
UNIFORM NONEXTENDABILITY FROM NETS

ASSAF NAOR

Abstract. It is shown that there exist Banach spaces X,Y , a 1-net N of X and a Lipschitz function
f : N → Y such that every F : X → Y that extends f is not uniformly continuous.

1. Introduction

A metric space (X, dX) is said to embed uniformly into a metric space (Y, dY ) if there exists an
injection f : X → Y such that both f and f−1 are uniformly continuous. (X, dX) is said [5] to embed
coarsely into (Y, dY ) if there exists f : X → Y and nondecreasing functions α, β : [0,∞) → [0,∞)
with limt→∞ α(t) = ∞ such that α(dX(x, y)) 6 dY (f(x), f(y)) 6 β(dX(x, y)) for every x, y ∈ X.
While making no attempt to survey the very large literature on these topics, we only indicate here
that in addition to their intrinsic geometric interest, uniform and coarse embeddings have important
applications in areas ranging from functional analysis [4] to group theory and topology [17], and
theoretical computer science [2].

In the context of embeddings of Banach spaces, the literature suggests that uniform and coarse
embeddings are closely related, despite dealing with infinitesimal and large-scale structures, respec-
tively. Specifically, by [1, 6, 15] a Banach space X embeds uniformly into a Hilbert space if and only
if it embeds coarsely into a Hilbert space. Also, certain obstructions work equally well [7, 11, 9]
for ruling out both uniform and coarse embeddings of Banach spaces. Despite this, it remains
unknown whether or not the existence of a coarse embedding of a Banach space X into a Banach
space Y implies that X also embeds uniformly into Y . The analogous question with the roles of
coarse and uniform embeddings interchanged is open as well. The only available negative result in
this context treats uniform and coarse equivalences rather than embeddings: Kalton [8] proved the
existence of two Banach spaces X,Y that are coarsely equivalent but not uniformly equivalent.

Recent work of Rosendal [16] yields progress towards the above questions. It implies that if X
and Y are Banach spaces such that X embeds uniformly into Y , then X also embeds coarsely into
`p(Y ) for every p > 1. As for the deduction of uniform embeddability from coarse embeddability,
Rosendal’s work [16] implies that if X and Y are Banach spaces with the property that for every
1-net N of X, every Lipschitz function f : N→ Y admits an extension F : X → Y that is uniformly
continuous, then the existence of a coarse embedding of X into Y implies that X embeds uniformly
into `p(Y ) for every p > 1. Rosendal therefore asked [16] whether or not every pair of Banach
spaces X,Y has this (seemingly weak) extension property. Here we show that this is not the case.

Theorem 1. There exist two Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), a 1-net N of X and
a Lipschitz function f : N → Y such that every F : X → Y that extends f is not uniformly
continuous. Moreover, any F : X → Y that is uniformly continuous satisfies

sup
x∈N
‖F (x)− f(x)‖Y =∞. (1)

It remains an interesting open question to understand those pairs of Banach spaces X,Y for
which Rosendal’s question has a positive answer, i.e., to prove theorems asserting the existence of
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a uniformly continuous extension of any Y -valued Lipschitz function that is defined on a 1-net N

of X. If the initial function f : N → Y is assumed to be Hölder with sufficiently small exponent
rather than Lipschitz (which is a more stringent requirement since the minimum positive distance
in N is at least 1), then such an extension result holds true provided that Y is superreflexive. This
follows from deep work of Ball [3] (see [12] for the precise statement that we need here). Indeed,
if Y is superreflexive then by the work of Pisier [14] we know that Y admits an equivalent norm
whose modulus of uniform convexity has power-type q for some q ∈ [2,∞). Therefore, by [3, 12],
Y has metric Markov cotype q. Since any metric raised to the power 1/q has Markov type q, it
follows from [3, 12] that every 1/q-Hölder function from a subset of X into Y can be extended to a
1/q-Hölder function defined on all X. The role of superreflexivity here is only through the finiteness
of the metric Markov cotype of Y , so by [12] similar statements hold true when Y is a q-barycentric
metric space (in particular, if Y is a Hadamard space then this holds true with q = 2). These
considerations, however, do not address Rosendal’s question, where the initial function f : N→ Y
is only assumed to be Lipschitz. At the same time, an inspection of the proof below reveals that
in Theorem 1 we can ensure for every α ∈ (0, 1) that f is α-Hölder, so in general the uniformly
continuous extension problem for Hölder functions on nets in Banach spaces has a negative answer.

2. Proof of Theorem 1

The proof below is a variant of the argument in Section 5 of [13], which itself uses an averaging
idea that is inspired by Lemma 6 in [10].

For p > 2 let Mp : `2 → `p be the Mazur map, i.e., for every x ∈ `2 and j ∈ N,

Mp(x)j
def
= |xj |

2
p sign(xj).

Since p > 2, it is elementary to check that every u, v ∈ R satisfy∣∣∣|u| 2p sign(u)− |v|
2
p sign(v)

∣∣∣p 6 2p−2|u− v|2.

Consequently, for every x, y ∈ `2 we have.

‖Mp(x)−Mp(y)‖p 6 2
1− 2

p ‖x− y‖
2
p

2 6 2‖x− y‖
2
p

2 . (2)

Denote

X
def
=
( ∞⊕
p=2

`2

)
∞

and Y
def
=
( ∞⊕
p=2

`p

)
∞
. (3)

Fix a 1-net M of `2 and denote N =
∏∞
p=2M. Then (by the definition of X) N is a 1-net of X.

Define f : N→ Y by setting for every (xp)
∞
p=2 ∈ X,

f((xp)
∞
p=2)

def
= (Mp(xp))

∞
p=2.

Since the minimum distance in N is at least 1, it follows from (2) (and the definitions of X and Y )
that f is 2-Lipschitz.

Suppose for the purpose of obtaining a contradiction that there exists F : X → Y that is
uniformly continuous and satisfies

γ
def
= sup

x∈N
‖F (x)− f(x)‖Y <∞. (4)

Let ω : [0,∞) → [0,∞) be the modulus of uniform continuity of F . Thus ω is nondecreasing and
lims→0 ω(s) = 0. Write F = (Fp)

∞
p=2, where for every integer p > 2 the mapping Fp : `2 → `p also
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has modulus of continuity that is bounded from above by ω (by the definitions of X and Y ). By (4)
and the definition of f , for every y ∈M we have ‖Fp(y)−Mp(y)‖p 6 γ. Hence, since M is a 1-net,

sup
x∈`2
‖Fp(x)−Mp(x)‖p 6 sup

x∈`2
inf
y∈M

(
‖Fp(x)− Fp(y)‖p + ‖Fp(y)−Mp(y)‖p + ‖Mp(y)−Mp(x)‖p

)
(2)

6 sup
x∈`2

inf
y∈M

(
ω (‖x− y‖2) + γ + 2‖y − x‖

2
p

2

)
6 ω(1) + γ + 2. (5)

In what follows, for every n ∈ N we let Jn : `n2 → `2 be the canonical embedding, i.e.,
Jn(x1, . . . , xn) = (x1, . . . , xn, 0, . . .). Also, we let Qn : `p → `np be the canonical projection, i.e.,
Qn((xj)

∞
j=1) = (x1, . . . , xn). Given n ∈ N, we identify a permutation π ∈ Sn with its associated

permutation matrix, i.e., πx = (xπ−1(1), . . . , xπ−1(n)) for every x ∈ Rn. Similarly, we identify
ε ∈ {−1, 1}n with the corresponding diagonal matrix, i.e., εx = (ε1x1, . . . , εnxn) for every x ∈ Rn.

Fix two integers p, n ∈ N with p > 2. Define Gnp : `n2 → `np by

∀x ∈ `n2 , Gnp (x)
def
=

1

2nn!

∑
π∈Sn

∑
ε∈{−1,1}n

(επ)−1Qn ◦ Fp ◦ Jn(επx). (6)

Then, because {επ : (ε, π) ∈ {−1, 1}n × Sn} forms a group of linear operators on Rn, we have
Gnp (επx) = επGnp (x) for every (ε, π) ∈ {−1, 1}n×Sn and x ∈ `n2 . Since for every A ⊆ {1, . . . , n} and
t ∈ R we have π(t1A) = t1A whenever π ∈ Sn fixes A, it follows that there exist α(t, A), β(t, A) ∈ R
such that Gnp (t1A) = α(t, A)1A + β(t, A)1{1,...,n}rA. Since (1A − 1{1,...,n}rA)(t1A) = t1A, it follows
that β(t, A) = −β(t, A), thus Gnp (t1A) = α(t, A)1A. Finally, since for every A,B ⊆ {1, . . . , n} of
the same cardinality there exists π ∈ Sn with π(t1A) = t1B, we conclude that α(t, A) depends only
on the cardinality of A. In other words, there exists a sequence {αk(t)}nk=0 ⊆ R such that

∀A ⊆ {1, . . . , n}, ∀ t ∈ R, Gnp (t1A) = α|A|(t)1A. (7)

Since Qn ◦Mp ◦ Jn(επx) = επQn ◦Mp ◦ Jn(x) for every x ∈ `n2 and (ε, π) ∈ {−1, 1}n × Sn,

sup
x∈`n2

∥∥Gnp (x)−Qn ◦Mp ◦ Jn(x)
∥∥
p

(6)
= sup

x∈`n2

∥∥∥ 1

2nn!

∑
π∈Sn

∑
ε∈{−1,1}n

(επ)−1Qn ◦ (Fp −Mp) ◦ Jn(επx)
∥∥∥
p

(5)

6 ω(1) + γ + 2.

In particular, for every k ∈ {1, . . . , n− 1} and t ∈ (0,∞) we have∥∥∥Gnp (t1{n−k+1,...,n}
)
− t

2
p1{n−k+1,...,n}

∥∥∥
p

=
∥∥Gnp (t1{n−k+1,...,n}

)
−Qn ◦Mp ◦ Jn ◦

(
t1{n−k+1,...,n}

)∥∥
p
6 ω(1) + γ + 2.

and∥∥∥Gnp (t1{1,...,k})− t 2p1{1,...,k}∥∥∥
p

=
∥∥Gnp (t1{1,...,k})−Qn ◦Mp ◦ Jn ◦

(
t1{1,...,k}

)∥∥
p
6 ω(1) + γ + 2.

Consequently, assuming from now on that 2k 6 n+ 1 we have

t
2
p (2k)

1
p =

∥∥∥t 2p (1{n−k+1,...,n} − 1{1,...,k}
)∥∥∥
p

6
∥∥Gnp (t1{n−k+1,...,n}

)
−Gnp

(
t1{1,...,k}

)∥∥
p

+
∥∥∥Gnp (t1{n−k+1,...,n}

)
− t

2
p1{n−k+1,...,n}

∥∥∥
p

+
∥∥∥Gnp (t1{1,...,k})− t 2p1{1,...,k}∥∥∥

p

6
∥∥Gnp (t1{n−k+1,...,n}

)
−Gnp

(
t1{1,...,k}

)∥∥
p

+ 2ω(1) + 2γ + 4. (8)
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At the same time, since Gnp is obtained by averaging compositions of Qn ◦Fp ◦ Jn : `n2 → `np with
isometries (of both the source space and the target space), the modulus of uniform continuity of
Gnp is bounded from above by ω. Hence,∥∥Gnp (t1{n−k+1,...,n}

)
−Gnp

(
t1{1,...,k}

)∥∥
p

(7)
=
∥∥αk(t) (1{n−k+1,...,n} − 1{1,...,k}

)∥∥
p

= |αk(t)|(2k)
1
p

= k
1
p
∥∥αk(t) (1{1,...,k} − 1{2,...,k+1}

)∥∥
p

(7)
= k

1
p
∥∥Gnp (t1{1,...,k})−Gnp (t1{2,...,k+1}

)∥∥
p
6 k

1
pω(
√

2t).

In combination with (8), this yields the following estimate, which holds for every p, k ∈ N with
p > 2 and t ∈ (0,∞).

t
2
p (2k)

1
p 6 k

1
pω(
√

2t) + 2ω(1) + 2γ + 4. (9)

Suppose that 0 < t < 1/(
√

2e2) and choose

p =

⌈
log

(
1

2t2

)⌉
> 2 and k =


(

2ω(1) + 2γ + 4

ω(
√

2t)

)2 log
(

1
2t2

) .
These choices ensure that k

1
pω(
√

2t) > 2ω(1) + 2γ + 4 and (2t2)
1
p > 1/e, so (9) implies that

ω(
√

2t) >
(2t2)

1
p

2
>

1

2e
.

Thus lim infs→0 ω(s) > 0, a contradiction. �

Remark 2. In order to obtain an example of separable Banach spaces (X ′, ‖ · ‖X′) and (Y ′, ‖ · ‖Y ′)
that satisfy the conclusion of Theorem 1, replace the `∞ products in (3) by c0 products, i.e., define

X ′
def
=
( ∞⊕
p=2

`2

)
c0

and Y ′
def
=
( ∞⊕
p=2

`p

)
c0
.

If the initial 1-net M ⊆ `2 is chosen so that 0 ∈M, then the set N′
def
= X ′∩

∏∞
p=2M is a 1-net in X ′

and the above proof of Theorem 1 goes through in this modified setting without any other change.

Acknowledgements. I am grateful to Bill Johnson for suggesting that I consider Rosendal’s
question and several helpful discussions on these topics. I also thank Christian Rosendal for sharing
his work [16] and helpful comments, in particular noting that the proof of Theorem 1 also yields (1).
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