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Abstract
This paper is devoted to the study of quotients of finite metric spaces. The basic type

of question we ask is: Given a finite metric space M and α ≥ 1, what is the largest quotient
of (a subset of) M which well embeds into Hilbert space. We obtain asymptotically tight
bounds for these questions, and prove that they exhibit phase transitions. We also study
the analogous problem for embedings into `p, and the particular case of the hypercube.

“ Our approach to general metric spaces bears the undeniable imprint of early exposure to
Euclidean geometry. We just love spaces sharing a common feature with Rn.”

Misha Gromov.

1 Introduction

A classical theorem due to A. Dvoretzky states that for every n-dimensional normed space
X and every ε > 0 there is a linear subspace Y ⊆ X with k = dimY ≥ c(ε) log n such that
d(Y, `k

2) ≤ 1 + ε. Here d(·, ·) denotes the Banach-Mazur distance and c(·) depends only on ε.
The first result of this type appeared in [15], and the logarithmic lower bound on the dimension
is due to V. Milman [20]. If in addition to taking subspaces, we also allow passing to quotients,
the dimension k above can be greatly improved. This is V. Milman’s Quotient of Subspace
Theorem [21] (commonly referred to as the QS Theorem), a precise formulation of which reads
as follows:

Theorem 1.1 (Milman’s QS Theorem [21]). For every 0 < δ < 1 there is a constant
f(δ) ∈ (0,∞) such that for every n-dimensional normed space X there are linear subspaces
Z ⊆ Y ⊆ X with dim(Y/Z) = k ≥ (1− δ)n and d(Y/Z, `k

2) ≤ f(δ).

Over the past two decades, several theorems in the local theory of Banach spaces were
shown to have non-linear analogs. The present paper, which is a continuation of this theme,
is devoted to the proof of a natural non-linear analog of the QS Theorem, which we present
below.

A mapping between two metric spaces f : M → X, is called an embedding of M in X.
The distortion of the embedding is defined as

dist(f) = sup
x,y∈M
x 6=y

dX(f(x), f(y))
dM (x, y)

· sup
x,y∈M
x6=y

dM (x, y)
dX(f(x), f(y))

.
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The least distortion required to embed M in X is denoted by cX(M). When cX(M) ≤ α
we say that M α-embeds in X. If M is a class of metric spaces then we denote cM(M) =
infX∈M cX(M).

In order to motivate our treatment of the non-linear QS problem, we first describe a non-
linear analog of Dvoretzky’s Theorem, which is based on the following notion: Given a class
M of metric spaces, we denote by RM(α, n) the largest integer m such that any n-point metric
space has a subspace of size m that α-embeds into X. When M = {`p} we use the notations
cp and Rp. The parameter c2(X) is known as the Euclidean distortion of X. In [11] Bourgain,
Figiel, and Milman study this function, as a non-linear analog of Dvoretzky’s theorem. They
prove

Theorem 1.2 (Non-Linear Dvoretzky Theorem [11]). For any α > 1 there exists C(α) >
0 such that R2(α, n) ≥ C(α) log n. Furthermore, there exists α0 > 1 such that R2(α0, n) =
O(log n).

In [5] the metric Ramsey problem is studied comprehensively. In particular, the following
phase transition is proved.

Theorem 1.3 ([5]). The following two assertions hold true:

1. For every n ∈ N and 1 < α < 2: c(α) log n ≤ R2(α, n) ≤ 2 log n+C(α), where c(α), C(α)
may depend only on α.

2. For every α > 2 there is an integer n0 such that for n ≥ n0: nc′(α) ≤ R2(α, n) ≤ nC′(α),
where c′(α), C ′(α) depend only on α and 0 < c′(α) ≤ C ′(α) < 1.

The following result, which deals with the metric Ramsey problem for large distortion, was
also proved in [5]:

Theorem 1.4 ([5]). For every ε > 0, every n-point metric space X contains a subset of
cardinality at least n1−ε whose Euclidean distortion is O

(
log(1/ε)

ε

)
.

With these results in mind, how should we formulate a non-linear analog of the QS Theo-
rem? We now present a natural formulation of the problem, as posed by Vitali Milman.

The linear quotient operation starts with a normed space X, and a subspace Y ⊆ X,
and partitions X into the cosets X/Y = {x + Y }x∈X . The metric on X/Y is given by
d(x+Y, x′+Y ) = inf{‖a−b‖; a ∈ x+Y, b ∈ x′+Y }. This operation is naturally generalizable
to the context of arbirary metric spaces as follows: Given a finite metric space M , partition
M into pairwise disjoint subsets U1, . . . , Uk. Unlike the case of normed spaces, The function
dM (Ui, Uj) = inf{dM (u, v); u ∈ Ui, v ∈ Uj} is not necessarily a metric on U = {U1, . . . , Uk}.
We therefore consider the maximal metric on U majorized by dM , which is easily seen to be
the geodesic metric given by:

dgeo(Ui, Uj) = inf

{
k∑

r=1

dM (Vr, Vr−1); V0, . . . , Vk ∈ U , V0 = Ui, Vr = Uj

}
.

This operation clearly coincides with the usual quotient operation, when restricted to the class
of normed spaces. When considering the QS operation, we first pass to a subset of M , and then
construct a quotient space as above. We summarize this discussion in the following definition:
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Definition 1.5. Let M be a finite metric space. A Q space of M is a metric space that can
be obtained from M by the following operation: Partition M into s pairwise disjoint subsets
U1, . . . , Us and equip U = {U1, . . . , Us} with the geodesic metric dgeo. Equivalently, consider
the weighted complete graph whose vertices are U with edge weights: w(Ui, Uj) = dM (Ui, Uj).
The metric on U can now be defined to be the shortest-path metric on this weighted graph. A
Q space of a subset of M will be called a QS space of M . Similarly, a subspace of a Q space
of M will be called a SQ space of M .

The above notion of a quotient of a metric space is due to M. Gromov (see Section 1.16+

in [17]). The formulation of the non-linear QS problem is as follows: Given n ∈ N and α ≥ 1,
find the largest s ∈ N such that any n-point metric space M has a QS space of size s that is
α embeddable in `2. More generally, we consider the following parameters:

Definition 1.6. Let M be a class of metric spaces. For every n ∈ N and α ≥ 1 we denote
by QM(α, n) (respectively QSM(α, n),SQM(α, n)) the largest integer m such that every n-
point metric space has a Q space (respectively QS, SQ space) of size m that α-embeds into a
member of M. When M = {`p} we use the notations Qp, QSp and SQp.

In the linear setting there is a natural duality between subspaces and quotients. In par-
ticular, one can replace in Dvoretzky’s theorem the word ”subspace” by the word ”quotient”,
and the resulting estimate for the dimension will be identical. Similarly, the statement of
the QS Theorem remains unchanged if we replace ”quotient of subspace” by ”subspace of
quotient”. In the non-linear setting these simple observations are no longer clear. In view of
Theorem 1.3, it is natural to ask if the same is true for Q spaces. Similarly, it is natural to
ask if the QS and SQ functions behave asymptotically the same. In this paper we present a
comprehensive analysis of the functions Q2, QS2 and SQ2. It turns out that the answer to
the former question is no, while the answer to the latter question is yes. On the other hand,
as conjectured by Milman, our results show that just as is the case in the linear setting, once
we allow the additional quotient operation, the size of the Euclidean spaces obtained increases
significantly.

Below is a summary of our results concerning the QS and SQ problems:

Theorem 1.7. For every 1 < α < 2 there are constants 0 < c(α), C(α) < 1 such that for
every n ∈ N,

nc(α) ≤ QS2(α, n),SQ2(α, n) ≤ nC(α).

On the other hand, for every α ≥ 2 there is an integer n0 and there are constants 0 <
c′(α), C ′(α) < 1 such that for every n ≥ n0,

c′(α)n ≤ QS2(α, n),SQ2(α, n) ≤ C ′(α)n.

As mentioned above, the Q problem exhibits a different behavior. In fact, we have a double
phase transition in this case:

Theorem 1.8. For every 1 < α <
√

2 there is a constant C1(α) such that for every n ∈ N,
Q2(α, n) ≤ C1(α). For every

√
2 < α < 2 there are constants c(α), C(α) such that for every

n ∈ N, nc(α) ≤ Q2(α, n) ≤ nC(α). Finally, for every α ≥ 2 there is an integer n0 and there are
constants 0 < c′(α), C ′(α) < 1 such that for every n ≥ n0, c′(α)n ≤ Q2(α, n) ≤ C ′(α)n.
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In other words, for α >
√

2 the asymptotic behavior of the function Q2 is the same as
the behavior of the functions QS2 and SQ2. We summarize the qualitative behavior of the
size of subspaces, quotients, quotients of subspaces and subspaces of quotients of arbitrary
metric spaces in Table 1. For aesthetic reasons, in this table we write S2 = R2 (i.e. R2 is
the ”subspace” function). The first row contains results from [5]. We mention here that the
behavior of S2(2, n) remains unknown. Furthermore, we do not know the behavior of the
function Q2 at

√
2. Finally, we mention that in [6] it is shown that R2(1, n) = 3 for all n ≥ 3.

We did not study the functions Q2,QS2,SQ2 in the isometric case.

Distortion
(1,
√

2) (
√

2, 2) (2,∞)
S2 logarithmic polynomial
Q2 constant polynomial proportional
QS2 polynomial proportional
SQ2 polynomial proportional

Table 1: The qualitative behavior of the Euclidean quotient/ subspace functions, for different
distortions.

For large distortions we prove the following analog of Theorem 1.4:

Theorem 1.9. For any n ∈ N and ε > 0, every n-point metric space has a Q space of size
(1 − ε)n whose Euclidean distortion is O

(
log(2/ε)

)
. On the other hand, there are arbitrarily

large n-point metric spaces every QS or SQ space of which, of size at least (1 − ε)n, has
Euclidean distortion Ω

(
log(2/ε)

)
.

This result should be viewed in comparison to Bourgain’s embedding theorem [10], which
states that for every n-point metric spaces X, c2(X) = O(log n). Theorem 1.9 states that
if one is allowed to identify an arbitrarily small proportion of the elements of X, it possible
to arrive at a metric space whose Euclidean distortion is bounded independently of n. In
fact, Theorem 1.9 is proved via a modification of Bourgain’s original proof. This is unlike the
situation for the non-linear Dvoretzky problem, since in [7] an example is constructed which
shows that Bourgain’s embedding method cannot yield results such as Theorem 1.4.

Except for a loss in the dependence on ε, it is possible to give a more refined description of
the Q spaces obtained in Theorem 1.9. Using a different embedding method, we can actually
ensure that for every ε > 0, every n point metric space has a Q space of size (1−ε)n which well
embeds into an ultrametric. This is of interest since such spaces have a simple hierarchically
clustered structure, which is best described through their representation as a hierarchically
well-separated tree (see Section 3 for the definition). This special structure is useful in several
algorithmic contexts, which will be discussed in a forthcoming (Computer Science oriented)
paper.

Theorem 1.10. For every ε > 0 and n ∈ N, any n point metric space X contains a subset
A ⊆ X of size at most εn such that the quotient of X induced by the partition

{{a}}
a∈X\A∪{A}

is O
[

log(1/ε)
ε

]
equivalent to an ultrametric. On the other hand, there are arbitrarily large n-

point metric spaces every QS or SQ space of which, of size at least (1−ε)n, cannot be embedded
into an ultrametric with distortion O(1/ε).
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In Section 5 we study the QS problem for the hypercube Ωd = {0, 1}d (although the embed-
ding results used there may also be of independent interest). The cube-analog of Theorem 1.4
was studied in [5], where it was shown that if B ⊂ Ωd satisfies c2(B) ≤ α then |B| ≤ C21−c/α2

,
and on the other hand there is a subset B0 ⊂ Ωd with Euclidean distortion at most α and
which contains at least 21−[log(c′α)]/α2

points (here c, c′, C are positive universal constant). In
Section 5 we prove the following QS counterpart of this result:

Theorem 1.11. There is an absolute constant c > 0 such that for all d ∈ N and 0 < ε < 1/2,
every QS space of Ωd containing more than (1− ε)2d points has Euclidean distortion at least:

c

√√√√ log(1/ε)

1 + log
(

d
log(1/ε)

) .

On the other hand, there are QS spaces of Ωd, of size greater than (1− ε)2d whose Euclidean
distortion matches this bound.

In Section 6 we briefly study another notion of quotient introduced by Bates, Johnson,
Lindenstrauss, Preiss and Schechtman [8], which has been the focus of considerable attention
in the last few years. It turns that this notion of quotient, while being useful in many contexts,
does not yield a satisfactory non-linear version of the QS theorem (at least for distortion
greater than 2). Namely, we show that using this notion of quotient we cannot expect to
obtain quotients of subspaces which are asymptotically larger than what is obtained by just
passing to subspaces (i.e. what is ensured by Theorem 1.3).

In order to describe this notion we recall the following standard notation which will be
used throughout this paper. Given a metric space M , x ∈ M and ρ > 0, denote BM (x, ρ) =
{y ∈ M ; dM (x, y) ≤ ρ} and B◦

M (x, ρ) = {y ∈ M ; dM (x, y) < ρ}.
Let (X, dX) and (Y, dY ) be metric spaces and c > 0. A function f : X → Y is called

c-co-Lipschitz if for every x ∈ X and every r > 0, f
(
BX(x, r)

) ⊇ BY

(
f(x), r/c

)
. The function

f is called co-Lipschitz if it is c-co-Lipschitz for some c > 0. The smallest such c is denoted
by coLip(f). A surjection f : X → Y is called a Lipschitz quotient if it is both Lipschitz and
co-Lipschitz. The notion of co-Lipschitz mappings was introduced by Gromov (see Section
1.25 in [17]), and the definition of Lipschitz quotients is due to Bates, Johnson, Lindenstrauss,
Preiss and Schechtman [8]. The basic motivation is the fact that the Open Mapping Theorem
ensures that surjective continuous linear operators between Banach spaces are automatically
co-Lipschitz.

In the context of finite metric spaces these notions only make sense with additional quanti-
tative control of the parameters involved. Given α > 0 and two metric spaces (X, dX), (Y, dY )
we say that X has an α-Lipschitz quotient in Y if there is a subset Z ⊂ Y and a Lipschitz
quotient f : X → Z such that Lip(f) · coLip(f) ≤ α. The following definition is the analog of
Definition 1.6 in the context of Lipschitz quotients.

Definition 1.12. Let M be a class of metric spaces. For every n ∈ N and α ≥ 1 we denote by
QSLip

M (α, n) the largest integer m such that every n-point metric space has a subspace which
has an α-Lipschitz quotient in a member of M. When M = {`p} then we use the notation
QSLip

p

The main result of Section 6 is:

Theorem 1.13. The following two assertions hold true:
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1. For every α > 2 there is an integer n0 such that for n ≥ n0: nc(α) ≤ QSLip
2 (α, n) ≤ nC(α),

where c(α), C(α) depend only on α and 0 < c(α) ≤ C(α) < 1.

2. For every 1 ≤ α < 2 there is an integer n0 such that for n ≥ n0:

ec′(α)
√

log n ≤ QSLip
2 (α, n) ≤ eC′(α)

√
(log n)(log log n),

where c′(α), C ′(α) depend only on α.

Thus, the additional Lipschitz quotient operation only yields an improvement for distortion
smaller than 2. We have not studied the analogous questions for the Q and SQ problems.

Throughout this paper we also study the functions Qp,SQp,QSp for general 1 ≤ p < ∞.
In most cases we obtain matching or nearly matching upper and lower bounds for the various
functions, but some interesting problems remain open. We summarize in Table 2 and Table 3
the qualitative nature of our results (in which we write once more Rp = Sp). As is to be
expected, it turns out that there is a difference between the cases 1 ≤ p ≤ 2 and p > 2. In
both tables, the first row contains results from [5] and [6]. In Table 3 the question marks refer
to the fact that for p > 2 our lower and upper bounds do not match in the range (22/p, 2).

Distortion

(1, 21− 1
p ) (21− 1

p , 2) (2,∞)
Sp logarithmic polynomial
Qp constant polynomial proportional
QSp polynomial proportional
SQp polynomial proportional

Table 2: The qualitative behavior of the `p quotient/ subspace function for p ≤ 2, and different
distortions.

Distortion

(1, 2
1
p ) (2

1
p , 2

2
p ) (2

2
p , 2) (2,∞)

Sp logarithmic ? polynomial
Qp constant polynomial ? proportional
QSp polynomial ? proportional
SQp polynomial ? proportional

Table 3: The qualitative behavior of the `p quotient/ subspace function for p ≥ 2, and different
distortions.

This paper is organized as follows. Section 2 deals with the various upper bounds for
Qp,QSp,SQp. In Section 3 we prove Theorem 1.9 and Theorem 1.10. In Section 4 we prove
the various lower bounds for Qp(α, n) , QSp(α, n) and SQp(α, n) for α ≤ 2. Section 5 deals
with the QS problem for the hypercube (in the context of embeddings into `p for general
p ≥ 1). Finally, Section 6 deals with the QS problem for Lipschitz quotients.
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2 Upper Bounds

In this section we present the various upper bounds for the Q, QS and SQ problems presented
in the introduction. In the following two sections we will provide matching lower bounds for
these problems.

We begin with an abstract method with which one can obtain upper bounds forQSM(α, n),
for various classes of metric spaces M.

Lemma 2.1. Let M be a class of metric spaces and α > 1. Assume that there exists a k-point
metric space X such that cM(X) > α. Then for every integer n,

max {SQM(α, nk),QSM(α, nk)} ≤
(

k − 1
2

)
n.

Proof. Define Y = X × {1, . . . , n}. We equip Y with the following metric:

dY ((x, i), (y, j)) =
{

dX(x, y) i = j
β i 6= j

It is straightforward to verify that provided β ≥ diam(X), dY is indeed a metric.
Since |Y | = nk, it is enough to show that Y has no QS or SQ space of size greater than(

k − 1
2

)
n which α-embeds into a member on M. Let U1 . . . , Ur ⊆ Y be disjoint subsets and

r >
(
k − 1

2

)
n. Denote m = |{1 ≤ i ≤ r; |Ui| = 1}|. Then:

kn ≥
∣∣∣∣∣

r⋃

i=1

Ui

∣∣∣∣∣ =
r∑

i=1

|Ui| ≥ m + 2(r −m) > 2
(

k − 1
2

)
n−m = 2kn− n−m.

Hence m > kn − n, which implies that there is i ∈ {1, . . . , n} such that the singletons{{(x, i)}}
x∈X

are all elements of U = {U1, . . . , Ur}. If Y has either a QS space or a SQ
space of size greater than r which α-embed into a member of M then we could find such U
which could be completed to a partition V of a subset S ⊆ Y such that U , equipped with the
quotient metric induced by V, α-embeds into a member of M. By taking β = diam(X) we
guarantee that both the QS and the SQ metrics induced by V, when restricted to X ×{i} are
isometric to X. This contradicts the fact that cM(X) > α.

The next two corollaries are the upper bounds contained in Theorem 1.9 and the second
part of Theorem 1.7.

Corollary 2.2. For every ε ∈ (0, 1) and 1 ≤ p < ∞ there are arbitrarily large n-point
metric spaces every QS or SQ space of which, U , of size at least (1 − ε)n, satisfies cp(U) ≥
Ω

(
[log(2/ε)]/p

)
.

Proof. By [19] there are constants c, ε0 > 0 such that for ε ≤ ε0 there is a k-point metric
spaces X with k ≤ 1

3ε , for which cp(X) ≥ c[log(1/ε)]/p. By Lemma 2.1, for every integer
m there is a metric space of size km, such that every QS or SQ space of which, of size
at least

(
k − 1

3

)
m ≤ (1 − ε)km, cannot be embedded in `p with distortion smaller than

c[log(2/ε)]/p.

Corollary 2.3. For every α > 1 there exists a constant c(α) < 1 such that for every 1 ≤ p < ∞
there is an integer n0 = n0(p) such that for every n ≥ n0, QSp(α, n),SQp(α, n) ≤ c(α) · n.
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Proof. By [19] there is a constant c > 0 such that for every k large enough there is a metric
space Xk such that for every 1 ≤ p < ∞, cp(Xk) ≥ [c log k]/p. So, for k =

⌊
eαp/c

⌋
+ 1,

cp(Xk) > α. If n > 8k2 then we can find an integer m such that n
k ≤ m ≤ 4k−1

4k−2 · n
k . By

Lemma 2.1,

max {QSp(α, n),SQp(α, n)} ≤ max {QSp(α, mk),SQp(α, mk)} ≤
(

k − 1
2

)
m ≤

(
1− 1

4k

)
n.

The upper bound for embedding into the class of ultrametrics, analogous to Corollary 2.2,
shows that in this case the asymptotic dependence on ε is worse. In order to prove it we need
the following simple lemma. Recall that a metric space (X, d) is called ultrametric if for every
x, y, z ∈ X, d(x, y) ≤ max{d(x, z), d(y, z)}. In what follows we denote by UM the class of all
ultrametrics.

Lemma 2.4. Let {ai}n
i=1 be an increasing sequence of real numbers, equipped with the metric

induced by the real line. Then:

cUM({a1, . . . , an}) ≥ an − a1

max1≤i≤n−1(ai+1 − ai)
.

In particular, cUM({1, . . . , n}) ≥ n − 1, i.e. the least distortion embedding of {1, . . . , n} into
an ultrametric is an embedding into an equilateral space.

Proof. Let X be an ultrametric and f : {a1, . . . , an} → X be an embedding such that for
all 1 ≤ i, j ≤ n, dX(f(ai), f(aj)) ≥ |ai − aj | and there exist 1 ≤ i < j ≤ n for which
dX(f(ai), f(aj)) = |ai − aj |. For 1 ≤ i, j ≤ n write i ∼ j if dX(f(ai), f(aj)) < an − a1.
The fact that X is an ultrametric implies that ∼ is an equivalence relation. Moreover, our
assumption of f implies that 1 6∼ n. It follows that there exists 1 ≤ i ≤ n − 1 such that
ai 6∼ ai+1, i.e. dX(f(ai+1), f(ai)) ≥ an − a1, which implies the lower bound on the distortion
of f .

Corollary 2.5. For every 0 < ε < 1 there are arbitrarily large n-point metric spaces every
QS or SQ space of which, U , of size at least (1− ε)n, satisfies cUM(U) ≥ ⌊

1
2ε

⌋− 2.
Additionally, for every α ≥ 1 and every n ≥ 8(bαc+ 2)2, cUM(α, n) ≤ 7+4bαc

8+4bαcn.

Proof. The proof is analogous to the proofs of Corollary 2.2 and Corollary 2.3. In the first
case we set k =

⌊
1
2ε

⌋
and take X = {1, . . . , k}. By Lemma 2.4, cUM(X) ≥ k − 1 > k − 2, and

the required result follows from Lemma 2.1. In the second case we set k = bαc + 2 so that
cUM({1, . . . , k}) > α. We conclude exactly as in the proof of Corollary 2.3.

The following proposition bounds from above the functions QSp and SQp for distortions
smaller than 2min{1,2/p}. Our proof is a modification of the technique used in [6].

Proposition 2.6. There is an absolute constant c > 0 such that for every δ ∈ (0, 1), and
every n ∈ N , if 1 ≤ p ≤ 2 then:

max {QSp(2− δ, n),SQp(2− δ, n)} ≤ n1−cδ2
,

and if 2 < p < ∞ then:

max
{
QSp(22/p − δ, n),SQp(22/p − δ, n)

}
≤ n1−cp2δ2

,
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Proof. Fix an integer m, and denote by Km,m the complete bipartite m×m graph. It is shown
in [6] that:

cp(Km,m) ≥
{

2
(

m−1
m

)1/p 1 ≤ p ≤ 2
22/p

(
m−1

m

)1/p 2 < p < ∞.

It follows in particular that for m =
⌊

4
pδ

⌋
, cp(Km,m) > 2min{1,2/p} − δ.

Fix 0 < q < 1, the exact value of which will be specified later. Let G = (V,E) be a random
graph from G(n, q) (i.e. a graph on n vertices, such that each pair of vertices forms an edge
independently with probability q). Define a metric on V by requiring that for u, v ∈ V , u 6= v,
d(u, v) = 1 if [u, v] ∈ E and d(u, v) = 2 if [u, v] /∈ E. Fix an integer s. Consider a set of s
disjoint subsets of V , U = {U1, . . . , Us}. We observe that when U is viewed as either a QS or
SQ space of (V, d), in both cases the metrics induced by U are actually the same (and equal
min{d(x, y); x ∈ Ui, y ∈ Uj}). Denote W =

{
Ui; 1 ≤ i ≤ s, |Ui| ≤ 2n

s

}
. Clearly |W| ≥ s/2.

Without loss of generality, W ⊇ {U1, U2, . . . , Uds/2e}.
For 1 ≤ i < j ≤ ds/2e denote by γij the probability that there is an edge between Ui and

Uj . Clearly γij = 1− (1− q)|Ui|·|Uj |, so that:

q ≤ γij ≤ 1− (1− q)(2n/s)2 .

Since Km,m has m2 edges, the probability that the metric induced by U (in both of the SQ
and QS cases) on a given 2m-tuple in {U1, U2, . . . , Uds/2e} coincides with the metric on Km,m

is therefore at least:

qm2[
(1− q)(2n/s)2

](2m
2 )−m2 ≥ [

q(1− q)(2n/s)2
]m2

.

As shown in [6], there are
(

s
4m

)2 2m-tuples of elements of {U1, U2, . . . , Uds/2e}, such that any
two intersect in at most one point. Therefore, the probability that U does not contain a
subspace isometric to Km,m is at most:

{
1− [

q(1− q)(2n/s)2
]m2

}( s
4m)2

.

Observe that the number of partitions of V into at least s subsets is sn +(s+1)n + . . .+nn ≤
(n + 1)n, so that the probability that all the s-point QS (or SQ) spaces of (V, d) contain an
isometric copy of Km,m, and hence cannot be embedded into `p with distortion smaller that
2min{1,2/p} − δ, is at least:

1− (n + 1)n
{

1− [
q(1− q)(2n/s)2

]m2
}( s

4m)2

.

We will therefore conclude the proof once we verify that for s ≈ n1−cp2δ2
, we can choose q

such that this probability is positive. Write s = n1−η and q = p2δ2n−2η. Then, since m ≤ 4
pδ ,

there is an absolute constant C > 0 such that:
[
q(1− q)(2n/s)2

]m2 ≥ Cn−32η/(p2δ2).

Hence:

1− (n + 1)n
{

1− [
q(1− q)(2n/s)2

]m2
}( s

4m)2

≥ 1− (n + 1)n
[
1− Cn−32η/(p2δ2)

]p2δ2n2−2η/162

≥ 1− en log(n+1)−C′p2δ2n2−64η/(p2δ2)
> 0

9



where we have assumed that C ′p2δ2 < 1 (which we are clearly allowed to do), and chosen
η = cp2δ2 for a small enough constant c.

We end this section by showing that for α ≤ 2min{1/p,1−1/p} we cannot hope to extract
quotients of metric spaces which embed in `p with distortion α and that contain more than a
bounded number of points. This is quite easy to see, by considering the star metric (defined
below). What is perhaps less obvious is that star metrics are the only obstruction for the
existence of unboundedly large quotients of any sufficiently large metric space, as shown in
Section 4.

Given an integer n we denote by Fn the metric on {0, 1, . . . , n} given by dFn(i, 0) = 1 for
1 ≤ i ≤ n, and dFn(i, j) = 2 for 1 ≤ i < j ≤ 2. The metrics Fn are naturally called star
metrics.

Lemma 2.7. For every integer n,

cp(Fn) ≥
{

21−1/p
(
1− 1

n

)1/p 1 ≤ p ≤ 2
21/p

(
1− 1

n

)1/p 2 ≤ p < ∞.
(1)

Proof. Let f : Fn → `p be an embedding such that for every x, y ∈ Fn,

dFn(x, y) ≤ ‖f(x)− f(y)‖p ≤ LdFn(x, y).

We begin with case 1 ≤ p ≤ 2. In this case, as shown in [18], for every x1, . . . , xn, y1, . . . , yn ∈
`p,

n∑

i=1

n∑

j=1

(‖xi − xj‖p
p + ‖yi − yj‖p

p

) ≤ 2
n∑

i=1

n∑

j=1

‖xi − yj‖p
p.

Applying this inequality to xi = f(i) and yi = f(0) we get that:

n(n− 1)2p ≤
n∑

i=1

n∑

j=1

‖f(i)− f(j)‖p
p ≤ 2

n∑

i=1

n∑

j=1

‖f(i)− f(0)‖p
p ≤ 2n2Lp.

This proves the required result for 1 ≤ p ≤ 2. For p ≥ 2 we apply the same argument, but use
the following inequality valid for every x1, . . . , xn, y1, . . . , yn ∈ `p (see Corollary 7 in [4]):

n∑

i=1

n∑

j=1

(‖xi − xj‖p
p + ‖yi − yj‖p

p

) ≤ 2p−1
n∑

i=1

n∑

j=1

‖xi − xj‖p
p.

In the following corollary (and also later on in this paper), we use the conventionQp(α, n) =
0 when α < 1.

Corollary 2.8. For every integer n and every 0 < δ < 1, if 1 < p ≤ 2 then:

Qp

(
21−1/p(1− δ)1/p, n

) ≤ 1 +
1
δ
,

and if 2 ≤ p < ∞ then:

Qp

(
21/p(1− δ)1/p, n

) ≤ 1 +
1
δ
.

Proof. It is straightforward to verify that any Q space of Fn−1 of size k + 1 is isometric to
Fk (the new ”root” will be the class containing the old ”root” of the star). The result now
follows from the lower bounds in Lemma 2.7.

10



3 Lower Bounds for Large Distortions

In this section we study the following problem: Given ε > 0, what is the least distortion α
such that every n point metric space has a Q space of size (1− ε)n which α embeds into `p?
We prove a lower bound which matches the upper bound proved in Section 2. The proof is
based on a modification of Bourgain’s fundamental embedding method [10]. Next, we further
refine the structural information on the quotients obtained. Namely, we construct for arbitrary
n-point metric spaces quotients of size (1− ε)n which c(ε)-embed into an ultrametric. In fact,
in both cases we obtain the following special kind of quotients:

Definition 3.1. Let M be an n-point metric space and A ⊆ M . Let U be the partition of M
consisting of A and the elements of M \A as singletons. The Q space of M induced by U will
be denoted M/A. By the definition of the quotient operation it is easy to verify that for every
x, y ∈ M \A,

dM/A(x, y) = min{dM (x, y), dM (x,A) + dM (y,A)}. (2)

Additionally, for x ∈ M \A, dM/A(x,A) = dM (x,A).

This simple description of the quotients we construct, together with the fact that we can
ensure they have the hierarchical structure of ultrametrics, has algorithmic significance, which
will be pursued in a future paper.

The following definition will be useful:

Definition 3.2. Let X be a metric space, x ∈ X and m ≥ 1. We shall say x is an m-center
of X if for every y ∈ X and every r > 0, if |BX(y, r)| ≥ m then x ∈ BX(y, r).

Lemma 3.3. Let M be an n-point metric space and 0 < ε < 1. Then there exists a subset
T ⊆ M such that |T | ≤ εn and T is a 2 log(2/ε)

ε -center of M/T .

Proof. Set m = 2 log(2/ε)
ε . For every x ∈ M denote by ρx(m) the smallest ρ > 0 for which

|BM (x, ρ)| ≥ m. Choose a random subset T ⊆ M as follows: Let S be the random subset of
M obtained by choosing each point with probability ε/2. Define:

T = S ∪ {
x ∈ M ; S ∩BM

(
x, ρx(m)

)
= ∅} .

Then:

E|T | = E|S|+
∑

x∈M

Pr
[
S ∩BM

(
x, ρx(m)

)
= ∅

]
≤ εn

2
+

(
1− ε

2

)m
n < εn.

Denote U = M/T . The proof will be complete once we show that:

∀w ∈ U , ∀r > 0 |BU (w, r)| ≥ m =⇒ T ∈ BU (w, r).

Indeed, if w = T then there is nothing to prove. Otherwise, assume for the sake of contradiction
that w = x for some x ∈ M \ T with dU (w, T ) = dM (x, T ) > r. By (2), for every y ∈ M \ T ,
dU (x, y) = min{dM (x, y), dM (x, T ) + dM (y, T )}. In particular, if dU (x, y) ≤ r then dM (x, y) =
dU (x, y). Hence |BM (x, r)| ≥ m, so that by the construction of T , T ∩BM (x, r) 6= ∅, contrary
to our assumption.

The following lemma shows that metric spaces with an m-center well embed into `p. The
proof is essentially a repetition of Bourgain’s original argument [10] (we actually follow Ma-
toušek’s `p- variant of Bourgain’s theorem [19]).
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Lemma 3.4. Fix m ≥ 1 and let X be metric space which has an m-center. Then for every
1 ≤ p < ∞,

cp(X) ≤ 96
⌈

log m

p

⌉
.

Proof. Let x be an m-center of X. Set q =
⌈

log m
p

⌉
. Fix u, v ∈ X, u 6= v. For i ∈ {0, 1, . . . , q}

let ri be the smallest radius such that |BX(u, ri)| ≥ epi and |BX(v, ri)| ≥ epi. Observe that
by the definition of q, |BX(u, rq)|, |BX(v, rq)| ≥ epq ≥ m, so that since x is an m-center of X,
x ∈ BX(u, rq)∩BX(v, rq). This implies that rq ≥ dX(u,v)

2 . Fix i ∈ {1, . . . , q}. By the definition
of ri we may assume without loss of generality that |B◦

X(u, ri)| ≤ epi. If A ⊆ X is such that
A∩B◦

X(u, ri) = ∅ and A∩BX(v, ri−1) 6= ∅ then dX(u, A)−dX(v, A) ≥ ri−ri−1. If A is chosen
randomly such that each point of X is picked independently with probability e−pi then the
probability of the former event is at least:
[
1−

(
1− 1

epi

)|BU (v,ri−1)|]
·
(

1− 1
epi

)|BU (u,ri)|
≥

[
1−

(
1− 1

epi

)ep(i−1)
]
·
(

1− 1
epi

)epi

≥ 1
8ep

.

For A ⊆ X, denote by πi(A) the probability that a random subset of A, with points picked
independently with probability e−pi, equals A. The above reasoning implies that:

∑

A⊆X

πi(A)|dX(u,A)− dX(v,A)|p ≥ (ri − ri−1)p

8ep
,

so that if we define αA = 1
q

∑q
i=1 πi(A) then:

∑

A⊆X

αA|dX(u,A)− dX(v, A)|p ≥ 1
8qep

q∑

i=1

(ri − ri−1)p

≥ 1
8qpep

(
q∑

i=1

(ri − ri−1)

)p

=
(rq − r0)p

8qpep
≥ [dX(u, v)]p

16 · 2pqpep
.

Now, the embedding of X sends an element u ∈ X to a vector indexed by the subsets of X,
such that the coordinate corresponding to A ⊆ X is α

1/p
A ·dX(u,A). Since

∑
A⊆X αA = 1, such

a mapping is obviously non-expanding, and the above calculation shows that the Lipschitz
constant of its inverse is at most 161/p · 2eq ≤ 96q, as required.

The following corollary is a direct consequence of Lemma 3.3 and Lemma 3.4:

Corollary 3.5. There is an absolute constant c > 0 such that for every 1 ≤ p < ∞ and every
0 < ε < 1, any n-point metric space M has a subset A ⊆ M such that |A| < εn and:

cp(M/A) ≤ 1 +
c

p
log

(
2
ε

)
.
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We can also apply Lemma 3.3 to obtain quotients which embed into ultrametrics. The
basic fact about ultrametrics, already put to good use in [5], is that they are isometric to
subsets of Hilbert space. Another useful trait of finite ultrametrics is that they have a natural
representation as hierarchically well-separated trees (HSTs). We recall the following useful
definition, due to Y. Bartal [2]:

Definition 3.6. Given k ≥ 1, a k-HST is a metric space whose elements are leaves of a rooted
tree T . To each vertex u ∈ T , a label ∆(u) is associated such that ∆(u) = 0 if and only if u
is a leaf of T . The labels are strongly decreasing in the sense that ∆(u) ≤ ∆(v)/k whenever
u is a child of v. The distance between two leaves x, y ∈ T is defined as ∆(lca(x, y)), where
lca(x, y) denotes the the least common ancestor of x and y in T . In what follows, T is called
the defining tree of the k-HST. For simplicity we call a 1-HST a HST. It is an easy fact to
verify that the notion of a finite ultrametric coincides with that of a HST. Although k-HSTs
will not appear in this section, this proper subclass of ultrametrics will play a key role in
Section 4.

Lemma 3.7. Let m ≥ 1 be an integer and let X be an n-point metric space which has an
m-center. Then X 2m-embeds into an ultrametric.

Proof. We prove by induction on n that there is a HST H with diam(H) = diam(X) and a
bijection f : X → H such that for every u, v ∈ X, dX(u, v) ≤ dH(f(u), f(v)) ≤ 2mdX(u, v).
For n = 1 there is nothing to prove. Assuming n > 1, let x be an m-center of X. Denote
∆ = diam(X), and let a, b ∈ X be such that dX(a, b) = ∆. We may assume without loss of
generality that dX(x, a) ≥ ∆/2. For every k = 1, . . . ,m, define:

Ai =
{

y ∈ X;
∆(i− 1)

2m
≤ dX(y, a) <

∆i

2m

}
.

Now, ∪m
i=1Ai = B◦

X(a,∆/2) = {y ∈ X; dX(a, y) < ∆/2}. Since X is finite, there is some
r < ∆/2 such that B◦

X(a, ∆/2) = BX(a, r). But x /∈ BX(a, r), and since x is an m-center of
X, it follows that |BX(a, r)| < m. Since the set {Ai}m

i=1 are disjoint, and A1 6= ∅, it follows
that there exists 1 ≤ i ≤ m− 1 for which Ai+1 = ∅.

Denote B = ∪i
j=1Aj = B◦

X(a,∆i/(2m)). Observe that X \B has an m-center (namely x),
and B has an m-center vacuously (since |B| < m). By the inductive hypothesis there are HSTs
H1,H2, defined by trees T1, T2, respectively, such that diam(H1) = diam(B), diam(H2) =
diam(X \B), and there are bijections f1 : B → H1, f2 : X \B → H2 which are non-contracting
and 2m-Lipschitz. Let r1, r2 be the roots of H1,H2, respectively. Let T be the labelled tree
T rooted at r such that ∆(r) = diam(X) = ∆, r1, r2 are the only children of r, and the
subtrees rooted at r1, r2 are isomorphic to H1,H2, respectively. Since ∆(r1) = diam(H1) =
diam(B) ≤ diam(X), and similarly for r2, T defines a HST on its leaves H = H1 ∪ H2. We
define f : X → H by f |B = f1, and f |X\B = f2. If u ∈ B and v ∈ X \B then dH(f(u), f(v)) =
∆(r) = ∆ ≥ dX(u, v). Furthermore, dX(u, a) < ∆i/2m and dX(v, a) ≥ ∆(i + 1)/2m (since
Ai+1 = ∅). Hence:

dX(u, v) ≥ dX(v, a)− dX(u, a) >
∆
2m

=
dH(f(u), f(v))

2m
.

This concludes the proof.

Lemma 3.3 and Lemma 3.7 imply the following corollary:
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Corollary 3.8. For every 0 < ε < 1 and every integer n, every n-point metric space M
contains a subset A ⊆ M such that |A| ≤ εn and:

cUM(M/A) ≤ 6 log(2/ε)
ε

.

4 Lower Bounds for Small Distortions

In this section we give lower bounds for Qp(α, n), QSp(α, n), SQp(α, n) when α ≤ 2. We begin
by showing that for distortion α greater than 2min{1−1/p,1/p}, every n-point metric space has a
polynomially large Q space which α-embeds in `p. The following combinatorial lemma will be
used several times in this section. In what follows, given an integer n ∈ N we use the notation
[n] = {1, . . . , n}. We also denote by

(
[n]
2

)
the set of all unordered pairs of distinct integers in

[n].

Lemma 4.1. Fix n, k ∈ N, n ≥ 2. For every function χ :
(
[n]
2

) → [k] there is an integer

s ≥
⌊

n1/k

8 log n

⌋
and there are disjoint subsets A1, . . . , As ⊆ {1, . . . , n} and ` ∈ {1, . . . , k} such

that for every 1 ≤ i < j ≤ s,

min {χ(p, q); p ∈ Ai, q ∈ Aj} = `.

Furthermore, for every 1 ≤ i, j ≤ s, i 6= j, and every p ∈ Ai, there exists q ∈ Aj such that
χ(p, q) = `.

Proof. The proof is by induction on k. For k = 1 there is nothing to prove. Assume that k > 1
and denote m = |{(i, j); χ(i, j) = 1}|. Define s =

⌊
n1/k

8 log n

⌋
. We first deal with the case m ≥

1
2n1+1/k. For each i ∈ {1, . . . , n} let Bi = {j; χ(i, j) = 1}. Denote C = {i; |Bi| ≥ n1/k/4}.
Then:

n1+1/k

2
≤ m =

n∑

i=1

|Bi| ≤ |C|n + (n− |C|)n
1/k

4
≤ |C|n +

n1+1/k

4
,

i.e. |C| ≥ n1/k/4.
Consider a random partition of C into s subsets A1, . . . , As, obtained by assigning to each

i ∈ C an integer 1 ≤ j ≤ s uniformly and independently. The partition A1, . . . , As satisfies the
required result with ` = 1 if for every 1 ≤ u ≤ s, every i ∈ Au and every v 6= u, Bi ∩ Av 6= ∅.
The probability that this even doesn’t occur is at most:

s∑

u=1

∑

i∈C

s∑

v=1

Pr(i ∈ Au, Bi ∩Av = ∅) =
s∑

u=1

∑

i∈C

s∑

v=1

1
s

(
1− 1

s

)|Bi|

≤ ns

(
1− 1

s

)n1/k/4

≤ n1+1/k

8 log n
exp

(
−n1/k

4
· 8 log n

n1/k

)

≤ 1
8 log n

< 1,

so that the required partition exists with positive probability.
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It remains to deal with the case m < 1
2n1+1/k. In this case consider the set D = {i; |Bi| <

n1/k}. Then 1
2n1+1/k > m ≥ n1/k(n − |D|), so that |D| > n/2. Consider the graph on D

in which i and j are adjacent if and only if χ(i, j) = 1. By the definition of D, this graph
has maximal degree less than n1/k, so that it has an independent set I ⊆ D of size at least
|D|/n1/k > 1

2n1−1/k (to see this, color D with n1/k colors and take the maximal color class).
The fact that I is an independent set means that for i, j ∈ I, χ(i, j) > 1, so that we may apply
the inductive hypothesis to I and obtain the desired partition of size at least

⌊ |I|1/(k−1)

8 log |I|
⌋
. We

may assume that n1/k ≥ 2e, since otherwise the required result is vacuous. In this case the
lower bound on |I| implies that we are in the range where the function x 7→ x1/(k−1)/ log x is
increasing, in which case:

|I|1/(k−1)

8 log |I| ≥
(

1
2n1−1/k

)1/(k−1)

8(1− 1/k) log n
≥ n1/k

8 log n
,

where we have used the inequality (1− 1/k)21/(k−1) ≤ 1.

The relevance of Lemma 4.1 to the QS problem is clear. We record below one simple
consequence of it. Recall that the aspect ratio of a finite metric space M is defined as:

Φ(M) =
diam(M)

minx6=y dM (x, y)
. (3)

Lemma 4.2. Let M be an n-point metric space and 1 < α ≤ 2. Then there is a QS space of
M , U , which is α equivalent to an equilateral metric space and:

|U| ≥
⌊

n(log α)/[2 log Φ(M)]

8 log n

⌋
.

Proof. By normalization we may assume that minx 6=y dM (x, y) = 1. We may also assume that

α < Φ(M). Write Φ = Φ(M) and set k =
⌊

log Φ
log α

⌋
+ 1. For every x, y ∈ M , x 6= y there is a

unique integer χ(x, y) ∈ [k] such that dM (x, y) ∈ [αχ(x,y)−1, αχ(x,y)). Lemma 4.1 implies that
there are disjoint subsets U1, . . . , Us ⊂ M and an integer ` ∈ [k] such that s ≥

⌊
n(log α)/[2 log Φ(M)]

8 log n

⌋

and for every 1 ≤ i < j ≤ s, dM (Ui, Uj) ∈ [α`−1, α`). Consider the QS space U = {U1, . . . , Us},
and observe that since α ≤ 2, any minimal geodesic joining Ui and Uj must contain only two
points (namely Ui and Uj). This implies that U is α-equivalent to an equilateral space.

In what follows we use the following definition:

Definition 4.3. Let M be a finite metric space. For x ∈ M we denote by rM (x) the distance
of x to its closest neighbor in M :

rM (x) = dM (x, M \ {x}) = min{dM (x, y); y ∈ M, y 6= x}.

For 0 < a < b it will be convenient to also introduce the following notation:

M [a, b) = {x ∈ M ; a ≤ rM (x) < b} .
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For the sake of simplicity, we denote θ(p) = min
{

1
p , 1− 1

p

}
.

In the following lemma we use the notation introduced in Definition 3.1 in Section 4.

Lemma 4.4. Let M be an n-point metric space. Then there exist two subsets S, T ⊆ M with
the following properties:

a) S ∩ T = ∅.
b) |T | ≥ n/4.

c) For every x ∈ T and every subset S ⊆ W ⊆ M \ {x}, dM (x,W ) = rM (x).

d) For every A ⊇ M \ T and every x, y ∈ M \A:

dM/A(x, y) = min{dM (x, y), rM (x) + rM (y)}, dM/A(x,A) = rM (x).

Proof. Choose a random subset S ⊆ M by picking each point independently with probability
1/2. Define:

T = {x ∈ M \ S; dM (x, S) = rM (x)} .

To estimate the expected number of points in T for every x ∈ M denote by Nx ⊆ M the set
of all points y ∈ M such that rM (x) = dM (x,M \ {x}) = dM (x, y). Then x ∈ T if an only if
x /∈ S and Nx ∩S 6= ∅. These two events are independent and their probability is at least 1/2.
Hence E|T | ≥ n/4. Parts a),b) and c) are now evidently true. Part d) follows from part c)
due to (2).

Given an integer n and 0 < τ ≤ 2, we denote by Fτ
n the metric on {0, 1, . . . , n} given by

dFτ
n
(i, 0) = 1 for 1 ≤ i ≤ n, and dFτ

n
(i, j) = τ for 1 ≤ i < j ≤ 2. The metrics Fτ

n will also be
called star metrics (recall that when τ = 2 we have previously used the notation Fn = F2

n).

Lemma 4.5. Let M be an n-point metric space, 0 < a < b < 2a and b/a ≤ α ≤ 2b/a. Let
S, T ⊆ M be as in Lemma 4.4. Write m = |T ∩M [a, b)|. Then there is some 0 < τ ≤ 2b

aα ≤ 2
and a Q space of M , U , which is α -equivalent to Fτ

|U| and:

|U| ≥
⌊

m(log α)/6

8 log m

⌋
.

Proof. Consider the set N = T ∩M [a, b). By definition, for every x, y ∈ N , x 6= y,

min{dM (x, y), rM (x) + rM (y)} ∈ [a, 2b).

Setting k =
⌈

log(2b/a)
log α

⌉
− 1, it follows that there is a unique integer χ(x, y) ∈ [0, k] such that

2b

αχ(x,y)+1
≤ min{dM (x, y), rM (x) + rM (y)} <

2b

αχ(x,y)
. (4)

Denote s =
⌊

m1/(k+1)

8 log m

⌋
, and apply Lemma 4.1 to get an integer ` ∈ [0, k] and disjoint subsets

A1, . . . , As ⊆ N such that for every 1 ≤ i < j ≤ s:

min{χ(x, y); x ∈ Ai, y ∈ Aj} = `.

Let U be the Q space of M whose elements are A1, . . . , As and A0 = M \ ∪s
i=1Ai. The metric

on U is described in the following claim:
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Claim 4.6. For every 1 ≤ i ≤ s, dU (Ai, A0) ∈ [a, b). Furthermore, for every 1 ≤ i < j ≤ s,

2b

α`+1
≤ dU (Ai, Aj) ≤ 2b

α`
.

Proof. By part c) of Lemma 4.4, for every 1 ≤ i ≤ s and every x ∈ Ai, dM (x,A0) = rM (x) ∈
[a, b). Moreover, for every 0 ≤ i < j ≤ s, dM (Ai, Aj) ≥ a. Since 2a > b, this shows
that any geodesic in U connecting A0 and Ai cannot contain more than two elements, i.e.
dU (Ai, A0) = dM (Ai, A0) ∈ [a, b). Now, take any 1 ≤ i < j ≤ s. By (4), dM (Ai, Aj) ≥ 2b

α`+1

and:

dU (Ai, Aj) ≤ min{dM (Ai, Aj), dM (Ai, A0) + dM (Aj , A0)}
= min

x∈Ai, y∈Aj

min{dM (x, y), rM (x) + rM (y)} ∈
[

2b

α`+1
,
2b

α`

)
. (5)

Consider a geodesic connecting Ai and Aj . It is either (Ai, Aj), (Ai, A0, Aj) or else it contains
either a consecutive pair (Au, Av) for some 1 ≤ u ≤ v ≤ s, u 6= v, or four consecutive pairs
(Ai, A0), (A0, Au), (Au, A0), (A0, Av) for some 1 ≤ u, v ≤ s. In the first three cases we get
that dU (Ai, Aj) ≥ 2b

α`+1 . The fourth case can be ruled out since in this case the length of the
geodesic is at least 4a > 2b ≥ 2b

α` , which is a contradiction to the upper bound in (5).

Setting τ = 2b
aα`+1 ≤ 2, it follows from Claim 4.6 that U is α-equivalent to Fτ

s .

The relevance of the metrics Fτ
n to the Q problem is that when τ is small enough they

isometrically embed into Lp:

Lemma 4.7. For every integer n, every 1 ≤ p ≤ ∞ and every 0 < τ ≤ 21−θ(p), Fτ
n isometri-

cally embeds into Lp.

Proof. We begin with the case 1 ≤ p ≤ 2. In this case our assumption implies that there
exists 0 ≤ δ < 1 such that τ = 21/p(1 − δ)1/p. Our claim follows from the fact that there are
w1, . . . , wn ∈ Lp such that ‖wi‖p = 1 and for i 6= j, ‖wi − wj‖p = τ . Indeed, if δ = 0 then
we can take these vectors to be the first n standard unit vectors in `p. For δ > 0 we take
w1, . . . , ws to be i.i.d. random variables which take the value δ−1/p with probability δ and the
value 0 with probability 1− δ.

The case p > 2 is slightly different. In this case our assumption is that τ ≤ 21−1/p, so
that we may find 0 ≤ δ ≤ 1 such that τ = 21+1/p[δ(1 − δ)]1/p. We claim that there are
w1, . . . , ws ∈ Lp such that ‖wi‖p = 1 and for 1 ≤ i < j ≤ s, ‖wi − wj‖p = τ . Indeed, we can
take w1, . . . , ws to be i.i.d. random variables which take the value +1 with probability δ and
the value −1 with probability 1− δ.

We will require the following definition from [4].

Definition 4.8. Fix k ≥ 1. A metric d on {1, . . . , n} is called k-lacunary if there is a sequence
a1 ≥ a2 ≥ . . . ≥ an−1 ≥ 0 such that ai+1 ≤ ai/k and for 1 ≤ i < j ≤ n, d(i, j) = ai.

It is clear that k-lacunary spaces are ultrametrics, so that they embed isometrically in
Hilbert space.
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Proposition 4.9. Let M be an n-point metric space, n ≥ 2. Fix k ≥ 1, 1 < β ≤ 2 and
β < α < 2β. Then M has a Q space, U , which is α-equivalent to either a k-lacunary space or
a star metric Fτ

|U| for some 0 < τ ≤ 2/β, and:

|U| ≥ 1
32 log n

[
n log(α/β)

max{log(2k), log[1/(β − 1)]}
](log α)/6

.

Proof. Let T be as in Lemma 4.4. For every integer i ∈ Z set:

Ci =

{
x ∈ T ;

(
α

β

)i

≤ rM (x) <

(
α

β

)i+1
}

= T ∩M [(α/β)i, (α/β)i+1).

Define m =
⌈

max{log k,log[1/(β−1)]}
log(α/β)

⌉
. For every j ∈ {0, 1, . . . , m−1} define Dj = ∪i≡j mod (m)Ci.

Let q be such that |Dq| = maxi∈{0,...,m−1} |Di|. Then |Dq| ≥ |T |/m ≥ n/(4m) + 1.
Set ` = |{r ∈ Z; Cq+rm 6= ∅}|. There are r1 > r2 > · · · > r` such that Cq+rim 6= ∅. Fix

vi ∈ Cq+rim. Consider the subset A = M \ {v1, . . . , v`} ⊇ M \ T . By our choice of T :

dM/A(vi, A) = rM (vi) ∈
[(

α

β

)q+rim

,

(
α

β

)q+rim+1
)

,

and

dM/A(vi, vj) = min{dM (vi, vj), rM (vi) + rM (vj)}.
In particular, since dM (vi, vj) ≥ max{rM (vi), rM (vj)},

dM/A(vi, vj) ≥ dM (vj , S) ≥
(

α

β

)q+rjm

.

Additionally, for i < j, since ri ≥ rj + 1,

dM/A(vi, vj) ≤ drM (vi) + rM (vj)

≤
(

α

β

)q+rim+1

+
(

α

β

)q+rjm+1

≤
(

α

β

)q+rim α

β

[
1 +

(
β

α

)m]

≤ α

(
α

β

)q+rim

,

by our choice of m. Denote ai = (α/β)q+rim. Then ai+1 ≤ (β/α)mai ≤ ai/k and we have
shown that M/A is α-equivalent to the k-lacunary induced by (ai) on {1, . . . , ` + 1}.

Let r be such that |Cq+rm| = maxi∈Z |Cq+im|. Then |Cq+rm| ≥ |Dq|/` ≥ n/(4m`). By
Lemma 4.5, M has a Q space V which is α equivalent to Fτ

|V| for some 0 < τ ≤ 2/β, and:

|V| ≥ 1
16 log n

( n

4m`

)(log α)/6
.

Summarizing, we have proved the existence of the required Q space of M whose cardinality
is at least:

min
`≥1

max
{

`,
1

16 log n

( n

4m`

)(log α)/6
}

,

from which the required result easily follows.
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Corollary 4.10. For every 0 < ε < 1 and 1 < p < ∞ there exists a constant c = c(p, ε) > 0
such that for every integer n,

Qp

(
2θ(p)(1 + ε), n

) ≥ cn[θ(p)+log(1+ε)]/10.

Proof. Apply Proposition 4.9 with k = 1, α = 2θ(p)(1 + ε) and β = 2θ(p). By Lemma 4.7, the
resulting Q space is α-equivalent to a subset of Lp.

Corollary 4.11. Fix 0 < ε < 1. For every integer n ≥ 2 and every 1 ≤ p ≤ ∞:

SQp(1 + ε, n) ≥ nε/12

100 log n
.

In fact, for every k ≥ 1, any n-point metric space M has a SQ space U which is 1 + ε
embeddable in either a k-lacunary space or an equilateral space, and:

|U| ≥ 1
100 log n

(
n

log(2k)

)ε/12

.

Proof. Apply Proposition 4.9 with α = 1 + ε and β =
√

1 + ε. If the resulting Q space is a
star metric then pass to a SQ space by deleting the root of the star, so that the remaining
space is equilateral.

Before passing to the QS problem, we show that for distortion 2 we can obtain propor-
tionally large Q spaces of arbitrary metric spaces.

Lemma 4.12. For every integer n and every 1 ≤ p ≤ ∞, Qp(2, n) ≥ n
4 + 1.

Proof. Let M be an n-point metric space and let T be as in Lemma 4.4. Write T = k and
consider the Q space M/A, where A = M \ T . We relabel the elements of M/A by writing
T = {1, . . . , k}, A = k + 1, where rM (1) ≥ rM (2) . . . ≥ rM (k). For every 1 ≤ i ≤ k,
dM/A(i, k + 1) = rM (i), and for every 1 ≤ i < j ≤ k:

dM/A(i, j) = min{dM (i, j), rM (i) + rM (j)} ∈ [rM (i), 2rM (i)].

This shows that M/A is 2 equivalent to the 1-lacunary space induced on {1, . . . , k + 1} by the
sequence {rM (i)}k

i=1.

As we have seen in the proof Corollary 4.11, the reason why the SQ problem is ”easier” than
the Q problem is that we are allowed to discard the ”root” of Q spaces which are approximately
stars. This ”easy solution” is not allowed when dealing with the QS problem. The solution of
the QS problem for distortions less than 2 is therefore more complicated, and the remainder
of this section is devoted to it.

Our approach to the QS problem builds heavily on the techniques and results of [5]. Among
other things, as in [5], we will approach the problem by tackling a more general weighted version
of the QS problem, which we now introduce.
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Definition 4.13. A weighted metric space (M,dM , w) is a metric space (M,dM ) with non-
negative weights w : M → [0,∞). Given A ⊆ M we denote w∞(A) = supx∈A w(x).

Given two classes of metric spaces M,A, and α ≥ 1 we denote by σA(M, α) the largest
σ ≤ 1 such that any weighted metric space (M,dM , w) ∈ M has a QS space U which is
α-embeddable in a member of A and satisfies:

∑

A∈U
w∞(A)σ ≥

(∑

x∈M

w(x)

)σ

.

When A is the class of all k-HSTs we use the notation σk = σA. The case w ≡ 1 shows that
lower bounds for σk(M, α) also imply lower bounds for the QS problem.

Having introduced the weighted QS problem, it is natural that we require a weighted
version of Lemma 4.1:

Lemma 4.14. Fix n, k ∈ N, n ≥ 2, a function χ :
(
[n]
2

) → [k] and a weight function w : [n] →
[0,∞). There are disjoint subsets A1, . . . , As ⊆ {1, . . . , n} and ` ∈ {1, . . . , k} such that for
every 1 ≤ i < j ≤ s,

min {χ(p, q); p ∈ Ai, q ∈ Aj} = `, (6)

and:
s∑

i=1

w∞(Ai)1/[8k log(k+1)] ≥
(

n∑

r=1

w(r)

)1/[8k log(k+1)]

.

Proof. We use the following fact proved in [3]: Let x = {xi}∞i=1 be a sequence of non-increasing
non-negative real numbers. Then there exists a sequence y = {yi}∞i=1 such that yi ≤ xi for all

i ≥ 1,
∑

i≥1 y
1/2
i ≥

(∑
i≥1 xi

)1/2
, and either yi = 0 for all i > 2 or there exits w > 0 such that

for all i ≥ 1, yi ∈ {w, 0}. Applying this fact to the weight function w : [n] → [0,∞) we get
in the first case i, j ∈ [n] such that

√
w(i) +

√
w(j) ≥ (

∑n
r=1 w(r))1/2, and we take A1 = {i},

A2 = {j}, ` = χ(i, j). In the second case we find w > 0 and A ⊆ [n], |A| ≥ 3, such that for
i ∈ A w(i) ≥ w and |A|√w ≥ (

∑n
r=1 w(r))1/2. In this case we may apply Lemma 4.1 to A

and get an integer ` ∈ [k] and disjoint subsets A1, . . . , As ⊆ A satisfying (6) and such that
s ≥

⌊ |A|1/k

8 log |A|
⌋
. We can obviously also always ensure that s ≥ 2. Hence, using the elementary

inequality max
{

x1/k

8 log x , 2
}
≥ x1/[4k log(k+1)], valid for all x ≥ 3 and k ≥ 1, we get that:

s∑

i=1

w∞(Ai)1/[8k log(k+1)] ≥ (|A|√w
)1/[4k log(k+1)] ≥

(
n∑

r=1

w(r)

)1/[8k log(k+1)]

.

For Φ ≥ 1 denote by M(Φ) the class of all metric spaces with aspect ratio at most Φ.
The class M(1) consists of all equilateral metric spaces, and is denoted by EQ. We have as a
corollary the following weighted version of Lemma 4.2:

Corollary 4.15. For every Φ ≥ 2 and 1 ≤ α ≤ 2,

σEQ(M(Φ), α) ≥ log α

16(log Φ) log
(

2 log Φ
log α

) .
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We recall below the notion of metric composition, which was used extensively in [5].

Definition 4.16 (Metric Composition [5]). Let M be a finite metric space. Suppose that
there is a collection of disjoint finite metric spaces Nx associated with the elements x of M .
Let N = {Nx}x∈M . For β ≥ 1/2, the β-composition of M and N , denoted by C = Mβ[N ], is a
metric space on the disjoint union ∪̇xNx. Distances in C are defined as follows. Let x, y ∈ M
and u ∈ Nx, v ∈ Ny, then:

dC(u, v) =

{
dNx(u, v) x = y

βγdM (x, y) x 6= y.

where γ = maxz∈M diam(Nz)
minx6=y∈M dM (x,y) . It is easily checked that the choice of the factor βγ guarantees

that dC is indeed a metric.

Definition 4.17 (Composition Closure [5]). Given a class M of finite metric spaces, we
consider compβ(M), its closure under ≥ β-compositions. Namely, this is the smallest class
C of metric spaces that contains all spaces in M, and satisfies the following condition: Let
M ∈M, and associate with every x ∈ M a metric space Nx that is isometric to a space in C.
Also, let β′ ≥ β. Then Mβ′ [N ] is also in C.
Lemma 4.18. Let M be a class of metric spaces, k ≥ 1, α > 1 and β ≥ αk. Then:

σk

(
compβ(M), (1 + 1/β)α

) ≥ σk(M, α),

Proof. Set σ = σk(M, α) and take X ∈ compβ(M). We will prove that for any w : X → [0,∞)
there exists a QS space Y of X and a k-HST H such that Y is α-equivalent to H via a non-
contractive (1 + 1/β)α-Lipschitz embedding, and:

∑

x∈Y

w(x)σ ≥
(∑

x∈X

w(x)

)σ

.

The proof is by structural induction on the metric composition. If X ∈M then this holds
by the definition of σ. Otherwise, let M ∈ M and N = {Nz}z∈M ⊆ compβ(M) be such that
X = Mβ[N ].

For every z ∈ M define w′(z) =
∑

u∈Nz
w(u). By the definition of σ there are disjoint

subsets U1, . . . , Us ⊆ M such that the QS space of M , U = {U1, . . . , Us}, is α-equivalent to a
k-HST HM , defined by the tree TM , via a non-contractive α-Lipschitz embedding, and:

s∑

i=1

w′∞(Ui)σ ≥
(∑

z∈M

w′(z)

)σ

=

(∑

x∈X

w(x)

)σ

.

By induction for each z ∈ M there are disjoint subsets U z
1 , . . . , Uz

s(z) ⊆ Nz such that the
QS space of Nz, Uz = {U z

1 , . . . , Uz
s(z)} is (1 + 1/β)α-equivalent to a k-HST, Hz, defined by the

tree Tz, via a non-contractive (1 + 1/β)α-Lipschitz embedding, and:

s(z)∑

i=1

w∞(U z
i )σ ≥

( ∑

u∈Nz

w(u)

)σ

.
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For every 1 ≤ i ≤ s let zi ∈ M be such that w′(zi) = w′∞(Ui). Define V zi
1 , . . . , V zi

s(zi)
⊆ X by:

V zi
1 = Uzi

1

⋃

 ⋃

z∈Ui\{zi}
Nz


 and V zi

j = U zi
j for j = 2, 3, . . . , s(zi).

Consider the QS space of X: V = {V zi
j ; i = 1, . . . , s j = 1, . . . , s(zi)}. First of all:

∑

A∈V
w∞(A)σ =

s∑

i=1

s(zi)∑

j=1

[
max
x∈V

zi
j

w(x)

]σ

≥
s∑

i=1

s(zi)∑

j=1

[
max
x∈U

zi
j

w(x)

]σ

≥
s∑

i=1


 ∑

u∈Nzi

w(u)




σ

=
s∑

i=1

w′(Nzi)
σ =

s∑

i=1

w′∞(Ui)σ ≥
(∑

x∈X

w(x)

)σ

.

Therefore, all that remains is to show that V is (1 + 1/β)α-equivalent to a k-HST via a non-
contractive, (1 + 1/β)α-Lipschitz embedding. For this purpose we first describe the metric on
V:

Claim 4.19. For every 1 ≤ i ≤ s and every 1 ≤ p < q ≤ s(zi),

dV(V zi
p , V zi

q ) = dUzi
(U zi

p , U zi
q ). (7)

Furthermore, for every 1 ≤ i < j ≤ s and every 1 ≤ p ≤ s(zi), 1 ≤ q ≤ s(zj):

βγdU (Ui, Uj) ≤ dV(V zi
p , V

zj
q ) ≤ (β + 1)γdU (Ui, Uj). (8)

Proof. By the definition of metric composition, if z 6= zi, u ∈ Nzi , v ∈ Nz, then dX(u, v) ≥
β diam(Nzi) > diam(N(zi)). Since for every 1 ≤ j ≤ s(zi), Nzi ∩ V zi

j = U zi
j , this implies that

dX(V zi
p , V zi

q ) = dNzi
(U zi

p , U zi
q ). In particular, it follows that dV(V zi

p , V zi
q ) ≤ dUzi

(U zi
p , U zi

q ) ≤
diam(Nzi). A geodesic connecting V zi

p and V zi
q in V cannot go out of {V zi

1 , . . . , V zi

s(zi)
}, since by

the above observation it would contain a step of length greater that diam(Nzi). This concludes
the proof of (7).

Next take 1 ≤ i, j ≤ s and 1 ≤ p ≤ s(zi), 1 ≤ q ≤ s(zj) and observe that dX(V zi
p , V

zj
q ) ≥

βγdM (Ui, Uj). Indeed, if i = j there is nothing to prove, and if i 6= j then this follows from
the definition of metric composition and the fact that V zi

p ⊆ ∪z∈UiNz and V
zj
p ⊆ ∪z∈UjNz.

This observation implies the left-hand side inequality in (8).
To prove the right-hand side inequality in (8), take a geodesic Ui = W0,W1, . . . , Wm =

Uj ∈ U such that m is minimal. This implies that Wr 6= Wr−1 for all r, and:

dU (Ui, Uj) =
m∑

r=1

dM (Wr−1,Wr),

Let ar ∈ Wr−1, br ∈ Wr be such that dM (ar, br) = dM (Wr−1,Wr). By construction, for each
r there are Ar, Br ∈ V such that Ar ⊆ Nar and Br ⊆ Nbr . Consider the following path in
V connecting V zi

p and V
zj
q : Γ = (V zi

p , A1, B1, A2, B2, . . . , Am, Bm, V
zj
q ). Observe that since

V zi
p , A1 contain points from Nzi and A1, B1 do not contain points from a common Nz, the

definition of metric composition implies that dX(A1, B1) ≥ βdX(V zi
p , A1). In other words,

dX(V zi
p , A1) + dX(A1, B1) ≤ (1 + 1/β)dX(A1, B1) = (β + 1)γdM (W0,W1). Similarly, for

r ≥ 2, dX(Br−1, Ar)+dX(Ar, Br) ≤ (β+1)γdM (Wr−1, Wr) and dX(Am, Bm)+dX(Bm, V
zj
q ) ≤

(β + 1)γdM (Am, Bm). Hence, the length of Γ is at most (β + 1)γdU (Ui, Uj), as required.
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We now construct H a k-HST that is defined by a tree T , as follows. Start with a tree
T ′ that is isomorphic to TM and has labels ∆(u) = (β + 1)γ · ∆TM

(u). At each leaf of
the tree corresponding to a point Ui ∈ U , create a labelled subtree rooted at Ui that is
isomorphic to Tzi with labels as in Tzi . Denote the resulting tree by T . Since we have a
non-contractive (1 + 1/β)α-embedding of Yzi in Hzi , it follows that ∆(zi) = diam(Hzi) ≤
(1 + 1/β)α diam(Yzi) ≤ (1 + 1/β)α diam(Nzi). Let p be a parent of Ui in TM . Since we
have a non-contractive α-embedding of U in HM it follows that ∆TM

(p) ≥ dM (A,B) for
some A,B ∈ U . Therefore ∆(p) ≥ (β + 1)γ · min{dM (x, y);x 6= y ∈ M}. Consequently,
∆(p)/∆(z) ≥ (β + 1)/[(1 + 1/β)α] ≥ k, by our restriction on β. Since HM and Hzi are
k-HSTs, it follows that T also defines a k-HST.

It is left to show that V is α-equivalent to H. Recall that for each z ∈ M there is a non-
contractive Lipschitz bijection fz : Uz → Hz that satisfies for every A,B ∈ Uz, dUz(A,B) ≤
dHz(fz(A), fz(B)) ≤ αdUz(A,B). Define f : V → H by f(V zi

j ) = fzi(U
zi
j ). Then, by Claim 4.19

for every 1 ≤ p < q ≤ s(zi):

dV(V zi
p , V zi

q ) = dUzi
(U zi

p , U zi
q )

≤ dHzi
(fzi(U

zi
p ), fzi(U

zi
q )) = dH(f(V zi

p ), f(V zi
q ))

≤ (1 + 1/β)αdUzi
(U zi

p , U zi
q ) = (1 + 1/β)αdV(V zi

p , V zi
q ).

Additionally, we have a non-contractive Lipschitz bijection fM : U → HM that satisfies for
every Ui, Uj ∈ U , dU (Ui, Uj) ≤ dHM

(fM (Ui), fM (Uj)) ≤ αdU (Ui, Uj). Hence, by Claim 4.19,
for every 1 ≤ i < j ≤ s and every 1 ≤ p ≤ s(zi), 1 ≤ q ≤ s(zj):

dV(V zi
p , V zi

q ) ≤ (β + 1)γdU (Ui, Uj)

≤ (β + 1)γdHM
(fM (Ui), fM (Uj)) = dH(f(V zi

p ), f(V zj
q ))

≤ α(β + 1)γdU (Ui, Uj) ≤ (1 + 1/β)αdV(V zi
p , V zi

q ).

The proof of Lemma 4.18 is complete.

We will also require the following two results from from [5]:

Lemma 4.20 ([5]). For any α, β ≥ 1, if a metric space M is α-equivalent to a αβ-HST, then
M is (1 + 2/β)-equivalent to a metric space in compβ(M(α)).

Theorem 4.21 ([5]). There exists a universal constant c > 0 such that for every 0 < ε ≤ 1
and k ≥ 1 every n-point metric space M contains a subset N ⊆ M which (2 + ε)-embeds into
a k-HST and:

|N | ≥ n
cε

log(2k/ε) .

We are now in position to present the announced lower bound for the QS problem for small
distortion:

Proposition 4.22. There exists a universal constant C > 0 such that whenever M is an
n-point metric space and 0 < ε ≤ 1/2, there is a QS space of M , U , which is (1+ε)-equivalent
to a 1/ε-HST and:

|U| ≥ n
Cε

[log(1/ε)]2 .

In particular, for every 1 ≤ p ≤ ∞:

QSp(1 + ε, n) ≥ n
Cε

[log(1/ε)]2 .
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Proof. Fix k ≥ 8 which will be specified later. By Theorem 4.21, M contains a subset N which
is 4-equivalent to a k-HST and |N | ≥ nc/ log(2k). By Lemma 4.20, N is (1 + 8/k)-equivalent to
a metric space in compk/4(M(4)). By Corollary 4.15,

σEQ

(
M(4), 1 +

1
k

)
≥ c′

k log k
,

for some absolute constant c′. By Lemma 4.18,

σk/8

(
compk/4(M(4)),

(
1 +

4
k

)(
1 +

1
k

))
≥ σk/8

(
M(4), 1 +

1
k

)

≥ σEQ

(
M(4), 1 +

1
k

)
≥ c′

k log k
.

Since N is (1 + 8/k)-equivalent to a metric space in compk/4(M(4)), it follows that it has a
QS space U which is (1 + 8/k)(1 + 4/k)(1 + 1/k) ≤ 1 + 20/k equivalent to a k/8-HST, and:

|U| ≥ |N |c′/(k log k) ≥ nc′′/[k(log k)2],

where c′′ is an absolute constant. Taking k = 20/ε concludes the proof.

5 The QS Problem for the Hypercube

For every integer d ≥ 1 denote Ωd = {0, 1}d, equipped with the Hamming (`1) metric. Our
goal in this section is to prove Theorem 1.11, stated in the introduction. As proved by P. Enflo
in [16], for 1 ≤ p ≤ 2, cp(Ωd) = d1−1/p. For 2 ≤ p < ∞ it was shown in [22] that there is a
constant a(p) > 0 such that for all d, cp(Ωd) ≥ a(p)

√
d. The following lemma complements

these lower bounds:

Lemma 5.1. For every 1 ≤ p < ∞ there is an absolute constant c = c(p) > 0 such that for
every integer d ≥ 1 and every 2−d ≤ ε < 1/4, if U is a QS space of Ωd such that |U| > (1−ε)2d

then for 1 ≤ p ≤ 2:

cp(U) ≥ c


 log(1/ε)

1 + log
(

d
log(1/ε)

)



min
n

1− 1
p
, 1
2

o
.

Proof. By adjusting the value of c, we may assume that that ε < d−50. In this case, if we set:

r =
1
16

 log(1/ε)

log
(

d
log(1/ε)

)
 ,

then 3 ≤ r < d/2. The ball of radius 2r in Ωd contains
(

d
2r

) ≤ (
ed
2r

)2r ≤ e4r log(d/r) points.
Therefore, the cube Ωd contains at least 2d · e−4r log(d/r) disjoint balls of radius r. We may
assume that ε ≥ e−d/70, since we may once more adjust the constant c, if necessary. Hence,
writing x = d/ log(1/ε) we have 16x log x ≤ x2, so that 4r log(d/r) ≤ 1

4 log(1/ε) · log[16x log x]
log x ≤

log[1/(2ε)]. This reasoning shows that Ωd contains at least 2ε2d disjoint balls of radius r.
Let U = {U1, . . . , Uk} be a QS space of Ωd with k > (1 − ε)2d. As in the proof of

Lemma 2.1, U must contain more than (1 − 2ε)2d singletons. Since Ωd contains at least
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2ε2d disjoint balls of radius r, it follows that U must contain the elements of some ball B
of radius r as singletons. Let x be the center of B. Write k =

⌊
r
3

⌋
and consider the sub-

cube C = {0, 1}k × {xk+1} × · · · × {xd}. Observe that C ⊆ B, and the diameter of C is at
most 2r/3. Moreover, since U contains the elements of B as singletons, the distance in Ωd

between an element of C and a non-singleton element of U is at least 2r/3. This shows that
when calculating the geodesic distance in U between two points in C, it is enough to restrict
ourselves to paths which pass only through singletons. It follows that the metric induced
by U on C coincides with the Hamming metric. By the results of [16] and [22], it follows
that cp(U) ≥ cp(C) ≥ a(p)kmin{1−1/p,1/2}, for some constant a(p) depending only on p. This
completes the proof.

We now turn our attention to the construction of large QS spaces of the hypercube which
well embed into `p. Our proof yields several embedding results which may be useful in other
circumstances. The case p = 2 is simpler, so deal with it first.

Given a metric space M and D > 0, we denote by M≤D the metric space (M, dM≤D),
where dM≤D(x, y) = min{dM (x, y), D}.

Lemma 5.2. For every D > 0, c2

(
`≤D
2

) ≤
√

e
e−1 . In fact, `≤D

2

√
e

e−1 -embeds into the `2-
sphere of radius D.

Proof. Let {gi}∞i=1 i.i.d. standard Gaussian random variables. Assume that they are defined
on some probability space Ω. Consider the Hilbert space H = L2(Ω) where we think of L2(Ω)
as all the complex valued square integrable functions on Ω. Define F : `2 → H by:

F (x1, x2, . . .) = D exp


 i

D

∞∑

j=1

xjgj


 .

Clearly ‖F (x)‖2 = D for every x ∈ `2. Observe that for every x, y ∈ `2,

|F (x)− F (y)|2 =

= D2

∣∣∣∣∣∣
exp


 i

D

∞∑

j=1

xjgj


− exp


 i

D

∞∑

j=1

yjgj




∣∣∣∣∣∣

2

= D2

∣∣∣∣∣∣
exp


 i

D

∞∑

j=1

yjgj





exp


 i

D

∞∑

j=1

(xj − yj)gj


− 1




∣∣∣∣∣∣

2

= D2

∣∣∣∣∣∣
exp


 i

D

∞∑

j=1

(xj − yj)gj


− 1

∣∣∣∣∣∣

2

= 2D2


1− cos


 1

D

∞∑

j=1

(xj − yj)gj





 .

Now,
∑∞

i=1(xj − yj)gj has the same distribution as g1

√∑∞
j=1(xj − yj)2. Hence:

E|F (x)− F (y)|2 = 2D2
[
1− E cos

(g1

D
‖x− y‖2

)]
.
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Observe that by symmetry, E sin
(g1

D ‖x− y‖2

)
= 0, so that:

E cos
(g1

D
‖x− y‖2

)
= E exp

(
i
g1

D
‖x− y‖2

)
= exp

(
−‖x− y‖2

2

2D2

)
,

where we use the fact that Eeiag1 = e−a2/2.
Putting it all together, we have shown that:

‖F (x)− F (y)‖2 =
√

2D

√
1− e−

‖x−y‖22
2D2 .

Using the elementary inequality:

e− 1
e

min{1, a} ≤ 1− e−a ≤ min{1, a} a > 0,

we deduce that:
√

e− 1
e

min{D, ‖x− y‖2} ≤ ‖F (x)− F (y)‖2 ≤ min{D, ‖x− y‖2}.

Remark 5.3. Lemma 5.2 cannot be replaced by an isometric result. In fact, for every D > 0,

c2(`
≤D
2 ) ≥ 2

√
5−√7
3

> 1.02.

To see this let T : R2 → `2 be such that for every x, y ∈ R2, min{‖x − y‖2, D} ≤ ‖T (x) −
T (y)‖2 ≤ A min{‖x− y‖2, D}. It is straightforward to verify that when viewed as a subset of
`≤D
2 , the points {(0, 0), (D, 0), (D/2, D), (D/2, 0)} cannot be isometrically embedded in Hilbert

space. To lower-bound the distortion, define a = T (0, 0), b = T (D, 0), c = T (D/2, D),
d = T (D/2, 0). By the parallelogram identity:

D2A2

2
≥ ‖a− d‖2

2 + ‖b− d‖2
2 =

‖a + b− 2d‖2
2 + ‖a− b‖2

2

2
≥ 2

∥∥∥∥
a + b

2
− d

∥∥∥∥
2

2

+
D2

2
.

Hence: ∥∥∥∥
a + b

2
− d

∥∥∥∥
2

≤ D
√

A2 − 1
2

.

Similarly:

2D2A2 ≥ ‖a− c‖2
2 + ‖b− c‖2

2 =
‖a + b− 2c‖2

2 + ‖a− b‖2
2

2
≥ 2

∥∥∥∥
a + b

2
− c

∥∥∥∥
2

2

+
D2

2
,

or ∥∥∥∥
a + b

2
− c

∥∥∥∥
2

≤ D
√

4A2 − 1
2

.

But:

D ≤ ‖c− d‖2 ≤
∥∥∥∥
a + b

2
− d

∥∥∥∥
2

+
∥∥∥∥
a + b

2
− c

∥∥∥∥
2

≤ D
√

A2 − 1
2

+
D
√

4A2 − 1
2

,

which simplifies to give the required result.
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Remark 5.4. Let ω : [0,∞) → [0,∞) be a concave non-decreasing function such that ω(0) = 0
and ω(t) > 0 for t > 0. It is straightforward to verify that if we define for x, y ∈ `2, dω(x, y) =
ω(‖x − y‖2), then dω is a metric. Lemma 5.2 dealt with the case ω(t) = min{t,D}, but we
claim that in fact there is a constant C > 0 such that for every such ω, c2(`2, dω) ≤ C. To see
this observe that φ(t) = ω

(√
t
)2 is still concave and non-decreasing (assume by approximation

that ω is differentiable and observe that φ′(t2) = ω′(t)ω(t)/t. By our assumptions, both
ω′(t) and ω(t)/t are non-negative and non-increasing, so that the required result follows).
Now, it is well known (see for example Proposition 3.2.6. in [13]) that we may therefore write
φ(t) ≈ ∑∞

i=1 min{λi, µit} for some λi, µi > 0, where the symbol ≈means that the two functions
are equivalent up to absolute multiplicative constants. By Lemma 5.2, for every i there is a
function Fi : `2 → `2 such that for every x, y ∈ `2 ‖Fi(x)− Fi(y)‖2 ≈ min{√λi,

√
µi‖x− y‖2}.

Define F : `2 → `2(L2) by setting the i’th coordinate of F to be Fi. Then for every x, y ∈ `2:

‖F (x)−F (y)‖2
2 =

∞∑

i=1

‖Fi(x)−Fi(y)‖2
2 ≈

∞∑

i=1

min{λi, µi‖x−y‖2
2} ≈ φ(‖x−y‖2

2) = ω(‖x−y‖2)2.

Lemma 5.5. Let X be a metric space such that minx6=y dX(x, y) ≥ 1 and the metric space

(X,
√

dX) is isometric to a subset of `2. Then for every D ≥ 1, c2

(
X≤D

) ≤
√

eD
e−1 . Moreover,

exists a 1-Lipschitz embedding f : X≤D → `2 such that dist(f) ≤
√

eD
e−1 and for every x ∈ X,

‖f(x)‖2 =
√

D.

Proof. All we have to do is to observe that for every x, y ∈ X,

min{
√

D,
√

dX(x, y)} ≤ min{D, dX(x, y)} ≤
√

D ·min{
√

D,
√

dX(x, y)},

and then apply Lemma 5.2.

Corollary 5.6. For every integer d ≥ 1, c2

(
Ω≤D

d

) ≤
√

eD
e−1 , where the embedding is 1-Lipschitz

and takes values in the `2-sphere of radius
√

D.

Proof. This follows from Lemma 5.5 and the classical fact [23] that `1 equipped with the metric√
‖x− y‖1 is isometric to a subset of `2.

Lemma 5.7. There is a universal constant C > 0 such that for every integer d ≥ 1 and every
2−d ≤ ε < 1/4 there exists a QS space of Ωd, U , such that |U| ≥ (1− ε)2d and:

c2(U) ≤ C

√√√√ log(1/ε)

1 + log
(

d
log(1/ε)

) .

Proof. By adjusting the constant C, we may assume that ε ≥ e−d/400. Define r to be the
smallest even integer greater than:

2




log(1/ε)

log
(

d
log(1/ε)

)



.
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We first construct a subset A ⊆ Ωd via the following iterative procedure: Pick any x1 ∈
Ωd. Having chosen x1, . . . , xk−1, as long as Ωd \ ∪k−1

j=1BΩd
(xj , 2r) 6= ∅, pick any xi ∈ Ωd \

∪k−1
j=1BΩd

(xj , 2r). When this procedure terminates we set A = {x1, x2, . . .}.
Define S ⊆ Ωd by:

S = Ωd \
( ⋃

x∈A

BΩd
(x, r/2) \ {x}

)
.

The QS space of Ωd which we consider is U = S/A.
We first bound the cardinality of U from below. Observe that by the construction, the

balls {BΩd
(x, r)}x∈A are disjoint, so that |A|(d

r

) ≤ 2d. Hence:

|U| = 2d − |A| ·
(

d

r/2

)
+ 1 >

(
1−

(
d

r/2

)
(
d
r

)
)

2d ≥


1−

(
ed
r/2

)r/2

(
d
r

)r


 2d =

(
1− e−

r
2

log( d
2er )

)
2d.

By our choice of r, and the restriction ε ≥ e−d/400, it is straightforward to verify that
e−

r
2

log( d
2er ) ≤ ε. We have shown that |U| ≥ (1− ε)2d.

By our construction, for every x ∈ S \A, r/2 ≤ dΩd
(x,A) ≤ 2r. This implies that for every

x, y ∈ U \ {A},
min{dΩd

(x, y), r} ≤ dU (x, y) ≤ min{dΩd
(x, y), 4r}.

By Corollary 5.6 there is an embedding f : U \ {A} → `2 such that for every x ∈ U \ {A},
‖f(x)‖2 =

√
r and for every x, y ∈ U \ {A}:

√
e− 1
16er

· dU (x, y) ≤ ‖f(x)− f(y)‖2 ≤ dU (x, y).

Since for every x ∈ U \ {A}, r/2 ≤ dU (x,A) ≤ 2r, we may extend f to U by setting f(A) = 0.
As f takes values in the `2-sphere of radius

√
r, dist(f) = O(

√
r), as required.

Since `2 embeds isometrically into Lp, p ≥ 1, Lemma 5.7 implies that Lemma 5.1 is optimal
(up to the dependence of the constant on p) for p ≥ 2. The case 1 ≤ p ≤ 2 seems to be more
delicate, but we can still match the bound in Lemma 5.1 up to logarithmic factors.

Recall that for 1 ≤ p ≤ 2 the exists a symmetric p-stable random variable g. This means
that there exists a constant c = c(p) > 0 such that for every t ∈ R, Eeitg = e−c|t|p . In what
follows we fix 1 ≤ p < 2 and ignore the dependence of all the constants on p. Moreover, given
two quantities A,B the notation A ≈p B means that there are constants C1, C2, which may
depend only on p, such that C1A ≤ B ≤ C2A. Denote the density of g by ϕ. It is well known
(see [24]) that ϕ(t) ≈p

1
1+tp+1 .

Lemma 5.8. Fix 1 ≤ p < 2 and let g be a symmetric p-stable random variable. Then for
every a > 0,

E [1− cos(ag)]p/2 ≈p min
{

ap log
(

1
a

+ 1
)

, 1
}

.

Proof. Since for 0 ≤ x ≤ 1, 1− cosx ≈ x2, we have that:

E [1− cos(ag)]p/2 = 2
∫ ∞

0
[1− cos(au)]p/2 ϕ(u)du

≈p

∫ 1/a

0

apup

1 + up+1
du +

∫ ∞

1/a

1
1 + up+1

du ≈p min
{

ap log
(

1
a

+ 1
)

, 1
}

.
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The following lemma is analogous to Lemma 5.2:

Lemma 5.9. For every 1 ≤ p < 2 and every D > 0 there exists a mapping F : `p → Lp such
that for every x ∈ `p, ‖F (x)‖p = D and for every x, y ∈ `p,

‖F (x)− F (y)‖p ≈p min

{
‖x− y‖p

[
log

(
D

‖x− y‖p
+ 1

)]1/p

, D

}
.

Proof. Let {gi}∞i=1 i.i.d. symmetric p-stable random variables. Assume that they are defined
on some probability space Ω. Consider the space Lp(Ω), where we think of Lp(Ω) as all the
complex valued p-integrable functions on Ω. Define F : `p → H by:

F (x1, x2, . . .) = D exp


 i

D

∞∑

j=1

xjgj


 .

Clearly ‖F (x)‖p = D for every x ∈ `p. As we have seen in the proof of Lemma 5.2, for
x, y ∈ `p:

|F (x)− F (y)|p = 2pDp


1− cos


 1

D

∞∑

j=1

(xj − yj)gj







p/2

.

Now,
∑∞

i=1(xj − yj)gj has the same distribution as g1‖x− y‖p. Hence by Lemma 5.8:

E|F (x)− F (y)|p = 2pDpE
[
1− cos

(g1

D
‖x− y‖p

)]p/2

≈p Dp min
{‖x− y‖p

p

Dp
log

(
D

‖x− y‖p
+ 1

)
, 1

}
.

Remark 5.10. The above argument also shows that for every 1 ≤ q < p ≤ 2 there is a
constant C = C(p, q) such that for every D > 0, `≤D

p is C-equivalent to a subset of Lq (since in
this case there is no logarithmic term in Lemma 5.8). For every 1 ≤ q < p ≤ 2, the metric space
(Lq, ‖x − y‖q/p

q ) is isometric to a subset of Lp. When p ≤ 2 this follows from general results
of Bretagnolle, Dacunha-Castelle and Krivine [12] (see also the book [23]). It is of interest,
however, to give a concrete formula for this embedding, which works for every 1 ≤ q < p < ∞.
To this end observe that by a change of variable it follows that for every 0 < α < 2β there
exists a constant cα,β > 0 such that for every x ∈ R, |x|α = cα,β

∫∞
−∞

(1−cos tx)β

|t|α+1 dt. Define

T : Lq(R) → Lp(R× R) by T (f)(s, t) = 1−eitf(s)

|t|(q+1)/p . For every f, g ∈ Lp(R) we have:

‖T (f)− T (g)‖p
p =

∫ ∞

−∞

∫ ∞

−∞

|1− eit[f(s)−g(s)]|p
|t|q+1

dtds

= 2p/2

∫ ∞

−∞

∫ ∞

−∞

{1− cos[t(f(s)− g(s))]}p/2

|t|q+1
dtds = 2p/2cq+1,p/2‖f − g‖q

q,

so that T is the required isometry.
A corollary of these observations is that for every ε > 0 there is a constant C(ε) > 0 such

that for every D > 0 the metric min{‖x− y‖1−ε
p , D} on `p, 1 ≤ p ≤ 2, is C(ε)-equivalent to a

subset of Lp. We do not know whether the exponent 1− ε can be removed in this statement.
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Remark 5.11. The same reasoning as in Remark 5.4 shows that for every ω : [0,∞) → [0,∞)
which is concave, non-decreasing, ω(0) = 0 and ω(t) > 0 for t > 0, the metric ω(‖x − y‖p)
on `p is c(p, q)-equivalent to a subset of Lq for every 1 ≤ q < p ≤ 2. The only difference in
the proof is that one should apply the same argument to show that φ(t) = ω(t1/q)q shares the
same properties as ω. Similarly, the metric ω(‖x− y‖1−ε

p ) is C(ε)-equivalent to a subset of Lp.

Remark 5.12. Remark 5.10 is false for p > 2. In fact, for every 0 < γ ≤ 1, and D > 0, the
metric min{‖x− y‖γ

p , D} is not Lipschitz equivalent to a subset of Lq for any 1 ≤ q < ∞. To
see this observe that if we assume the contrary then this metric would be Lipschitz equivalent
to a bounded subset of Lq. An application of Mazur’s map (see [9]) shows that this implies
that Lp is uniformly homeomorphic to a subset of L2. Since Lp, p > 2 has type 2, a theorem of
Aharoni, Maurey and Mityagin [1] implies that Lp would be linearly isomorphic to a subspace
of L1. This is a contradiction since L1 has cotype 2 while Lp, p > 2 has cotype p. Actually, by
the results presented in Chapter 9 of [9], this argument implies that the above metric is not
Lipschitz equivalent to a subset of any separable Banach lattice with finite cotype.

Corollary 5.13. Fix 1 ≤ p < 2. Let X be a finite subset of L1 such that for every x, y ∈ X,
‖x − y‖1 ≥ 1. Then for every D ≥ 2 there is an embedding ψ : X → Lp such that for every
x ∈ X, ‖ψ(x)‖p = D1/p and for every x, y ∈ X,

C1(p)
D1−1/p

min{‖x− y‖1, D} ≤ ‖ψ(x)− ψ(y)‖p ≤ C2(p)(log D)1/p min{‖x− y‖1, D},

where C1(p), C2(p) are constants which depend only on p.

Proof. We begin by noting that as in Remark 5.10, there is a mapping G : L1 → Lp such
that for every x, y ∈ L1, ‖G(x)−G(y)‖p = ‖x− y‖1/p

1 . Since X is finite, there is an isometric
embedding T : G(X) → `p (see [14]). Let F be as in Lemma 5.9, with D replaced by D1/p,
and define ψ = F ◦ T ◦G. Now, ‖ψ(x)‖p = D1/p for every x ∈ X and:

‖ψ(x)− ψ(y)‖p ≈p min

{
‖x− y‖1/p

1 ·
[
log

(
D

‖x− y‖1
+ 1

)]1/p

, D1/p

}

≤ C(p)(log D)1/p min{‖x− y‖1/p
1 , D1/p}

≤ C(p)(log D)1/p min{‖x− y‖1, D},
where we have used the fact that ‖x− y‖1 ≥ 1. Similarly, we have the inequality:

‖ψ(x)− ψ(y)‖p ≥ C ′(p)
D1−1/p

min{‖x− y‖1, D}.

The proof is complete.

A proof identical to the proof of Lemma 5.7 now gives a bound which nearly matches the
bound in Lemma 5.1:

Lemma 5.14. For every 1 ≤ p < 2 there is a constant C(p) > 0 such that for every integer
d ≥ 1 and every 2−d ≤ ε < 1/4 there exists a QS space of Ωd, U , such that |U| ≥ (1 − ε)2d

and:

cp(U) ≤ C(p)


 log(1/ε)

1 + log
(

d
log(1/ε)

)



1−1/p

·

log


 log(1/ε)

1 + log
(

d
log(1/ε)

)






1/p

.
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6 Lipschitz Quotients

In this section we prove Theorem 1.13. We shall use the notation introduced in the introduc-
tion.

Recall that for a metric space X and two subsets U, V ⊂ X, the Hausdorff distance between
U and V is defined as:

HX(U, V ) = sup{max{dX(u, V ), dX(v, U)}; u ∈ U, v ∈ V }.

The following straightforward lemma is the way we will use the Lipschitz and co-Lipschitz
conditions:

Lemma 6.1. Let X, Y be metric spaces and A > 0. For every surjection f : X → Y the
following assertions hold:

1. Lip(f) ≤ A if and only if for every y, z ∈ Y , dY (y, z) ≤ AdX(f−1(y), f−1(z)).

2. coLip(f) ≤ A if and only if for every y, z ∈ Y , HX(f−1(y), f−1(z)) ≤ AdY (y, z).

Remark 6.2. A simple corollary of Lemma 6.1, which will be useful later, is that if f : X → Y
is a Lipschitz quotient and we set U = f−1({y ∈ Y ; |f−1(y)| = 1}) then f |U is a Lipschitz
equivalence between U and f(U) and dist(f |U ) ≤ Lip(f) · coLip(f).

In the following lemma we prove two recursive inequalities which will be used to give upper
bounds for QSLip. In this lemma we use the notation RM(·, ·) which was introduced in the
introduction.

Lemma 6.3. Let M be a class of metric spaces. Then for every two integers k, m ≥ 1 and
every α ≥ 1,

1. QSLip
M (α, km) ≤ QSLip

M (α, k) · QSLip
M (α, m).

2. QSLip
M (α, km) ≤ k + RM(α, k) · QSLip

M (α, m).

Proof. We will start by proving the first assertion. Denote a = QSLip
M (α, k), b = QSLip

M (α, m).
Let X be a k-point metric space such that the largest α-Lipschitz quotient of a subspace of
X which is in a member of M has a points. Similarly, let Y be an m-point metric space such
that the largest α-Lipschitz quotient of a subspace of Y which is in a member of M has b
points. We think of X as a metric dX on [k] = {1, . . . , k}. Fix any:

µ > αΦ(Y ) =
α diam(Y )

miny 6=z dY (y, z)
and θ ≥ αµk diam(Y )

min1≤i<j≤k dX(i, j)
.

Set Z = Y × [k] and define:

dZ((y, i), (z, j)) =

{
µidY (y, z) i = j

θdX(i, j) i 6= j.

This definition is clearly a particular case of metric composition, and the choice of param-
eters ensures that dZ is indeed a metric.

Assume that there is S ⊆ Z, M ∈ M and N ⊆ M such that there is an α-Lipschitz
quotient f : S → N . Our goal is to show that |N | ≤ ab.
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Observe that by the definition of the metric on Z we have that for every i ∈ [k] and p, q ∈ N ,
p 6= q, if f−1(p) ∩ (Y × {i}), f−1(q) ∩ (Y × {i}) 6= ∅ then dZ(f−1(p), f−1(q)) ≤ µi diam(Y ) ≤
µk diam(Y ). On the other hand, if in addition for some j ∈ [k], j 6= i, f−1(p) ∩ (Y × {j}) 6= ∅
but f−1(q) ∩ (Y × {j}) = ∅ then HZ(f−1(p), f−1(q)) ≥ θ min1≤i<j≤k dX(i, j) > αµk diam(Y ).
This is a contradiction since Lemma 6.1 implies in particular that

HZ(f−1(p), f−1(q))
dZ(f−1(p), f−1(q))

≤ α. (9)

Hence f−1(q) ∩ (Y × {j}) 6= ∅. Without loss of generality assume that j > i. Then:

HZ(f−1(p), f−1(q)) ≥ µj min
y 6=z

dY (y, z) > µj−1α diam(Y ) ≥ µiα diam(Y ),

and we arrive once more to a contradiction with (9).
Summarizing, we have shown that for every i ∈ [k] and p ∈ N , if f−1(p)∩(Y ×{i}) 6= ∅ then

either f−1(p) ⊆ Y ×{i} or f−1(p) ⊇ f−1(N)∩(Y ×{i}). In particular, if we write for p, q ∈ N ,
p ∼ q if there is i ∈ [k] such that f−1(p)∩ (Y ×{i}) 6= ∅ and f−1(q)∩ (Y ×{i}) 6= ∅. Then ∼ is
an equivalence relation. Let C1, . . . , Cs be the equivalence classes of ∼. Take any pj ∈ Cj and
let Aj ⊂ [k] be the set of indices i ∈ [k] such that there exists y ∈ Y for which (y, i) ∈ f−1(pj).
By the definition of ∼, A1, . . . , As are disjoint. Let A = ∪s

j=1Aj and define g : A → {p1, . . . , ps}
by: if i ∈ Aj then g(i) = pj . By the definition of dZ , if j 6= ` and h ∈ Aj , i ∈ A` then for every
y, z ∈ Y , dX(h, i) = dZ((y, h), (z, i))/θ. Hence dA(g−1(pj), g−1(p`)) = dZ(f−1(pj), f−1(p`))/θ,
HA(g−1(pj), g−1(p`)) = HZ(f−1(pj), f−1(p`))/θ. By Lemma 6.1, g is an α-Lipschitz quotient
from the subspace A ⊂ [k] onto {p1, . . . , ps}. It follows that s ≤ a.

We will conclude once we show that for every j, |Cj | ≤ b. If |Cj | = 1 then there is nothing
to prove. Otherwise there is i ∈ [k] such that for every p ∈ Cj , f−1(p) ⊂ Y × {i}. Lemma 6.1
implies that f |f−1(Cj) is an α-Lipschitz quotient of a subspace of Y ×{i}, and since the metric
on Y × {i} is a dilation of dY , it follows from the definition of b that |Cj | ≤ b.

To prove the second assertion in Lemma 6.3 we repeat the same construction, but now
with Y as before, and X a k-point metric space whose largest subspace which α-embeds into
a member of M has c = RM(α, k) points. The rest of the notation will be as above.

Consider the equivalence classes C1, . . . , Cs ⊆ N , and enumerate them in such a way that
|C1| = . . . = |Ct| = 1 and |Ct+1|, . . . , |Cs| ≥ 2. As we have seen above, for 1 ≤ j ≤ t, since
Cj = {pj}, there is a subset Ij ⊂ [k] such that f−1(pj) = f−1(N) ∩ (Y × Ij). Since I1, . . . , It

are disjoint, t ≤ k. Now, by the construction, for t < j ≤ s, |g−1(pj)| = 1, so that by
Remark 6.2 we get that {g−1(pt+1), . . . , g−1(ps)} ⊆ [k] α-embeds into N . By the definition
of c, it follows that s − t ≤ c. Finally, we have also shown that for every j |Cj | ≤ b, so that
|N | ≤ t + (s− t)b ≤ k + cb, as required.

Corollary 6.4. Let M be a class of finite metric spaces and α ≥ 1. Assume that there is a
finite metric space M such that cM(M) > α. Then there is 0 ≤ δ < 1 such that for infinitely
many n’s, QSLip

M (α, n) ≤ nδ.

Proof. Our assumption implies that there is 0 ≤ δ < 1 such that QSLip
M (α, |M |) ≤ |M | − 1 ≤

|M |δ. An iteration of Lemma 6.3 now implies that for every i ≥ 1, QSLip
M (α, |M |i) ≤ |M |δi.

Remark 6.5. For every 1 ≤ p < ∞ and α > 2 there is an integer n0 = n0(p, α) and constants
c = c(p, α), C = C(p, α) such that 0 < c ≤ C < 1 and for every n ≥ n0, nc ≤ QSLip

p (α, n) ≤
nC . This follows from Corollary 6.4 and the trivial inequality QSLip

p (α, n) ≥ Rp(α, n), together
with the results of [5].
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Corollary 6.6. For every 1 ≤ α < 2 and 1 ≤ p ≤ 2 there is an integer n0 = n0(p, α) and a
constant C = C(p, α) such that for every n ≥ n0:

QSLip
p (α, n) ≤ eC

√
(log n)(log log n).

For p > 2 the same conclusion holds for every 1 ≤ α < 22/p.

Proof. As shown in [6] for every 1 ≤ p < ∞ and 1 ≤ α < 2min{1,2/p} there is a constant
c = c(p, α) such that for every k, Rp(α, k) ≤ c log k. It follows from Lemma 6.3 that for every
` ∈ N,

QSLip
p (α, k`) ≤ k + (c log k)QSLip

p (α, k`−1).

Since QSLip
p (α, k) ≤ k, by induction we deduce that:

QSLip
p (α, k`) ≤

`−1∑

j=0

k(c log k)j ≤ k(c log k)`.

Choosing k of the order of e
√

(log n)(log log n) and ` of the order of
√

log n
log log n gives the required

result.

We now prove a nearly matching lower bound for QSp(α, n). In order to do so we first
observe that Lemma 4.2 holds also in the context of Lipschitz quotients.

Lemma 6.7. Let M be an n-point metric space and 1 < α ≤ 2. Then there is a subspace of
M which has an α Lipschitz quotient in an equilateral metric space and:

|U| ≥
⌊

n(log α)/[2 log Φ(M)]

8 log n

⌋
.

Proof. The proof is exactly the same as the proof of Lemma 4.2. Using the notation of this
proof, the only difference is that we observe that Lemma 4.1 actually ensures that for every
i 6= j, dM (Ui, Uj),HM (Ui, Uj) ∈ [α`−1, α`), so that the quotient obtained is actually a Lipschitz
quotient due to Lemma 6.1.

We also require the following fact, which is essentially proved in [4] (see Proposition 16
there). Since the result of [4] was stated for parameters other than what we need below, we
will sketch the proof for the sake of completeness.

Lemma 6.8. Fix 0 < ε < 1 and let M be an n-point metric space. Then there is a subset
N ⊆ M which is either (1 + ε)-equivalent to an ultrametric, or 3-equivalent to an equilateral
space, and:

|N | ≥ exp

(
c

√
log n

log(2/ε)

)
.

Proof. Set k = 2(1/ε + 1). By Theorem 4.21 there is a universal constant c > 0 such that
M contains a subset M ′ ⊆ M which is 3-equivalent to a (3k)-HST, X, via a non-contractive
bijection f : M ′ → X, and |M ′| ≥ nc/ log(2/ε). Let T be the tree defining X. Set h =

exp
(√

c log n
log(2/ε)

)
. If T has a vertex u with out-degree exceeding h then by choosing one leaf
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from each subtree emerging from u we obtain a h-point subset of M ′ which is 3-equivalent to
an ultrametric. We may therefore assume that all the vertices in T have out-degree at most
h. In this case by Lemma 14 in [4] T contains a binary subtree S with at least |M ′|1/ log2 h ≥
exp

(√
c log n

log(2/ε)

)
leaves. Now, denote by ∆(·) the original labels on S (inherited from T ).

We define new labels ∆′(·) on S as follows. For each vertex u ∈ S, denote by T1 and T2 the
subtrees rooted at u’s children. We define ∆′(u) = max{dM (x, y); x ∈ f−1(T1), y ∈ f−1(T2)}.
As shown in the proof of Case 2 in Proposition 16 of [4], this relabelling results in a binary
k-HST which is k/(k − 2) = 1 + ε equivalent to N = f−1(S).

Lemma 6.9. For every 1 ≤ α < 2 there is a constant c = c(α) > 0 such that for every integer
n and every 1 ≤ α < 2,

QSLip
2 (α, n) ≥ ec

√
log n.

Proof. By Lemma 6.8 for every ε > 0 there is a constant c = c(ε) such that every n point
metric space contains a subset of size at least ec

√
log n which is either (1 + ε)-equivalent to an

ultrametric, in which case we are already done, or 3-equivalent to an equilateral space. In
the latter case the subspace obtained has aspect ration at most 3, so that the required result
follows from Lemma 6.7.
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