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Algebra I: Section 5. Permutation Groups

5.1 The Structure of a Permutation.
The permutation group Sn is the collection of all bijective maps σ : X → X of the interval
X = {1, 2, . . . , n}, with composition of maps (◦) as the group operation. We introduced permu-
tation groups in Example 3.1.15 of Section 3, which you should review before proceeding. There
we introduced basic notation for describing permutations. The most basic kind of permutation
is a cycle. Recall that

5.1.1 Definition. For k > 1, a k-cycle is a permutation σ = (i1, . . . , ik) that acts on X in
the following way

(1) σ maps
{
i1 → i2 → . . .→ ik → i1 (a cyclic shift of list entries)
j → j for all j not in the list {i1, . . . , ik}

One-cycles (k) are redundant; every one-cycle reduces to the identity map id
X
, so we seldom

write them explicitly, though it is permissible and sometimes useful to do so.
The support of a k-cycle is the set of entries supp(σ) = {i1, . . . , ik}, in no particular order.

The support of a 1-cycle (k) is the one-point set {k}.
Recall that the order of the entries in a cycle (i1, . . . , ik) matters, but cycle notation is somewhat
ambiguous: the following symbols

(i1, . . . , ik) = (i2, . . . , ik, i1) = (i3, . . . , ik, i1, i2) = . . . = (ik, i1, . . . , ik−1)

all describe the same operation onX. Thus (123) = (231) = (312) all specify the same operation
1 → 2 → 3 → 1 in X, and likewise (i, j) = (j, i) for any 2-cycle. If we mess up the cyclic order
of the entries we do not get the same element in Sn, for example (123) 6= (132) .

In Section 3.1 we also showed how to evaluate products στ of cycles, and noted the following
important fact.

(2)

If σ = (m1, . . . ,mk) and τ = (n1, . . . , nr) are disjoint cycles, so that

supp(σ) ∩ supp(τ) = {m1, . . . ,mk} ∩ {n1, . . . , nr} = ∅

then these operations commute στ = τσ. If supports overlap, the cycles may
or may not commute.

Since any 1-cycle (k) is the identity operator, certain cycles with overlapping supports such as
(4) and (345) do commute, so property (2) only works in one direction; on the other hand an
easy calculation of the sort outlined in Example 3.1.15 shows that (23)(345) = (2345), which is
not equal to (345)(23) = (2453).

Our first task is to make good on a claim stated in 3.1.15: every permutation can be written
uniquely as a product of disjoint commuting cycles. This is a great help in understanding how
arbitrary permutations work.

5.1.2 Theorem. Every σ ∈ Sn has a factorization σ =
∏r

i=1 σi into cycles whose supports are
disjoint and fill X

(3) X =
r⋃

i=1

supp(σi) and supp(σi) ∩ supp(σj) for i 6= j

Some factors may be trivial 1-cycles, which must be written down to get the support condition
(3). The factors σi are uniquely determined, and they commute.
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Proof: If σ = e we can write e = (1)(2) · · · (n), a product of disjoint trivial 1-cycles. So,
assume σ 6= e and consider the cyclic group it generates H = 〈σ〉 ⊆ Sn. This finite group acts
on the space X and the action H ×X → X determines various disjoint H-orbits that partition
X = (H · x1) ∪ . . . ∪ (H · xr). Let’s label the orbits Oi = H · xi in order of increasing size,
so that 1 ≤ |O1| ≤ . . . ≤ |Or|. For each orbit Oi we are going to define a cycle τi such that
supp(τi) = Oi. For the one-point orbits we simply take the 1-cycles τi = (xi). There must,
however, be some nontrivial orbits, for if every orbit were trivial we would have σ = id

X
, which

has been excluded.
For a nontrivial orbit O = H · x we first observe that in the list {x, σ(x), σ2(x), . . .} there

will be a first index k ≥ 2 such that σk(x) is a repeat of some previous entry σ`(x), 0 ≤ ` < k.
In fact, this can only happen by having {x, σ(x), . . . , σk−1(x)} distinct and σk(x) = x. [If
` > 0 the definition of k is violated because σk(x) = σ`(x) ⇒ σk−`(x) = x.] The list τ =
(x, σ(x), . . . , σk−1(x)) enumerates the points in O in a particular order, and determines a cycle
with supp(τ) = O. This cycle does not depend of the base point x ∈ O we choose to start our
list. A different base point x′ = σj(x) yields the ordered list

σj(x), σj+1(x), . . . , σk−1(x), x, σ(x), . . . , σj−1(x)

which is just a cyclically shifted version of x, σ(x), σ2(x), . . . σk−1(x). Thus τ is uniquely deter-
mined by the orbit O and iterated action of σ upon it.

The cycles τ1, . . . , τr, one for each orbit, are disjoint. Their supports partition X =
supp(τ1) ∪ . . . ∪ supp(τr), and the τi commute because their supports are disjoint. Further-
more

(i) σ and τi have the same actions on the orbit Oi

(ii) τi(y) = y for all y /∈ Oi

and from this it is apparent that σ =
∏r

i=1 τi throughout the space X.
Uniqueness of the cycles τi is built into the above construction, since they depend on the

H-orbits in X, which are completely determined once σ is specified. �

One-point orbits must be taken into account in partitioning X, so the corresponding 1-cycles
must be included in the factorization of σ if the support condition (3) is to hold. Thus in S5

the disjoint cycle decomposition of (123) would be written (123)(4)(5).

5.1.3 Exercise. A power τ j of a cycle need not be a cycle.

(a) Verify that τ = (1234) ∈ S5 has τ2 = (13)(24).

(b) What is the order o(τ) of this element in S5?

(c) If H = 〈τ〉, what are the possible cardinalities of the H-orbits in
X = {1, 2, 3, 4, 5} ?

(d) Determine all orbits in X under the iterated action of τ .

Hint: For (c) no calculation is necessary, since the action H×O → O on each orbit is transitive
(see Section 4.2). �

5.1.4 Exercise. If σ and τ are nontrivial cycles they commute if their supports are disjoint,
but disjointness is not a necessary condition in order to have στ = τσ. Can you find a necessary
and sufficient condition for the cycles to commute?
Note: This is not an easy problem. The answer has the form στ = τσ ⇔ (disjoint) or (....).
Start by asking: If supp(σ) = supp(τ), does that make the cycles commute? What happens if
neither support includes the other? �

The cardinalities of orbits in X under the action of H = 〈σ〉 provide us with a natural way
to classify permutations.
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5.1.5 Definition. If σ ∈ Sn and H = 〈σ〉 the cycle type of σ is the list of integers

(4) 1 ≤ n1 ≤ n2 ≤ . . . ≤ nr such that n1 + . . .+ nr = n

determined by listing the H-orbits in X in order of increasing size and taking ni = |Oi|. The
ni are just the lengths of the cycles in the disjoint cycle decomposition of σ.

Any sum of integers ni ∈ N having the properties (4) is known to number theorists as a
partition of the integer n. Every possible partition is accounted for in the list of cycle types
found in Sn. For example in S5 we have the cycle types shown in Table 1.

Cycle Type Example #(Elements in S5)

11111 e 1
1112 (12) 10
113 (123) 20
122 (12)(34) 15
14 (1234) 30
23 (12)(345) 20
5 (12345) 24

Table 1. Cycle types

in S5.

Notice that we have listed the cycle types in “alphabetical” order, which makes it easy to
enumerate all the types for a given n.

For a given group element σ the action H × O → O on an orbit is transitive, so by 4.2.3
the indices ni = |Oi| always divide the order |H| = o(σ). Thus there are number-theoretic
connections between the cycle-type indices ni and the order of σ as an element of Sn.

5.1.6 Exercise. Here is a permutation in S8, described by telling where each element in
X = [1, 8] ends up

σ =
(

1 2 3 4 5 6 7 8
2 4 7 5 1 6 3 8

)
Determine the decomposition into disjoint cycles and the cycle type of σ. �

5.1.7 Exercise. If σ ∈ Sn has cycle indices n1 ≤ . . . ≤ nr prove that the order of σ as an
element of Sn is the least common multiple lcm(n1, . . . , nr) of those indices.
Hint: Try r = 2 to get started. �

5.1.8 Exercise. Table 1 above lists the cycle types in S5. Verify the entries in the right-hand
column by calculating the number of cycles of each type.
Hint: Recall our comments following 5.1.1 about the ambiguity inherent in our notation σ =
(i1, . . . , ik) for cycles. �

5.2. Parity of a Permutation.
We now show that Sn is generated by its 2-cycles (i, j), so that every σ ∈ Sn can be factored as
a product σ1 ·σ2 · . . . ·σm of (not necessarily commuting) 2-cycles. This factorization is far from
unique. For instance the identity element e can be factored as e = (12)(12) = (13)(13) = . . .,
and the number of factors isn’t unique either, since e = (12)2 = (12)4, etc. Nevertheless, there
is something important that all such decompositions of σ have in common, as we shall see.

5.2.1 Lemma. For n ≥ 2, every σ ∈ Sn can be written as a product of finitely many 2-cycles.

Proof: Factor σ = σ1 · · ·σr into disjoint commuting cycles, which may have various lengths. It
suffices to show that any k-cycle can be written as a product of 2-cycles. By relabeling entries
in σ = (i1, . . . , ik), we may as well assume that we are dealing with the particular k-cycle
σ = (1, 2, . . . , k). (Once you see how to factor the latter it is easy to see how to factor the
general k-cycle.) By hand one easily verifies that

(5) (1, 2, . . . , k) = (1, k)(1, k − 1) · · · (1, 3)(1, 2)
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Done. �

The factorization (5) is worth remembering. It’s not so easy to prove the lemma until you hit
upon this idea.

5.2.2 Exercise. Use the idea in (5) to factor the 5-cycles σ = (12345) and τ = (i1, . . . , i5) =
(13582) as products of 2-cycles. �

We now show that these nonunique factorizations all assign the same parity to a permutation.

5.2.3 Theorem (The parity sgn(σ) of a permutation). If σ ∈ Sn is decomposed as a
product σ = σ1 · · ·σr of 2-cycles, then the

(6) Parity sgn(σ) = (−1)r (r = number of factors)

is uniquely determined. Furthermore, parity is multiplicative

(7) sgn(στ) = sgn(σ) · sgn(τ) for all σ, τ ∈ Sn

Thus the parity map sgn is a homomorphism from Sn to the 2-element multiplicative group
({±1}, · ).
Proof: There are combinatorial proofs based on induction, but we shall prove this using ideas
from linear algebra, especially the theory of determinants. We start by providing a different
interpretation of sgn(σ). Each σ ∈ Sn can be thought of as a permutation of vectors in the
standard orthonormal basis X = {e1, . . . , en} in Rn, with σ : ek 7→ eσ(k). That action induces
a linear operator σ̃ : Rn → Rn given by

σ̃

(
n∑

k=1

akek

)
=

n∑
k=1

akeσ(k) where ak ∈ R, 1 ≤ k ≤ n

The matrix [σ̃] = [σ̃]
X

of σ̃ with respect to the standard basis is called a permutation matrix.
These matrices are characterized by the following special properties

(i) Each entry is 0 or 1.

(ii) Each column contains exactly one “1”

(iii) Each row contains exactly one “1”

To illustrate, we show the permutation matrix corresponding to the 2-cycle σ = (i, j) in Fig-
ure 5.1.

The correspondence Φ : σ → σ̃ is a homomorphism mapping Sn into the group (GL(n,R), ◦)
of invertible linear operators on Rn, so that Φ(στ) = Φ(σ) ◦ Φ(τ) = σ̃ ◦ τ̃ . Since determinants
are multiplicative, it follows that

(i) detΦ(e) = 1

(ii) detΦ(i, j) = −1 for any 2-cycle (i 6= j)

(iii) det(Φ(σ)) =
∏r

i=1 detΦ(σi) = (−1)r = sgn(σ) if σ is a product σ = σ1 · · ·σr

of 2-cycles.

But the value of det Φ(σ) is determined without reference to any factorization into 2-cycles, so
we get the same number sgn(σ) = (−1)r no matter how σ is factored. Thus, the number of
2-cycles in any factorization of σ is either always even or always odd.

Finally, since det(AB) = det(A) · det(B) for any pair of linear operators, we see that
sgn(στ) = sgn(σ) · sgn(τ). �

For obvious reasons, we say a permutation is even if it can be written as a product of an even
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Figure 5.1. Permutation matrix
associated with the 2-cycle σ = (i, j)
differs from the identity matrix only
in rows/columns i and j.

number of 2-cycles, so that sgn(σ) = +1, and otherwise it is odd. Note that the identity e
is even, all 2-cycles are odd; the idea set forth in (5) immediately shows how to compute the
parity of a cycle of any length.

5.2.4 Exercise. Verify that the map Φ : Sn → GL(n,R)

Φ(σ) = the linear operator σ̃ defined above

is a homomorphism of groups, so that (i) Φ(e) = I, and (ii) Φ(στ) = Φ(σ) ◦ Φ(τ). Prove that
Φ is a one-to-one mapping – i.e. that ker(Φ) is trivial. �

5.2.5 Proposition. In Sn all k-cycles have the same parity, namely

(8) sgn(σ) = (−1)k−1 for k = 1, 2, . . .

If σ is a product σ = σ1 . . . σr of cycles of various lengths then sgn(σ) =
∏r

j=1 sgn(σj), regardless
of whether or not the cycles are disjoint.

Proof: As in (5), we have (1, 2, . . . , k) = (1, k)(1, k − 1) . . . (1, 2). �

5.2.6 Definition. The alternating group An is the set of all even permutations,

(9) An = kerσ = {σ ∈ Sn : sgn(σ) = +1}

Since the parity map sgn is a homomorphism between groups, its kernel An is obviously a normal
subgroup in Sn. Furthermore, its index is |Sn/An| = 2. In fact, sgn assumes just two values
and distinct An-cosets map to different values ±1 under sgn; there actually are two distinct
An-cosets because sgn(e) = +1 and sgn(1, 2) = −1.

In Section 5.4 we will examine various subgroups of Sn for low values of n, but An is by far
the most important. It plays a pivotal role in Galois Theory, where we will study algorithms
for finding roots of polynomial equations f(x) = 0 in one variable. More precisely, we will
demonstrate the impossibility of constructing a general algorithm for polynomials of degree
deg f ≥ 5. These results ultimately rest on the algebraic properties of the alternating group,
particularly

(10)

For n ≥ 5 we have

(a) An is a simple group – it contains no proper normal subgroups.

(b) An is the only normal subgroup in Sn, other than the trivial
subgroups Sn and (e).

Both statements fail for n = 3, 4.
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These facts are tricky to prove; we develop the details in Section 5.3.

5.2.7 Exercise. Referring to the list of cycle types in S5 accompanying 5.1.5,

(a) Explain why sgn(σ) depends only on the cycle type of σ.

(b) Determine the parity for each cycle type in that table.

Start by recalling (8). �

5.2.8 Exercise. Prove that the cycles σ = (1, 2) and τ = (1, 2, . . . , n) generate Sn.
Hint: It would suffice to show that every 2-cycle can be written as a word in the letters σ, τ
and their inverses. Start by computing conjugates τστ−1, τ2στ−2, . . .. �

5.2.9 Exercise. With Exercise 5.2.8 in mind, consider any arrangement i1, i2, . . . , in of the
integers in X = [1, n].

(a) Explain why the elements σ = (i1, i2) and τ = (i1, i2, . . . , in) together gener-
ate all of Sn.

From this you might wonder whether any 2-cycle and any n-cycle generate Sn. This conjecture
fails to be true.

(b) Show that σ = (1, 3) and τ = (1234) only generate a subgroup H = 〈σ, τ〉 of
order 12 in S4

Hint: (a) is really an exercise in relabeling things; (b) shows that caution is sometimes needed
in arguments based on “relabeling.” �

5.2.10 Exercise. Express the following permutations in S10 as products of commuting disjoint
cycles, and determine the parity of each operator.

(a) σ = (123)(45)(16789)(15) (b) τ = (12)(123)(12) �

5.2.11 Exercise. Does the set of odd permutations in Sn form a group? Explain. �

5.3. Conjugacy Classes in Sn.

The conjugacy class of an element σ ∈ Sn is Cσ = {τστ−1 : τ ∈ Sn}. To describe the
classes we must come to some better understanding of conjugation operations ατ (σ) = τστ−1.
We first show that conjugation has a very simple interpretation if σ is a k-cycle, and from this
we will be able to determine the conjugacy class of any permutation using the decomposition
theorem 5.1.2.

5.3.1 Theorem. Let σ = (m1, . . . ,mk) be any cycle. Conjugation by τ ∈ Sn yields

(11) τ(m1, . . . ,mk)τ−1 = (τ(m1), . . . , τ(mk) )

In other words, the conjugate of σ is a new k-cycle whose entries are the τ -images of the entries
in σ, in the same cyclic order.

Proof: The diagram in Figure 5.1 shows the actions of the operators τ−1, σ, τ, and τστ−1 on
elements of X = [1, n]. The shaded region in the second picture from the left is the support
set A = supp(σ) = {m1, . . . ,mk}, and the other shaded regions are various images of A. Here
B = τ(A) = {n1, . . . , nk}, where we write ni = τ(mi) for 1 ≤ i ≤ k.

The support set A is invariant under σ (so that σ(A) = A) and σ fixes all points not in A
(so σ(j) = j for j /∈ A). Obviously τ−1(B) = τ−1τ(A) = A, as in the Figure 5.1. Furthermore,

If j /∈ B, then τ−1(j) /∈ A, and then we have τσ(τ−1(j)) = ττ−1(j) = j
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Figure 5.2. The effect of conjugation σ 7→ τστ−1 on a cycle σ = (m1, . . . , mk).

Shaded regions are the sets A = supp(σ) = {m1, . . . , mk} and B = τ(A) =

{τ(m1), . . . , τ(mk)}.

Thus, the conjugate τστ−1 acts trivially on all points that lie outside of B. On the other hand,
if we consider a point τ(mi) lying in B, then by the definition of “cycle” σ = (m1, . . . ,mk) we
get

τστ−1(τ(mi)) = τσ(mi) =

{
τ(mi+1) if 1 ≤ i < k

τ(m1) if i = k

Thus τστ−1 cyclically shifts entries one space to the right in the ordered list of integers
τ(m1), . . . , τ(mk), leaving all other points in X fixed. It follows that τ(m1, . . . ,mk)τ−1 =
(τ(m1), . . . , τ(mk)). �

A general permutation σ ∈ Sn can be decomposed as a product of disjoint commuting cycles
σ = (m1, . . . ,mk) · . . . · (n1, . . . , nr). Since the conjugation operation is an automorphism we
get

τστ−1 = τ(m1, . . . ,mk)τ−1 · . . . · τ(n1, . . . , nr)τ−1(12)
= (τ(m1), . . . , τ(mk)) · . . . · (τ(n1), . . . , τ(nr))

Thus we have determined the effect of conjugation on an arbitrary σ. It follows that the lengths
of the disjoint cycles appearing in σ and τστ−1 are the same, even if the cycles themselves are
different, and hence that

(13) All conjugates τστ−1 of a permutation σ have the same cycle type (4).

These remarks can be summarized as follows.

5.3.2 Corollary. For n ≥ 2, let σ ∈ Sn and let τστ−1 be any conjugate. Then

(i) The support of the conjugate is the τ -image of the support of σ, so that

supp(τστ−1) = τ (supp(σ))
(ii) If σ = σ1 · · ·σr is the disjoint cycle decomposition of σ then the decomposition

of the conjugate is τστ−1 = τσ1τ
−1 · . . . · τσrτ

−1.
(iii) If σi = (m1, . . . ,mk) then τσiτ

−1 = (τ(m1), . . . , τ(mk)), as in (11).

(iv) Conjugate elements in Sn have the same cycle types.

5.3.3 Corollary. Let n ≥ 2. Two elements σ, σ′ are conjugate in Sn if and only if they have
the same cycle type.

Proof: Implication (⇒) has already been proved. For (⇐), suppose σ and σ′ have the same
cycle types n1 ≤ . . . ≤ nr. The indices ni are precisely the lengths of the cycles in the
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disjoint cycle decompositions, so the decompositions of σ and σ′ involve the same number r of
disjoint cycles. Writing Ci = supp(σi), C ′

i = supp(σ′i) for the supports of the factors, we have
ni = |Ci| = |C ′

i| for each i. But the supports partition X = [1, n]

X =
r⋃

i=1

Ci =
r⋃

i=1

C ′
i with Ci ∩ Cj = ∅ and C ′

i ∩ C ′
j = ∅ for i 6= j

It is then obvious that there exists a bijection ψ : X → X that

(i) maps Ci to C ′
i for each i, and

(ii) preserves the cyclic order of the points in the cycles σi = (m1, . . . ,mk) and
σ′i = (m′

1, . . . ,m
′
k), so that ψ(mj) = m′

j for 1 ≤ j ≤ k, 1 ≤ i ≤ r.

This map will not be uniquely determined, except for the one-point cycles, but that does not
matter. The point is that ψ is a permutation in Sn, and has the properties

ψσiψ
−1 = (ψ(m1), . . . , ψ(mk)) = (m′

1, . . . ,m
′
k) = σ′i for all i

Hence ψσψ−1 = σ′, as required. �

5.3.4 Exercise. For n ≥ 2 prove that the center Z(Sn) = {σ ∈ Sn : τσ = στ for all τ ∈ Sn}
is trivial.
Hint: The center is the union of all the one-point conjugacy classes. Which cycle types corre-
spond to such classes? �

5.3.5 Exercise. In S5 the permutations

σ = (13)(245) and σ′ = (423)(15)

have the same cycle type 23. Find an explicit permutation τ such that τστ−1 = σ′.
Note: The answer is not unique. Conjugation by τ should map (13) to (15) and (245) to (423).
�

More about the Alternating Group An. The next results are specifically concerned with
An. The end result is to show that An is a simple group for n ≥ 5 (but not n = 2, 3, 4),
which means that An contains no proper normal subgroups. Simple groups cannot be reduced
to nontrivial smaller groups by taking quotients, and are in a sense the fundamental “building
blocks” for constructing all finite groups.

5.3.6 Lemma. For n ≥ 3 the alternating group An is generated by the set of all 3-cycles in
Sn.

Proof: Three-cycles are even permutations, so they all lie in An. By definition every element
of An is a product of an even number of 2-cycles, so it suffices to show that every product
(i, j)(k, `) is a product of 3-cycles. If these 2-cycles are equal their product is e, which can
also be written as e = (123)(132); if they have just one entry in common, say j = k, then
(i, j)(j, `) = (i, j, `) is already a 3-cycle. If they have no entry in common they commute, by
(3), and then a direct calculation reveals that (i, j)(k, `) = (i, j, k)(j, k, `), proving the lemma.
�

5.3.7 Lemma. If n ≥ 5 all 3-cycles are conjugate in An – i.e. if σ, σ′ are 3-cycles, then there
exists some τ ∈ An such that σ′ = τστ−1.

Proof: We know that two 3-cycles σ = (i, j, k) and σ′ = (i′, j′, k′) are conjugate within Sn

because they have the same cycle type, so there is some τ ∈ Sn such that σ′ = τστ−1. If τ
is even we’re done. Otherwise, since n ≥ 5, we can find r, s ∈ [1, n] not equal to any of the
elements i, j, k. Then (r, s) commutes with σ, and we may replace τ by τ ′ = τ · (r, s) to get an
even permutation that conjugates σ to σ′. �
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5.3.8 Theorem. If n ≥ 5 the alternating group An is simple.

Proof: Let N be a nontrivial normal subgroup of An. We prove that N contains a 3-cycle.
Since all 3-cycles are An-conjugate, all 3-cycles lie within N , and hence N = An by 5.3.6.

Let σ 6= e be an element in N whose set of fixed points Fix(σ) = {k ∈ X : σ(k) = k} is
as large as possible, where X = [1, n]. We prove that σ must be a 3-cycle. If we decompose
X = O1∪ . . .∪Or into disjoint orbits under H = 〈σ〉, then at least one orbit must be nontrivial,
for otherwise σ = e.

Case 1: All orbits (except the fixed points) have 2 elements. Then σ is a product of commuting
disjoint 2-cycles; the number of factors is even, so there must be at least two distinct 2-point
orbits {i, j} and {k, `}. On their union S = {i, j, k, `} the action of σ is the same as that of the
product (i, j)(k, `). Notice that Fix(σ) ∩ {i, j, k, `} = ∅.

Since n ≥ 5 we can pick an integer r 6= i, j, k, `. Form the 3-cycle τ = (k, `, r) and consider
the commutator σ′ = τστ−1σ−1. Since N is normal in An we get σ ∈ N ⇒ τστ−1 ∈ N ⇒ σ′ ∈
N . By its definition, σ′ must leave fixed the integers i and j, and it obviously leaves fixed the
points in Fix(σ) ∼ {r}. Thus |Fix(σ′)| ≥ 1 + |Fix(σ)|, contradicting the maximality property
of σ. The only remaining possibility is:

Case 2: There is some orbit with |O| ≥ 3. Suppose i, j, k ∈ O with σ : i → j → k → . . . → i.
If O consists only of these three points in X, then σ is already the 3-cycle (i, j, k), and we’re
done. If O includes just one more point r, then σ would be the odd 4-cycle (i, j, k, r), which is
impossible. ThusO includes at least two more points r, s and σ : i→ j → k → r → s→ . . .→ i.
Let τ = (k, r, s), and form the commutator σ′ as before. Then σ′ ∈ N and σ′(j) = j. Since
Fix(σ′) ⊇ Fix(σ) and j /∈ Fix(σ), the element σ′ has more fixed points than σ, which is
impossible. Thus the only viable possibility in Case 2 is: σ was a 3-cycle to begin with. �

5.3.9 Exercise. If n ≥ 5 prove that (e) ⊆ An ⊆ Sn are the only normal subgroups in Sn. �

For future reference we note that the An-conjugacy classes in An can be described using what
we know about Sn-classes in Sn together with the following observation.

5.3.10 Lemma. Let G = Sn and A = An for n ≥ 3. For s ∈ A we have G · s = A · s (orbits
under conjugation) ⇔ the stabilizer Gs is not contained in A, and if Gs ⊆ A the G-orbit G · s
is the union of two A-orbits of equal cardinality.

Proof: Since A is normal, Gs ⊆ A⇔ Gs′ ⊆ A for any s′ ∈ G · s. [ In fact, if s′ = gsg−1 then
Gs′ = gGsg

−1 ⊆ A.] If s ∈ A and Gs ⊆ A then As = Gs ∩ A = Gs and |G · s| = |G/Gs| =
2|A/Gs|, so G · s splits into two A-orbits of equal size. If Gs 6⊆ A, let g0 ∈ Gs ∼ A. For
g ∈ G ∼ A we have g · s = gg−1

0 · (g0 · s) = gg−1
0 · s. Here gg−1

0 ∈ A because the product of two
odd permutations is even, so G · s = A · s. �

As an example: taking n = 5, the S5-orbits in A5 are described by their cycle types, as above.
Computing stabilizers, we can determine which of these S5 orbits split into two A5-conjugacy
classes, with the following result.

Cycle Type Representative # Elements Stabilizer Gs Gs ⊆ A5?

1 e 1 G no
22 (12)(34) 15 〈(12), (34)〉 ∼= Z2 × Z2 no
3 (123) 20 〈(45), (123)〉 ∼= Z2 × Z3 no
5 (12345) 24 〈(12345)〉 ∼= Z5 yes

The last S5-class splits into two A5-classes, each of order 12. In general stabilizers of suitably
chosen class representatives in An are fairly easy to compute, and in any case we only need to
know whether Gs ⊆ An to determine the pattern of An-classes.
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5.4. The Structure of S3 and S4.
Here we examine the pattern of subgroups in S3 and S4 (as well as A3, A4), giving a complete
analysis for S3. This information is often needed in analyzing the structure of more complicated
groups. There is nothing much to say about the abelian group S2

∼= Z2; for n ≥ 5 the situation
is more complicated, and the pattern of subgroups changes dramatically.

5.4.1 Example (Subgroups in S3). The order of S3 is 3! = 6, so by Lagrange a subgroup
H ⊆ S3 can only have order |H| = 1, 2, 3, 6. The extreme values correspond to the trivial
subgroups H = (e) and H = S3.

Case 1: |H| = 3. The alternating group A3 = ker(sgn) is a normal subgroup of order 6/2 = 3
since An has index |Sn/An| = 2 for any n. Obviously A3

∼= Z3 since there is only one group
of order 3. There are no other subgroups of order three in S3, for if |H| = 3 then H ∩ A3 is a
subgroup in both A3 and H, and by Lagrange can only have order 3 (in which case H = A3) or
1 (and then A3 ∩H = (e)). The latter possibility cannot arise. If it did, then by the counting
principle 3.4.7 the product set would have cardinality |HA3| = |H| · |A3| / |H ∩A3| = 9, which
exceeds |S3| = 6. Only one case remains.

Case 2: |H| = 2. The cycle types in S3 are

Cycle Type Example #(Elements in S3)

111 e 1
12 any 2-cycle 3
3 any 3-cycle 2

All elements of S3 are accounted for since 1+3+2 = 6. If |H| = 2 it cannot contain a 3-cycle,

S3

↗ ↑ ↖

H1 = 〈(12)〉 H2 = 〈(13)〉 H3 = 〈(23)〉 A3

↖ ↑ ↗

(e)

Figure 5.3. The pattern of subgroups in the permutation group S3. The only

normal subgroup is A3.

since they have order 3. Hence H = 〈σ〉 ∼= Z2 for some 2-cycle σ. There are only three 2-cycles
(1,2), (1,3), (2,3). Each generates a different subgroup H such that H ∩A3 = (e). The pattern
of subgroups is shown in Figure 5.3, where arrows A→ B indicate inclusions A ⊆ B.

There is just one proper normal subgroup, namely A3. Taking the quotient we get the
sequence of homomorphisms

e −→ A3
∼= Z3 −→ S3 −→ S3/A3

∼= Z2 −→ e

in which A3
∼= Z3 and S3/A3

∼= Z2. As we will explain in Section 6.4, this means S3 is a solvable
group, a fact that will assume great importance later on in our study of Galois theory. In Sec-
tion 6.2 we will conduct a complete analysis of all possible groups of order 6, up to isomorphism,
and there we will discover a natural geometric interpretation of S3 as the symmetry group of
the equilateral triangle. The subgroups H1, . . . ,H3, A3 also have natural interpretations in this
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geometric setting. �

This discussion made effective use of the pattern of conjugacy classes in S3, which by
Corollary 5.3.3 correspond precisely to the various cycle types. We will exploit this again in the
analysis of normal subgroups in S4. The following observation is particularly useful in searching
for normal subgroups.

5.4.2 Lemma. Let C0 = (e), C1, . . . , Cr be the distinct conjugacy classes in a group G, and let
H be any subgroup. Then H is normal in G if and only if it is a union H = Ci1 ∪ . . . ∪ Cis

of
whole conjugacy classes from G.

Proof: If x ∈ H and H C G, then by definition of “normality” the entire conjugacy class
Cx = {gxg−1 : g ∈ G} must be contained in H. Therefore H C G ⇒ H is a union of whole
conjugacy classes from G. Conversely if H is a subgroup and is a union of whole conjugacy
classes, each class is invariant under conjugation αg(y) = gyg−1, and hence gHg−1 ⊆ H for all
g ∈ G. �

5.4.3 Exercise. In S3 verify that the subgroup H = 〈(12)〉, consisting of the elements e and
(12), is not a normal subgroup. Is the same true in Sn for n > 3?
Hint: τHτ−1 6= H ⇔ τ(12)τ−1 6= (12). (Why?) �

Once we have determined the conjugacy classes in a groupG we can determine normal subgroups
in G by seeking ways to combine classes so that their union is a subgroup. Obviously we must
include the trivial class C0 = (e); other classes must be added in pairs, owing to the following
symmetry among conjugacy classes in any group.

5.4.4 Exercise. Let G be a group and Cx = {gxg−1 : g ∈ G} any conjugacy class. Prove that

(a) The inversion map J(y) = y−1 permutes the conjugacy classes in G. That
is, the J-image J(Cx) = {y−1 : y ∈ Cx} of any conjugacy class is again a
single conjugacy class.

(b) Verify that J(Cx) = Cx−1 for any x ∈ G.

Some classes can be their own inverses (a trivial example being the class C0 = (e)). �

If we are lucky, there will not be many conjugacy classes to consider. We are aided by the
following observation.

(14)

The following purely numerical constraints

(i) |H| = |Ci1 |+ . . .+ |Cis |
(ii) |H| must divide |G|

restrict the combinations of classes whose union can be a subgroup H.

5.4.5 Exercise. Use Lemma 5.4.2 to prove that A3 is the only proper normal subgroup in S3.
�

5.4.6 Example (Normal Subgroups in S4). Since |S4| = 4! = 24, subgroups can only have
orders |H| = 1, 2, 3, 4, 6, 8, 12, 24. The alternating group A4 = ker(sgn) has index |S4/A4| = 2,
so A4 is a normal subgroup of order 12. It is not so obvious that A4 is the only such subgroup,
but in fact it is.

The possible cycle types in S4 are easy to enumerate.
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Cycle Type Example #(Elements in S4)

1111 e 1

112 any 2-cycle 6 = 4·3
2

22 any 2,2-cycle 3 = 1
2 ·

4·3
2 · 2·1

2

13 any 3-cycle 8 = 4·3·2
3

4 any 4-cycle 6 = 4·3·2·1
4

In arriving at the counts for each type you must recall the ambiguities in cycle notation noted
in 5.1.1. The count of 2,2-cycles involves the extra redundancy (12)(34) = (34)(12), in addition
to the fact that (12) = (21) and (34) = (43); hence the extra factor 1

2 out front.

5.4.7 Exercise. Verify the counts shown in the right hand column of this table. Where does
the extra “ 1

2” come from in the count of 22-cycles? �

All classes are accounted for since there are 1 + 6 + 3 + 8 + 6 = 24 elements in all. As in
5.3.3, all elements of the same cycle type constitute a single conjugacy class in S4. The only
combinations of classes whose union has cardinality 12 are: (i) 6 + 6 and (ii) 1 + 3 + 8 ;
the first cannot produce a subgroup since the class C0 = (e) is not included, and the second
produces A3. Hence A3 is the only normal subgroup of order 12. By examining our counts of
cycle types we see immediately that there cannot be normal subgroups of order 8, 6, 3, or 2.
Excluding the trivial normal subgroups H = (e) and H = S4, there is one remaining possibility.

Case 2: |H| = 4. The only combination of classes whose sizes add up to 4 is 1 + 3, corresponding
to

H = {e} ∪ { all 2,2-cycles } = {e, (12)(34), (13)(24), (14)(23)}

It is easily checked that the cycles a = (12)(34), b = (13)(24), c = (14)(23) satisfy the relations
a2 = b2 = c2 = e and ab = c = ba. This abelian group H = V4 is sometimes known as the Klein
Viergroup. Up to isomorphism it is one of two possible groups of order 4, the other being the
cyclic group Z4. (We will verify this in Section 6.2.)

The normal subgroups in S4 are related by a chain of inclusions

(e) ⊆ V4 ⊆ A4 ⊆ S4

Each is normal in G, and hence in the next larger group in the chain. The quotient groups are
V4 = V4/(e), A4/V4

∼= Z3, and S4/A4
∼= Z2. The last two isomorphisms follow from the fact

that, up to isomorphism, the only groups of order 2 or 3 are (Z2,+) and (Z3,+); simple count-
ing shows that |A4/V4| = 12/4 = 3 and |S4/A4| = 24/12 = 2. As we will explain in Section
6.4, the fact that the successive quotients are all abelian means that S4 is a solvable group, and
this turns out to be the reason that there exists an algorithm for finding the (complex) roots
of any polynomial of degree deg(f) ≤ 4. The above diagram also shows that A4 is not a simple
group, because the proper subgroup V4 is normal in S4, and hence in A4. �

5.4.8 Exercise. Determine all normal subgroups in the alternating group A4.
Hint: We have already discussed the nature of conjugacy classes in An. �
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