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Abstract

Various new nonembeddability results (mainly into L1) are proved via Fourier analysis. In
particular, it is shown that the Edit Distance on {0, 1}d has L1 distortion Ω(

√
log d/ log log d).

We also give new lower bounds on the L1 distortion of flat tori, quotients of the discrete hyper-
cube under group actions, and the transportation cost (Earthmover) metric.

1 Introduction

The bi-Lipschitz theory of metric spaces has witnessed a surge of activity in the past four decades.
While the original motivation for this type of investigation came from metric geometry and Banach
space theory, since the mid-1990s it has become increasingly clear that understanding metric spaces
in the bi-Lipschitz category is intimately related to fundamental algorithmic questions arising in
theoretical computer science. Despite the remarkable list of achievements of this field, which
includes the best known approximation algorithms for a a wide range of NP hard problems, the bi-
Lipschitz theory is still in its infancy. In particular, there are very few known methods for proving
nonembeddability results. The purpose of this paper is to the develop a Fourier-analytic approach
to proving nonembeddability theorems. In doing so, we resolve several problems, and shed new
light on existing results. Additionally, our work points toward several interesting directions for
future research, with emphasis on the study of the bi-Lipschitz structure of quotients of metric
spaces.

Let (X, dX) and (Y, dY ) be metric spaces. The Lipschitz constant of a function f : X → Y is

‖f‖Lip := sup
x,y∈X
x 6=y

dY (f(x), f(y))
dX(x, y)

.

If f is one-to-one then its distortion is defined as

dist(f) := ‖f‖Lip · ‖f−1‖Lip.

If f is not one-to-one then we set dist(f) = ∞. The least distortion with which X can be embedded
into Y is denoted cY (X), namely

cY (X) := inf{dist(f) : f : X ↪→ Y }.
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We are particularly interested in embeddings into Lp spaces. In this case we write cp(X) =
cLp(X). The most studied type of embeddings are into Hilbert space, in which case the parameter
c2(X) is known as the Euclidean distortion of X. The parameter c1(X), i.e. the least distortion
required to embed X into L1, is of great algorithmic significance, especially in the study of cut
problems in graphs. The Euclidean distortion of a metric space X is relatively well understood:
it is enough to understand the distortion of finite subsets of X, and for finite metrics there is a
simple semidefinite program which computes their Euclidean distortion [37]. Embeddings into L1

are much more mysterious (see [36]), and there are very few known methods to bound c1(X) from
below.

The present paper contains several new nonembeddability results, which we now describe. The
common theme is that our proofs are based on analytic methods, most notably Fourier analysis on
{0, 1}d and Rn. We stress that this is not the first time that nonembeddability results have drawn
on techniques from harmonic analysis. Indeed, the proofs of results in [14, 54, 50, 32, 43] all have
a Fourier analytic component.

Our results.

1) Quotients of the discrete hypercube and transportation cost. A classical theorem of
Banach states that every separable Banach space is a quotient of `1. More precisely, for every
separable Banach space X, there is a linear subspace Y ⊆ `1 such that `1/Y is linearly isometric
to X. This suggests that interesting “bad examples” of metric spaces can be obtained as metric
quotients of the Hamming cube. Roughly speaking, this says that we can obtain interesting metrics
(i.e. metrics that do not embed into nice spaces, say L1) by identifying points of the hypercube.
Quotients of metric spaces are a well studied concept (see [25, 15] for an introduction, and [42]
for a discussion of quotients of finite metric spaces)- we refer the reader to Section 3 for a precise
definition of this notion.

Motivated by this analogy, in Section 3 we exhibit classes of quotients of the Hamming cube
which do not embed into L1. A fundamental theorem of Bourgain [10] states that for every finite
metric space X, c1(X) ≤ c2(X) = O(log |X|). In [10] Bourgain used a counting argument to show
that there exist arbitrarily large metric spaces X with c2(X) = Ω(log |X|/ log log |X|). In [37, 3] it
was shown that there exit arbitrarily large metric spaces X with c1(X) = Ω(log |X|) (namely X can
be taken to be a constant degree expander). In Section 3 we show that there exist simple n-point
quotients of the Hamming cube {0, 1}d which incur distortion Ω(log n) in any L1 embedding. This
can be viewed a non-linear quantitative analog of Banach’s theorem stated above. We also show
that certain quotients of the Hamming cube obtained from the action of a transitive permutation
group of the coordinates do not well-embed into L1. These results are proved via a flexible Fourier
analytic approach.

As an application of the results stated above we settle the problem of the L1 embeddability of the
transportation cost metric (also known as the Earthmover metric in the computer vision/graphics
literature) on the set of all probability measures on {0, 1}d. Denoting by P({0, 1}d) the space of
all probability measures on the Hamming cube {0, 1}d, let Tρ(σ, τ) denote the transportation cost
distance between σ, τ ∈ P({0, 1}d), with respect to the cost function induced by the Hamming
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metric ρ (see Section 3.2 for the definition). Such metrics occur in various contexts in computer
science: they are a popular distance measure in graphics and vision [27, 30], and they are used
as LP relaxations for classification problems such as 0-extension and metric labelling [20, 18, 2].
Transportation cost metrics are also prevalent in several areas of analysis and PDEs (see the
book [58] and the references therein).

Motivated by applications to nearest neighbor search (a.k.a. similarity search in the vision
literature), the problem of embedding transportation cost metrics into L1 attracted a lot of atten-
tion in recent years (see [18, 30, 41]). In [18, 30] it is shown that c1(P({0, 1}d), Tρ) = O(d). In
Section 3.2 we show that this bound is optimal, i.e. c1(P({0, 1}d), Tρ) = Ω(d). From an analytic
perspective, Kantorovich duality (see [58]) implies that (P({0, 1}d), Tρ) embeds isometrically into
Lip({0, 1}d)∗- the dual of the Banach space of all real valued Lipschitz functions on the hypercube.
A result of Bourgain [11] implies that supd∈N c1(Lip({0, 1}d)∗) = ∞. Our result shows that in fact
c1(Lip({0, 1}d)∗) = Ω(d), improving upon the lower bound obtained in [11].

2) Edit Distance does not embed into L1. Edit Distance (also known as Levenstein dis-
tance [35]) is a metric defined on the set of all finite-length binary strings, which we denote {0, 1}∗.
This metric is best viewed as the shortest path metric on the following infinite graph : Let G

be a graph with set of vertices {0, 1}∗, and {x, y} is an edge of the graph if the string y can be
obtained from string x by either deleting one character from x or by inserting one character into
x. For strings x, y, denote the shortest path distance in G (i.e. the Edit Distance) between x, y as
ED(x, y). In words, ED(x, y) is the minimum number of edit operations needed to transform x into
y. Here we assume that only insertion/deletion operations are allowed. Character substitution can
be simulated by a deletion followed by an insertion. Similarly, one can shift a string by deleting its
first character and inserting it at the end.

Edit Distance is a very useful metric arising in several applications, most notably in string and
text comparison problems, which are prevalent in computer science (e.g. compression and pattern
matching), computational biology, and web searching (see the papers [47, 21, 1, 29, 5, 52, 17] and
the references therein, and the book [28] for a discussion of applications to computational biology).

Let ({0, 1}d, ED) denote the space {0, 1}d with the Edit Distance metric (inherited from the
metric ED on {0, 1}∗). A well known problem, stated e.g. in [41], is whether the space ({0, 1}d, ED)
embeds into L1 with uniformly bounded distortion. Had this been true, it would have had significant
applications in computer science (see [41]). Most notably it would lead to approximate nearest
neighbor search algorithms under Edit Distance, and to efficient algorithms for computing the Edit
Distance between two strings (both of these problems are being solved, by computational biologists,
every day, hundreds of times. Getting a substantially faster algorithm for any of them would be
of great practical importance). In Section 4 we show that the L1 embedding approach fails, by
proving via Fourier analytic methods that

c1({0, 1}d, ED) = Ω

(√
log d

log log d

)
. (1)

The previous best known lower bound is due to [1], where it is shown that c1({0, 1}d,ED) ≥ 3/2.
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The best known upper bound on c1({0, 1}d,ED) is due to [52], where it is proved that

c1({0, 1}d,ED) ≤ 2O(
√

log d log log d).

3) Flat tori can be highly non-Euclidean. The Nash embedding theorem [51] states that any
n-dimensional Riemannian manifold is isometric to a Riemannian sub-manifold of R2n. In the bi-
Lipschitz category this is no longer the case- it is easy to construct Riemannian manifolds (indeed,
even Riemannian surfaces) which do not embed bi-Lipschitzly even into infinite dimensional Hilbert
space. However, all the known constructions were highly curved, and the possibility remained that
any manifold with zero curvature embeds bi-Lipschitzly into L2, with a uniform bound on the
distortion. In Section 5 we show that this isn’t the case: there is an n-dimensional flat torus, i.e.
Rn/Λ for some lattice Λ ⊆ Rn, equipped with the natural Riemannian metric (whose sectional
curvature is identically 0), such that c1(Rn/Λ) = Ω(

√
n). This result answers the question, posed

by W. B. Johnson, whether a Lipschitz quotient (in the sense of [7]) of Hilbert space embeds bi-
Lipschitzly into Hilbert space. In [7] it is shown that a Banach space which is a Lipschitz quotient
of a Hilbert space is isomorphic to a Hilbert space. Johnson’s question is whether the condition
that the quotient is a Banach space is necessary. Since the natural quotient map π : Rn → Rn/Λ is
a Lipschitz quotient (see Section 3), the above example shows that Lipschitz quotients of Hilbert
space need not embed into Hilbert space (indeed, they may not embed even into L1). Our approach
is a variant of our study of quotient metrics in Section 3, and the proof is based on Fourier analysis
over Rn, instead of discrete Fourier analysis over {0, 1}n.

This paper is organized as follows. In Section 2 we present some background and preliminary
results on Fourier analysis on the Hamming cube. In section 3 we investigate quotients of the
hypercube under group actions. In Section 4 we prove our lower bound on the L1 distortion of
Edit Distance, and in Section 5 we discuss the L1 and L2 embeddability of flat tori. We end with
Section 6, which contains a brief discussion which relates the notion of length of metric spaces (first
introduced by Schechtman [56] in the context of the concentration of measure phenomenon) to
nonembeddability results. This gives, in particular, new lower bounds on the Euclidean distortion
of various groups equipped with a group invariant metric.

2 Preliminaries on Fourier analysis on the hypercube

We start by introducing some notation concerning Fourier analysis on the group Fd
2 = {0, 1}d. For

ε ∈ (0, 1) we denote by µε the product ε-biased measure on Fd
2, i.e. the measure given by

∀ x ∈ Fd
2, µε({x}) = ε

∑d
j=1 xj (1− ε)d−∑d

j=1 xj .

For the sake of simplicity we write µ = µ1/2. Given A ⊆ {1, . . . , d} we define the Walsh function
WA : Fd

2 → R by
WA(x) = (−1)

∑
j∈A xj .
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Then {WA : A ⊆ {1, . . . , d}} is an orthonormal basis of L2(Fd
2, µ). In particular any f : Fd

2 → L2

has a unique Fourier expansion
f =

∑

A⊆{1,...,d}
f̂(A)WA,

where
f̂(A) =

∫

Fd
2

f(x)WA(x)dµ(x) ∈ L2,

and Parseval’s identity reads as
∫

Fd
2

‖f(x)‖2
2dµ(x) =

∑

A⊆{1,...,d}
‖f̂(A)‖2

2.

Let ej ∈ Fd
2 be the vector whose only non-zero coordinate is the jth coordinate. We also write

e := e1 + . . . + ed for the all 1s vector. The partial differentiation operator on L2(Fd
2) is defined by

∂jf(x) :=
f(x + ej)− f(x)

2
.

Since for every A ⊆ {1, . . . , d} we have that

∂jWA =

{
−WA j ∈ A

0 j /∈ A,

we see that for every f : Fd
2 → R

d∑

j=1

∫

Fd
2

∂jf(x)2dµ(x) =
∑

A⊆{1,...,d}
|A|f̂(A)2. (2)

In what follows we denote by ρ the Hamming metric on Fd
2, namely for x, y ∈ Fd

2,

ρ(x, y) := |{j ∈ {1, . . . , d} : xj 6= yj}|.

Observe that for every f : Fd
2 → R,

∫

Fd
2

|f(x)− f(x + e)|2dµ(x) =
∑

A⊆{1,...,d}
|A|≡1 mod 2

4f̂(A)2 ≤ 4
∑

A⊆{1,...,d}
|A|f̂(A)2 = 4

d∑

j=1

∫

Fd
2

[∂jf(x)]2dµ(x).

This famous inequality, first proved by Enflo in [23] via a geometric argument, implies that c2(Fd
2) ≥√

d. Indeed, by integration we see that for every f : Fd
2 → L2,

∫

Fd
2

‖f(x)− f(x + e)‖2
2dµ(x) ≤ 4

d∑

j=1

∫

Fd
2

‖∂jf(x)‖2
2dµ(x).

Thus, assuming that f is invertible we see that

d2

‖f−1‖2
Lip

≤ 4d ·
(‖f‖Lip

2

)2

,
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i.e.
‖f‖Lip · ‖f−1‖Lip ≥

√
d.

This Fourier-analytic approach to Enflo’s theorem motivates the ensuing arguments in this paper,
since it turns out to be remarkably flexible. For future reference we record here the basic Poincaré
inequality implied by the above reasoning:

Lemma 2.1. For every f : Fd
2 → L2,

∫

Fd
2×Fd

2

‖f(x)− f(y)‖2
2dµ(x)dµ(y) ≤ 2

min{|A| : A 6= ∅, f̂(A) 6= 0}

d∑

j=1

∫

Fd
2

‖∂jf(x)‖2
2dµ(x).

Proof. We simply observe that
∫

Fd
2×Fd

2

‖f(x)− f(y)‖2
2dµ(x)dµ(y) = 2

∫

Fd
2

‖f(x)− f̂(∅)‖2dµ(x) = 2
∑

∅6=A⊆{1,...,d}
‖f̂(A)‖2

2,

and the required inequality follows from (2).

3 Quotients of the hypercube

Let (X, dX) be a metric space. For A,B ⊆ X the Hausdorff distance between A,B is defined as

HX(A,B) = sup {max{dX(a,B), dX(b, A)} : a ∈ A, b ∈ B} . (3)

Following [25, 15, 42], given a partition U = {U1, . . . , Uk} of X, we define the quotient metric
induced by X on U , denoted X/U , as follows: assign to each i, j ∈ {1, . . . , k} the weight wij =
dX(Ui, Uj) = minx∈Ui, y∈Uj dX(x, y), and let dX/U (Ui, Uj) be the shortest path distance between i

and j in the weighted complete graph on {1, . . . , k} in which the edge {i, j} has weight wij .
In the following lemma the right-hand inequality is an immediate consequence of (3), and the

left-hand inequality follows from the fact that the Hausdorff distance is a metric on subsets of X.

Lemma 3.1. Assume that U = {U1, . . . , Uk} is a partition of a metric space X such that for every
i, j ∈ {1, . . . , k}, for every x ∈ Ui there exists y ∈ Uj such that dX(x, y) = dX(Ui, Uj). Then for
every i, j ∈ {1, . . . , k},

dX/U (Ui, Uj) = HX(Ui, Uj) = dX(Ui, Uj).

A particular case of interest is when a group G acts on X by isometries. In this case the orbit
partition induced by G on X clearly satisfies the conditions of Lemma 3.1, implying that for all
x, y ∈ X,

dX/G(Gx,Gy) = dX(Gx, Gy),

where we slightly abuse notation by letting X/G be the quotient of X induced by the orbits of G.
This is the only type of quotients that we study in this paper. In particular, Lemma 3.1 implies
that the quotients we study here are also Lipschitz quotients in the sense of [7] (see Section 6 in [42]
for an explanation).

We will require the following lower bound on the average distance in quotients of the hypercube.
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Lemma 3.2. Let G be a group of isometries acting on Fd
2 with 2 < |G| < 2d. Then

∫

Fd
2×Fd

2

ρFd
2/G(Gx,Gy)dµ(x)dµ(y) = Ω


 log2 |G|

log2

(
d

d−log2 |G|
)


 .

Proof. For every t > 0,

µ× µ{x, y ∈ Fd
2 : ρ(Gx,Gy) ≥ t} ≥ 1−

∑

g∈G

µ× µ{x, y ∈ Fd
2 : ρ(x, gy) ≤ t} = 1− |G|

2d
·
∑

k≤t

(
d

k

)
.

We shall use the following (rough) bounds, which are a simple consequence of Stirling’s formula:
For every 1/n ≤ δ ≤ 1/2,

[δδ(1− δ)1−δ]−d

6
√

δd
≤

∑

k≤δd

(
d

k

)
≤ 2

√
δd · [δδ(1− δ)1−δ]−d. (4)

Thus, using Lemma 3.1 we get that
∫

Fd
2×Fd

2

[
ρFd

2/G(Gx,Gy)
]2

dµ(x)dµ(y) ≥ δd

(
1− |G|

2d
2
√

δd · [δδ(1− δ)1−δ]−d

)

Choosing δ = Θ

(
log2 |G|

d log2

(
d

d−log2 |G|
)

)
yields the required result.

3.1 A simple construction of n-point spaces with c1 = Ω(log n)

In what follows we refer to [38, 9] for the necessary background on coding theory. Let C ⊆ {0, 1}d

be a code, i.e. a linear subspace of Fd
2. Denote by w(C) the minimum Hamming weight of nonzero

elements of C, i.e.
w(C) = min

x∈C\{0}
‖x‖1.

We also use the standard notation

C⊥ :=
{

x ∈ Fd
2 : ∀ y ∈ C, 〈x, y〉 ≡ 0 mod 2

}
,

where 〈x, y〉 :=
∑n

j=1 xjyj .

Lemma 3.3. Assume that f : Fd
2 → L2 satisfies for every x ∈ Fd

2 and y ∈ C⊥, f(x + y) = f(x).
Then for every nonempty A ⊆ {1, . . . , d} with |A| < w(C), f̂(A) = 0.

Proof. Since (C⊥)⊥ = C (see [9]), 1A /∈ (C⊥)⊥, implying that there exists v ∈ C⊥ such that
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〈1A, v〉 ≡ 1 mod 2. Now,

f̂(A) =
∫

Fn
2

f(x)WA(x)dµ(x)

=
∫

Fn
2

f(x + v)WA(x)dµ(x)

=
∫

Fn
2

f(x)WA(x− v)dµ(x)

= (−1)〈1A,v〉
∫

Fn
2

f(x)WA(x)dµ(x)

= −f̂(A).

So f̂(A) = 0.

Theorem 3.4. Let C ⊆ Fd
2 be a code. Then

c1(Fd
2/C⊥) = Ω


w(C) · 1− dim(C)

d

log
(

d
dim(C)

)

 .

Proof. Let f : Fd
2/C⊥ → L1 be a bijection. Define f̃ : Fd

2 → L1 by f̃(x) = f(x + C⊥). It is well
known [22] that there exists a mapping T : L1 → L2 such that for all x, y ∈ L1,

‖T (x)− T (y)‖2 =
√
‖x− y‖1.

Define h : Fd
2 → L2 by h = T ◦ f̃ . By Lemma 3.3 and Lemma 2.1 we get that

∫

Fd
2×Fd

2

‖f̃(x)− f̃(y)‖1dµ(x)dµ(y) =
∫

Fd
2×Fd

2

‖h(x)− h(y)‖2
2dµ(x)dµ(y)

≤ 2
w(C)

d∑

j=1

∫

Fd
2

‖∂jh(x)‖2
2dµ(x)

=
2

w(C)

d∑

j=1

∫

Fd
2

‖∂j f̃(x)‖1dµ(x)

≤ d

w(C)
‖f‖Lip. (5)
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On the other hand, by Lemma 3.2 we see that
∫

Fd
2×Fd

2

‖f̃(x)− f̃(y)‖1dµ(x)dµ(y) =
∫

Fd
2×Fd

2

‖f(x + C⊥)− f(y + C⊥)‖1dµ(x)dµ(y)

≥ 1
‖f−1‖Lip

∫

Fd
2×Fd

2

ρFd
2/C⊥(x + C⊥, y + C⊥)dµ(x)dµ(y)

= Ω


 log2 |C⊥|

log2

(
d

d−log2 |C⊥|
)


 · 1

‖f−1‖Lip

= Ω


 d− dim(C)

log
(

d
dim(C)

)

 · 1

‖f−1‖Lip
, (6)

where we used the fact that |C⊥| = 2d−dim(C).
Combining (5) and (6) yields the required result.

Corollary 3.5. There exists arbitrarily large finite metric spaces X for which c1(X) = Ω(log |X|).

Proof. Let C ⊆ {0, 1}d be a code with dim(C) ≥ d
4 and w(C) = Ω(d). Such codes are well known to

exist (see [38]), and are easy to obtain via the following greedy construction: fix k ≤ d/4 and let V

be a k dimensional subspace of Fd
2 with w(V ) > δd. Then V contains 2k points. The number vectors

x ∈ Fd
2 with ‖x + v‖1 ≤ δd for some v ∈ V is at most 2k

∑
`≤δd

(
d
`

) ≤ 2k+1
√

δd · [δδ(1 − δ)1−δ]−d.
It follows that there exists δ = Ω(1) such that for every k ≤ d/4 there exists x ∈ Fd

2 such that
w(span(V ∪ {x})) > δd, as required. Now, for C as above, Theorem 3.4 implies that

c1(Fd
2/C⊥) = Ω(d) = Ω(log |Fd

2/C⊥|).

Remark 3.1. Using the Matoušek’s extrapolation lemma for Poincaré inequalities [40] (see also
Lemma 5.5 in [6]), it is possible to prove that for a code C as in Corollary 3.5, for every p ≥ 1,
cp(Fd

2/C⊥) ≥ c(p)d.

3.2 The relation to transportation cost

Given a finite metric space (X, d) we denote by P(X) the set of all probability measures on X. For
σ, τ ∈ P(X) we define

Π(σ, τ) =
{

π ∈ P(X ×X) : ∀x ∈ X,

∫

X
dπ(x, y) = σ(x), and

∫

X
dπ(y, x) = τ(x)

}

The optimal transportation cost (with respect to the metric d) between σ and τ is defined as

Td(σ, τ) = inf
π∈Π(σ,τ)

∫

X×X
d(x, y)dπ(x, y).
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Given A ⊆ X we denote by µA ∈ P(X) the uniform probability measure on A. If A,B ⊆ X have
the same cardinality then a straightforward extreme point argument (see [58]) shows that

Td(µA, µB) = inf
{∫

A
d(a, f(a))dµA : f : A → B is 1− 1 and onto

}
.

Lemma 3.6. Let G be a finite group, equipped with a group invariant metric d (i.e. d(xg, yg) =
d(x, y) for all g, x, y ∈ G). Then for every subgroup H ⊆ G and x, y ∈ G,

dG/H(xH, yH) = Td(µxH , µyH).

Proof. For every bijection f : xH → yH,
∫

xH
d(g, f(g))dµxH(g) ≥ d(xH, yH) = dG/H(xH, yH).

On the other hand, fix h1, h2 ∈ H such that d(xh1, yh2) = d(xH, yH). Then the mapping
f : xH → yH given by f(g) = yh2h

−1
1 x−1g satisfies for all g ∈ xH, d(g, f(g)) = d(xh1, yh2) =

d(xH, yH), implying the required result.

Corollary 3.7. It follows from Corollary 3.5 and Lemma 3.6 that c1(P(Fd
2), Tρ) = Ω(d). This

matches the upper bound proved in [18, 30]. In fact, from Remark 3.1 we see that for all p ≥ 1,
cp(P(Fd

2), Tρ) ≥ c(p)d.

Remark 3.2. Let Lip(Fd
2) be the Banach space of all functions f : Fd

2 → R satisfying f(0) = 0,
equipped with the Lipschitz norm ‖·‖Lip. By Kantorovich duality (see [58]), (P(Fd

2), Tρ) is isometric
to a subset of the dual space Lip(Fd

2)
∗. It follows that c1(Lip(Fd

2)
∗) = Ω(d). As remarked in the

introduction, the fact that supd∈N c1(Lip(Fd
2)
∗) = ∞ was first proved by Bourgain [11] using a

different argument (which yields a worse lower bound on the distortion).

3.3 Actions of transitive permutation groups

Let G ≤ Sd be a subgroup of the symmetric group. Clearly G acts by isometries on Fd
2 via

permutations of the coordinates.

Theorem 3.8. Let f : Fd
2 → L1 be a G-invariant function, where G is transitive. Then

∫

Fd
2×Fd

2

‖f(x)− f(y)‖1dµ(x)dµ(y) ≤ 20
log d

d∑

j=1

∫

Fd
2

‖∂jf(x)‖1dµ(x).

Proof. Let A ⊆ Fd
2 be a G invariant subset of the hypercube and write µ(A) = p. For f = 1A the

required inequality becomes:

2p(1− p) ≤ 10
log d

d∑

j=1

Ij(A), (7)
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where Ij(A) = µ{x ∈ Fd
2 : |{x, x + ej} ∩ A| = 1}| is the influence of the jth variable on A.

By [31], max1≤j≤d Ij(A) ≥ log d
5d · p(1− p). But, since A is invariant under the action of a transitive

permutation group, Ij(A) is independent of j, so (7) does indeed hold true.
In the general case let f : Fd

2 → L1 be a G invariant function. Denote by π : Fd
2 → Fd

2/G the
natural quotient map, i.e. π(x) = Gx. Since f is G-invariant, there is a function h : Fd

2/G → L1

such that f = h ◦ π. By the cut-cone representation of L1 metrics (see [22]), there are nonnegative
weights {λA}A⊆Fd

2/G such that for every x, y ∈ Fd
2,

‖f(x)− f(y)‖1 = ‖h(π(x))− h(π(y))‖1

=
∑

A⊆Fd
2/G

λA|1A(π(x))− 1A(π(y))|

=
∑

A⊆Fd
2/G

λA|1π−1(A)(x)− 1π−1(A)(y)|.

Observe that for every A ⊆ Fd
2/G, π−1(A) ⊆ Fd

2 is G-invariant. Thus by the above reasoning
∫

Fd
2×Fd

2

‖f(x)− f(y)‖1dµ(x)dµ(y) =
∑

A⊆Fd
2/G

λA

∫

Fd
2×Fd

2

|1π−1(A)(x)− 1π−1(A)(y)|dµ(x)dµ(y)

≤
∑

A⊆Fd
2/G

λA · 20
log d

d∑

j=1

∫

Fd
2

|∂j1π−1(A)(x)|dµ(x)

=
20

log d

d∑

j=1

∫

Fd
2

∑

A⊆Fd
2/G

λA

∣∣∣∣
1π−1(A)(x)− 1π−1(A)(x + ej)

2

∣∣∣∣ dµ(x)

=
20

log d

d∑

j=1

∫

Fd
2

‖∂jf(x)‖1dµ(x).

We thus get many examples of spaces which do not well-embed into L1:

Corollary 3.9. Let G be a transitive permutation group with |G| < 2εd, for some ε ∈ (0, 1). Then

c1(Fd
2/G) ≥ Ω

(
(1− ε)
log(1/ε)

· log d

)
.

Proof. This is a direct consequence of Theorem 3.8 and lemma 3.2.

Remark 3.3. It is possible to obtain slightly stronger results analogous to Corollary 3.9 when we
have additional information on the structure of the group G. Indeed, in this case, in the proof of
Theorem 3.8, one can use the results of Bourgain and Kalai [13] on the influence of variables on
group invariant Boolean functions, instead of using [31].
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Remark 3.4. We do not know if (Fd
2, ‖·‖2)/G embeds bi-Lipschitzly in Hilbert space with uniformly

bounded distortion. This seems to be unknown even in the case when G is generated by the cyclic
shift of the coordinates. This problem is interesting since if this space does embed into Hilbert
space, then the results of this section will yield an alternative approach to the recent solution of the
Goemans-Linial conjecture in [32].

4 Edit Distance does not embed into L1

In this section we settle the L1 embeddability problem of Edit Distance negatively, by proving the
following theorem:

Theorem 4.1. The following lower bound holds true:

c1(Fd
2, ED) = Ω

(√
log d

log log d

)
.

The following lemma is a useful way to prove L1 nonembeddability results. The case δ = 0
of this lemma is due to [37]. Variants of the case δ > 0, which is the case used in our proof
of Theorem 4.1, seem to be folklore. We include here the formulation we need for the sake of
completeness (the main part of the proof below is a variant of the proof of Lemma 3.6 in [49]).

Lemma 4.2. Fix α > 0 and 0 < δ < 1
3 . Let (X, d) be a finite metric space, σ a probability measure

on X, and τ a probability measure on X ×X. Assume that for every A ⊆ X with δ ≤ σ(A) ≤ 2
3

we have that τ({(x, y) ∈ X ×X : |{x, y} ∩A| = 1}) ≥ ασ(A). Then,

c1(X) ≥ α

2
·
∫
X×X d(x, y) dσ(x)dσ(y)− 2δ diam(X)∫

X×X d(x, y) dτ(x, y)
.

Proof. We claim that there exists a subset Y ⊆ X with σ(Y ) ≥ 1−δ such that for every f : Y → L1,
∫

Y×Y
‖f(x)− f(y)‖1dσ(x)dσ(y) ≤ 2

α

∫

Y×Y
‖f(x)− f(y)‖1dτ(x, y). (8)

This will imply the required lower bound on c1(X) since if f : X → L1 is a bijection then
∫

Y×Y
‖f(x)− f(y)‖1dτ(x, y) ≤ ‖f‖Lip

∫

X×X
d(x, y) dτ(x, y),

while
∫

Y×Y
‖f(x)− f(y)‖1dσ(x)dσ(y) ≥ 1

‖f−1‖Lip

(∫

X×X
d(x, y) dσ(x)dσ(y)−

2
∫

X×(X\Y )
d(x, y) dσ(x)dσ(y)

)

≥ 1
‖f−1‖Lip

(∫

X×X
d(x, y) dσ(x)dσ(y)− 2δ diam(X)

)
.
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It remains to prove the existence of the required subset Y . For simplicity we denote for every
A,B ⊆ X,

{A,B} =
{

(x, y) ∈ X ×X : {x, y} ∩A 6= ∅ ∧ {x, y} ∩B 6= ∅
}

.

Define inductively disjoint subsets ∅ = W0,W1, . . . , Wk ⊆ X as follows. Having defined W1, . . . ,Wi,
write Yi = ∪i

`=1W` and let Wi+1 ⊆ X \ Yi be an arbitrary nonempty subset for which

τ({Wi+1, X \ (Yi ∪Wi+1)}) < ασ(Wi+1) ≤ α

2
σ(X \ Yi).

If no such Wj exists then this process terminates. We claim that σ(Yk) < δ. Indeed, otherwise let
j be the first time at which σ(Yj) ≥ δ. Observe that

σ(Yj) = σ(Yj−1) + σ(Wj) < σ(Yj−1) +
1
2
σ(X \ Yj−1) ≤ 1 + δ

2
≤ 2

3
.

By our assumptions it follows that τ({Yj , X\Yj}) ≥ ασ(Yj). But from the following simple inclusion

{Yj , X \ Yj} =

{
j⋃

i=1

Wi, X \
j⋃

i=1

Wi

}
⊆

j⋃

i=1

{Wi, X \ (Yi−1 ∪Wi)}

we deduce that

0 < ασ(Yj) ≤ τ({Yj , X \ Yj}) ≤
j∑

i=1

τ({Wi, X \ (Yi−1 ∪Wi)}) <

j∑

i=1

ασ(Wi) = ασ(Yj),

a contradiction. Thus, taking Y = Yk we see that for every A ⊆ Y with σ(A) ≤ 1
2 we have

τ({A, Y \A}) ≥ ασ(A). In other words,
∫

Y×Y
‖1A(x)− 1A(y)‖1dτ(x, y) = τ({A, Y \A})

≥ ασ(A)

≥ ασ(A)[σ(Y )− σ(A)]

=
α

2

∫

Y×Y
‖f(x)− f(y)‖1dσ(x)dσ(y),

which implies (8) by the cut cone representation of L1 metrics (as in the proof of Theorem 3.8).

In what follows we let S denote the cyclic shift operator on Fd
2, namely

S(x1, . . . , xd) = (xd, x1, x2, . . . , xd−1).

Lemma 4.3. There exists a universal constant C > 0 such that for every ε ∈ (0, 1/2), every integer
k ≥ (1/ε)C/ε, and every f : Fd

2 → {−1, 1},

1
2

∫

Fd
2×Fd

2

|f(x)− f(y)|dµ(x)dµ(y)− 3ε ≤ 8
k
√

ε

k∑

j=1

∫

Fd
2×Fd

2

|f(x)− f(Sj(x) + y)|dµ(x)dµε(y). (9)
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Proof. Observe that for every x, y ∈ Fd
2, |f(x)−f(y)| = 1−f(x)f(y). Thus for every j ∈ {1, . . . , d}

∫

Fd
2×Fd

2

|f(x)− f(Sj(x) + y)|dµ(x)dµε(y) = 1−
∫

Fd
2×Fd

2

f(x)f(Sj(x) + y)dµ(x)dµε(y)

= 1−
∫

Fd
2×Fd

2


 ∑

A,B⊆{1,...,d}
f̂(A)f̂(B)WA(x)WB(Sj(x) + y)


 dµ(x)dµε(y)

= 1−
∫

Fd
2×Fd

2


 ∑

A,B⊆{1,...,d}
f̂(A)f̂(B)WA(x)WS−j(B)(x)WB(y)


 dµ(x)dµε(y)

= 1−
∑

A⊆{1,...,d}
(1− 2ε)|A|f̂(A)f̂(Sj(A))

≥ 1−
∑

A⊆{1,...,d}
(1− 2ε)|A|f̂(A)2, (10)

where we used the Cauchy-Schwartz inequality and the facts that for all B ⊆ {1, . . . , d} we have∫
Fd
2
WB(y)dµε(y) = (1 − 2ε)|B| and

∫
Fd
2
WAWS−j(B)dµ = 0 when B 6= Sj(A). Averaging (10) over

j = 1, . . . , k we see that

1
k

k∑

j=1

∫

Fd
2×Fd

2

|f(x)− f(Sj(x) + y)|dµ(x)dµε(y) ≥ 1−
∑

A⊆{1,...,d}
(1− 2ε)|A|f̂(A)2.

Thus, in order to prove (9) we may assume that

∑

A⊆{1,...,d}
(1− 2ε)|A|f̂(A)2 ≥ 1−

√
ε

4
. (11)

By a recent theorem of Mossel, O’Donnell and Oleszkiewicz [46], together with a theorem of
Friedgut [24] (weaker estimates can be obtained using Bourgain’s noise sensitivity theorem [12]),
inequality (11) implies that there exists a constant c > 0, an integer t ≤ (1/ε)c/ε, a function
g : Ft

2 → {−1, 1}, and indices 1 ≤ i1 < i2 < · · · < it ≤ d such that if we extend g to a function
g̃ : Fd

2 → {−1, 1} by setting
g̃(x1, . . . , xd) = g(xi1 , xi2 , . . . , xid),

then ∫

Fd
2

|f(x)− g̃(x)|dµ(x) ≤ ε.

Write I = {i1, . . . , it} and for j ∈ {1, . . . , d} define I + j = {i1 + j mod d, . . . , id + j mod d}. If
I ∩ (I + j) = ∅ then we have the identity

∫

Fd
2×Fd

2

|g̃(x)− g̃(Sj(x) + y)|dµ(x)dµε(y) =
∫

Fd
2×Fd

2

|g̃(x)− g̃(y)|dµ(x)dµ(y).

Assume that k ≥ 2t2. In this case

|{j ∈ {1, . . . , k} : I ∩ (I + j) = ∅}| ≥ k − t2 ≥ k

2
.
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Thus

1
k

k∑

j=1

∫

Fd
2×Fd

2

|g̃(x)− g̃(Sj(x) + y)|dµ(x)dµε(y) ≥ 1
2

∫

Fd
2×Fd

2

|g̃(x)− g̃(y)|dµ(x)dµ(y).

It follows that

1
k

k∑

j=1

∫

Fd
2×Fd

2

|f(x)− f(Sj(x) + y)|dµ(x)dµε(y) ≥ 1
2

∫

Fd
2×Fd

2

|f(x)− f(y)|dµ(x)dµ(y)−

3
∫

Fd
2

|f(x)− g̃(x)|dµ(x)

≥ 1
2

∫

Fd
2×Fd

2

|f(x)− f(y)|dµ(x)dµ(y)− 3ε.

This completes the proof of (9).

We require the following rough bound on the average edit distance on Fd
2.

Lemma 4.4. We have the following lower bound on the average Edit Distance on Fd
2:

∫

Fd
2×Fd

2

ED(x, y)dµ(x)dµ(y) ≥ d

160
.

Proof. For every x ∈ Fd
2 and every integer r < d/2,

|{y ∈ Fd
2 : ED(x, y) = r}| ≤ 2r

(
2d

r

)
.

This is best seen by observing that any sequence of r insertions or deletions can be executed in
a sorted order, that is, the indices of positions on which the operation is performed increases.
There are at most

(
2d
r

)
ways to choose the r locations of these edit operations, and 2r possible

insertion/deletion operations on these r locations.
Now,

µ× µ({(x, y) ∈ Fd
2 × Fd

2 : ED(x, y) > d/16}) ≥ 1− 1
2d

∑

r≤d/16

2r

(
2d

r

)

≥ 1− 1
2d
· 2d/8 · 2

√
d/8[(1/16)1/16(15/16)15/16]−2d

≥ 1
10

.

Proof of Theorem 4.1. Let C be the constant in Lemma 4.3. Fix ε ∈ (0, 1/2) such that εd >

(1/ε)C/ε − 1, and an integer εd ≥ k ≥ (1/ε)C/ε. Define a distribution τ on Fd
2 × Fd

2 as follows: pick
a pair (x, y) ∈ Fd

2 × Fd
2 according to the measure µ× µε, pick j ∈ {1, . . . , k} uniformly at random,

15



and consider the random pair (x, Sj(x) + y). This induces a probability distribution τ on Fd
2 × Fd

2.
Observe that

ED(x, Sj(x) + y) ≤ 2ρ(0, y) + 2j ≤ 2ρ(0, y) + 2εd.

Thus

∫

Fd
2×Fd

2

ED(x, y)dτ(x, y) =
1
k

k∑

j=1

∫

Fd
2×Fd

2

ED(x, Sj(x) + y)dτ(x, y)

≤ 2εd + 2
d∑

r=0

(
d

r

)
rεr(1− ε)d−r = 4εd. (12)

Lemma 4.3 implies that for every A ⊆ Fd
2,

16√
ε
· τ({(x, y) ∈ Fd

2 × Fd
2 : |{x, y} ∩A| = 1}) ≥ 2µ(A)[1− µ(A)]− 3ε.

Thus, the conditions of Lemma 4.2 hold true with δ = 6ε and α =
√

ε
32 . Hence by (12) and

Lemma 4.4

c1(Fd
2, ED) ≥

√
ε

64
·

d
80 − 6ε · 2d

4εd
.

This implies the required result when we choose 10−3 > ε ≈ log log d
log d .

5 Flat tori which do not embed into L1

Let Λ ⊆ Rn be a lattice in Rn of rank n. The quotient space Rn/Λ is a Riemannian manifold
(n-dimensional torus) whose curvature is identically zero. Nevertheless, we show here that it is
possible to construct lattices Λ such that c1(Rn/Λ) = Ω(

√
n). For a lattice Λ ⊆ Rn we denote its

fundamental parallelepiped by PΛ. The dual lattice of Λ, denoted Λ∗, is defined by

Λ∗ = {x ∈ Rn : ∀ y ∈ Λ, 〈x, y〉 ∈ Z}.

We shall use the following notation

N(Λ) = min
x∈Λ\{0}

‖x‖2 and r(Λ) = max
x∈Rn

min
y∈Λ

‖x− y‖2.

In words, N(Λ) is the length of the shortest vector in Λ, and r(Λ) is the smallest r such that balls
of radius r centered at lattice points cover Rn.

Theorem 5.1. Let Λ ⊆ Rn be a lattice. Then

c1(Rn/Λ) = Ω
(

N(Λ∗)
r(Λ∗)

· √n

)
.
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Corollary 5.2. Let Λ be a lattice such that Λ∗ is almost perfect, i.e. N(Λ∗) = 1 and r(Λ∗) ≤ 4, say.
Such lattices are well known to exists (see [59, 39]). Then Theorem 5.1 implies that c1(Rn/Λ) =
Ω(
√

n). This is, in particular, an example of a Riemannian manifold whose curvature is identically
zero which does not well-embed bi-Lipschitzly into `2. This fact should be contrasted with the Nash
embedding theorem [51], which says that any n-dimensional Riemannian manifold is isometric to
a Riemannian submanifold of R2n.

Remark 5.1. Some restrictions on the Lattice Λ should be imposed in order to obtain a torus Rn/Λ
which does not embed into `2. Indeed, the mapping f : Rn/Zn → Cn defined by f(x1, . . . , xn) =
(e2πix1 , . . . , e2πixn) has distortion O(1). We leave open the interesting problem of determining the
value of c1(Rn/Λ) and c2(Rn/Λ) as a function of intrinsic geometric parameters of the lattice Λ.
In Theorem 5.8 below we show that for every n

Ln := sup{c2(Rn/Λ) : Λ ⊆ Rn is a lattice} < ∞.

Corollary 5.2 shows that Ln = Ω(
√

n), while the upper bound obtained in Theorem 5.8 is Ln =
O(n3n/2). It would be of great interest to close the large gap between these bounds.

The proof of Theorem 5.1 will be broken down into a few lemmas. In what follows we fix a
lattice Λ ⊆ Rn and denote by m the normalized Riemannian volume measure on the torus Rn/Λ.
Given a function f : Rn/Λ → L1 we also think of f as an Λ-invariant function defined on Rn. We
refer to [57] for the necessary background on Fourier analysis on tori used in the ensuing arguments.

Lemma 5.3. Let γ denote the standard Gaussian measure on Rn, i.e. dγ(x) = 1
(2π)n/2 e−‖x‖22/2.

Then for every continuous f : Rn/Λ → L1,
∫

(Rn/Λ)×(Rn/Λ)
‖f(x)− f(y)‖1dm(x)dm(y)

≤ 1
1− e−2π2[N(Λ∗)]2

∫

Rn

∫

Rn/Λ
‖f(x)− f(x + y)‖1dm(x)dγ(y).

Proof. By integration it is clearly enough to deal with the case of real-valued functions, i.e. f :
Rn/Λ → R. Moreover, we claim that it suffices to prove the required inequality when f takes values
in {0, 1}. Indeed, assuming the case of f : Rn/Λ → {0, 1}, we pass to the general case as follows:

∫

(R/Λ)×(Rn/Λ)
|f(x)− f(y)|dm(x)dm(y)

=
∫

(Rn/Λ)×(Rn/Λ)

(∫ ∞

−∞
|1(−∞,t](f(x))− 1(−∞,t](f(y))|dt

)
dm(x)dm(y)

≤ 1
1− e−2π2[N(Λ∗)]2

∫

Rn

∫

Rn/Λ

(∫ ∞

−∞
|1(−∞,t](f(x))− 1(−∞,t](f(x + y))|dt

)
dm(x)dγ(y)

=
1

1− e−2π2[N(Λ∗)]2

∫

Rn

∫

Rn/Λ
|f(x)− f(x + y)|dm(x)dγ(y).
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So, it remains to prove the required inequality for a measurable function f : Rn/Λ → {0, 1}. The
function f can be decomposed into a Fourier series indexed by the dual lattice Λ∗:

f(y) =
∑

x∈Λ∗
f̂(x)e2πi〈x,y〉,

where
f̂(x) =

∫

Rn/Λ
f(y)e−2πi〈x,y〉dm(y).

Using the fact that |f(x) − f(x + y)| = f(x) + f(x + y) − 2f(x)f(x + y) we get from Parseval’s
identity that for every y ∈ Rn

∫

Rn/Λ
|f(x)− f(x + y)|dm(x) = 2f̂(0)− 2

∫

Rn/Λ


 ∑

u,v∈Λ∗
f̂(u)f̂(v)e2πi(〈u,x〉+〈v,x+y〉)


 dm(x)

= 2f̂(0)− 2
∑

w∈Λ∗
e2πi〈w,y〉|f̂(w)|2.

Integrating with respect to the Gaussian measure, and using the identity
∫
Rn e2πi〈w,y〉dγ(y) =

e−2π2‖w‖22 , we get that
∫

Rn

∫

Rn/Λ
|f(x)− f(x + y)|dm(x)dγ(x) = 2f̂(0)[1− f̂(0)]− 2

∑

w∈Λ∗\{0}
e−2π2‖w‖22 |f̂(w)|2. (13)

On the other hand, since f is Boolean function we have the identities:
∫

(R/Λ)×(Rn/Λ)
|f(x)− f(y)|dm(x)dm(y) = 2f̂(0)[1− f̂(0)] = 2

∑

w∈Λ∗\{0}
|f̂(w)|2. (14)

Combining (13) and (14) we get
∫

Rn

∫

Rn/Λ
|f(x)− f(x + y)|dm(x)dγ(x) = 2

∑

w∈Λ∗\{0}

(
1− e−2π2‖w‖22

)
|f̂(w)|2

≥ 2
(
1− e−2π2[N(Λ∗)]2

) ∑

w∈Λ∗\{0}
|f̂(w)|2

=
(
1− e−2π2[N(Λ∗)]2

)∫

(Rn/Λ)×(Rn/Λ)
|f(x)− f(y)|dm(x)dm(y).

Lemma 5.4. For every lattice Λ ⊆ Rn,
∫

(Rn/Λ)×(Rn/Λ)
dRn/Λ(x, y)dm(x)dm(y) ≥ n

16r(Λ∗)
.
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Proof. Let VΛ be the Voronoi cell of Λ centered at 0, i.e.

VΛ = {x ∈ Rn : ‖x‖2 = d(x,Λ)}.
Denote by Bn

2 the unit Euclidean ball of Rn centered at 0. Then by the definition of r(Λ∗) we have
that VΛ∗ ⊆ r(Λ∗)Bn

2 . Hence vol(VΛ∗) ≤ [r(Λ∗)]nvol(Bn
2 ). It is well known (see [26, 44, 39]) that

vol(VΛ) · vol(VΛ∗) = vol(PΛ) · vol(PΛ∗) = 1.

Thus
vol(VΛ) ≥ 1

[r(Λ∗)]nvol(Bn
2 )

.

It follows that∫

(Rn/Λ)×(Rn/Λ)
dRn/Λ(x, y)dm(x)dm(y) =

1
vol(VΛ)

∫

VΛ

‖x‖2dx

≥ n

8r(Λ∗)
·
vol

({
x ∈ VΛ : ‖x‖2 ≥ n

8r(Λ∗)

})

vol(VΛ)

≥ n

8r(Λ∗)
·
(

1−
(

n

8r(Λ∗)

)n

vol(Bn
2 ) · [r(Λ∗)]nvol(Bn

2 )
)

≥ n

16r(Λ∗)
.

Proof of Theorem 5.1. If f : Rn/Λ → L1 is bi-Lipschitz then
∫

Rn

∫

Rn/Λ
‖f(x)− f(x + y)‖1dm(x)dγ(y) ≤ ‖f‖Lip ·

∫

Rn

∫

Rn/Λ
dRn/Λ(x, x + y)dm(x)dγ(y)

≤ ‖f‖Lip ·
∫

Rn

‖y‖2dγ(y)

≤ ‖f‖Lip ·
√

n.

On the other hand, using Lemma 5.4 we see that
∫

(Rn/Λ)×(Rn/Λ)
‖f(x)− f(y)‖1dm(x)dm(y) ≥ 1

‖f−1‖Lip

∫

(Rn/Λ)×(Rn/Λ)
dRn/Λ(x, y)dm(x)dm(y)

≥ 1
‖f−1‖Lip

· n

16r(Λ∗)
,

so by Lemma 5.3 we deduce that

‖f‖Lip · ‖f−1‖Lip = Ω

(
1− e−2π2[N(Λ∗)]2

r(Λ∗)
· √n

)
.

It follows that for every t > 0,

c1(Rn/Λ) = c1(Rn/(tΛ)) = Ω

(
1− e−2π2[N((tΛ)∗)]2

r((tΛ)∗)
· √n

)
= Ω

(
1− e−2π2[N(Λ∗)]2/t2

r(Λ∗)/t
· √n

)
.

Optimizing over t yields the required result.
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If one is interested only in bounding the Euclidean distortion of Rn/Λ, then the following lemma
gives an alternative proof of Theorem 5.1 (in the case of embeddings into L2).

Lemma 5.5. For every continuous f : Rn/Λ → L2,
∫

(Rn/Λ)×(Rn/Λ)
‖f(x)− f(y)‖2

2dm(x)dm(y) ≤ 2[
N(Λ∗)

]2

∫

Rn/Λ
‖∇f(x)‖2

2dm(x).

Proof. By Parseval’s identity
∫

Rn/Λ
‖∇f(x)‖2

2dm(x) =
n∑

j=1

∫

Rn/Λ

(
∂f

∂xj
(x)

)2

dm(x)

=
∑

x∈Λ∗
‖f̂(x)‖2

2 · ‖x‖2
2

≥ [N(Λ∗)]2
∑

x∈Λ∗\{0}
‖f̂(x)‖2

2

= [N(Λ∗)]2
∫

Rn/Λ
‖f(x)− f̂(0)‖2

2dm(x)

=
[N(Λ∗)]2

2

∫

(Rn/Λ)×(Rn/Λ)
‖f(x)− f(y)‖2

2dm(x)dm(y).

Lemma 5.5 yields the lower bound c2(Rn/Λ) = Ω
(

N(Λ∗)
r(Λ∗) ·

√
n
)

as follows. Let f : Rn/Λ → L2

be a bi-Lipschitz function. Since L2 has the Radon-Nikodym property, f is differentiable almost
everywhere (see [8]). Now, by Lemma 5.5,

∫

(Rn/Λ)×(Rn/Λ)
‖f(x)− f(y)‖2

2dm(x)dm(y) ≤ 2[
N(Λ∗)

]2

n∑

j=1

∫

Rn/Λ

∥∥∥∥
∂f

∂xj

∥∥∥∥
2

2

dm(x)

≤ 2[
N(Λ∗)

]2 · n‖f‖2
Lip.

On the other hand, arguing as in the proof of Theorem 5.1, we get
∫

(Rn/Λ)×(Rn/Λ)
‖f(x)− f(y)‖2

2dm(x)dm(y) ≥ 1
‖f−1‖2

Lip

∫

(Rn/Λ)×(Rn/Λ)
dRn/Λ(x, y)2dm(x)dm(y)

=
1

‖f−1‖2
Lip

· Ω
(

n2

[
r(Λ∗)

]2

)
.

It follows that

c2(Rn/Λ) = Ω
(

N(Λ∗)
r(Λ∗)

· √n

)
.

The following corollary of Lemma 5.5 will not be used in the sequel, but we record it here for
future reference.
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Corollary 5.6. For every continuous f : Rn/Λ → R,

∫

(Rn/Λ)×(Rn/Λ)
|f(x)− f(y)|dm(x)dm(y) ≤ 2

√
10

N(Λ∗)

∫

Rn/Λ
‖∇f(x)‖2dm(x).

Proof. Lemma 5.5 implies that λ1(Rn/Λ) ≥ [
N(Λ∗)

]2, where λ1(Rn/Λ) is the smallest nonzero
eigenvalue of the Laplace-Beltrami operator on Rn/Λ. Since Rn/Λ has curvature 0, an inequality
of Buser [16] implies that λ1(Rn/Λ) ≤ 10

[
h(Rn/Λ)

]2, where h(Rn/Λ) is the Cheeger constant
of Rn/Λ (Buser’s inequality can be viewed as a reverse Cheeger inequality [19] when the Ricci
curvature is bounded from below). Thus h(Rn/Λ) ≥ N(Λ∗)/

√
10, which is precisely the required

inequality.

We end this section by showing that there exists a constant Dn < ∞ such that for any rank n

lattice Λ ⊆ Rn, c2(Rn/Λ) ≤ Dn.

Lemma 5.7. Every rank n lattice Λ ⊆ Rn has a basis (over Zn) x1, . . . , xn such that for every
u1, u2, . . . , un ∈ R,

1
n(3n−1)/2

·



n∑

j=1

u2
j‖xj‖2

2




1/2

≤
∥∥∥∥∥∥

n∑

j=1

ujxj

∥∥∥∥∥∥
2

≤ √
n ·




n∑

j=1

u2
j‖xj‖2

2




1/2

. (15)

Proof. Let {x1, . . . , xn} be a basis of Λ, and denote by A the matrix whose columns are the vectors
x1

‖x1‖2 , . . . , xn
‖xn‖2 . If we let {x1, . . . , xn} be the Korkin-Zolotarev basis of Λ, we can ensure that

(see [33]):

| det(A)| ≥ 1
nn

.

Denote by s1(A) ≥ s2(A) ≥ · · · sn(A) > 0 the singular values of A. Given a vector u =
(u1, . . . , un) ∈ Rn we have by the Cauchy-Schwartz inequality that

‖Au‖2 =

∥∥∥∥∥∥

n∑

j=1

uj

‖xj‖2
· xj

∥∥∥∥∥∥
2

≤
n∑

j=1

|uj | ≤
√

n · ‖u‖2.

This proves the right-hand side of (15), and also shows that s1(A) ≤ √
n. Now

1
nn

≤ | det(A)| =
n∏

j=1

sj(A) ≤ s1(A) · [sn(A)]n−1 ≤ s1(A) · n(n−1)/2,

i.e. s1(A) ≥ n−(3n−1)/2. It follows that for every u ∈ Rn, ‖Au‖2 ≥ s1(A)‖u‖2 ≥ n−(3n−1)/2‖u‖2,
which is precisely the left-hand side of (15).

Theorem 5.8. Let Λ ⊆ Rn be a lattice of rank n. Then Rn/Λ embeds into R2n with distortion
O(n3n/2).

21



Proof. Let {x1, . . . , xn} be a basis as in Lemma 5.7. Define f : Rn → Cn by

f




n∑

j=1

ajxj


 =

(‖x1‖2e
2πia1 , . . . , ‖xn‖2e

2πian
)
.

Since f is Λ-invariant, we may think of it a a function defined on the torus Rn/Λ. For every t ∈ R
let m(t) be the unique integer such that t−m(t) ∈ [−1/2, 1/2). Given u, v ∈ Rn,

∥∥∥∥∥∥
f




n∑

j=1

ujxj


− f




n∑

j=1

vjxj




∥∥∥∥∥∥

2

2

=
n∑

j=1

∣∣∣e2πi(uj−vj) − 1
∣∣∣
2
· ‖xj‖2

2

= 2
n∑

j=1

[1− cos(2π(uj − vj))] · ‖xj‖2
2.

Since for every t ∈ R,
[t−m(t)]2

12
≤ 1− cos(2πt) ≤ [t−m(t)]2

2
,

we get that
∥∥∥∥∥∥
f




n∑

j=1

ujxj


− f




n∑

j=1

vjxj




∥∥∥∥∥∥

2

2

= Θ




n∑

j=1

[uj − vj −m(uj − vj)]2‖xj‖2
2


 .

On the other hand, by (15),

dRn/Λ




n∑

j=1

ujxj ,
n∑

j=1

vjxj


 = dRn(

n∑

j=1

(uj − vj)xj , Λ)

≤
∥∥∥∥∥∥

n∑

j=1

(uj − vj)xj −
n∑

j=1

m(uj − vj)xj

∥∥∥∥∥∥
2

≤ √
n




n∑

j=1

[uj − vj −m(uj − vj)]2‖xj‖2
2




1/2

.

In the reverse direction, let m1, . . . , mn ∈ Z be such that
∑n

j=1 mjxj ∈ Λ is a closest lattice point
to u− v. Then

dRn/Λ




n∑

j=1

ujxj ,
n∑

j=1

vjxj


 =

∥∥∥∥∥∥

n∑

j=1

[uj − vj −mj ]xj

∥∥∥∥∥∥
2

≥ 1
n(3n−1)/2




n∑

j=1

[uj − vj −mj ]2 · ‖xj |‖2
2




1/2

≥ 1
n(3n−1)/2




n∑

j=1

[uj − vj −m(uj − vj)]2 · ‖xj‖2
2




1/2

.

It follows that f has distortion O(n3n/2).
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6 Length of metric spaces

The following definition, due to G. Schechtman [56], plays an important role in the study of the
concentration of measure phenomenon and Levy families [45, 34].

Definition 6.1. Let (X, d) be a finite metric space. The length of (X, d), denoted `(X, d) is the least
constant ` such that there exists a sequence of partitions of X, P 0, P 1, . . . , PN with the following
properties:

1. For every i ≥ 1, P i is a refinement of P i−1.

2. P 0 = {X} and PN = {{x} : x ∈ X}.
3. For every i ≥ 1 there exists ai > 0 such that if A ∈ P i−1 and B, C ∈ P i are such that

B, C ⊆ A, then there exists a one-to-one onto function φ = φB,C : B → C such that for every
x ∈ B, d(x, φ(x)) ≤ ai.

4. ` =
√∑N

i=1 a2
i .

For p ≥ 1 we can can define an analogous concept if we demand that ` =
(∑N

i=1 ap
i

)1/p
. In this

case we call the parameter obtained the `p length of (X, d), and denote it by `p(X, d). Observe
that it is always the case that `p(X, d) ≤ diam(X).

Recall that for p ∈ [1, 2], a Banach space Y is called p-smooth with constant S if for every
x, y ∈ Y ,

‖x + y‖p
Y + ‖x− y‖p

Y ≤ 2‖x‖p
Y + 2Sp‖y‖p

Y .

The least constant S for which this inequality holds is called the p-smoothness constant of Y , and
is denoted Sp(Y ). It is known [4] that for q ≥ 2, S2(Lq) ≤

√
q − 1, and for q ∈ [1, 2], Sq(Lq) ≤ 1.

The following theorem relates the notion of length to nonembeddability results.

Theorem 6.2. Let (X, d) be a metric space and Y a p-smooth Banach space. Then

cY (X, d) ≥ 1
21−1/p · Sp(Y )`p(X, d)


 1
|X|2

∑

x,y∈X

d(x, y)p




1/p

.

In particular for 2 ≤ p < ∞,

cp(X, d) ≥ 1
`(X, d)

√
2p− 2


 1
|X|2

∑

x,y∈X

d(x, y)2




1/2

.

Proof. Let {P i}N
i=0, {ai}N

i=1 be as above, and denote by Fi the σ-algebra generated by the partition
P i. In what follows all expectations are taken with respect to the uniform probability measure on
X. Given a bijection f : X → Y we let fi = E(f |Fi). In other words, if A ∈ P i and x ∈ A then

fi(x) =
1
|A|

∑

y∈A

f(y).
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Now {fi}N
i=0 is a martingale, so by Pisier’s inequality [53] (see Theorem 4.2 in [48] for the constant

we use below), we see that

E‖fN − f0‖p
Y ≤ Sp(Y )p

2p−1 − 1

N−1∑

j=0

E‖fj+1 − fj‖p
Y .

Now f0 = Ef and fN = f . Thus

E‖fN − f0‖p
Y =

1
|X|

∑

x∈X

∥∥∥∥∥∥
f(x)− 1

|X|
∑

y∈X

f(y)

∥∥∥∥∥∥

p

Y

≥ 1
2p−1|X|2

∑

x,y∈X

‖f(x)− f(y)‖p
Y

≥ 1
2p−1‖f−1‖p

Lip

· 1
|X|2

∑

x,y∈X

d(x, y)p.

On the other hand fix j ∈ {0, . . . , N − 1}, and A ∈ P j , B ∈ P j+1 such that x ∈ B ⊆ A. Then

fj(x)− fj+1(x) =
1
|A|

∑

y∈A

f(y)− 1
|B|

∑

y∈B

f(y) =
1
|A|

∑

A⊇C∈P j+1


∑

y∈C

[f(φC,B(y))− f(y)]


 .

So by convexity
‖fj(x)− fj+1(x)‖Y ≤ ‖f ||Lip · aj+1.

It follows that

cY (X, d) ≥ 1
21−1/p · Sp(Y )

·
(

1
|X|2

∑
x,y∈X d(x, y)p

∑N
j=1 ap

j

)1/p

=
1

21−1/p · Sp(Y )`p(X, d)


 1
|X|2

∑

x,y∈X

d(x, y)p




1/p

.

As shown in [45, 34], if we consider the group of permutations of {1, . . . , n}, Sn, equipped with
the metric d(σ, π) = |{i : σ(i) 6= τ(i)}|, then `(Sn, d) ≤ 2

√
n, while diam(Sn) = Θ(n). It follows

from Theorem 6.2 that c2(Sn) = Ω(
√

n). On the other hand, by mapping each permutation π ∈ Sn

to the matrix (1π(i)=j) we see that c2(Sn) = O(
√

n). Thus

c2(Sn) = Θ

(√
log |Sn|

log log |Sn|

)
.

Similar optimal bounds can be deduced for cp(Sn), p ≥ 1.
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The metric d on Sn is the shortest path metric induced by the Cayley graph on Sn obtained by
taking the set of all transpositions as generators. It is of interest to study the Euclidean distortion
of metrics on Sn induced by Cayley graphs coming from other generating sets. In particular, it is a
long standing conjecture (see [55]) that there exists a bounded set of generators of Sn with respect
to which the Cayley graph is an expander. It is thus natural to ask whether there exists a set
of generators of Sn with respect to which the metric induced by the Cayley graph has Euclidean
distortion Ω(log |Sn|) = Ω(log n log log n).

Another example discussed in [45, 34] is the case of the Hamming cube. In this case `(Fd
2, ρ) =

O(
√

d), and so Theorem 6.2 implies that for p ≥ 2, cp(Fd
2, ρ) ≥ c(p)

√
d. This result was first proved

in [50].
More generally, let G be a finite group equipped with a translation invariant metric d. Let

G = G0 ⊇ G1 ⊇ · ⊇ Gn = {e} be a decreasing sequence of subgroups. Then it is shown in [45, 34]
that

`(G, d) ≤
√√√√

n∑

j=1

[
diam(Gi−1/Gi)

]2
.

This estimate implies a wide range of additional nonembeddability results.
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[40] J. Matoušek. On embedding expanders into lp spaces. Israel J. Math., 102:189–197, 1997.
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