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ABSTRACT. We prove that for any n ∈N there is a convex body K ⊆Rn whose surface area is at most n
1
2 +o(1),

yet the translates of K by the integer lattice Zn tile Rn .

1. INTRODUCTION

Given n ∈ N and a lattice Λ ⊆ Rn , a convex body K ⊆ Rn is called a Λ-parallelotope (e.g., [12]) if the
translates of K by elements ofΛ tile Rn , i.e., Rn =Λ+K =⋃

x∈Λ(x+K ), and the interior of (x+K )∩(y +K )
is empty for every distinct x, y ∈Λ. One calls K a parallelotope (parallelogon if n = 2 and parallelohedron
if n = 3; some of the literature calls a parallelotope inRn and n-dimensional parallellohedron; e.g., [1, 11])
if it is aΛ-parallelotope for some latticeΛ⊆Rn . We call a Zn-parallelotope an integer parallelotope.

The hypercube [−1
2 , 1

2 ]n is an integer parallelotope whose surface area equals 2n. By [16, Corollary A.2],
for every n ∈ N there exists an integer parallelotope K ⊆ Rn whose surface area is smaller than 2n by a
universal constant factor. Specifically, the surface area of the integer parallelotope K that was considered
in [16] satisfies voln−1(∂K )⩽σ(n+O(n2/3)), where σ= 2

∑∞
s=1(s/e)s/(s3/2s!)⩽ 1.23721. To the best of our

knowledge, this is the previously best known upper bound on the smallest possible surface area of an
integer parallelotope. The main result of the present work is the following theorem:

Theorem 1. For every n ∈N there exists an integer parallelotope whose surface area is n
1
2+o(1).

Because the covolume of Zn is 1, the volume of any integer parallelotope K ⊆Rn satisfies voln(K ) = 1.
Consequently, by the isoperimetric inequality we have1

voln−1(∂K )⩾
voln−1(Sn−1)

voln(B n)
n−1

n

≍p
n, (1)

where B n def= {(x1, . . . , xn) ∈Rn : x2
1 +·· ·+x2

n ⩽ 1} denotes the Euclidean ball and Sn−1 def= ∂B n .
Thanks to (1), Theorem 1 is optimal up to the implicit lower order factor. It remains open to determine

whether this lower-order factor could be removed altogether, namely to answer the following question:

Question 2. For every n ∈N, does there exist an integer parallelotope K ⊆Rn with voln−1(∂K ) ≍p
n?

Question 2 goes back to [24], though such early investigations were (naturally, from the perspective of
crystallography) focused on n = 3 and asked for the exact value of the smallest possible surface area of
a parallelohedron; see Conjecture 7.5 in [5] and the historical discussion in the paragraph that precedes
it. The corresponding question about precisely determining the minimum perimeter when n = 2 was
answered in [7] (its solution for general parallelogons rather than integer parallelogons is due to [17]; see
also [22], which treats tiles that need not be convex). Finding the exact minimum when n = 3 remains

A.N. was supported by NSF grant DMS-2054875, BSF grant 201822, and a Simons Investigator award. O.R. was supported by
NSF grant CCF-1320188 and a Simons Investigator award.

1We use the following conventions for asymptotic notation, in addition to the usual O(·),o(·),Ω(·),Θ(·) notation. For a,b > 0,
by writing a ≲ b or b ≳ a we mean that a ⩽C b for a universal constant C > 0, and a ≍ b stands for (a ≲ b)∧ (b ≲ a). If we need
to allow for dependence on parameters, we indicate it by subscripts. For example, in the presence of an auxiliary parameter ε,
the notation a ≲ε b means that a ⩽C (ε)b, where C (ε) > 0 may depend only on ε, and analogously for a ≳ε b and a ≍ε b.
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open; we will not review the substantial literature on this topic, referring instead to the monograph [4]
(see also [28] for an exact solution of a different isoperimetric-type question for parallelohedra).

The higher dimensional asymptotic nature of Question 2 differs from the search for exact minimizers
in lower dimensions on which the literature has focused, but it is a natural outgrowth of it and it stands
to reason that it was considered by researchers who worked on this topic over the past centuries. Never-
theless, we do not know of a published source that mentions Question 2 prior to the more recent interest
in this topic that arose due to its connection to theoretical computer science that was found in [16] and
were pursued in [33, 25, 3, 26, 6]; specifically, Question 2 appears in [6, Section 6].

In [25] it was proved that Question 2 has a positive answer if one drops the requirement that the tiling
set is convex, i.e., by [25, Theorem 1.1] for every n ∈N there is a compact setΩ⊆Rn such thatRn =Zn+Ω,
the interior of (x +Ω)∩ (y +Ω) is empty for every distinct x, y ∈ Zn , and voln−1(∂Ω) ≲

p
n; see also the

proof of this result that was found in [3]. The lack of convexity of Ω is irrelevant for the applications to
computational complexity that were found in [16]. The proofs in [25, 3] produce a setΩ that is decidedly
non-convex. Our proof of Theorem 1 proceeds via an entirely different route and provides a paralletotope
whose surface area comes close to the guarantee of [25] (prior to [25], the best known upper bound on
the smallest possible surface area of a compact Zn-tiling set was the aforementioned 1.23721n of [16]).

While it could be tempting to view the existence of the aforementioned compact set Ω as evidence
for the availability of an integer parallelotope with comparable surface area, this is a tenuous hope be-
cause the convexity requirement from a parallelotope imposes severe restrictions. In particular, by [30]
for every n ∈N there are only finitely many combinatorial types of parallelotopes in Rn .2 In fact, by com-
bining [10, Section 6] with [30, 36] we see that K ⊆ Rn is a parallelotope if and only if K is a centrally
symmetric polytope, all of the (n −1)-dimensional faces of K are centrally symmetric, and the orthog-
onal projection of K along any of its (n − 2)-dimensional faces is either a parallelogram or a centrally
symmetric hexagon.

Of course, Theorem 1 must produce such a constrained polytope. To understand how this is achieved,
it is first important to stress that this becomes a straightforward task if one only asks for a parallelotope
with small surface area rather than for an integer parallelotope with small surface area. Namely, it follows
easily from the literature that for every n ∈N there exist a rank n lattice Λ⊆Rn whose covolume is 1 and
a Λ-parallelotope K ⊆ Rn that satisfies voln−1(∂K ) ≲

p
n. Indeed, by [34] there is a rank n lattice Λ⊆ Rn

of covolume 1 whose packing radius is at least c
p

n, where c > 0 is a universal constant. Let K be the
Voronoi cell of Λ, namely K consists of the points in Rn whose (Euclidean) distance to any point of Λ is
not less than their distance to the origin. Then, K is aΛ-parallelotope, voln(K ) = 1 since the covolume of
Λ is 1, and K ⊇ c

p
nB n since the packing radius ofΛ is at least c

p
n. Consequently, the surface area of K is

at most c−1pn by the following simple lemma that we will use multiple times in the proof of Theorem 1:

Lemma 3. Fix n ∈N and R > 0. Suppose that a convex body K ⊆Rn satisfies K ⊇ RB n . Then,

voln−1(∂K )

voln(K )
⩽

n

R
.

Lemma 3 is known (e.g., [19, Lemma 2.1]); for completeness we will present its short proof in Section 2.
Even though the packing radius of Zn is small, the above observation drives our inductive proof of

Theorem 1, which proceeds along the following lines. Fix m ∈ {1, . . . ,n−1} and let V be an m-dimensional
subspace of Rn . If the lattice V ⊥∩Zn has rank n−m and its packing radius is large, then Lemma 3 yields
a meaningful upper bound on the (n−m−1)-dimensional volume of the boundary of the Voronoi cell of
V ⊥∩Zn . We could then consider the lattice Λ⊆V which is the orthogonal projection of Zn onto V , and
inductively obtain aΛ-parallelotope (residing within V ) for which the (m−1)-dimensional volume of its
boundary is small. By considering the product (with respect to the identification of Rn with V ⊥×V ) of
the two convex bodies thus obtained, we could hope to get the desired integer parallelotope.

2Thus, just for the sake concreteness (not important for the present purposes): Since antiquity it was known that there are 2
types of parallelogons; by [13] there are 5 types of parallelohedra; by [8, 35] there are 52 types of 4-dimensional parallelotopes.
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There are obvious obstructions to this plan. The subspace V must be chosen so that the lattice V ⊥∩Zn

is sufficiently rich yet it contains no short nonzero vectors. Furthermore, the orthogonal projection Λ
of Zn onto V is not Zm , so we must assume a stronger inductive hypothesis and also apply a suitable
“correction” toΛ so as to be able to continue the induction. It turns out that there is tension between how
large the packing radius of V ⊥∩Zn could be, the loss that we incur due to the aforementioned correction,
and the total cost of iteratively applying the procedure that we sketched above. Upon balancing these
constraints, we will see that the best choice for the dimension m of V is m = n exp(−Θ(

√
logn)). The rest

of the ensuing text will present the details of the implementation of this strategy.

2. PROOF OF THEOREM 1

Below, for each n ∈N the normed space ℓn
2 = (Rn ,∥·∥ℓn

2
) will denote the standard Euclidean space, i.e.,

∀x = (x1, . . . , xn) ∈Rn , ∥x∥ℓn
2

def=
√

x2
1 +·· ·+x2

n .

The standard scalar product of x, y ∈Rn will be denoted 〈x, y〉 def= x1 y1+·· ·+xn yn . The coordinate basis of
Rn will be denoted e1, . . . ,en , i.e., for each i ∈ {1, . . . ,n} the i th entry of ei is 1 and the rest of the coordinates
of ei vanish. We will denote the origin of Rn by 0 = (0, . . . ,0). For 0 < s ⩽ n, the s-dimensional Hausdorff
measure on Rn that is induced by the ℓn

2 metric will be denoted by vols(·). In particular, if K ⊆ Rn is a
convex body (compact and with nonempty interior), then the following identity holds (see, e.g., [27]):

voln−1(∂K ) = lim
δ→0+

voln(K +δB n)−voln(K )

δ
. (2)

If V is a subspace of Rn , then its orthogonal complement (with respect to the ℓn
2 Euclidean structure)

will be denoted V ⊥ and the orthogonal projection from Rn onto V will be denoted ProjV . When treating
a subsetΩ of V we will slightly abuse notation/terminology by letting ∂Ω be the boundary ofΩwithin V ,
and similarly when we will discuss the interior of Ω we will mean its interior within V . This convention
results in suitable interpretations of when K ⊆V is a convex body or a parallelohedron (with respect to a
lattice of V ). The variant of (2) for a convex body K ⊆V becomes

voldim(V )−1(∂K ) = lim
δ→0+

voldim(V )
(
K +δ(V ∩B n)

)−voldim(V )(K )

δ
. (3)

Proof of Lemma 3. Since K ⊇ RB n , for every δ> 0 we have

K +δB n ⊆ K + δ

R
K =

(
1+ δ

R

)( R

R +δK + δ

R +δK
)
=

(
1+ δ

R

)
K , (4)

where the last step of (4) uses the fact that K is convex. Consequently,

voln−1(∂K )
(2)= lim

δ→0+
voln(K +δB n)−voln(K )

δ

(4)
⩽ lim

δ→0+

(
1+ δ

R

)n −1

δ
voln(K ) = n

R
voln(K ). □

The sequence {Q(n)}∞n=1 that we introduce in the following definition will play an important role in
the ensuing reasoning:

Notation 4. For each n ∈N let Q(n) be the infimum over those Q ⩾ 0 such that for every lattice Λ⊆ Zn of
rank n there exists aΛ-parallelotope K ⊆Rn that satisfies

voln−1(∂K )

voln(K )
⩽Q. (5)

As voln(K ) = 1 for any integer parallelotope K ⊆Rn , Theorem 1 is a special case of the following result:

Theorem 5. There exists a universal constant C ⩾ 1 such that Q(n)≲
p

neC
p

logn for every n ∈N .

The following key lemma is the inductive step in the ensuing proof of Theorem 5 by induction on n:
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Lemma 6. Fix m,n, s ∈ N with s ⩽ m ⩽ n. Suppose that B ∈Mm×n(Z) is an m-by-n matrix all of whose
entries are integers such that B has rank m and any s of the columns of B are linearly independent. Then,

Q(n)⩽
2(n −m)p

s
+Q(m)∥B∥ℓn

2 →ℓm
2

,

where ∥ ·∥ℓn
2 →ℓm

2
denotes the operator norm from ℓn

2 to ℓm
2 .

The fact that Theorem 5 treats any sublattice ofZn of full rank (recall how Q(n) is defined), even though
in Theorem 1 we are interested only in Zn itself, provides a strengthening of the inductive hypothesis
that makes it possible for our proof of Lemma 6 to go through. If Λ is an arbitrary full rank sublattice of
Zn , then a Λ-parallelotope K ⊆ Rn need no longer satisfy voln(K ) = 1, so the inductive hypothesis must
incorporate the value of voln(K ), which is the reason why we consider the quantity voln−1(∂K )/voln(K )
in (5). Observe that this quantity is not scale-invariant, so it might seem somewhat unnatural to study it,
but it is well-suited to the aforementioned induction thanks to the following simple lemma:

Lemma 7. Fix m,n ∈N and an m-dimensional subspace V of Rn . Let O ⊆V ⊥ be an open subset of V ⊥ and
let G ⊆V be an open subset of V . Then, forΩ=O +G we have

voln−1(∂Ω)

voln(Ω)
= voln−m−1(∂O)

voln−m(O)
+ volm−1(∂G)

volm(G)
. (6)

Furthermore, if T :Rm →V is a linear isomorphism and K ⊆Rm is a convex body, then

volm−1(∂T K )

volm(T K )
⩽

volm−1(∂K )

volm(K )
∥T −1∥(V ,∥·∥ℓn

2
)→ℓm

2
, (7)

where ∥ ·∥(V ,∥·∥ℓn
2

)→ℓm
2

is the operator norm from V , equipped with the norm inherited from ℓn
2 , to ℓm

2 .

Proof. For (6), note that since O ⊥G we have voln(Ω) = voln−m(O)volm(G), and ∂Ω= (∂O +G)∪ (O +∂G)
where voln−1((∂O +G)∩ (O +∂G)) = 0, so voln−1(∂Ω) = voln−m−1(∂O)volm(G)+voln−m(O)volm−1(∂G).

For (7), denote ρ = ∥T −1∥(V ,∥·∥ℓn
2

)→ℓm
2

, so that T −1(V ∩B n) ⊆ ρB m . Consequently,

∀δ ∈R, T K +δ(V ∩B n) = T
(
K +δT −1(V ∩B n)

)⊆ T (K +δρB m).

By combining this inclusion with (3), we see that

volm−1(∂T K )⩽ lim
δ→0+

volm
(
T (K +δρB m)

)−volm(T K )

δ

⩽ det(T ) lim
δ→0+

volm(K +δρB m)−volm(K )

δ

(2)= det(T )volm−1(∂K )ρ = volm(T K )

volm(K )
volm−1(∂K )ρ. □

Remark 8. We stated Lemma 7 with K being a convex body since that is all that we need herein. However,
the proof does not rely on its convexity in an essential way; all that is needed is that K is a body inRm whose
boundary is sufficiently regular so that the identity (2) holds (with n replaced by m).

Any matrix B as in Lemma 6 must have a row with at least n/m nonzero entries. Indeed, otherwise the
total number of nonzero entries of B would be less than m(n/m) = n, so at least one of the n columns B
would have to vanish, in contradiction to the assumed linear independence (as s ⩾ 1). Thus, there exists
j ∈ {1, . . . ,m} such that at least ⌈n/m⌉ of the entries ofB∗e j ∈Rn do not vanish. Those entries are integers,
so ∥B∗e j∥ℓn

2
⩾

p⌈n/m⌉. Hence, the quantity ∥B∥ℓn
2 →ℓm

2
= ∥B∗∥ℓm

2 →ℓn
2

in (6) cannot be less than
p⌈n/m⌉.

Question 9. Given m,n ∈N and C > 1, what is the order of magnitude of the largest s = s(m,n,C ) ∈N for
which there exists B ∈Mm×n(Z) such that any s of the columns of B are linearly independent and

∥B∥ℓn
2 →ℓm

2
⩽C

√
n

m
.

The following lemma is a step towards Question 9 that we will use in the implementation of Lemma 6:
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Lemma 10. Suppose that m,n ∈N satisfy 4⩽m ⩽ n and n ⩾ (m logm)/4. There exist s ∈Nwith s ≳m2/n
and B ∈Mm×n(Z) of rank m such that any s of the columns of B are linearly independent and

∥B∥ℓn
2 →ℓm

2
≲

√
n

m
.

Lemma 10 suffices for our purposes, but it is not sharp. We will actually prove below that in the setting
of Lemma 10 for every 0 < ε⩽ 1 there exist s ∈Nwith s ≳m1+ε/nε = m(m/n)ε⩾m2/n and B ∈Mm×n(Z)
of rank m such that any s of the columns of B are linearly independent and ∥B∥ℓn

2 →ℓm
2
≲ε

p
n/m.

While Question 9 arises naturally from Lemma 6 and it is interesting in its own right, fully answering
Question 9 will not lead to removing the o(1) term in Theorem 1 altogether; the bottleneck in the ensuing
reasoning that precludes obtaining such an answer to Question 2 (if true) is elsewhere.

Proof of Theorem 5 assuming Lemma 6 and Lemma 10. We will proceed by induction on n. In prepara-
tions for the base of the induction, we will first record the following estimate (which is sharp when the
lattice is Zn). The Voronoi cell of a rank n sublatticeΛ of Zn , namely the set

K = {
x ∈Rn : ∀y ∈Λ, ∥x∥ℓn

2
⩽ ∥x − y∥ℓn

2

}
,

is aΛ-parallelotope that satisfies K ⊇ 1
2 B n . Indeed, if y ∈Λ∖{0}, then ∥y∥ℓn

2
⩾ 1 since y ∈Zn∖{0}. Hence,

∀x ∈ 1

2
B n , ∥x − y∥ℓn

2
⩾ ∥y∥ℓn

2
−∥x∥ℓn

2
⩾ ∥x∥ℓn

2
.

By Lemma 3, it follows that voln−1(∂K )/voln(K )⩽ 2n. This gives the (weak) a priori bound Q(n)⩽ 2n.
Fix n ∈ N and suppose that there exists m ∈ N satisfying 4 ⩽ m ⩽ n and n ⩾ (m logm)/4. By using

Lemma 6 with the matrix B from Lemma 10 we see that there is a universal constant κ⩾ 4 for which

Q(n)⩽ κ

(
n

3
2

m
+Q(m)

√
n

m

)
. (8)

We will prove by induction on n ∈N the following upper bound on Q(n), thus proving Theorem 5:

Q(n)⩽ 4κ
p

ne
p

2(logn) log(2κ). (9)

If n ⩽ 4κ2, then by the above discussion Q(n)⩽ 2n ⩽ 4κ
p

n, so that (9) holds. If n > 4κ2, then define

m
def=

⌊
ne−

p
2(logn) log(2κ)

⌋
. (10)

It is straightforward to verify that this choice of m satisfies 4 ⩽ m < n and n ⩾ (m logm)/4 (with room to
spare). Therefore (8) holds. Using the induction hypothesis, it follows that

Q(m)

√
n

m
⩽ 4κ

p
ne

p
2(logm) log(2κ)

(10)
⩽ 4κ

p
ne

√
2
(
logn−

p
2(logn) log(2κ)

)
log(2κ)

⩽ 4κ
p

ne

(p
2logn−

p
log(2κ)

)p
log(2κ) = 2

p
ne

p
2(logn) log(2κ),

(11)

where the penultimate step of (11) uses the inequality
p

a −b ⩽
p

a − b/(2
p

a), which holds for every
a,b ∈ R with a ⩾ b; in our setting a = logn and b = √

2(logn) log(2κ) and a > b because we are now
treating the case n > 4κ2. A substitution of (11) into (8), while using that m ⩾ 1

2 n exp
(−√

2(logn) log(2κ)
)

holds thanks to (10), gives (9), thus completing the proof of Theorem 5. □

We will next prove Lemma 6, which is the key recursive step that underlies Theorem 1.

Proof of Lemma 6. We will start with the following two elementary observations to facilitate the ensuing
proof. Denote the span of the rows of B by V =B∗Rm ⊆ Rn and notice that dim(V ) = m as B is assumed
to have rank m. Suppose thatΛ is a lattice of rank n that is contained inZn . Firstly, we claim that the rank
of the lattice V ⊥∩Λ equals n−m. Indeed, we can write V ⊥∩Λ=C(Zn ∩C−1V ⊥) where C is an invertible
matrix with integer entries, i.e., C ∈Mn(Z)∩GLn(Q), such that Λ = CZn . Furthermore, V ⊥ = Ker(B), so
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the dimension over Q of Qn ∩V ⊥ equals n −m. As C−1 ∈ GLn(Q), it follows that C−1V ⊥ contains n −m
linearly independent elements of Zn . Secondly, we claim that the orthogonal projection ProjVΛ of Λ
onto V is a discrete subset of V , and hence is a lattice; its rank will then be dim(V ) = m because we
are assuming that span(Λ) = Rn , so span(ProjVΛ) = ProjV (span(Λ)) = ProjV (Rn) = V . We need to check
that for any {x1, x2, . . .} ⊆Λ such that limi→∞ProjV xi = 0 there is i0 ∈N such that ProjV xi = 0 whenever
i ∈ {i0, i0 +1, . . .}. Indeed, as V ⊥ = Ker(B) we have Bx =BProjV x for every x ∈Rn , so limi→∞Bxi = 0. But,
Bxi ∈ Zm for every i ∈N because B ∈Mm×n(Z) and xi ∈Λ ⊆ Zn . Consequently, there is i0 ∈N such that
Bxi = 0 for every i ∈ {i0, i0 +1, . . .}, i.e., xi ∈ Ker(B) =V ⊥ and hence ProjV xi = 0.

Let K1 ⊆V ⊥ be the Voronoi cell of V ⊥∩Λ, namely K1 = {x ∈V ⊥ : ∀y ∈V ⊥∩Λ, ∥x∥ℓn
2
⩽ ∥x − y∥ℓn

2
}. If

y = (y1, . . . , yn) ∈ V ⊥ = Ker(B), then y1Be1 +·· ·+ ynBen = 0. By the assumption on B, this implies that if
also y ̸= 0, then |{i ∈ {1, . . . ,n} : yi ̸= 0}| > s. Consequently, as the entries of elements ofΛ are integers,

∀y ∈ (V ⊥∩Λ)∖ {0}, ∥y∥ℓn
2
>p

s.

Hence, if x ∈
p

s
2 (V ⊥∩B n), then

∀y ∈ (V ⊥∩Λ)∖ {0}, ∥x − y∥ℓn
2
⩾ ∥y∥ℓn

2
−∥x∥ℓn

2
>p

s −
p

s

2
=

p
s

2
⩾ ∥x∥ℓn

2
.

This means that K1 ⊇
p

s
2 (V ⊥∩B n), and therefore by Lemma 3 we have

voln−m−1(∂K1)

voln−m(K1)
⩽

n −m
1
2

p
s

= 2(n −m)p
s

. (12)

Next, fix i ∈ {1, . . . ,m}. By the definition of V , the i ’th row B∗ei of B belongs to V , so

∀(x, i ) ∈Rn × {1, . . . ,m}, 〈x,B∗ei 〉 = 〈ProjV x,B∗ei 〉. (13)

Since all of the entries of B are integers, it follows that

∀(x, i ) ∈Zn × {1, . . . ,m}, 〈BProjV x,ei 〉 = 〈ProjV x,B∗ei 〉 (13)= 〈x,B∗ei 〉 ∈Z.

In other words, BProjVZ
n ⊆ Zm , and hence the lattice BProjVΛ is a subset of Zm . Furthermore, B is

injective on V because Ker(B) =V ⊥, so BProjVZ
n is a rank m sublattice ofZm . By the definition of Q(m),

it follows that there exists a BProjVΛ-parallelotope K 0
2 ⊆Rm such that

volm−1(∂K 0
2 )

volm(K 0
2 )

⩽Q(m). (14)

Because V ⊥ = Ker(B) and the rank of B is m = dim(V ), the restriction B|V of B to V is an isomorphism
between V and Rm . Letting T : Rm → V denote the inverse of B|V , define K2 = T K 0

2 . By combining (the
second part of) Lemma 7 with (14), we see that

volm−1(∂K2)

volm(K2)
⩽Q(m)∥B∥ℓn

2 →ℓm
2

. (15)

Let K = K1 +K2 ⊆Rn . By combining (the first part of) Lemma 7 with (12) and (15), we have

voln−1(∂K )

voln(K )
⩽

2(n −m)p
s

+Q(m)∥B∥ℓn
2 →ℓm

2
.

Hence, the proof of Lemma 6 will be complete if we check that K is a Λ-parallelotope. Our construction
ensures by design that this is so, as K1 is a (V ⊥∩Λ)-parallelotope and K2 is a ProjVΛ-parallelotope; veri-
fying this fact is merely an unravelling of the definitions, which we will next perform for completeness.

Fix z ∈Rn . AsRm =BProjVΛ+K 0
2 , there is x ∈ΛwithBProjV z ∈BProjV x+K 0

2 . Apply T to this inclusion
and use that TB|V is the identity mapping to get ProjV z ∈ProjV x +K2. Next, V ⊥ = K1 +V ⊥∩Λ since K1

is the Voronoi cell of V ⊥∩Λ, so there is y ∈ V ⊥∩Λ such that ProjV ⊥z −ProjV ⊥x ∈ y +K1. Consequently,
z =ProjV ⊥z +ProjV z ∈ProjV ⊥x + y +K1 +ProjV x +K2 = x + y +K ∈Λ+K . Hence,Λ+K =Rn .
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It remains to check that for every w ∈Λ∖ {0} the interior of K does not intersect w +K . Indeed, by the
definition of K , if k belongs to the interior of K , then k = k1+k2, where k1 belongs to the interior of K1 and
k2 belongs to the interior of K2. Since B is injective on K2 ⊆V , it follows that Bk2 belongs to the interior
of BK2 = K 0

2 . If ProjV w ̸= 0, then BProjV w ∈ BProjVΛ∖ {0}, so because K 0
2 is a BProjVΛ-parallelotope,

Bk2 ∉ BProjV w +K 0
2 . By applying T to is inclusion, we see that k2 ∉ ProjV w +K2, which implies that

k ∉ w +K . On the other hand, if ProjV w = 0, then w ∈ (V ⊥∩Λ)∖ {0}. Since K1 is a V ⊥∩Λ-parallelotope,
it follows that k1 ∉ w +K1, so k ∉ w +K . □

To complete the proof of Theorem 5, it remains to prove Lemma 10. For ease of later reference, we first
record the following straightforward linear-algebraic fact:

Observation 11. Fix m,n, s ∈ N with s ⩽ m ⩽ n. Suppose that there exists A ∈Mm×n(Z) such that any s
of the columns of A are linearly independent. Then, there also exists B ∈Mm×n(Z) such that any s of the
columns of B are linearly independent, B has rank m, and

∥B∥ℓn
2 →ℓm

2
⩽

√
1+∥A∥2

ℓn
2 →ℓm

2
. (16)

Proof. Let r ∈ {1, . . . ,m} be the rank of A. By permuting the rows of A, we may assume that its first r rows,
namely A∗e1, . . . ,A∗er ∈ Rn are linearly independent. Also, since we can complete A∗e1, . . . ,A∗er to a
basis of Rn by adding n−r vectors from {e1, . . . ,en} ⊆Rn , by permuting the columns of A, we may assume
that the vectors A∗e1, . . . ,A∗er ,er+1, . . . ,em ∈Rn are linearly independent. Let B ∈Mm×n(Z) be the matrix
whose rows are A∗e1, . . . ,A∗er ,er+1, . . . ,em , so that B has rank m by design. Also,

∀x ∈Rn , ∥Bx∥2
ℓm

2
=

r∑
i=1

(Ax)2
i +

m∑
j=r+1

x2
j ⩽

(∥A∥2
ℓn

2 →ℓm
2
+1

)∥x∥2
ℓn

2
.

Therefore (16) holds. It remains to check that any s of the columns of B are linearly independent. Indeed,
fix S ⊆ {1, . . . ,n} with |S| = s and {α j } j∈S ⊆R such that

∑
j∈S α jBi j = 0 for every i ∈ {1, . . . ,m}. In particular,∑

j∈S α jAi j = 0 for every i ∈ {1, . . . ,r }. If k ∈ {r +1, . . . ,m}, then since the k’th row of A is in the span of the
first r rows of A, there exist βk1, . . . ,βkr ∈ R such that Ak j =

∑r
i=1βkiAi j for every j ∈ {1, . . . ,n}. Conse-

quently,
∑

j∈S α jAk j =
∑r

i=1βki
∑

j∈S α jAi j = 0. This shows that
∑

j∈S α jAi j = 0 for every i ∈ {1, . . . ,m}. By
the assumed property of A, this implies that α j = 0 for every j ∈ S. □

The following lemma is the main existential statement that underlies our justification of Lemma 10:

Lemma 12. There exists a universal constant c > 0 with the following property. Let d ,m,n ⩾ 3 be integers
that satisfy d ⩽m ⩽ n and n ⩾ (m logm)/d. Suppose also that s ∈N satisfies

s ⩽
c

d

(
md

n2

) 1
d−2

. (17)

Then, there exists an m-by-n matrix A ∈ Mm×n({0,1}) with the following properties:

• Any s of the columns of A are linearly independent over the field Z/(2Z);
• Every column of A has at most d nonzero entries;
• Every row of A has at most 5dn/m nonzero entries.

The ensuing proof of Lemma 12 consists of probabilistic reasoning that is common in the literature
on Low Density Parity Check (LDPC) codes; it essentially follows the seminal work [18]. While similar
considerations appeared in many places, we could not locate a reference that states Lemma 12.3 A pecu-
liarity of the present work is that, for the reason that we have seen in the above deduction of Theorem 5
from Lemma 6 and Lemma 10, we need to choose a nonstandard dependence of m on n; recall (10).

3The standard range of parameters that is discussed in the LDPC literature is, using the notation of Lemma 12, either when
m ≍ n, or when s,d are fixed and the pertinent question becomes how large n can be as m →∞; sharp bounds in the former
case are due to [18] and sharp bounds in the latter case are due to [29, 32]. Investigations of these issues when the parameters
have intermediate asymptotic behaviors appear in [15, 14, 2, 9, 21, 23].
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In the course of the proof of Lemma 12 we will use the following probabilistic estimate:

Lemma 13. Let {W (t ) = (W (t ,1), . . . ,W (t ,m))}∞t=0 be the standard random walk on the discrete hypercube
{0,1}m , starting at the origin. Thus, W (0) = 0 and for each t ∈N the random vector W (t ) is obtained from
the random vector W (t −1) by choosing an index i ∈ {1, . . . ,m} uniformly at random and setting

W (t ) = (
W (t −1,1), . . . ,W (t −1, i −1),1−W (t −1, i ),W (t −1, i +1), . . . ,W (t −1,m)

)
.

Then, Prob[W (t ) = 0]⩽ 2(t/m)t/2 for every t ∈N.

Proof. If t is odd, then Prob[W (t ) = 0] = 0, so suppose from now that t is even. Let P ∈M{0,1}m×{0,1}m (R)
denote the transition matrix of the random walk W , i.e.,

∀ f : {0,1}m →R, ∀x ∈ {0,1}m , P f (x) = 1

m

m∑
i=1

f (x +ei mod 2).

Then, Prob[W (t ) = 0] = (Pt )00. By symmetry, all of the 2m diagonal entries of Pt are equal to each other,
so (Pt )00 = Trace(Pt )/2m . For every S ⊆ {0,1}m , the Walsh function (x ∈ {0,1}m) 7→ (−1)

∑
i∈S xi is an eigen-

vector of P whose eigenvalue equals 1−2|S|/m. Consequently,

Prob[W (t ) = 0] = 1

2m Trace(Pt ) = 1

2m

m∑
k=0

(
m

k

)(
1− 2k

m

)t

. (18)

Suppose that β1, . . . ,βm are independent {0,1}-valued unbiased Bernoulli random variables, namely,
Prob[βi = 0] = Prob[βi = 1] = 1/2 for any i ∈ {1, . . . ,m}. By Hoeffding’s inequality (e.g., [37, Theorem 2.2.6]),

∀u ⩾ 0, Prob

[∣∣∣∣ m∑
i=1

(
βi − 1

2

)∣∣∣∣⩾ u

]
⩽ 2e−

2u2

m . (19)

Observing that the right hand side of (18) is equal to the expectation of
(
1− 2

m

∑m
i=1βi

)t , we see that

Prob[W (t ) = 0]
(18)=

(
− 2

m

)t

E

[( m∑
i=1

(
βi − 1

2

))t
]
=

(
2

m

)t ∫ ∞

0
tut−1Prob

[∣∣∣∣ m∑
i=1

(
βi − 1

2

)∣∣∣∣⩾ u

]
du

(19)
⩽ 2t

(
2

m

)t ∫ ∞

0
ut−1e−

2u2

m du = 2

(
2

m

) t
2
(

t

2

)
!⩽ 2

(
2

m

) t
2
(

t

2

) t
2 = 2

(
t

m

) t
2

. □

With Lemma 13 at hand, we can now prove Lemma 12.

Proof of Lemma 12. Consider the random matrixA ∈Mm×n({0,1}) whose columns are independent iden-
tically distributed copies W1(d), . . . ,Wn(d) of W (d), where W (0) = 0,W (1),W (2), . . . is the standard ran-
dom walk on {0,1}m as in Lemma 13. By design, this means that each column of A has at most d nonzero
entries. Fixing (i , j ) ∈ {1, . . . ,m}×{1, . . . ,n}, if W j (d , i ) = 1, then in at least one of the d steps of the random
walk that generated W j (d) the i th coordinate was changed. The probability of the latter event equals
1−(1−1/m)d . Hence, Prob[W j (d , i ) = 1]⩽ 1−(1−1/m)d ⩽ d/m and therefore for every fixed S ⊆ {1, . . . ,n},
the probability that W j (d , i ) = 1 for every j ∈ S is at most (d/m)|S|. Consequently, the probability that all
of the rows of A have at most ℓ= ⌈4dn/m⌉ nonzero entries is at least

1−m

(
n

ℓ

)(
d

m

)ℓ
⩾ 1−m

(en

ℓ

)ℓ (
d

m

)ℓ
= 1−m

(
edn

mℓ

)ℓ
⩾ 1−m

(e

4

)4logm
⩾

1

3
,

where the first step is an application of Stirling’s formula, the penultimate step uses ℓ⩾ 4dn/m and the
assumption n ⩾ (m logm)/d , and the final step holds because m ⩾ 3.

It therefore suffices to prove that with probability greater than 2/3 the vectors {Wi (d)}i∈S ⊆ {0,1}m are
linearly independent overZ/(2Z) for every∅ ̸= S ⊆ {1, . . . ,n} with |S|⩽ s, where s ∈N satisfies (17) and the
universal constant c > 0 that appears in (17) will be specified later; see (23). So, it suffices to prove that
with probability greater than 2/3 we have

∑
i∈S Wi (d) ̸≡ 0 mod 2 for every ∅ ̸= S ⊆ {1, . . . ,n} with |S|⩽ s.
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Hence, letting D denote the number of ∅ ̸= S ⊆ {1, . . . ,n} with |S|⩽ s that satisfy
∑

i∈S Wi (d) ≡ 0 mod 2, it
suffices to prove that 2/3 < Prob[D = 0] = 1−Prob[D ⩾ 1]. Using Markov’s inequality, it follows that the
proof of Lemma 12 will be complete if we demonstrate that E[D] < 1/3.

The expectation of D can be computed exactly. Indeed,

E[D] = E
[ ∑

S⊆{1,...,n}
1⩽|S|⩽s

1{
∑

i∈S Wi (d)≡0 mod 2}

]
=

s∑
r=1

(
n

r

)
Prob[W (dr ) = 0], (20)

where we used the fact that
∑

i∈S Wi (d) mod 2 ∈ {0,1}m has the same distribution as W (d |S|) for every
∅ ̸= S ⊆ {1, . . . ,n}. By substituting the conclusion of Lemma 13 into (20) we see that

E[D]⩽ 2
s∑

r=1

(
n

r

)(
dr

m

) dr
2

⩽ 2
s∑

r=1

(
ed

d
2 r

d
2 −1n

m
d
2

)r

, (21)

where in the last step we bounded the binomial coefficient using Stirling’s formula. For every r ∈ {1, . . . , s},

ed
d
2 r

d
2 −1n

m
d
2

⩽
ed

d
2 s

d
2 −1n

m
d
2

(17)
⩽ edc

d
2 −1 < 1

7
, (22)

provided that

c < inf
d⩾3

(
1

7ed

) 2
d−2 ∈ (0,1). (23)

Therefore, when (23) holds we may substitute (22) into (21) to get that E[D] < 2
∑∞

r=1
1

7r = 1
3 . □

We can now prove Lemma 10, thus concluding the proof of Theorem 5.

Proof of Lemma 10. We will prove the following stronger statement (Lemma 10 is its special case ε = 1).
If 0 < ε⩽ 2 and m,n ∈ N satisfy 2+⌊2/ε⌋⩽ m ⩽ n and n ⩾ (m logm)/(2+⌊2/ε⌋), then there exist s ∈ N
with s ≳ εm1+ε/nε, and B ∈Mm×n(Z) such that any s of the columns of B are linearly independent, the
rows of B are linearly independent, and

∥B∥ℓn
2 →ℓm

2
≲

1

ε

√
n

m
.

Indeed, apply Lemma 12 with d = 2+⌊2/ε⌋ ⩾ 3 (equivalently, d ⩾ 3 is the largest integer such that
2/(d −2)⩾ ε) to deduce that there exist an integer s with

s ≍ 1

d

(
md

n2

) 1
d−2

= m

d

(m

n

) 2
d−2 ≍ εm

(m

n

)ε
= εm1+ε

nε
,

and a matrix A ∈Mm×n({0,1}) ⊆Mm×n(Z) such that any s of the columns of A are linearly independent
over Z/(2Z), every column of A has at most d nonzero entries, and every row of A has at most 5dn/m
nonzero entries. If a set of vectors v1, . . . , vs ∈ {0,1}m is linearly independent over Z/(2Z), then it is also
linearly independent overR (e.g., letting V ∈Mm×s({0,1}) denote the matrix whose columns are v1, . . . , vs ,
the latter requirement is equivalent to the determinant of V∗V ∈ Ms({0,1}) being an odd integer, so in
particular it does not vanish). Hence, any s of the columns of A are linearly independent over R. Also,

∥A∥ℓn
2 →ℓm

2
⩽

(
max

i∈{1,...,m}

n∑
j=1

|Ai j |
) 1

2
(

max
j∈{1,...,n}

m∑
i=1

|Ai j |
) 1

2 ⩽

√
5dn

m
·
p

d ≍ 1

ε

√
n

m
,

where the first step is a standard bound which holds for any m-by-n real matrix (e.g. [20, Corollary 2.3.2]).
Thus, A has all of the properties that we require from the matrix B in Lemma 10, except that we do not
know that A has rank m, but Observation 11 remedies this (minor) issue. □

We end by asking the following question:
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Question 14. Fix n ∈N. Does there exist an integer parallelotope K ⊆Rn such that the (n−1)-dimensional
area of the orthogonal projection Projθ⊥K of K along any direction θ ∈ Sn−1 is at most no(1)?

An application of Cauchy’s surface area formula (see [27, Section 5.5]), as noted in, e.g., [31, Sec-
tion 1.6], shows that a positive answer to Question 14 would imply Theorem 1. Correspondingly, a posi-
tive answer to Question 14 with no(1) replaced by O(1) would imply a positive answer to Question 2.

Apart from the intrinsic geometric interest of Question 14, if it had a positive answer, then we would
deduce using [31] that there exists an integer parallelotope K ⊆Rn such that the normed space X whose
unit ball is K has certain desirable nonlinear properties, namely, we would obtain an improved random-
ized clustering of X and an improved extension theorem for Lipschitz functions on subsets of X; we refer
to [31] for the relevant formulations since including them here would result in a substantial digression.

REFERENCES

[1] A. D. Alexandrov, Convex polyhedra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005, Translated from
the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze and A. B. Sossinsky, With comments and bibliography by V.
A. Zalgaller and appendices by L. A. Shor and Yu. A. Volkov.

[2] Noga Alon and Uriel Feige, On the power of two, three and four probes, Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2009, pp. 346–354.

[3] Noga Alon and Bo’az Klartag, Economical toric spines via Cheeger’s inequality, J. Topol. Anal. 1 (2009), 101–111.
[4] Tomaso Aste and Denis Weaire, The pursuit of perfect packing, second ed., Taylor & Francis, New York, 2008.
[5] Károly Bezdek, Sphere packings revisited, European J. Combin. 27 (2006), 864–883.
[6] Mark Braverman and Dor Minzer, Optimal tiling of the Euclidean space using permutation-symmetric bodies, 36th Com-

putational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 200, Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2021, pp. Art. No. 5, 48.

[7] Jaigyoung Choe, On the existence and regularity of fundamental domains with least boundary area, J. Differential Geom.
29 (1989), 623–663.

[8] B. Delaunay, Sur la partition régulière de l’espace à 4 dimensions. I, II., Bull. Acad. Sci. URSS 2 (1929), 79–110 (French).
[9] D. Dellamonica, Jr., P. Haxell, T. Łuczak, D. Mubayi, B. Nagle, Y. Person, V. Rödl, M. Schacht, and J. Verstraëte, On even-degree

subgraphs of linear hypergraphs, Combin. Probab. Comput. 21 (2012), 113–127.
[10] N. P. Dolbilin, Properties of faces of parallelohedra, Tr. Mat. Inst. Steklova 266 (2009), 112–126.
[11] N. P. Dolbilin, Parallelohedra: a retrospective and new results, Trans. Moscow Math. Soc. (2012), 207–220.
[12] Peter Engel, Geometric crystallography, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993,

pp. 989–1041.
[13] E. S. Fedorov, Načala učeniya o figurah, Izdat. Akad. Nauk SSSR, Moscow, 1953.
[14] Uriel Feige, Small linear dependencies for binary vectors of low weight, Building bridges, Bolyai Soc. Math. Stud., vol. 19,

Springer, Berlin, 2008, pp. 283–307.
[15] Uriel Feige, Jeong Han Kim, and Eran Ofek, Witnesses for non-satisfiability of dense random 3cnf formulas, 47th Annual

IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Pro-
ceedings, IEEE Computer Society, 2006, pp. 497–508.

[16] Uriel Feige, Guy Kindler, and Ryan O’Donnell, Understanding parallel repetition requires understanding foams, 22nd An-
nual IEEE Conference on Computational Complexity (CCC 2007), 13-16 June 2007, San Diego, California, USA, IEEE Com-
puter Society, 2007, pp. 179–192.

[17] László Fejes Tóth, Über das kürzeste Kurvennetz, das eine Kugeloberfläche in flächengleiche konvexe Teile zerlegt, Math.
Naturwiss. Anz. Ungar. Akad. Wiss. 62 (1943), 349–354.

[18] R. G. Gallager, Low-density parity-check codes, IRE Trans. IT-8 (1962), 21–28.
[19] Apostolos Giannopoulos, Alexander Koldobsky, and Petros Valettas, Inequalities for the surface area of projections of convex

bodies, Canad. J. Math. 70 (2018), 804–823.
[20] Gene H. Golub and Charles F. Van Loan, Matrix computations, fourth ed., Johns Hopkins Studies in the Mathematical

Sciences, Johns Hopkins University Press, Baltimore, MD, 2013.
[21] Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar, Algorithms and certificates for Boolean CSP refutation:

smoothed is no harder than random, STOC ’22—Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, ACM, New York, [2022] ©2022, pp. 678–689.

[22] T. C. Hales, The honeycomb conjecture, Discrete Comput. Geom. 25 (2001), 1–22.
[23] Jun-Ting Hsieh, Pravesh K. Kothari, and Sidhanth Mohanty, A simple and sharper proof of the hypergraph Moore bound,

Preprint available at https://arxiv.org/abs/2207.10850, 2022.
[24] Lord Kelvin, On homogeneous division of space., Lond. R. S. Proc. 55 (1894), 1–16 (English).

10

https://arxiv.org/abs/2207.10850


[25] Guy Kindler, Ryan O’Donnell, Anup Rao, and Avi Wigderson, Spherical cubes and rounding in high dimensions, 49th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, IEEE
Computer Society, 2008, pp. 189–198.

[26] Guy Kindler, Anup Rao, Ryan O’Donnell, and Avi Wigderson, Spherical cubes: optimal foams from computational hardness
amplification, Commun. ACM 55 (2012), 90–97.

[27] Daniel A. Klain and Gian-Carlo Rota, Introduction to geometric probability, Lezioni Lincee. [Lincei Lectures], Cambridge
University Press, Cambridge, 1997.

[28] Zsolt Lángi, An isoperimetric problem for three-dimensional parallelohedra, Pacific J. Math. 316 (2022), 169–181.
[29] Hanno Lefmann, Pavel Pudlák, and Petr Savický, On sparse parity check matrices, Des. Codes Cryptogr. 12 (1997), 107–130.
[30] H. Minkowski, Allgemeine Lehrsätze über die convexen Polyeder., Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1897 (1897),

198–219 (German).
[31] Assaf Naor, Extension, separation and isomorphic reverse isoperimetry, Preprint available at https://arxiv.org/abs/

2112.11523, 2021.
[32] Assaf Naor and Jacques Verstraëte, Parity check matrices and product representations of squares, Combinatorica 28 (2008),

163–185.
[33] Ran Raz, A counterexample to strong parallel repetition, SIAM J. Comput. 40 (2011), 771–777.
[34] C. A. Rogers, A note on coverings and packings, J. London Math. Soc. 25 (1950), 327–331.
[35] M. I. Shtogrin, Regular Dirichlet-Voronoı̆ partitions for the second triclinic group, Izdat. “Nauka”, Moscow, 1973, Trudy Mat.

Inst. Steklov. 123 (1973).
[36] B. A. Venkov, On a class of Euclidean polyhedra, Vestnik Leningrad. Univ. Ser. Mat. Fiz. Him. 9 (1954), 11–31.
[37] Roman Vershynin, High-dimensional probability, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 47,

Cambridge University Press, Cambridge, 2018, An introduction with applications in data science, With a foreword by Sara
van de Geer.

MATHEMATICS DEPARTMENT, PRINCETON UNIVERSITY, FINE HALL, WASHINGTON ROAD, PRINCETON, NJ 08544-1000, USA
Email address: naor@math.princeton.edu

DEPARTMENT OF COMPUTER SCIENCE, COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, 251
MERCER STREET, NEW YORK, NY 10012, USA

Email address: regev@cims.nyu.edu

11

https://arxiv.org/abs/2112.11523
https://arxiv.org/abs/2112.11523

	1. Introduction
	2. Proof of Theorem 1
	References

