
Ramsey partitions and proximity data structures∗

Manor Mendel
The Open University of Israel
mendelma@gmail.com

Assaf Naor
Microsoft Research

anaor@microsoft.com

Abstract

This paper addresses the non-linear isomorphic Dvoret-
zky theorem and the design of good approximate distance
oracles for large distortion. We introduce and construct
optimal Ramsey partitions, and use them to show that for
every ε ∈ (0, 1), any n-point metric space has a subset of
size n1−ε which embeds into Hilbert space with distortion
O(1/ε). This result is best possible and improves part of
the metric Ramsey theorem of Bartal, Linial, Mendel and
Naor [5], in addition to considerably simplifying its proof.

We use our new Ramsey partitions to design approximate
distance oracles with a universal constant query time, clos-
ing a gap left open by Thorup and Zwick in [26]. Namely,
we show that for any n point metric space X , and k ≥ 1,
there exists an O(k)-approximate distance oracle whose
storage requirement is O

(
n1+1/k

)
, and whose query time is

a universal constant. We also discuss applications to vari-
ous other geometric data structures, and the relation to well
separated pair decompositions.

1. Introduction

Motivated by the search for a non-linear version of
Dvoretzky’s theorem, Bourgain, Figiel and Milman [8]
posed the following problem, which is known today as the
metric Ramsey problem: Given a target distortion α > 1
and an integer n, what is the largest k such that every n-
point metric space has a subset of size k which embeds
into Hilbert space with distortion α? (Recall that a met-
ric space (X, dX) is said to embed into Hilbert space with
distortion α if there exists a mapping f : X → L2 such that
for every x, y ∈ X , we have dX(x, y) ≤ ‖f(x)−f(y)‖2 ≤
αdX(x, y)). This problem has since been investigated by
several authors, motivated in part by the discovery of its ap-
plications to online algorithms — we refer to [5] for a dis-
cussion of the history and applications of the metric Ramsey

∗Extended abstract. Full version available at http://arxiv.org/
abs/cs/0511084. Part of this work was carried out while M. Mendel
was visiting Microsoft Research.

problem.
The most recent work on the metric Ramsey problem is

due to Bartal, Linial, Mendel and Naor [5], who obtained
various nearly optimal upper and lower bounds in several
contexts. Among the results in [5] is the following the-
orem which deals with the case of large distortion: For
every ε ∈ (0, 1), any n-point metric space has a subset
of size n1−ε which embeds into an ultrametric with dis-
tortion O

(log(2/ε)
ε

)
(recall that an ultrametric (X, dX) is a

metric space satisfying for every x, y, z ∈ X , dX(x, y) ≤
max {dX(x, z), dX(y, z)}). Since ultrametrics embed iso-
metrically into Hilbert space, this is indeed a metric Ram-
sey theorem. Moreover, it was shown in [5] that this result
is optimal up to the log(2/ε) factor, i.e. there exists arbi-
trarily large n-point metric spaces, every subset of which of
size n1−ε incurs distortion Ω(1/ε) in any embedding into
Hilbert space. The main result of this paper closes this gap:

Theorem 1.1. Let (X, dX) be an n-point metric space and
ε ∈ (0, 1). Then there exists a subset Y ⊆ X with |Y | ≥
n1−ε such that (Y, dX) is equivalent to an ultrametric with
distortion at most 128

ε .

In the four years that elapsed since our work on [5] there
has been remarkable development in the structure theory of
finite metric spaces. In particular, the theory of random par-
titions of metric spaces has been considerably refined, and
was shown to have numerous applications in mathematics
and computer science (see for example [15, 22, 21, 1] and
the references therein). The starting point of the present pa-
per was our attempt to revisit the metric Ramsey problem
using random partitions. It turns out that this approach can
indeed be used to resolve the metric Ramsey problem for
large distortion, though it requires the introduction of a new
kind of random partition, an improved “padding inequality”
for known partitions, and a novel application of the ran-
dom partition method in the setting of Ramsey problems.
In Section 2 we introduce the notion of Ramsey partitions,
and show how they can be used to address the metric Ram-
sey problem. We then proceed in Section 3 to construct
optimal Ramsey partitions, yielding Theorem 1.1. Our con-
struction is inspired in part by Bartal’s probabilistic embed-
ding into trees [4], and is based on a random partition due to

Calinescu, Karloff and Rabani [9], with an improved analy-
sis which strengthens the work of Fakcharoenphol, Rao and
Talwar [15]. In particular, our proof of Theorem 1.1 is self
contained, and considerably simpler than the proof of the
result from [5] quoted above. Nevertheless, the construc-
tion of [5] is deterministic, while our proof of Theorem 1.1
is probabilistic. Moreover, we do not see a simple way to
use our new approach to simplify the proof of another main
result of [5], namely the phase transition at distortion α = 2
(we refer to [5] for details, as this result will not be used
here).

1.1 Proximity data structures

The main algorithmic application of the metric Ramsey
theorem in [5] is to obtain the best known lower bounds
on the competitive ratio of the randomized k-server prob-
lem. We refer to [5] and the references therein for more
information on this topic, as Theorem 1.1 does not yield im-
proved k-server lower bounds. However, Ramsey partitions
are useful to obtain positive results, and not only algorith-
mic lower bounds, which we now describe.

A finite metric space can be thought of as given by
its n × n distance matrix. However, in many algorith-
mic contexts it is worthwhile to preprocess this data so
that we store significantly less than n2 numbers, and still
be able to quickly find out approximately the distance be-
tween two query points. In other words, quoting Thorup
and Zwick [26], “In most applications we are not really in-
terested in all distances, we just want the ability to retrieve
them quickly, if needed”. The need for such “compact” rep-
resentation of metrics also occurs naturally in mathematics;
for example the methods developed in theroetical computer
science (specifically [11, 18]) are a key tool in the recent
work of Fefferman and Klartag [16] on the extension of Cm

functions defined on n points in Rd to all of Rd.
An influential compact representation of metrics used in

theoretical computer science is the approximate distance
oracle [3, 13, 26, 18]. Stated formally, a (P, S,Q,D)-
approximate distance oracle on a finite metric space
(X, dX) is a data structure that takes expected time P to
preprocess from the given distance matrix, takes space S
to store, and given two query points x, y ∈ X , com-
putes in time Q a number E(x, y) satisfying dX(x, y) ≤
E(x, y) ≤ D · dX(x, y). Thus the distance matrix itself is a
(P = O(1), S = O(n2), Q = O(1),D = 1)- approximate
distance oracle, but clearly the interest is in compact data
structures in the sense that S = o(n2). In what follows we
will depart from the above somewhat cumbersome termi-
nology, and simply discuss D-approximate distance oracles
(emphasizing the distortion D), and state in words the val-
ues of the other relevant parameters.

An important paper of Thorup and Zwick [26] constructs

the best known approximate distance oracles. Namely, they
show that for every integer k, every n-point metric space has
a (2k − 1)-approximate distance oracle which can be pre-
processed in O

(
n2
)

time, requires storage O
(
k · n1+1/k

)
,

and has query time O(k). Moreover, it is shown in [26]
that this distortion/storage tradeoff is almost tight: A widely
believed combinatorial conjecture of Erdős [14] is shown
in [26] (see also [23]) to imply that any data structure sup-
porting approximate distance queries with distortion at most
2k − 1 must be of size at least Ω

(
n1+1/k

)
bits. Since for

large values of k the query time of the Thorup-Zwick ora-
cle is large, the problem remained whether there exist good
approximate distance oracles whose query time is a con-
stant independent of the distortion (i.e., in a sense, true “or-
acles”). Here we use Ramsey partitions to answer this ques-
tion positively: For any large enough distortion, every met-
ric space admits an approximate distance oracle with stor-
age space almost as good as the Thorup-Zwick oracle1, but
whose query time is a universal constant. Stated formally,
we prove the following theorem:

Theorem 1.2. For any k > 1, every n-point metric space
(X, dX) admits a O(k)-approximate distance oracle whose
preprocessing time is O

(
n2+1/k log n

)
, requiring storage

space O
(
n1+1/k

)
, and whose query time is a universal con-

stant.

Another application of Ramsey partitions is to the con-
struction of data structures for approximate ranking. This
problem is motivated in part by web search and the analy-
sis of social networks, in addition to being a natural exten-
sion of the ubiquitous approximate nearest neighbor search
problem (see [2, 20, 12] and the references therein). In the
approximate nearest neighbor search problem we are given
c > 1, a metric space (X, dX), and a subset Y ⊆ X . The
goal is to preprocess the data points Y so that given a query
point x ∈ X \ Y we quickly return a point y ∈ Y which
is a c-approximate nearest neighbor of x, i.e. dX(x, y) ≤
cdX(x, Y). More generally, one might want to find the sec-
ond closest point to x in Y , and so forth (this problem has
been studied extensively in computational geometry, see for
example [2]). In other words, by ordering the points in X
in increasing distance from x ∈ X we induce a proximity
ranking of the points of X . Each point of X induces a dif-
ferent ranking of this type, and computing it efficiently is a
natural generalization of the nearest neighbor problem. Us-
ing our new Ramsey partitions we design the following data
structure for solving this problem approximately:

Theorem 1.3. Fix k > 1, and an n-point metric space
(X, dX). Then there exist a data structure which can
be preprocessed in time O

(
kn2+1/k log n

)
, uses only

1In fact, for distortions larger than Ω(log n/ log log n) our storage
space is slightly better.

O
(
kn1+1/k

)
storage space, and supports the following

type of queries: Given x ∈ X , have “fast access” to a per-
mutation of π(x) of X satisfying for every 1 ≤ i < j ≤ n,
dX

(
x, π(x)(i)

) ≤ O(k) ·dX

(
x, π(x)(j)

)
. By “fast access”

to π(x) we mean that we can do the following:
1. Given a point x ∈ X , and i ∈ {1, . . . , n}, find π(x)(i)

in constant time.
2. For any x, u ∈ X , compute j ∈ {1, . . . , n} such that

π(x)(j) = u in constant time.

2. Ramsey partitions and their equivalence to
the metric Ramsey problem

Let (X, dX) be a metric space. In what follows for x ∈
X and r ≥ 0 we let BX(x, r) = {y ∈ X : dX(x, y) ≤
r} be the closed ball of radius r centered at x. Given a
partition P of X and x ∈ X we denote by P(x) the unique
element of P containing x. For ∆ > 0 we say that P
is ∆-bounded if for every C ∈ P , diam(C) ≤ ∆. A
partition tree of X is a sequence of partitions {Pk}∞k=0 of
X such that P0 = {X}, for all k ≥ 0 the partition Pk is
8−k diam(X)-bounded, and Pk+1 is a refinement of Pk

(the choice of 8 as the base of the exponent in this definition
is convenient, but does not play a crucial role here). For
β, γ > 0 we shall say that a probability distribution Pr over
partition trees {Pk}∞k=0 of X is completely β-padded with
exponent γ if for every x ∈ X ,

Pr
[∀ k ∈ N, BX

(
x, β · 8−k diam(X)

) ⊆Pk(x)
]

≥ |X|−γ .

We shall call such probability distributions over partition
trees Ramsey partitions.

The following lemma shows that the existence of good
Ramsey partitions implies a solution to the metric Ramsey
problem. In fact, it is possible to prove the converse di-
rection, i.e. that the metric Ramsey theorem implies the
existence of good Ramsey partitions (with appropriate de-
pendence on the various parameters). We defer the proof of
this implication to the full version of this paper, as it will
not be used in this paper due to the fact that in Section 3 we
will construct directly optimal Ramsey partitions.

Lemma 2.1. Let (X, dX) be an n-point metric space which
admits a distribution over partition trees which is com-
pletely β-padded with exponent γ. Then there exists a sub-
set Y ⊆ X with |Y | ≥ n1−γ which is 8/β equivalent to an
ultrametric.

Proof. We may assume without loss of generality that
diam(X) = 1. Let {Pk}∞k=0 be a distribution over par-
tition trees of X which is completely β-padded with expo-
nent γ. We define an ultrametric ρ on X as follows. For

x, y ∈ X let k be the largest integer for which Pk(x) =
Pk(y), and set ρ(x, y) = 8−k. It is straightforward to
check that ρ is indeed an ultrametric. Consider the random
subset Y ⊆ X given by

Y =
{
x ∈ X : ∀ k ∈ N, BX

(
x, β · 8−k

) ⊆Pk(x)
}

.

Then by linearity of the expectation, E|Y | ≥ n1−γ . We can
therefore choose Y ⊆ X with |Y | ≥ n1−γ such that for all
x ∈ Y and all k ≥ 0 we have BX

(
x, β · 8−k

) ⊆ Pk(x).
Fix x, y ∈ X , and let k be the largest integer for which
Pk(x) = Pk(y). Then dX(x, y) ≤ diam(Pk(x)) ≤
8−k = ρ(x, y). On the other hand, if x ∈ X and y ∈ Y
then, since Pk+1(x) 	= Pk+1(y), the choice of Y implies
that x /∈ BX

(
y, β · 8−k−1

)
. Thus dX(x, y) > β · 8−k−1 =

β
8 ρ(x, y). It follows that the metrics dX and ρ are equivalent
on Y with distortion 8/β.

3. Constructing optimal Ramsey partitions

The following lemma gives improved bounds on the
“padding probability” of a distribution over partitions which
was discovered by Calinescu, Karloff and Rabani in [9].

Lemma 3.1. Let (X, dX) be a finite metric space. Then for
every ∆ > 0 there exists a distribution Pr over ∆-bounded
partitions of X such that for every 0 < t ≤ ∆/8 and every
x ∈ X ,

Pr [BX (x, t) ⊆P(x)] ≥
(|BX(x,∆/8)|
|BX(x,∆)|

) 16t
∆

. (1)

Remark 3.1. The distribution over partitions used in the
proof of Lemma 3.1 is precisely the distribution intro-
duced by Calinescu, Karloff and Rabani in [9]. In [15]
Fakcharoenphol, Rao and Talwar proved the following esti-
mate for the same distribution

Pr [BX (x, t) ⊆P(x)]

≥ 1−O

(
t

∆
log

|BX(x,∆)|
|BX(x,∆/8)|

)
. (2)

Clearly the bound (1) is stronger than the bound (2), and
in particular it yields a non-trivial estimate even for large
values of t for which the lower bound in (2) is negative.
This improvement is crucial for our proof of Theorem 1.1.
The use of the “local ratio of balls” (or “local growth”) in
the estimate (2) of Fakcharoenphol, Rao and Talwar was a
fundamental breakthrough, which, apart from their striking
application in [15], has since found several applications in
mathematics and computer science (see [22, 21, 1]).

Proof of Lemma 3.1. Write X = {x1, . . . , xn}. Let
R be chosen uniformly at random from the interval

[∆/4,∆/2], and let π be a permutation of {1, . . . , n}
chosen uniformly at random from all such permuta-
tions (here, and in what follows, R and π are indepen-
dent). Define C1:=BX

(
xπ(1), R

)
and inductively for 2 ≤

j ≤ n, Cj :=BX

(
xπ(j), R

) \ ⋃j−1
i=1 Ci. Finally we let

P:={C1, . . . , Cn} \ {∅}. Clearly P is a (random) ∆-
bounded partition on X .

For every r ∈ [∆/4,∆/2],

Pr [BX (x, t) ⊆P(x)|R = r] ≥ |BX(x, r − t)|
|BX(x, r + t)| . (3)

Indeed, if R = r, then the triangle inequality implies that if
in the random order induced by the partition π on the points
of the ball BX(x, r+t) the minimal element is from the ball
BX(x, r− t), then BX (x, t) ⊆P(x) (See Figure 1). This
event happens with probability |BX(x,r−t)|

|BX(x,r+t)| , implying (3).

Write ∆
8t = k, and assume first that k is a positive integer.

Then

Pr [BX (x, t) ⊆P(x)]

≥ 4
∆

∫ ∆/2

∆/4

|BX(x, r − t)|
|BX(x, r + t)|dr (4)

=
4
∆

k−1∑
j=0

∫ ∆
4 +2(j+1)t

∆
4 +2jt

|BX(x, r − t)|
|BX(x, r + t)|dr

=
4
∆

∫ 2t

0

k−1∑
j=0

∣∣BX

(
x, ∆

4 + 2jt + s− t
)∣∣∣∣BX

(
x, ∆

4 + 2jt + s + t
)∣∣ds

≥ 4k

∆

∫ 2t

0

[
k−1∏
j=0

∣∣BX

(
x, ∆

4 + 2jt + s− t
)∣∣∣∣BX

(
x, ∆

4 + 2jt + s + t
)∣∣
] 1

k

ds (5)

=
4k

∆

∫ 2t

0

[∣∣BX

(
x, ∆

4 + s− t
)∣∣∣∣BX

(
x, ∆

4 + 2t (k − 1) + s + t
)∣∣
] 1

k

ds

≥ 8kt

∆

[∣∣BX

(
x, ∆

4 − t
)∣∣∣∣BX

(
x, ∆

4 + 2kt + t
)∣∣
] 1

k

=

[∣∣BX

(
x, ∆

4 − t
)∣∣∣∣BX

(
x, ∆

2 + t
)∣∣
] 8t

∆

,

where in (4) we used (3), and in (5) we used the arithmetic
mean/geometric mean inequality. Only minor changes (as
well as a loss of a factor of 2 in the exponent) are required
to extend the above analysis to the case when k is not an
integer (see the full version of this paper).

The following theorem, in conjunction with Lemma 2.1,
implies Theorem 1.1.

Theorem 3.2. For every α > 1, every finite metric space
(X, dX) admits a completely 1/α padded random partition
tree with exponent 16/α.

x

r − t

r + t

a

c

t

Figure 1. A schematic description of the lower bound
in (3). clusters that are induced by points which lie out-
side the ball BX(x, r + t), such as c, cannot touch the ball
BX(x, t). On the other hand, if a point from BX(x, r − t),
such as a, appeared first in the random order among the
points in BX(x, r + t) then its cluster will “swallow” the
ball BX(x, t). Only points in the shaded region can split
the ball BX(x, t).

Proof. Fix α > 1. Without loss of generality we may as-
sume that diam(X) = 1. We construct a partition tree
{Ek}∞k=0 of X as follows. Set E0 = {X}. Having de-
fined Ek we let Pk+1 be a partition as in Lemma 3.1 with
∆ = 8−k and t = ∆/α (the random partition Pk+1 is cho-
sen independently of the random partitions P1, . . . ,Pk).
Define Ek+1 to be the common refinement of Ek and Pk+1,
i.e. Ek+1:={C ∩ C ′ : C ∈ Ek, C ′ ∈ Pk+1}. The con-
struction implies that for every x ∈ X and every k ≥ 0
we have Ek+1(x) = Ek(x) ∩Pk+1(x). Thus one proves
inductively that

∀ k ∈ N, BX

(
x, 8−k

α

)
⊆Pk(x)

=⇒ ∀ k ∈ N, BX

(
x, 8−k

α

)
⊆ Ek(x).

From Lemma 3.1 and the independence of {Pk}∞k=1 it fol-
lows that

Pr
[
∀ k ∈ N, BX

(
x, 8−k

α

)
⊆ Ek(x)

]
≥ Pr

[
∀ k ∈ N, BX

(
x, 8−k

α

)
⊆Pk(x)

]
≥

∞∏
k=1

[|BX(x, 8−k−1)|
|BX(x, 8−k)

] 16
α

= |BX(x, 1/8)|− 16
α ≥ |X|− 16

α .

4. Applications to proximity data structures

In this section we show how Theorem 3.2 can be applied
to the design of various proximity data structures, which are
listed below. Before doing so we shall recall some standard
facts about tree representations of ultrametrics, all of which
can be found in the discussion in [5]. Any finite ultrametric
(X, ρ) can be represented by a rooted tree T = (V,E) with
labels ∆ : V → (0,∞), whose leaves are X , and such
that if u, v ∈ V and v is a child of u then ∆(v) ≤ ∆(u).
Given x, y ∈ X we then have ρ(x, y) = ∆ (lca(x, y)),
where lca(x, y) is the least common ancestor of x and y
in T . The labelled tree described above is called an HST
(hierarchically well separated tree).

Lemma 4.1 (Extending ultrametrics). Let (X, dX) be a fi-
nite metric space, and α ≥ 1. Fix ∅ 	= Y ⊆ X , and assume
that there exits an ultrametric ρ on Y such that for every
x, y ∈ Y , dX(x, y) ≤ ρ(x, y) ≤ αdX(x, y). Then there ex-
ists an ultrametric ρ̃ defined on all of X such that for every
x, y ∈ X we have dX(x, y) ≤ ρ̃(x, y), and if x ∈ X and
y ∈ Y then ρ̃(x, y) ≤ 6αdX(x, y).

Proof. Let T = (V,E) be the HST representation of ρ, with
labels ∆ : V → (0,∞). In other words, the leaves of T are
Y , and for every x, y ∈ Y we have ∆(lca(x, y)) = ρ(x, y).
It will be convenient to augment T by adding an incom-
ing edge to the root with ∆(parent(root)) = ∞. This
clearly does not change the induced metric on Y . For every
x ∈ X \ Y let y ∈ Y be its closest point in Y , i.e.
dX(x, y) = dX(x, Y). Let u be the least ancestor of y for
which ∆(u) ≥ dX(x, y) (such a u must exist because we
added the incoming edge to the root). Let v be the child of
u along the path connecting u and y. We add a vertex w on
the edge {u, v} whose label is dX(x, y), and connect x to
T as a child of w. The resulting tree is clearly still an HST.
Repeating this procedure for every x ∈ X \ Y we obtain an
HST T̃ whose leaves are X . Denote the labels on T̃ by ∆̃.

Fix x, y ∈ X , and let x′, y′ ∈ Y the nearest neighbors of
x, y (respectively) used in the above construction. Then

∆̃
(
lcaT̃ (x, y)

)
= max

{
∆̃
(
lcaT̃ (x, x′)

)
,

∆̃
(
lcaT̃ (y, y′)

)
, ∆̃
(
lcaT̃ (x′, y′)

)}
≥ max {dX(x, x′), dX(y, y′), dX(x′, y′)}

≥ dX(x, x′) + dX(y, y′) + dX(x′, y′)
3

≥ 1
3 dX(x, y). (6)

In the reverse direction, if x ∈ X and y ∈ Y let x′ ∈ Y
be the closest point in Y to x used in the construction of T̃ .

Then dX(x′, y) ≤ dX(x′, x) + dX(x, y) ≤ 2dX(x, y). If
lcaT̃ (y, x′) is an ancestor of lcaT̃ (x, x′) then

∆̃
(
lcaT̃ (x, y)

)
= ∆̃

(
lcaT̃ (x′, y)

)
= ρ(x′, y) ≤ α · dX(x′, y) ≤ 2α · dX(x, y). (7)

If, on the other hand, lcaT̃ (y, x′) is a descendant of
lcaT̃ (x, x′) then

∆̃
(
lcaT̃ (x, y)

)
= ∆̃

(
lcaT̃ (x, x′)

)
= dX(x, x′) ≤ dX(x, y). (8)

Scaling the labels of T̃ by a factor of 3, the required result
is a combination of (6), (7) and (8).

The following lemma is a structural result on the exis-
tence of a certain distribution over decreasing chains of sub-
sets of a finite metric space. In what follows we shall call
such a distribution a stochastic Ramsey chain. A schematic
description of this notion, and the way it is used in the en-
suing arguments, is presented in Figure 2 below.

Lemma 4.2 (Stochastic Ramsey chains). Let (X, dX) be
an n-point metric space and k ≥ 1. Then there exists a dis-
tribution over decreasing sequences of subsets X = X0 �
X1 � X2 · · · � Xs = ∅ (s itself is a random variable),
such that for all p > −1/k,

E
[s−1∑

j=0

|Xj |p
]
≤
(
max

{
k

1+pk , 1
})
· np+1/k, (9)

and such that for each j ∈ {1, . . . , s} there exists an ultra-
metric ρj on X satisfying for every x, y ∈ X , ρj(x, y) ≥
dX(x, y), and if x ∈ X and y ∈ Xj−1 \Xj then ρj(x, y) ≤
O(k) · dX(x, y).

Remark 4.1. In what follows we will only use the cases
p ∈ {0, 1, 2} in Lemma 4.2. Observe that for p = 0, (9) is
simply the estimate Es ≤ kn1/k.

Lemma 4.2 is proven by inductively applying Theo-
rem 3.2 and Lemma 2.1. We leave the complete proof to
the full version, since we have the following easy observa-
tion.

Observation 4.2. If one does not mind losing a factor of
O(log n) in the construction time and storage of the Ramsey
chain, then an alternative to Lemma 4.2 is to randomly and
independently sample O

(
n1/k log n

)
ultrametrics from the

Ramsey partitions.

Before passing to the description of our new data struc-
tures, we need to say a few words about the algorithmic
implementation of Lemma 4.2 (this will be the central pre-
processing step in our constructions). The computational

model we use is the “Unit cost floating-point word RAM
model”, discussed in Section 2.2 of [18]. The natural imple-
mentation of the Calinescu-Karloff-Rabani (CKR) random
partition used in the proof of Lemma 3.1 takes O

(
n2
)

time.
Denote by Φ = Φ(X) the aspect ratio of X , i.e. the diame-
ter of X divided by the minimal positive distance in X . The
construction of the distribution over partition trees in the
proof of Theorem 3.2 requires performing O(log Φ) such
decompositions. This results in O

(
n2 log Φ

)
preprocessing

time to sample one partition tree from the distribution. Us-
ing a standard technique we dispense with the dependence
on the aspect ratio and obtain that the expected preprocess-
ing time of one partition tree is O

(
n2 log n

)
. The full ver-

sion conrains more details.
The Ramsey chain in Lemma 4.2 will be used in

two different ways in the ensuing constructions. For
our approximate distance oracle data structure we will
just need that the ultrametric ρj is defined on Xj−1

(and not all of X). Thus, by the above argument,
and Lemma 4.2, the expected preprocessing time in this

case is O
(
E
∑s−1

j=1 |Xj |2 log |Xj |
)

= O
(
n2+1/k log n

)
and the expected storage space is O

(
E
∑s−1

j=1 |Xj |
)

=

O
(
n1+1/k

)
. For the purpose of our approximate rank-

ing data structure we will really need the metrics ρj

to be defined on all of X . Thus in this case the ex-
pected preprocessing time will be O

(
n2 log n · Es

)
=

O
(
kn2+1/k log n

)
, and the expected storage space is

O (n · Es) = O
(
kn1+1/k

)
.

1) Approximate distance oracles. Our improved approx-
imate distance oracle is contained in Theorem 1.2, which
we now prove.

Proof of Theorem 1.2. We shall use the notation in the
statement of Lemma 4.2. Let Tj = (Vj , Ej) and ∆j :
Vj → (0,∞) be the HST representation of the ultrametric
ρj (which was actually constructed explicitly in the proofs
of Lemma 2.1 and Lemma 4.2). The usefulness of the tree
representation stems from the fact that it is very easy to
handle algorithmically. In particular there exists a simple
scheme that takes a tree and preprocesses it in linear time
so that it is possible to compute the least common ancestor
of two given nodes in constant time (see [19, 6]). Hence,
we can preprocess any HST so that the distance between
any two points can be computed in O(1) time.

For every point x ∈ X let ix be the largest index for
which x ∈ Xix−1. Thus, in particular, x ∈ Yix

. We
further maintain for every x ∈ X a vector (in the sense
of data-structures) vecx of length ix (with O(1) time di-
rect access), such that for i ∈ {0, . . . , ix − 1}, vecx[i]
is a pointer to the leaf representing x in Ti. Now, given
a query x, y ∈ X assume without loss of generality that

ix ≤ iy . It follows that x, y ∈ Xix−1. We locate the
leaves x̂ = vecx[ix], and ŷ = vecy[ix] in Tix

, and then
compute ∆(lca (x̂, ŷ)) to obtain an O(k) approximation to
dX(x, y). Observe that the above data structure only re-
quires ρj to be defined on Xj−1 (and satisfying the conclu-
sion of Lemma 4.2 for x, y ∈ Xj−1). The expected pre-
processing time is O

(
n2+1/k log n

)
. The size of the above

data structure is O
(∑s

j=0 |Xj |
)

, which is in expectation

O
(
n1+1/k

)
.

2) Approximate ranking. Before passing to our α-
approximate ranking data structure (Theorem 1.3) we re-
call the setting of the problem. Thinking of X as a metric
on {1, . . . , n}, and fixing α > 1, the goal here is to asso-
ciate with every x ∈ X a permutation π(x) of {1, . . . , n}
such that dX

(
x, π(x)(i)

) ≤ α · dX

(
x, π(x)(j)

)
for every

1 ≤ i ≤ j ≤ n. This relaxation of the exact proximity
ranking induced by the metric dX allows us to gain storage
efficiency, while enabling fast access to this data. By fast
access we mean that we can preform the following tasks:

1. Given an element x ∈ X , and i ∈ {1, . . . , n}, find
π(x)(i) in O(1) time.

2. Given an element x ∈ X and y ∈ X , find number
i ∈ {1, . . . , n}, such that π(x)(i) = y, in O(1) time.

Before passing to the proof of Theorem 1.3 we require
the following lemma.

Lemma 4.3. Let T = (V,E) be a rooted tree with n leaves.
For v ∈ V , let LT (v) be the set of leaves in the subtree
rooted at v, and denote �T (v) = |LT (v)|. Then there exists
a data structure, that we call Size-Ancestor, which can
be constructed in time O(n), and answers in time O(1) the
following query: Given � ∈ N and a leaf x ∈ V , find an
ancestor u of x such that �T (u) < � ≤ �(parent(u)). Here
we use the convention �(parent(root)) =∞.

To the best of our knowledge, the data structure de-
scribed in Lemma 4.3 has not been previously studied. We
therefore include a proof of Lemma 4.3 in Appendix A, and
proceed at this point to conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. We shall use the notation in the
statement of Lemma 4.2. Let Tj = (Vj , Ej) and ∆j : Vj →
[0,∞) be the HST representation of the ultrametric ρj . We
may assume without loss of generality that each of these
trees is binary and does not contain a vertex which has only
one child. Before presenting the actual implementation of
the data structure, let us explicitly describe the permutation
π(x) that the data structure will use. For every internal ver-
tex v ∈ Vj assign arbitrarily the value 0 to one of its chil-
dren, and the value 1 to the other. This induces a unique
(lexicographical) order on the leaves of Tj . Next, fix x ∈ X
and ix such that x ∈ Yix

. The permutation π(x) is defined
as follows. Starting from the leaf x in Tix

, we scan the path

˜T1
˜T2

˜T3
˜T4

T1

T2

T3

T4

Figure 2. A schematic description of Ramsey chains and the way they are used to construct approximate distance oracles and
approximate ranking data structures. Ramsey chains are obtained by iteratively applying Theorem 3.2 and Lemma 2.1 to find a
decreasing chain of subsets X = X0 � X1 � X2 · · · � Xs = ∅ such that Xj \ Xj+1 can be approximated by a tree metric Tj+1.
The tree Tj+1 is, in a sense, a “distance estimator” for Xj \ Xj+1. These trees form an array which is an approximate distance
oracle. In the case of approximate ranking we also need to extend the tree Tj+1 to a tree on the entire space X using Lemma 4.1.
The nodes that were added to these trees are illustrated by empty circles.

from x to the root of Tix
. On the way, when we reach a ver-

tex u from its child v, let w denote the sibling of v, i.e. the
other child of u. We next output all the leafs which are de-
scendants of w according to the total order described above.
Continuing in this manner until we reach the root of Tix

we
obtain a permutation π(x) of X .

We claim that the permutation π(x) constructed above is
an O(k)-approximation to the proximity ranking induced
by x. Indeed, fix y, z ∈ X such that Ck · dX(x, y) <
dX(x, z), where C is a large enough absolute constant. We
claim that z will appear after y in the order induced by π(x).
This is true since the distances from x are preserved up to a
factor of O(k) in the ultrametric Tix

. Thus for large enough
C we are guaranteed that dTix

(x, y) < dTix
(x, z), and

therefore lcaTix
(x, z) is a proper ancestor of lcaTix

(x, y).
Hence in the order just describe above, y will be scanned
before z.

We now turn to the description of the actual data struc-
ture, which is an enhancement of the data structure con-
structed in the proof of Theorem 1.2. As in the proof of
Theorem 1.2 our data structure will consist of a “vector of
the trees Tj”, where we maintain for each x ∈ X a pointer
to the leaf representing x in each Tj . The remaining de-
scription of our data structure will deal with each tree Tj

separately. First of all, with each vertex v ∈ Tj we also
store the number of leaves which are the descendants of v,
i.e. |LTj

(v)| (note that all these numbers can be computed
in O(n) time using, say, depth-first search). With each leaf
of Tj we also store its index in the order described above.
There is a reverse indexing by a vector for each tree Tj that
allows, given an index, to find the corresponding leaf of Tj

in O(1) time. Each internal vertex contains a pointer to
its leftmost (smallest) and rightmost (largest) descendant

leaves. This data structure can be clearly constructed in
O(n) time using, e.g., depth-first transversal of the tree. We
now give details on how to answer the required queries us-
ing the “ammunition” we have listed above.

1. Using Lemma 4.3, find an ancestor v of x such that
�Tj

(v) < i ≤ �Tj
(parent(v)) in O(1) time. Let u =

parent(v) (note that v can not be the root). Let w be
the sibling of v (i.e. the other child of u). Next we pick
the leaf numbered

(
i− �Tj

(v)
)

+ left(w) − 1, where
left(w) is the index to the leftmost descendant of w.

2. Find u = lca(x, y) (in O(1) time, using [19, 6]). Let
v and w be the children of u, which are ancestors of x
and y, respectively. Return �Tj

(v) + ind(y)− left(w),
where ind(y) is the index of y in the total order of the
leaves of the tree.

This concludes the construction of our approximate
ranking data structure. Because we need to have the ul-
trametric ρj defined on all of X , the preprocessing time is
O
(
kn2+1/k log n

)
and the storage size is O

(
kn1+1/k

)
, as

required.

3) Computing the Lipschitz constant. In the full ver-
sion of this paper we describe a data structure for estimating
the Lipschitz constant of a given mapping between metric
spaces. Formally we prove:

Theorem 4.4. Given k ≥ 1, any n-point metric space
(X, dX) can be preprocessed in time O

(
n2+1/k log n

)
,

yielding a data structure requiring storage O
(
n1+1/k

)
which can answer in O

(
n1+1/k

)
time the following query:

Given a metric space (Y, dY) and a mapping f : X →
Y , compute a value A ≥ 0, such that ‖f‖Lip ≥ A ≥
‖f‖Lip/O(k).

5. Concluding Remarks

An s-well separated pair decomposition (WSPD) of an
n-point metric space (X, dX) is a collection of pair of sub-
sets {(Ai, Bi)}Mi=1, Ai, Bi ⊂ X , such that

1. ∀x, y ∈ X if x 	= y then (x, y) ∈ ⋃M
i=1(Ai ×Bi).

2. For all i 	= j, (Ai ×Bi) ∩ (Aj ×Bj) = ∅.
3. For all i ∈ {1, . . . ,M},

dX(Ai, Bi) ≥ s ·max{diam(Ai),diam(Bi)}.

The notion of s-WSPD was first defined for Euclidean
spaces in an influential paper of Callahan and Kosaraju [11],
where it was shown that for n-point subsets of a fixed di-
mensional Euclidean space there exists such a collection of
size O(n) that can be constructed in O(n log n) time. Sub-
sequently, this concept has been used in many geometric al-
gorithms (e.g. [27, 10]), and is today considered to be a ba-
sic tool in computational geometry. Recently the definition
and the efficient construction of WSPD were generalized
to the more abstract setting of doubling metrics [25, 18].
These papers have further demonstrated the usefulness of
this tool.

It would be clearly desirable to have a notion simi-
lar to WSPD in general metrics. However, as formulated
above, no non-trivial WSPD is possible in high dimen-
sional spaces, since any 2-WSPD of an n-point equilateral
space must be of size Ω(n2). The present paper suggests
that Ramsey partitions might be a partial replacement of
this notion which works for arbitrary metric spaces. In-
deed, among the applications of WSPD in fixed dimensional
metrics are approximate ranking (though this application
does not seem to have appeared in print — it was pointed
out to us by Sariel Har-Peled), approximate distance ora-
cles [17, 18], spanners [25, 18], and computation of the Lip-
schitz constant [18]. These applications have been obtained
for general metrics using Ramsey partitions in the present
paper (spanners were not discussed here since our approach
does not seem to beat previously known constructions). We
believe that this direction deserves further scrutiny, as there
are more applications of WSPD which might be transferable
to general metrics using Ramsey partitions.

The procedure for constructing stochastic Ramsey chains
presented in Section 4 takes O∗(n2+1/k). It would be de-
sirable to improve that to O∗(n2). Construction time of
proximity data structures for graph metrics is a well stud-
ied topic, see for example [28, 24].

Acknowledgments. We are grateful to Sariel Har-Peled
for letting us use here his insights on the approximate rank-
ing problem. We also thank Yair Bartal, and Martin Farach-
Colton for helpful comments.

A. The Size-Ancestor data structure

In this appendix we prove Lemma 4.3. Without loss of
generality we assume that the tree T does not contain ver-
tices with only one child. Indeed, such vertices will never
be returned as an answer for a query, and thus can be elimi-
nated in O(n) time in a preprocessing step.

Our data structure is composed in a modular way of two
different data structures, the first of which is described in
the following lemma, while the second is discussed in the
proof of Lemma 4.3 that will follow.

Lemma A.1. Fix m ∈ N, and let T be as in Lemma 4.3.
Then there exists a data structure which can be pre-

processed in time O
(
n + n log n

m

)
, and answers in time

O(1) the following query: Given � ∈ N and a leaf
x ∈ V , find an ancestor u of x such that �T (u) <
�m ≤ �(parent(u)). Here we use the convention
�(parent(root)) =∞.

Proof. Denote by X the set of leaves of T . For every in-
ternal vertex v ∈ V , order its children non-increasingly
according to the number of leaves in the subtrees rooted
at them. Such a choice of labels induces a unique to-
tal order on X (the lexicographic order). Denote this or-
der by � and let f : {1, . . . , n} → X be the unique
increasing map in the total order �. For every v ∈ V ,
f−1 (LT (v)) is an interval of integers. Moreover, the
set of intervals

{
f−1 (LT (v)) : v ∈ V

}
forms a laminar

set, i.e., for every pair of intervals in this set either one
is contained in the other, or they are disjoint. For every
v ∈ V write f−1 (LT (v)) = Iv = [Av, Bv], where
Av, Bv ∈ N and Av ≤ Bv . For i ∈ {1, . . . , �n/m�}
and j ∈ {1, . . . , �n/(im)�} let Fi(j) be the set of vertices
v ∈ V such that |Iv| ≥ im, Iv ∩ [(j − 1)im + 1, jim] 	= ∅,
and there is no descendant of v satisfying these two condi-
tions. Since at most two disjoint intervals of length at least
im can intersect a given interval of length im, we see that
for all i, j, |Fi(j)| ≤ 2.

Claim A.2. Let x ∈ X be a leaf of T , and � ∈ N. Let
u ∈ V be the least ancestor of x for which �T (u) ≥ �m.
Then

u ∈
{
lca(x, v) : v ∈ F�

(⌈
f(x)
�m

⌉)}
.

Proof. If u ∈ F�

(⌈ f(x)
�m

⌉)
then since u = lca(x, u) there

is nothing to prove. If on the other hand u /∈ F�

(⌈ f(x)
�m

⌉)
then since we are assuming that that �T (u) ≥ �m, and Iu ∩[(⌈ f(x)

�m

⌉−1
)
�m+1,

⌈ f(x)
�m

⌉
�m
] 	= ∅ (because f(x) ∈ Iu),

it follows that u has a descendant v in F�

(⌈ f(x)
�m

⌉)
. Thus

u = lca(x, v), by the fact that any ancestor w of v satisfies
�T (w) ≥ �T (v) ≥ �m, and the minimality of u.

The preprocessing of the data structure begins with or-
dering the children of vertices non-increasingly according
to the number of leaves in their subtrees. The following
algorithm achieves it in linear time.

SORT-CHILDREN(u)
Compute {�T (u)}u∈V using depth first search.
Sort V non-increasingly according to �T (·).
Let (vi)i be the set V sorted as above.
Initialize ∀u ∈ V , the list ChildrenSortedListu = ∅.
For i = 1 to |V | do

Add vi to the end of ChildrenSortedListparent(vi).

Computing f , and the intervals {Iu}u∈V is now
done by a depth first search of T that respects the
above order of the children. We next compute
{Fi(j) : i ∈ {1, . . . , �n/m�}, j ∈ {1, . . . , �n/(im)�} us-
ing the following algorithm:

SUBTREE-COUNT(u)
Let v1, . . . , vr be the children of u with

|Iv1 | ≥ |Iv2 | ≥ · · · ≥ |Ivr
|.

For i← �|Iu|/m� down to �|Iv1 |/m�+ 1 do
For j ← �Au/(im)� to �Bu/(im)� do

Add u to Fi(j)
For h← 1 to r − 1 do

For i← �|Ivh
|/m� down to

⌊|Ivh+1 |/m
⌋

+ 1 do
For j ← �Bvh

/(im)�+ 1 to �Bu/(im)� do
Add u to Fi(j)

For h← 1 to r do call SUBTREE-COUNT(vh).

Here is an informal explanation of the correctness of this
algorithm. The only relevant sets Fi(·) which will contain
the vertex u ∈ V are those in the range i ∈ [�|Ivr

|/m� +
1, �|Iu|/m�]. Above this range Iu does not meet the size
constraint, and below this range any Fi(j) which intersects
Iu must also intersect one of the children of u, which also
satisfies the size constraint, in which case one of the de-
scendants of u will be in Fi(j). In the aforementioned
range, we add u to Fi(j) only for j such that the interval
[(j − 1)im + 1, jim] does not intersect one of the children
of u in a set of size larger than im. Here we use the fact that
the intervals of the children are sorted in non-increasing or-
der according to their size. Regarding running time, this
reasoning implies that each vertex of T , and each entry in
Fi(j), is accessed by this algorithm only a constant number
of times, and each access involves only constant number of
computation steps. So the running time is

O

(
n +

�n/m�∑
i=1

�n/(im)�∑
j=1

|Fi(j)|
)

= O

(
n +

n log n

m

)
.

We conclude with the query procedure. Given a query
x ∈ X and � ∈ N, access F�

(⌈ f(x)
�m

⌉)
in O(1) time. Next,

for each v ∈ F�

(⌈ f(x)
�m

⌉)
, check whether lca(x, v) is the re-

quired vertex (we are thus using here also the data structure
for computing the lca of [19, 6]. Observe also that since
|Fi(j)| ≤ 2, we only have a constant number of checks to
do). By Claim A.2 this will yield the required result.

By setting m = 1 in Lemma A.1, we obtain a data struc-
ture for the Size-Ancestor problem with O(1) query time,
but O(n log n) preprocessing time. To improve upon this,
we set m = Θ(log n) in Lemma A.1, and deal with the re-
sulting gaps by enumerating all the possible ways in which
the remaining m− 1 leaves can be added to the tree. Exact
details are given below.

Proof of Lemma 4.3. Fix m = �(log n)/4�. Each subset
A ⊆ {0, . . . , m − 1} is represented as a number #A ∈
{0, . . . , 2m − 1} by #A =

∑
i∈A 2i. We next construct

in memory a vector enum of size 2m, where enum[#A]
is a vector of size m, with integer index in the range
{1, . . . , m}, such that enum[#A][i] = |A∩{0, . . . , i−1}|.
Clearly enum can be constructed in O(2mm) = o(n) time.

For each vertex u we compute and store:
• depth(u), the edge’s distance from the root to u.
• �T (u), the number of leaves in the subtree rooted at u.
• The number #Au, where

Au =
{

k ∈ {0, . . . , m− 1} : u has an ancestor

with exactly �T (u) + k descendant leaves
}

.

We also apply the level ancestor data-structure, that after
O(n) preprocessing time, answers in constant time queries
of the form: Given a vertex u and an integer d, find an an-
cestor of u at depth d (if it exists) (such a data structure is
constructed in [7]). Lastly, we use the data structure from
Lemma A.1

With all this machinary in place, a query for the least
ancestor of a leaf x having at least � leaves is answered in
constant time as follows. First compute q = ��/m�. Apply
a query to the data structure of Lemma A.1, with x and q,
and obtain u, the least ancestor of x such that �T (u) ≥ qm.
If �T (u) ≥ � then u is the least ancestor with � leaves, so
the data-structure returns u. Otherwise, �T (u) < �, and let
a = enum[#Au][�−�T (u)]. Note that depth(u)−a is the
depth of the least ancestor of u having at least � leaves, thus
the query uses the level ancestor data-structure to return this
ancestor. Clearly the whole query takes a constant time.

It remains to argue that the data structure can be pre-
processed in linear time. We already argued about most
parts of the data structure, and �T (u) and depth(u) are

easy to compute in linear time. Thus we are left with com-
puting #Au for each vertex u. This is done using a top-
down scan of the tree (e.g., depth first search). The root is
assigned with 1. For each non-root vertex u, whose par-
ent is v, #Au is assigned 1 if �T (v) ≥ �T (u) + m, and
#Av · 2�T (v)−�T (u) + 1 (mod 2m) otherwise. It is clear
that this indeed computes #Au. The relevant exponents are
computed in advance and stored in a lookup table.

Remark A.1. This data structure can be modified in a
straightforward way to answer queries to the least ances-
tor having at least a given number of vertices in its subtree.
It is also easy to extend it to queries to non-leaf vertices.

References

[1] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and
the sparsest cut. In STOC ’05: Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing,
pages 553–562, New York, NY, USA, 2005. ACM Press.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching. Journal of the ACM, 45:891–923, 1998.

[3] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-
linear time construction of sparse neighborhood covers.
SIAM J. Comput., 28(1):263–277, 1999.

[4] Y. Bartal. Probabilistic approximations of metric space
and its algorithmic application. In 37th Annual Symposium
on Foundations of Computer Science, pages 183–193, Oct.
1996.

[5] Y. Bartal, N. Linial, M. Mendel, and A. Naor. On metric
Ramsey type phenomena. Ann. of Math. (2), 162(2):643–
709, 2005.

[6] M. A. Bender and M. Farach-Colton. The lca problem revis-
ited. In Proc. 4th Latin Amer. Symp. on Theor. Info., pages
88–94. Springer-Verlag, 2000.

[7] M. A. Bender and M. Farach-Colton. The level ancestor
problem simplified. Theoretical Comput. Sci., 321(1):5–12,
2004.

[8] J. Bourgain, T. Figiel, and V. Milman. On Hilbertian subsets
of finite metric spaces. Israel J. Math., 55(2):147–152, 1986.

[9] G. Calinescu, H. Karloff, and Y. Rabani. Approximation
algorithms for the 0-extension problem. SIAM J. Comput.,
34(2):358–372 (electronic), 2004/05.

[10] P. B. Callahan. Dealing with higher dimensions: the well-
separated pair decomposition and its applications. Ph.D.
thesis, Dept. Comput. Sci., Johns Hopkins University, Balti-
more, Maryland, 1995.

[11] P. B. Callahan and S. Kosaraju. A decomposition of
multidimensional point sets with applications to k-nearest-
neighbors and n-body potential fields. J. ACM, 42(1):67–90,
1995.

[12] K. L. Clarkson. Nearest-Neighbor Searching and Met-
ric Space Dimensions. In Nearest-Neighbor Methods for
Learning and Vision: Theory and Practice. MIT Press,
2005. Available at http://cm.bell-labs.com/
who/clarkson/nn survey/p.pdf.

[13] E. Cohen. Fast algorithms for constructing t-spanners and
paths with stretch t. SIAM J. Comput., 28(1):210–236, 1999.

[14] P. Erdős. Extremal problems in graph theory. In Theory
of Graphs and its Applications (Proc. Sympos. Smolenice,
1963), pages 29–36. Publ. House Czechoslovak Acad. Sci.,
Prague, 1964.

[15] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. J. Comput.
System Sci., 69(3):485–497, 2004.

[16] C. Fefferman and B. Klartag. Fitting Cm smooth functions
to data I. Preprint, availabe at
http://www.math.princeton.edu/
facultypapers/Fefferman/FittingData
Part I.pdf, 2005.

[17] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and
M. Smid. Approximate distance oracles for geometric
graphs. In SODA ’02: Proceedings of the thirteenth an-
nual ACM-SIAM symposium on Discrete algorithms, pages
828–837, Philadelphia, PA, USA, 2002. Society for Indus-
trial and Applied Mathematics.

[18] S. Har-Peled and M. Mendel. Fast construction of nets in
low dimensional metrics, and their applications. SIAM J.
Comput., pages 1143–1184, 2006.

[19] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest
common ancestors. SIAM J. Comput., 13(2):338–355, 1984.

[20] P. Indyk. Nearest neighbors in high-dimensional spaces. In
Handbook of discrete and computational geometry, second
edition, pages 877–892. CRC Press, Inc., Boca Raton, FL,
USA, 2004.

[21] R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Mea-
sured descent: A new embedding method for finite metrics.
Geom. Funct. Anal., 15(4):839–858, 2005.

[22] J. R. Lee and A. Naor. Extending Lipschitz functions
via random metric partitions. Invent. Math., 160(1):59–95,
2005.

[23] J. Matoušek. On the distortion required for embedding finite
metric space into normed spaces. Israel J. Math., 93:333–
344, 1996.

[24] L. Roditty, M. Thorup, and U. Zwick. Deterministic con-
structions of approximate distance oracles and spanners. In
Automata, languages and programming, volume 3580 of
Lecture Notes in Comput. Sci., pages 261–272. Springer,
Berlin, 2005.

[25] K. Talwar. Bypassing the embedding: algorithms for low
dimensional metrics. In STOC ’04: Proceedings of the
thirty-sixth annual ACM symposium on Theory of comput-
ing, pages 281–290, New York, NY, USA, 2004. ACM
Press.

[26] M. Thorup and U. Zwick. Approximate distance oracles. J.
ACM, 52(1):1–24, 2005.

[27] P. M. Vaidya. An O(n log n) algorithm for the all-nearest-
neighbors problem. Discrete Comput. Geom., 4(2):101–115,
1989.

[28] U. Zwick. Exact and approximate distances in graphs—a
survey. In Algorithms—ESA 2001 (Århus), volume 2161
of Lecture Notes in Comput. Sci., pages 33–48. Springer,
Berlin, 2001.

