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Abstract

Given a Banach space X, for n ∈ N and p ∈ (1,∞) we investigate
the smallest constant P ∈ (0,∞) for which every n-tuple of functions
f1, . . . , fn : {−1, 1}n → X satisfies

∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

∂jfj(ε)

∥∥∥∥∥
p

dµ(ε)

6 Pp

∫
{−1,1}n

∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

δj∆fj(ε)

∥∥∥∥∥
p

dµ(ε)dµ(δ),

where µ is the uniform probability measure on the discrete hypercube
{−1, 1}n and {∂j}nj=1 and ∆ =

∑n
j=1 ∂j are the hypercube partial

derivatives and the hypercube Laplacian, respectively. Denoting this
constant by Pn

p (X), we show that

Pn
p (X) 6

n∑
k=1

1

k

for every Banach space (X, ‖ · ‖). This extends the classical Pisier
inequality, which corresponds to the special case fj = ∆−1∂jf for
some f : {−1, 1}n → X. We show that supn∈NPn

p (X) < ∞ if either
the dual X∗ is a UMD+ Banach space, or for some θ ∈ (0, 1) we
have X = [H,Y ]θ, where H is a Hilbert space and Y is an arbitrary
Banach space. It follows that supn∈NPn

p (X) < ∞ if X is a Banach
lattice of nontrivial type.
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1 Introduction

Fix a Banach space (X, ‖ · ‖) and n ∈ N. For every f : {−1, 1}n → X and

j ∈ {1, . . . , n} the hypercube jth partial derivative of f , which is denoted

∂jf : {−1, 1}n → X, is defined as

(1.1) ∂jf(ε)
def
=
f(ε)− f(ε1, . . . , εj−1,−εj, εj+1, . . . , εn)

2
.

The hypercube Laplacian of f , denoted ∆f : {−1, 1}n → X, is

(1.2) ∆f(ε)
def
=

n∑
j=1

∂jf(ε).

It is immediate to check that ∆ is invertible on the space of all mean zero

functions f : {−1, 1}n → X. Below ∆−1 is understood to be defined for every

f : {−1, 1}n → X by setting ∆−1f = ∆−1f . Here f = f−
∫
{−1,1}n f(δ)dµ(δ),

where µ denotes the uniform probability measure on {−1, 1}n.

The following inequality is due to Pisier [28]. Throughout this paper

the asymptotic notation .,& indicates the corresponding inequalities up to

universal constant factors. We will also denote equivalence up to universal

constant factors by �, i.e., A � B is the same as (A . B) ∧ (A & B).

Theorem 1.1 (Pisier’s inequality). For every Banach space (X, ‖·‖), every

n ∈ N, every p ∈ [1,∞] and every f : {−1, 1}n → X, we have

(1.3)

(∫
{−1,1}n

∥∥∥∥∥f(ε)−
∫
{−1,1}n

f(δ)dµ(δ)

∥∥∥∥∥
p

dµ(ε)

)1/p

. log n

(∫
{−1,1}n

∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

δj∂jf(ε)

∥∥∥∥∥
p

dµ(ε)dµ(δ)

)1/p

.

Due to the application of Pisier’s inequality to the theory of nonlinear

type (see [28, 25, 12, 23]), it is of great interest to understand when (1.3)

holds true with the log n term replaced by a constant that may depend

on the geometry of X but is independent of n. Talagrand proved [30] that

the log n term in (1.3) is asymptotically optimal for general Banach spaces

X, Wagner proved [31] that the log n term in (1.3) can be replaced by a

universal constant if p =∞ and X is a general Banach space, and in [25] it

is shown that the log n term in (1.3) can be replaced by a constant that is

independent of n if X is a UMD Banach space. It remains an intriguing open

question whether every Banach space of nontrivial type satisfies (1.3) with
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the log n term replaced by a constant that is independent of n. If true, this

would resolve a 1976 question of Enflo [9] by establishing that Rademacher

type p and Enflo type p coincide (see [25, 23] and Section 6 below).

Here we obtain a new class of Banach spaces that satisfies a dimension-

independent Pisier inequality. Our starting point is the following extension

of Pisier’s inequality.

Definition 1.2 (Pisier constant ofX). The n-dimensional Pisier constant of

X (with exponent p), denoted Pn
p (X), is the infimum over those P ∈ (0,∞)

such that every f1, . . . , fn : {−1, 1}n → X satisfy

(1.4)

(∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

∂jfj(ε)

∥∥∥∥∥
p

dµ(ε)

)1/p

6 P

(∫
{−1,1}n

∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

δj∆fj(ε)

∥∥∥∥∥
p

dµ(ε)dµ(δ)

)1/p

.

We also set

Pp(X)
def
= sup

n∈N
Pn
p (X).

Inequality (1.4) reduces to Pisier’s inequality if we choose fj = ∆−1∂jf

for some f : {−1, 1}n → X. The generalized inequality (1.4) has the ad-

vantage of being well-behaved under duality, as explained in Section 2. The

following theorem yields a logarithmic bound on Pp
n(X), thus extending

Pisier’s inequality.

Theorem 1.3. For every Banach space X, every p ∈ [1,∞] and every

n ∈ N,

Pn
p (X) 6

n∑
k=1

1

k
.

Our approach yields a quantitative improvement over Pisier’s inequality

only in lower order terms: an optimization of Pisier’s argument (as carried

out in [23]) shows that the O(log n) term in (1.3) can be taken to be at

most log n + O(log log n), while Theorem 1.3 shows that this term can be

taken to be log n+O(1).

In [25] it was shown that the logarithmic term in (1.3) can be replaced by

a constant that is independent of n if X is a UMD Banach space. Recall that

X is a UMD Banach space if for every p ∈ (1,∞) there exists a constant

β ∈ (0,∞) such that if {Mj}nj=0 is a p-integrable X-valued martingale
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defined on some probability space (Ω,P), then for every ε1, . . . , εn ∈ {−1, 1}
we have

(1.5)

∫
Ω

∥∥∥∥∥M0 +
n∑
j=1

εj(Mj −Mj−1)

∥∥∥∥∥
p

dP 6 βp
∫

Ω

‖Mn‖pdP.

The infimum over those β ∈ (0,∞) for which (1.5) holds true is denoted

βp(X). It can be shown (see [7]) that βp(X) . p2

p−1
β2(X), so in order to

define the UMD property it suffices to require the validity of (1.5) for p = 2.

UMD Banach spaces are known to be superreflexive [20, 1], and one also

has βq(X
∗) = βp(X), where q = p/(p− 1) (see e.g. [7]).

In [10] Garling investigated the natural weakening of (1.5) in which the

desired inequality is required to hold true in expectation over ε1, . . . , εn ∈
{−1, 1} rather than for every ε1, . . . , εn ∈ {−1, 1}. Specifically, say that X

is a UMD+ Banach space if for every p ∈ (1,∞) there exists a constant

β ∈ (0,∞) such that if {Mj}nj=0 is a p-integrable X-valued martingale

defined on some probability space (Ω,P) then

(1.6)

∫
{−1,1}n

∫
Ω

∥∥∥∥∥M0 +
n∑
j=1

εj(Mj −Mj−1)

∥∥∥∥∥
p

dPdµ(ε) 6 βp
∫

Ω

‖Mn‖pdP.

The infimum over those β for which (1.6) holds true is denoted β+
p (X).

Theorem 1.4. If X is a Banach space such that X∗ is UMD+ then the

following inequality holds true. Fix p ∈ (1,∞) and n ∈ N. For every function

F : {−1, 1}n × {−1, 1}n → X and j ∈ {1, . . . , n} denote

Fj(ε)
def
=

∫
{−1,1}n

δjF (ε, δ)dµ(δ).

Then

(1.7)

(∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

∆−1∂jFj(ε)

∥∥∥∥∥
p

dµ(ε)

)1/p

6 β+
q (X∗)

(∫
{−1,1}n

∫
{−1,1}n

‖F (ε, δ)‖pdµ(ε)dµ(δ)

)1/p

,

where q = p/(p− 1).

For every f1, . . . , fn : {−1, 1}n → X, an application of Theorem 1.4 to

the function F (ε, δ) =
∑n

j=1 δjfj(ε) yields the following estimate on the

Pisier constant of a UMD+ Banach space.
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Corollary 1.5. Pp(X) 6 β+
q (X∗).

It is unknown if a UMD+ Banach space must also be a UMD Banach

space, though it seems reasonable to conjecture that there are UMD+ spaces

that are not UMD. Regardless of this, Theorem 1.4 and Corollary 1.5 are

conceptually different from the result of [25], which relies on the full force of

the UMD condition, i.e. it requires the validity of (1.5) for every choice of

signs ε1, . . . , εn, while our argument needs such estimates to hold true only

for an average choice of signs. We also have a quantitative improvement:

in [25] it was shown that Pisier’s inequality holds true with the O(log n)

term in (1.3) replaced by βp(X) = βq(X
∗), while we obtain the same esti-

mate with the O(log n) term in (1.3) replaced by β+
q (X∗) 6 βq(X

∗). Geiss

proved [11] that for every η ∈ (0, 1) there is Cη ∈ (0,∞) such that for every

M > 1 there is a Banach space X that satisfies

∞ > βq(X
∗) > Cηβ

+
q (X∗)2−η >M.

Remark 1.1. Inequality (1.7) is an extension of the generalized Pisier in-

equality (1.4), but for general Banach spaces it behaves very differently:

unlike the logarithmic behavior of Theorem 1.3, the best constant appearing

in the right hand side of (1.7) for a general Banach space X must be at least

a constant multiple of
√
n, as exhibited by the case X = L1(({−1, 1}n, µ),R)

and F : {−1, 1}n × {−1, 1}n → X given by F (ε, δ)(η) =
∏n

i=1(1 + εiδiηi).

Suppose that θ ∈ (0, 1) and X = [H,Y ]θ, where H is a Hilbert space

and Y is an arbitrary Banach space. Here [·, ·]θ denotes complex interpola-

tion (see [3]). Theorem 1.6 below shows that in this case Pp(X) <∞, and

therefore Pisier’s inequality holds true with the log n term in (1.3) replaced

by a constant that is independent of n. Pisier proved [27] that every Banach

lattice of nontrivial type (see [19]) is of the form [H,Y ]θ for some θ ∈ (0, 1),

so we thus obtain the desired dimension independence in Pisier’s inequality

for Banach lattices of nontrivial type. This result does not follow from pre-

viously known cases in which a dimension-independent Pisier inequality has

been proved, since, as shown by Bourgain [4, 5], there exist Banach lattices

of nontrivial type which are not UMD. Note, however, that we are still far

from proving the conjectured dimension-independent Pisier inequality for

Banach spaces with nontrivial type: any space of the form [H,Y ]θ admits

an equivalent norm whose modulus of smoothness has power type 2/(1 + θ)

(see [27, 8]), while there exist Banach spaces with nontrivial type that do

not admit such an equivalent norm (see [14, 16, 15, 29]).
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Theorem 1.6. Let X, Y be Banach spaces and let H be a Hilbert space.

Suppose that for some θ ∈ (0, 1) we have X = [H,Y ]θ. Then for every

p ∈ (1,∞),

Pp(X) 6
2 max{p, p/(p− 1)}

1− θ
.

Remark 1.2. If r ∈ (2,∞) then the O(log n) term in Pisier’s inequal-

ity (1.3), when p = 2 and X = `r, can be replaced by O(r), due to the

fact that β+
2 (`r) � r (this follows from Hitczenko’s work [13], as explained

to us by Mark Veraar). This bound also follows from Theorem 1.6. At the

same time, an inspection of Talagrand’s example in [30] shows that this

term must be at least a constant multiple of log r. Determining the correct

order of magnitude as r → ∞ of the constant in Pisier’s inequality when

X = `r remains an interesting open problem.

2 Duality

The dimension n ∈ N will be fixed from now on. For p ∈ [1,∞] and

a Banach space X, let Lp(X) denote the vector-valued Lebesgue space

Lp(({−1, 1}n, µ), X). Thus Lp(Lp(X)) can be naturally identified with the

space Lp(({−1, 1}n × {−1, 1}n, µ× µ), X).

For f ∈ Lp(X) we denote its Fourier expansion by

f =
∑

A⊆{1,...,n}

f̂(A)WA,

where the Walsh function WA : {−1, 1}n → {−1, 1} corresponding to

A ⊆ {1, . . . , n} is given by WA(ε1, . . . , εn) =
∏

i∈A εi, and the Fourier co-

efficient f̂(A) ∈ X is given by f̂(A) =
∫
{−1,1}n f(x)WA(x)dµ(x). Using this

(standard) notation, we have

∀ i ∈ {1, . . . , n}, ∀ f ∈ Lp(X), ∂if =
∑

A⊆{1,...,n}
i∈A

f̂(A)WA,

∀ f ∈ Lp(X), ∆f =
∑

A⊆{1,...,n}

|A|f̂(A)WA,

and

∀ f ∈ Lp(X), ∆−1f
def
=

∑
A⊆{1,...,n}

A 6=∅

1

|A|
f̂(A)WA.

The Rademacher projection of f ∈ Lp(X) is defined as usual by

Rad(f)
def
=

n∑
i=1

f̂({i})W{i}.
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We denote below RadX
def
= Rad(Lp(X)) and Rad⊥X

def
= (I −Rad)(Lp(X)).

The dual of (RadX , ‖ · ‖Lp(X)) is naturally identified with the quotient

Lq(X
∗)/Rad⊥X∗ , where q = p/(p− 1).

Define an operator S : Lp(Lp(X))→ Lp(X) by

(2.1) ∀F ∈ Lp(Lp(X)), S(F )
def
=

n∑
j=1

∆−1∂jF̂ ({j}).

Using this notation, Theorem 1.4 is nothing more than the following oper-

ator norm bound.

‖S‖Lp(Lp(X))→Lp(X) 6 β+
q (X∗).

The adjoint operator S∗ : Lq(X
∗)→ Lq(Lq(X

∗)) is given by

∀ g ∈ Lq(X∗), ∀ δ ∈ {−1, 1}n, S∗(g)(δ) =
n∑
j=1

δj∆
−1∂jg.

Therefore Theorem 1.4 has the following equivalent dual formulation.

Theorem 2.1 (Dual formulation of Theorem 1.4). Let Z be a UMD+ Ba-

nach space. Then for every q ∈ (1,∞) and every g ∈ Lq(Z) we have∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

δj∆
−1∂jg

∥∥∥∥∥
q

Lq(Z)

dµ(δ)

1/q

6 β+
q (Z)‖g‖Lq(Z).

Theorem 2.1, and consequently also Theorem 1.4, will be proven in Sec-

tion 3.

Let T be the restriction of S to RadLp(X). Thus

Pn
p (X) = ‖T‖RadLp(X)→Lp(X) = ‖T ∗‖Lq(X∗)→Lq(Lq(X∗))/Rad⊥Lq(X∗)

.

The adjoint T ∗ : Lq(X
∗)→ Lq(Lq(X

∗))/Rad⊥Lq(X∗) is given by

∀ g ∈ Lq(X∗), ∀ δ ∈ {−1, 1}n, T ∗(g) =
n∑
j=1

δj∆
−1∂jg + Rad⊥Lq(X∗).

Therefore Theorem 1.3 has the following equivalent dual formulation.

Theorem 2.2 (Dual formulation of Theorem 1.3). Let Z be a Banach space

and q ∈ [1,∞]. Then for every g ∈ Lq(Z) we have

inf
Φ∈Rad⊥Lq(Z)

∫
{−1,1}n

∥∥∥∥∥Φ(δ) +
n∑
j=1

δj∆
−1∂jg

∥∥∥∥∥
q

Lq(Z)

dµ(δ)

1/q

6

(
n∑
k=1

1

k

)
‖g‖Lq(Z).
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Theorem 2.2, and consequently also Theorem 1.3, will be proven in Sec-

tion 3. Since [H,Y ]∗θ = [H,Y ∗]θ (see [3]), we also have the following equiva-

lent dual formulation of Theorem 1.6.

Theorem 2.3 (Dual formulation of Theorem 1.6). Let H be a Hilbert

space, W a Banach space, and θ ∈ (0, 1). Set Z = [H,W ]θ. Then for every

q ∈ (1,∞) and g ∈ Lq(Z),

inf
Ψ∈Rad⊥Lq(Z)

∫
{−1,1}n

∥∥∥∥∥Ψ(δ) +
n∑
j=1

δj∆
−1∂jg

∥∥∥∥∥
q

Lq(Z)

dµ(δ)

1/q

6
2 max{q, q/(q − 1)}

1− θ
‖g‖Lq(Z).

Theorem 2.3, and consequently also Theorem 1.6, will be proven in Sec-

tion 5.

3 Proof of Theorem 2.1

Fix q ∈ (1,∞) and g ∈ Lq(Z). Let Sn denote the symmetric group on

{1, . . . , n}. For σ ∈ Sn and k ∈ {0, . . . , n} define gσk ∈ Lq(Z) by

(3.1) gσk (ε)
def
=

∑
A⊆{σ−1(1),...,σ−1(k)}

ĝ(A)WA(ε)

=
1

2n−k

∑
δσ−1(k+1),...,δσ−1(n)∈{−1,1}

g

(
k∑
i=1

εσ−1(i)eσ−1(i) +
n∑

i=k+1

δσ−1(i)eσ−1(i)

)
,

where here, and in what follows, e1, . . . , en denotes the standard basis of

Rn. Then {gσk}nk=0 is a Z-valued martingale with gσn = g and gσ0 = ĝ(∅),
implying that

(3.2)

∫
{−1,1}n

∥∥∥∥∥
n∑
k=1

δk
(
gσk − gσk−1

) ∥∥∥∥∥
q

Lq(Z)

dµ(δ)

1/q

6 β+
q (Z) ‖g‖Lq(Z) .

In (3.2) we may replace {δk}nk=1 by {δσ−1(k)}nk=1, since these two sequences

of signs have the same joint distribution. Then we make the change of

variable j = σ−1(k), so that k = σ(j). Averaging the resulting inequality

over σ ∈ Sn, and using the convexity of the norm, we see that

(3.3)

∫
{−1,1}n

∥∥∥∥∥ 1

n!

∑
σ∈Sn

n∑
j=1

δj
(
gσσ(j) − gσσ(j)−1

) ∥∥∥∥∥
q

Lq(Z)

dµ(δ)

1/q

6 β+
q (Z) ‖g‖Lq(Z) .
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It remains to note that for each δ ∈ {−1, 1}n we have

1

n!

∑
σ∈Sn

n∑
j=1

δj
(
gσσ(j) − gσσ(j)−1

)
=

1

n!

∑
σ∈Sn

n∑
j=1

δj
∑

∅(A⊆{1,...,n}
maxσ(A)=σ(j)

ĝ(A)WA

=
∑

A⊆{1,...,n}
A6=∅

∑
j∈A

δj
|{σ ∈ Sn : maxσ(A) = σ(j)}|

n!
ĝ(A)WA

=
∑

A⊆{1,...,n}
A 6=∅

∑
j∈A δj

|A|
ĝ(A)WA

=
n∑
j=1

δj∆
−1∂jg.(3.4)

Due to (3.3) and (3.4) the proof of Theorem 2.1 is complete.

4 Proof of Theorem 2.2

The following lemma introduces an auxiliary function which is a variant of

a similar function that was used by Pisier in [28].

Lemma 4.1. Let Z be a Banach space. Fix n ∈ N, q ∈ [1,∞] and t ∈ (0, 1).

For g ∈ Lq(Z) define Gt ∈ Lq(Lq(Z)) by

(4.1) Gt(δ)
def
=

1

1− t
∑

A⊆{1,...,n}

ĝ(A)WA

∏
i∈A

(t+ (1− t)δi)−
tn

1− t
g.

Then

(4.2) Rad(Gt)(δ) =
∑

A⊆{1,...,n}
A 6=∅

t|A|−1
∑
j∈A

δj ĝ(A)WA,

and

(4.3) ‖Gt‖Lq(Lq(Z)) 6
1− tn

1− t
‖g‖Lq(Z).

Proof. Identity (4.2) follows from (4.1) since for every A ⊆ {1, . . . , n},

Rad

(∏
i∈A

(t+ (1− t)δi)

)
= t|A|−1(1− t)

∑
j∈A

δj.
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To prove (4.3) observe that for every ε, δ ∈ {−1, 1}n,

(1− t)Gt(δ)(ε)

=
∑

A⊆{1,...,n}

ĝ(A)WA(ε)
n∏
i=1

(
t+ (1− t)δ1A(i)

i

)
− tng(ε)(4.4)

=
∑

A⊆{1,...,n}

ĝ(A)WA(ε)
∑

B⊆{1,...,n}

t|B|(1− t)n−|B|WArB(δ)− tng(ε)

=
∑

B({1,...,n}

t|B|(1− t)n−|B|
∑

A⊆{1,...,n}

ĝ(A)WA∩B(ε)WArB(εδ)

=
∑

B({1,...,n}

t|B|(1− t)n−|B|gB(ε, δ),(4.5)

where in (4.4) we use (4.1) and in (4.5) for every B ⊆ {1, . . . , n} we set

gB(ε, δ)
def
= g

∑
j∈B

εjej +
∑

j∈{1,...,n}rB

εjδjej

 .

Since gB is equidistributed with g, it follows from (4.5) that

‖Gt‖Lq(Lq(Z))

‖g‖Lq(Z)

6
1

1− t
∑

B({1,...,n}

t|B|(1− t)n−|B| = 1− tn

1− t
.

Proof of Theorem 2.2. Observe that for every δ ∈ {−1, 1}n we have
n∑
j=1

δj∆
−1∂jg =

∑
A⊆{1,...,n}

A 6=∅

1

|A|
∑
j∈A

δj ĝ(A)WA

=
∑

A⊆{1,...,n}
A 6=∅

(∫ 1

0

t|A|−1dt

)∑
j∈A

δj ĝ(A)WA

(4.2)
= Rad

(∫ 1

0

Gt(δ)dt

)
.(4.6)

It follows that if we set

(4.7) Φ
def
=

∫ 1

0

Gtdt−Rad

(∫ 1

0

Gtdt

)
.

then Φ ∈ Rad⊥Lq(Z) and∫
{−1,1}n

∥∥∥∥∥Φ(δ) +
n∑
j=1

δj∆
−1∂jg

∥∥∥∥∥
q

Lq(Z)

dµ(δ)

1/q

(4.6)
=

∥∥∥∥∥
∫ 1

0

Gtdt

∥∥∥∥∥
Lq(Lq(Z))

(4.3)

6

(∫ 1

0

1− tn

1− t
dt

)
‖g‖Lq(Z).

It remains to note that
∫ 1

0
1−tn
1−t dt =

∑n−1
k=0

∫ 1

0
tkdt =

∑n
k=1

1
k
.
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5 Proof of Theorem 2.3

For t ∈ (0, 1) define a linear operator Vt : Lq(Z)→ Lq(Lq(Z)) by

(5.1) Vt(g)(δ)
def
= Gt(δ)− Ĝt(∅)

(4.1)
=

1

1− t
∑

A⊆{1,...,n}

ĝ(A)WA

(∏
i∈A

(t+ (1− t)δi)− t|A|
)
.

Lemma 5.1. Let H be a Hilbert space. Then for every t ∈ (0, 1),

(5.2) ‖Vt‖L2(H)→L2(L2(H))6
1√

1− t2
6

1√
1− t

.

Proof. Observe that for every A ⊆ {1, . . . , n} we have

(5.3)

∫
{−1,1}n

(∏
i∈A

(t+ (1− t)δi)− t|A|
)2

dµ(δ)

=
∑
B(A

t2|B|(1− t)2(|A|−|B|) =
(
t2 + (1− t)2

)|A| − t2|A|.
It follows from (5.1), (5.3), and the orthogonality of {WA}A⊆{1,...,n}, that

(5.4) ‖Vt‖L2(H)→L2(L2(H)) = max
a∈{1,...,n}

√
(t2 + (1− t)2)a − t2a

1− t
.

Now, for every a ∈ {1, . . . , n} and t ∈ (0, 1) we have

(5.5)
(
t2 + (1− t)2

)a − t2a = (1− t)2

a−1∑
k=0

(
t2 + (1− t)2

)a−1−k
t2k

6 (1− t)2

a−1∑
k=0

t2k = (1− t)2 1− t2a

1− t2
6

1− t
1 + t

,

where in the first inequality of (5.5) we used the estimate t2 + (1− t)2 6 1,

which holds for every t ∈ [0, 1]. The desired estimate (5.2) now follows from

a substitution of (5.5) into (5.4).

Lemma 5.2. Let H be a Hilbert space and let W be a Banach space. Fix

θ ∈ (0, 1) and q ∈ (1,∞). Set Z = [H,W ]θ. Then for every t ∈ (0, 1) we

have

(5.6) ‖Vt‖Lq(Z)→Lq(Lq(Z)) 6
2

(1− t)1−(1−θ) min{1/q,1−1/q} .
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Proof. For every r ∈ [1,∞] we have

‖Vt(g)‖Lr(Lr(W ))
(5.1)
=
∥∥∥Gt − Ĝt(∅)

∥∥∥
Lr(Lr(W ))

6 2‖Gt‖Lr(Lr(W ))

(4.3)

6
2‖g‖Lr(W )

1− t
.

Consequently,

(5.7) ∀ r ∈ [1,∞], ‖Vt‖Lr(W )→Lr(Lr(W )) 6
2

1− t
.

If q ∈ [2,∞) then we interpolate (see [3]) between (5.2) and (5.7) with

W = H and r =∞. If q ∈ (1, 2] then we interpolate between (5.2) and (5.7)

with W = H and r = 1. The norm bound thus obtained implies the estimate

(5.8) ∀ q ∈ (1,∞), ‖Vt‖Lq(H)→Lq(Lq(H)) 6
2

(1− t)max{1/q,1−1/q} .

Finally, interpolation between (5.8) and (5.7) with r = q gives the desired

norm bound (5.6).

Proof of Theorem 2.3. By (5.1) we have Rad(Vt(g)) = Rad(Gt). There-

fore, analogously to (4.7), if we set

Ψ
def
=

∫ 1

0

Vt(g)dt−Rad

(∫ 1

0

Gtdt

)
=

∫ 1

0

Vt(g)dt−Rad

(∫ 1

0

Vt(g)dt

)
,

then Ψ ∈ Rad⊥Lq(Z) and by (4.6) for every δ ∈ {−1, 1}n we have

(5.9) Ψ(δ) +
n∑
j=1

δj∆
−1∂jg =

∫ 1

0

Vt(g)(δ)dt.

Hence,∫
{−1,1}n

∥∥∥∥∥Ψ(δ) +
n∑
j=1

δj∆
−1∂jg

∥∥∥∥∥
q

Lq(Z)

dµ(δ)

1/q

(5.9)∧(5.6)

6
∫ 1

0

2‖g‖Lq(Z)

(1− t)1−(1−θ) min{1/q,1−1/q}dt

=
2‖g‖Lq(Z)

(1− θ) min{1/q, 1− 1/q}
.

This is precisely the assertion of Theorem 2.3.
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6 Enflo type in uniformly smooth Banach

spaces

A Banach space X has Rademacher type p ∈ [1, 2] (see e.g. [21]) if there

exists TR ∈ (0,∞) such that for all n ∈ N and all x1, . . . , xn ∈ X,

(6.1)

∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥
p

dµ(ε) 6 T pR

n∑
j=1

‖xj‖p.

X has Enflo type p (see [9, 6, 28, 25]) if there exists TE ∈ (0,∞) such that

for all n ∈ N and all f : {−1, 1}n → X,

(6.2)

∫
{−1,1}n

‖f(ε)− f(−ε)‖p

2p
dµ(ε) 6 T pE

n∑
j=1

‖∂jf‖pLp(X).

By considering the function f(ε) =
∑n

j=1 εjxj one sees that (6.1) is

a special case of (6.2). It is a long-standing open problem [9] whether,

conversely, (6.1) implies (6.2). A crucial feature of (6.2) is that it is a purely

metric condition (thus one can define when a metric space has Enflo type

p), while (6.1) is a linear condition. See [22] for a purely metric condition

(which is more complicated than, but inspired by, Enflo type) that is known

to be equivalent to Rademacher type.

Observe that if (6.1) holds then it follows from (1.4) that for every

f1, . . . , fn : {−1, 1}n → X,

(6.3)

∥∥∥∥∥
n∑
j=1

∆−1∂jfj

∥∥∥∥∥
Lp(X)

6 TRP
n
p (X)

(
n∑
j=1

‖fj‖pLp(X)

)1/p

.

The special case fj = ∂jf shows that (6.3) implies (6.2) with

TE 6 TRP
n
p (X).

For this reason it is worthwhile to investigate (6.3) on its own right.

Let Qn
p (X) be the infimum over those Q ∈ (0,∞) such that every

f1, . . . , fn : {−1, 1}n → X satisfy

(6.4)

∥∥∥∥∥
n∑
j=1

∆−1∂jfj

∥∥∥∥∥
Lp(X)

6 Q

(
n∑
j=1

‖fj‖pLp(X)

)1/p

.

We also set

Qp(X)
def
= sup

n∈N
Qn
p (X).
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By duality, Qn
p (X) equals the infimum over those Q ∈ (0,∞) for which

every g ∈ Lq(X∗) satisfies

(6.5)

(
n∑
j=1

∥∥∆−1∂jg
∥∥q
Lq(X∗)

)1/q

6 Q‖g‖Lq(X∗).

Letting SX = {x ∈ X : ‖x‖ = 1} denote the unit sphere of X, recall

that the modulus of uniform convexity of X is defined for ε ∈ [0, 2] as

δX(ε) = inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , ‖x− y‖ = ε

}
.

The modulus of uniform smoothness of X is defined for τ ∈ (0,∞) as

ρX(τ)
def
= sup

{
‖x+ τy‖+‖x− τy‖

2
− 1 : x, y ∈ SX

}
.

These moduli relate to each other via the following classical duality formula

of Lindenstrauss [18].

(6.6) δX∗(ε) = sup
{τε

2
− ρX(τ) : τ ∈ [0, 1]

}
.

Theorem 6.1. For every K, p ∈ (1,∞) there exists C(K, p) ∈ (0,∞) such

that if X is a Banach space that satisfies ρX(τ) 6 Kτ p for all τ ∈ (0,∞),

then Qp(X) 6 C(K, p).

Proof. We shall use here the notation introduced in the proof of Theorem 2.1

(Section 3). It follows from (6.6) that δX∗(ε)&K,pε
q for every ε ∈ [0, 2]

(here, and it what follows, the notation .K,p suppresses constant factors

that may depend only on K and p). Hence, for g ∈ Lq(X
∗) and σ ∈ Sn,

since {gσk}nk=0, as defined in (3.1), is an X∗-valued martingale, it follows

from Pisier’s martingale inequality [26] that

(6.7)

(
n∑
k=1

‖gσk − gσk−1‖
q
Lq(X∗)

)1/q

.K,p ‖g‖Lq(X∗).

By reindexing (6.7) with k = σ(j), averaging over σ ∈ Sn, and using the

convexity of the norm, we obtain the estimate

(6.8)

 n∑
j=1

∥∥∥∥∥ 1

n!

∑
σ∈Sn

(
gσσ(j) − gσσ(j)−1

) ∥∥∥∥∥
q

Lq(X∗)

1/q

.K,p ‖g‖Lq(X∗).
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Arguing as in (3.4), for every j ∈ {1, . . . , n} we have the identity

(6.9)
1

n!

∑
σ∈Sn

(
gσσ(j) − gσσ(j)−1

)
=

1

n!

∑
σ∈Sn

∑
∅(A⊆{1,...,n}
maxσ(A)=σ(j)

ĝ(A)WA

=
∑

A⊆{1,...,n}
j∈A

|{σ ∈ Sn : maxσ(A) = σ(j)}|
n!

ĝ(A)WA = ∆−1∂jg.

Consequently, (6.8) combined with (6.9) imply that (6.5) holds true with

Q .K,p 1. This concludes the proof of Theorem 6.1.

Remark 6.1. It follows from [17, Sec. 6] that a Banach space X satisfying

the assumption of Theorem 6.1 has Enflo type p. Theorem 6.1 can be viewed

as a generalization of this fact to yield the inequality (6.4). In [24] it was

shown that any Banach space satisfying the assumption of Theorem 6.1

actually has K. Ball’s Markov type p property [2], a property which is a

useful strengthening of Enflo type p.
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Séminaire Maurey-Schwartz (1975–1976), Espaces, Lp, applications
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Math. École Polytech., Paris, 1975.
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pages Exp. No. 17, 18. École Polytech., Palaiseau, 1979.



18 T. Hytönen and A. Naor

[28] G. Pisier. Probabilistic methods in the geometry of Banach spaces.

In Probability and analysis (Varenna, 1985), volume 1206 of Lecture

Notes in Math., pages 167–241. Springer, Berlin, 1986.

[29] G. Pisier and Q. H. Xu. Random series in the real interpolation spaces

between the spaces vp. In Geometrical aspects of functional analysis

(1985/86), volume 1267 of Lecture Notes in Math., pages 185–209.

Springer, Berlin, 1987.

[30] M. Talagrand. Isoperimetry, logarithmic Sobolev inequalities on the

discrete cube, and Margulis’ graph connectivity theorem. Geom.

Funct. Anal., 3(3):295–314, 1993.

[31] R. Wagner. Notes on an inequality by Pisier for functions on the

discrete cube. In Geometric aspects of functional analysis, volume

1745 of Lecture Notes in Math., pages 263–268. Springer, Berlin, 2000.


