Λ) denote the in-
fimum over those r ∈ (0,∞) such that Euclidean balls of radius r
centered at Λ cover Rn. The dual lattice of Λ is denoted Λ∗; thus Λ∗ is
the set of all x ∈ Rn such that

∑n
i=1 xiyi is an integer for every y ∈ Λ.
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For every n ∈ N choose an arbitrary rank n lattice Λn ⊆ Rn that
satisfies r(Λn) . N(Λn). See [Rog50] for the existence of such lattices.
Let Rn/Λ∗n be the corresponding flat torus, equipped with the natu-
ral Riemannian quotient metric dRn/Λ∗n(·, ·). Also, let µn denote the
normalized Riemannian volume measure on Rn/Λ∗n.

Consider the `2 product

X
def
=

(
∞⊕
n=1

(Rn/Λ∗n)

)
2

.

Thus X consists of all the sequences x = (xn)∞n=1 ∈
∏∞

n=1 (Rn/Λ∗n)
such that

∑∞
n=1 dRn/Λ∗n(xn, 0)2 < ∞, equipped with the metric given

by dX (x, y)2 =
∑∞

n=1 dRn/Λ∗n(xn, yn)2 for every x, y ∈ X. Since Rn/Λ∗n
has vanishing sectional curvature, it is an Aleksandrov space of non-
negative curvature (see [Oht09b, Sec. 3]), and therefore by a theorem of
Ohta [Oht09b] it has Markov type 2 constant at most 1+

√
2. Being an

`2 product of spaces with uniformly bounded Markov type 2 constant,
X also has Markov type 2.

Fix ε ∈ (0, 1). By covering the fundamental parallelepiped of Λ∗n by
homothetic copies of itself, we see that there exists a finite measurable
partition {U1, . . . , Uk} of the torus Rn/Λ∗n into sets of diameter at most
ε and µn(Ui) = 1/k for every i ∈ {1, . . . , k}.

Fix an arbitrary point xi ∈ Ui and suppose that f : {x1, . . . , xk} → `2

is 1-Lipschitz. Since M2(Rn/Λ∗n) 6 1 +
√

2 6 3, by Ball’s extension
theorem [Bal92] there exists F : Rn/Λ∗n → `2 that extends f and
satisfies ‖F‖Lip 6 3. By arguing as in the proof of Lemma 7.8, we have

1

k2

k∑
i=1

k∑
j=1

‖f(xi)− f(xj)‖2
`2

6 3

∫
Rn/Λ∗n

∫
Rn/Λ∗n

‖F (x)− F (y)‖2
`2
dµn(x)dµn(y) + 54ε2, (229)

and

1

k2

k∑
i=1

dRn/Λ∗n(xi, xj)

>
1

3

∫
Rn/Λ∗n

∫
Rn/Λ∗n

dRn/Λ∗n(x, y)2dµn(x)dµn(y)− 2ε2, (230)

By [KN06, Lem. 11], for every Lipschitz mapping g : Rn/Λ∗n → `2,∫
Rn/Λ∗n

∫
Rn/Λ∗n

‖g(x)− g(y)‖2
`2
dµn(x)dµn(y) .

n‖g‖2
Lip

N(Λ∗n)2
. (231)
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Also, by [KN06, Lem. 10] we have∫
Rn/Λ∗n

∫
Rn/Λ∗n

dRn/Λ∗n(x, y)2dµn(x)dµn(y) &
n2

r(Λ∗n)2
. (232)

Hence, by letting ε → 0 in (229) and (230), it follows from (231)
and (232) that

Av
(2)
`2

(Rn/Λ∗n) &
N(Λ∗n)

r(Λ∗n)

√
n &
√
n, (233)

where we used the assumption r(Λn) . N(Λn). Now Av
(2)
`2

(X) = ∞
follows from (233) and the definition of X. �

Remark 7.17. The use of Ball’s extension theorem in the proof of The-
orem 7.16 can be replaced by the use of Kirszbraun’s extension theo-
rem [Kir34] combined with the fact [KN06, Thm. 6] (see also [HR13])
that c2(Rn/Λ∗n) .n 1; in this case the factor 54 in (229) would be re-
placed by a factor that depends on n, but since we let ε→ 0 this does
not affect the rest of the proof (however, if one desires to bound k as a
function of n, this approach would yield an inferior estimate).
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