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Abstract. We present two applications Ball’s extension theorem. First we
observe that Ball’s extension theorem, together with the recent solution of
Ball’s Markov type 2 problem due to Naor, Peres, Schramm and Sheffilield,
imply a generalization, and an alternative proof of, the Johnson-Lindenstrauss
extension theorem. Secondly, we prove that the distortion required to em-
bed the integer lattice {0, 1, . . . , m}n, equipped with the `n

p metric, in any

2-uniformly convex Banach space is of order min
{

n
1
2− 1

p , m
1− 2

p

}
.

1. Introduction

Let (Y, dY ), (Z, dZ) be metric spaces, and for every X ⊆ Y , denote by e(X, Y, Z)
the infimum over all constants K such that every Lipschitz function f : X → Z can
be extended to a function f̃ : Y → Z satisfying ‖f̃‖Lip ≤ K‖f‖Lip. (If no such K
exists, we set e(X, Y, Z) = ∞). We also define e(Y, Z) = sup{e(X,Y, Z) : X ⊆ Y }
and for every integer n, en(Y, Z) = sup{e(X,Y, Z) : X ⊆ Y, |X| ≤ n}. We refer
to [11, 13, 22] and the references therein for a discussion of the rich history and
many results dealing with these notions.

The investigation of these parameters has often involved the introduction of in-
fluential probabilistic tools. The first result on the parameter en(X,Y ) is due to
Marcus and Pisier [16], who used the theory of stable processes to show that for
every 1 < p ≤ 2, en(Lp, L2) = O

(
(log n)

1
p− 1

2

)
. Johnson and Lindenstrauss [9]

have shown that for every metric space X, en(X, L2) = O(
√

log n), and that

en(L1, L2) = Ω
(√

log n
log log n

)
. Their paper used the method of random projec-

tions, and contained the celebrated Johnson-Lindenstrauss dimension reduction
lemma, which has since found numerous applications in asymptotic geometry and
theoretical computer science (see the monograph [27]). The best known general
upper bound is due to Lee and Naor [11, 13], who used random partitions of
metric spaces to show that for every metric space X and every Banach space Z,
en(X, Z) = O

(
log n

log log n

)
.

In an important paper, K. Ball [1] discovered a striking connection between the
behavior of Markov chains in metric spaces and the Lipschitz extension problem. In

Received by the editors January 27, 2005 and, in revised form, March 18, 2005.
2000 Mathematics Subject Classification. Primary 46B20; Secondary 51F99.
Key words and phrases. Lipschitz extension, bi-Lipschitz embeddings.

c©2005 American Mathematical Society

1



2 MANOR MENDEL AND ASSAF NAOR

particular, he introduced the notion of Markov type, and used it to prove a funda-
mental extension criterion. This criterion, in combination with the recent solution
of Ball’s Markov type 2 problem due to Naor, Peres, Schramm and Sheffield [22],
yields the following extension theorem:

Theorem 1.1. For every 2 ≤ p < ∞ and every 2-uniformly convex Banach space
Y ,

e(Lp, Y ) ≤ 24K2(Y )
√

p− 1.

(Recall that a Banach space Y is said to be 2-uniformly convex with constant K if
for every x, y ∈ Y ,

2‖x‖2 +
2

K2
‖y‖2 ≤ ‖x + y‖2 + ‖x− y‖2.

The least such K is called the 2-uniform convexity constant of Y , and is denoted
K2(Y ). See [14, 2] for a discussion of this notion.)

Several applications of Theorem 1.1 to the theory of Lipschitz extensions and
the theory of bi-Lipschitz embeddings were presented in [22]. In this note we
present additional applications of Theorem 1.1 to both of these theories. Our first
observation is that the fact that Lp, p > 2, has Markov type 2 with constant O(

√
p)

(proved in [22]) answers positively a question posed by K. Ball in [1], showing that
indeed the Markov type approach to Lipschitz extension introduced in [1] gives an
alternative proof of the Johnson-Lindenstrauss extension theorem [9]. Moreover,
this approach yields a significant generalization of this theorem to the case when
the target space is an arbitrary 2-uniformly convex Banach space. Although this
is a rather straightforward corollary of the results of [1, 22], we believe that it
is worthwhile to point out an alternative approach to the Johnson-Lindenstrauss
extension theorem which does not depend on dimension reduction (especially since
it is known that Johnson-Lindenstrauss type dimension reduction is not always
possible [7, 12, 10]).

Our second application of Theorem 1.1 is to the problem of embedding the integer
lattice into 2-uniformly convex normed spaces, improving a result of Bourgain [5].
Our main result is that if Y is an infinite dimensional 2-uniformly convex Banach
space, p > 2, and m,n are integers, then the distortion required to embed the integer
lattice {0, . . . , m}n, equipped with the `n

p metric, is Θ
(
min

{
n

1
2− 1

p ,m1− 2
p

})
. This

shows that up to constants which may depend only on p, the optimal embedding of
the integer lattice is the better of two natural embeddings: the identity map and a
natural snowflake-type embedding à la Schoenberg (the phase transition occurs at
m =

√
n. See Section 3 for more details).

2. A generalization of the Johnson-Lindenstrauss theorem

The main purpose of this section is to present a very simple proof of the following
strengthning of the Johnson-Lindenstrauss extension theorem:

Theorem 2.1. Let Y be a 2 uniformly convex Banach space. Then for every metric
space X and every n ∈ N

en(X, Y ) ≤ 60K2(Y )
√

log n.



SOME APPLICATIONS OF BALL’S EXTENSION THEOREM 3

Proof. Fix A = {a1, . . . , an} ⊆ X and f : A → Y . Consider the Fréchet map
F : X → `n

∞ given by

F(x) = (d(x, a1), d(x, a2), . . . , d(x, an)).

Then F|A is easily seen to be an isometry (see [4, Lemma 1.1]), and ‖F‖Lip ≤ 1.
Fix p > 2. By Hölder’s inequality the identity mappings Id∞→p : `n

∞ → `n
p and

Idp→∞ : `n
p → `n

∞ satisfy ‖Id∞→p‖Lip ≤ n1/p, ‖Idp→∞‖Lip ≤ 1. The mapping
g : Id∞→p ◦ F(A) → Y given by g = f ◦ (F|A)−1 ◦ Idp→∞ can be extended using
Theorem 1.1 to a mapping g̃ : `n

p → Y with ‖g̃‖Lip ≤ 24K2(Y )
√

p · ‖g‖Lip ≤
24K2(Y )

√
p · ‖f‖Lip. Define f̃ : X → Y by f̃ = g̃ ◦ Id∞→p ◦ F . Then f̃ extends f

and ‖f̃‖Lip ≤ 24K2(X)
√

p · n1/p · ‖f‖Lip. Choosing p = 2 log n yields the required
result. ¤

Remark 2.2. A similar argument shows that for every 2 ≤ p < ∞,

en(Lp, L1) ≤ 10
√

p log n.

Indeed, fix A = {a1, . . . , an} ⊆ Lp and f : A → L1. Denote Z = span(f(A)).
Then dim(Z) ≤ n, so that by a theorem of Talagrand [25] there is an invertible
linear mapping T : Z → `m

1 such that ‖T‖Lip = 1 and ‖T−1‖Lip ≤ 2, where
m = O(n log n). For 1 < q ≤ 2 the identity mappings Id1→q : `m

1 → `m
q and

Idq→1 : `m
q → `m

1 satisfy ‖Id1→q‖Lip ≤ 1 and ‖Idq→1‖Lip ≤ m1−1/q. The Banach
space W := Id1→q ◦T (Z) is a subspace of `m

q , so that K2(W ) ≤ 1/
√

q − 1 (see [2]).
The mapping h : A → W given by h = Id1→q ◦ T ◦ f can be extended using
Theorem 1.1 to a mapping h̃ : Lp → W such that ‖h̃‖Lip ≤ 24

√
p− 1 · K2(W ) ·

‖h‖Lip ≤ 24
√

p−1
q−1 · ‖f‖Lip. The mapping f̃ := T−1 ◦ Idq→1 ◦ h̃ : Lp → Z ⊆ L1

extends f and satisfies

‖f̃‖Lip ≤ 48 ·m1−1/q

√
p− 1
q − 1

· ‖f‖Lip = O

(
(n log n)1−1/q√p√

q − 1

)
· ‖f‖Lip.

Choosing q = 1 + 1
log n yields the required result.

Remark 2.3. Using the arguments in [21] it is possible to prove variants of The-
orem 2.1 which deal with extensions of Hölder functions. For example, for every
metric space (X, d) and α ∈ (0, 1] let Xα denote the metric space (X, dα). A com-
bination of the above proof and [21] shows that for q ≥ 2, and every metric space
X, en(X2/q, Lq) = O((log n)1/q).

3. Embedding the integer lattice into uniformly convex spaces

Given two metric spaces X, Y and an injection f : X ↪→ Y we define the distor-
tion of f to be dist(f) = ‖f‖Lip · ‖f−1‖Lip. The least distortion with which X may
be embedded into Y is denoted cY (X) = inf{dist(f) : f : X ↪→ Y }. When Y = Lp

we write cY (X) = cp(X). The parameter c2(X) is called the Euclidean distortion
of X.
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We recall the notions of type and cotype of a Banach space X: we say that X
has type p if for every x1, . . . , xn ∈ X,




∫

{−1,1}n

∥∥∥∥∥∥

n∑

j=1

εjxj

∥∥∥∥∥∥

2

dε




1/2

≤ T




n∑

j=1

‖xj‖p




1/p

.

The least such constant T is called the type p constant of X, and is denoted Tp(X).
X is said to have cotype q if for every x1, . . . , xn ∈ X,




∫

{−1,1}n

∥∥∥∥∥∥

n∑

j=1

εjxj

∥∥∥∥∥∥

2

dε




1/2

≥ 1
C




n∑

j=1

‖xj‖p




1/p

.

The least such constant C is called the cotype q constant of X, and is denoted
Cq(X). It is well known that C2(X) ≤ K2(X) (see for example [14]).

Fix p ≥ 1, and two integers m,n ∈ N. We denote by [m]np the set {0, 1, . . . ,m}n

equipped with the metric induced by `n
p . We first deal with the case 2 ≤ p ≤ ∞

(the case p ∈ [1, 2] is discussed below). Observe that for every x, y ∈ [m]np ,

‖x− y‖2/p
2 =




n∑

j=1

(xj − yj)2




1/p

≤



n∑

j=1

|xj − yj |p



1/p

≤ m1− 2
p · ‖x− y‖2/p

2 .

By a theorem of Schoenberg (see for example [28]), Rn equipped with the metric
‖x − y‖2/p

2 is isometric to a subset of L2. Thus we have shown that c2

(
[m]np

) ≤
m1− 2

p . Additionally, by Hölder’s inequality, the identity mapping between `n
p and

`n
2 is n

1
2− 1

p bi-Lipschitz. This shows that

c2

(
[m]np

) ≤ min
{

n
1
2− 1

p , m1− 2
p

}
.

This bound on the Euclidean distortion of the integer lattice, in combination with
Dvoretzky’s theorem (see [20]), implies the following fact:

Fact 3.1. Let Y be an infinite dimensional Banach space. Then for every p ≥ 2

cY

(
[m]np

) ≤ min
{

n
1
2− 1

p ,m1− 2
p

}
.

The main result of this section is a matching lower bound for 2-uniformly convex
spaces. The proof is a modification of an argument of Bourgain [5], combined with
Theorem 1.1.

Theorem 3.2. Let Y be a 2-uniformly convex Banach space. Then for every
2 ≤ p < ∞,

cY

(
[m]np

) ≥ 1
400K2(Y )2

√
p
·min

{
n

1
2− 1

p ,m1− 2
p

}
.

Proof. Let f : [m]np → Y be a one to one mapping with ‖f‖Lip = L and ‖f−1‖Lip =
1. Assume first of all that m ≥ 4

√
n (which implies that m1− 2

p ≥ n
1
2− 1

p ). We may
assume in this case that L ≤ m

200K2(Y )n1/p√p
, since otherwise the required result

holds true.
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By Theorem 1.1 f can be extended to a function f̃ : `n
p → Y with ‖f̃‖Lip ≤

24K2(Y )
√

p · L. By Rademacher’s theorem (see e.g. [4]) f̃ is differentiable almost
everywhere. Let x ∈ `n

p be a point of differentiability of f̃ and ε ∈ {−1, 1}n. Then

∥∥∥∥
d

dt

∣∣∣∣
t=0

f̃(x + tε)
∥∥∥∥

Y

= lim
t→0

∥∥∥f̃(x + tε)− f̃(x)
∥∥∥

Y

|t|
≤ ‖ε‖p · ‖f̃‖Lip

≤ 24n1/pK2(Y )L
√

p.

On the other hand,

∫

{−1,1}n

∥∥∥∥
d

dt

∣∣∣∣
t=0

f̃(x + tε)
∥∥∥∥

2

Y

dε =
∫

{−1,1}n

∥∥∥∥∥∥

n∑

j=1

εj
∂

∂xj
f̃(x)

∥∥∥∥∥∥

2

Y

dε

≥ 1
C2(Y )2

n∑

j=1

∥∥∥∥
∂

∂xj
f̃(x)

∥∥∥∥
2

Y

.

Using the fact that C2(Y ) ≤ K2(Y ), and integrating with respect to x ∈ [0, m]n we
deduce that

n∑

j=1

1
mn

∫

[0,m]n

∥∥∥∥
∂

∂xj
f̃(x)

∥∥∥∥
2

Y

dx ≤ 576pn2/pL2K2(Y )4.(3.1)

Fix an integer j ∈ {1, . . . , n}. For every x = (x1, . . . , xn) ∈ [0,m]n there are
a, b ∈ [m]np such that

‖a− (x1, . . . , xj−1,m, xj+1, . . . , xn)‖p ≤ n1/p,

and

‖b− (x1, . . . , xj−1, 0, xj+1, . . . , xn)‖p ≤ n1/p.

In particular it follows that ‖a− b‖p ≥ m− 2n1/p. Now, since f̃ extends f we have
that

‖f̃(x1, . . . , xj−1,m, xj+1, . . . , xn) − f̃(x1, . . . , xj−1, 0, xj+1, . . . , xn)‖Y

≥ ‖f̃(a)− f̃(b)‖Y −
‖f̃(a)− f̃(x1, . . . , xj−1,m, xj+1, . . . , xn)‖Y −
‖f̃(b)− f̃(x1, . . . , xj−1, 0, xj+1, . . . , xn)‖Y

≥ m− 2n1/p − 2‖f̃‖Lip · n1/p

≥ m

4
,(3.2)
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where we have used our assumption that L ≤ m
200K2(Y )n1/p√p

. On the other hand,

‖f̃(x1, . . . , xj−1,m, xj+1, . . . , xn)− f̃(x1, . . . , xj−1, 0, xj+1, . . . , xn)‖Y

=
∥∥∥∥
∫ m

0

∂

∂xj
f̃(x1, . . . , xj−1, s, xj+1, . . . , xn) ds

∥∥∥∥
Y

≤
∫ m

0

∥∥∥∥
∂

∂xj
f̃(x1, . . . , xj−1, s, xj+1, . . . , xn)

∥∥∥∥
Y

ds

≤
√

m ·
∫ m

0

∥∥∥∥
∂

∂xj
f̃(x1, . . . , xj−1, s, xj+1, . . . , xn)

∥∥∥∥
2

Y

ds.

Squaring this inequality, integrating with respect to x1, . . . , xj−1, xj+1, . . . , xn, and
using (3.2), we get that

1
mn

∫

[0,m]n

∥∥∥∥
∂

∂xj
f̃(x)

∥∥∥∥
2

Y

dx ≥ 1
16

.

Plugging this estimate into (3.1) we see that
n

16
≤ 576pn2/pL2K2(Y )4,

or

L ≥ n
1
2− 1

p

96K2(Y )2
√

p
,

implying the required result.
It remains to deal with the case m ≤ 4

√
n, but in this case [m]np contains an

isometric copy of [m]bm
2/16c

p for so that the required result follows from the previous
argument. ¤

We end this section with some remarks and open problems.

Remarks.
(1) For p ∈ [1, 2] we have that cq([m]np ) = 1 for every q ∈ [1, p], since `p embeds

isometrically into Lq in this case (see for example [28]). More generally,
by the Maurey-Pisier theorem [18, 20]), for an infinite dimensional Banach
space Y satisfying sup{q : Y has type q} ≤ p we have that cY ([m]np ) = 1.
Observe that for m ≥ 1, [m]np contains an isometric copy of {0, 1}n. Thus,
by a theorem of Enflo [8], if q ∈ [p, 2] then cq([m]np ) = n

1
p− 1

q , where the
upper bound cq([m]np ) ≤ n

1
p− 1

q follows from Hölder’s inequality. More

generally, if Y has type q ∈ [p, 2] then cq([m]np ) ≥ cn
1
p
− 1

q

log n , where c is a
universal constant. This follows from a result of Pisier [24] (see also an
earlier slightly weaker result of Bourgain, Milman and Wolfson [6]). If
we assume that Y has type q ∈ [p, 2] and that Y has the UMD property
(see [23] for the definition), then the results of Naor and Schechtman [23]
imply that cY ([m]np ) ≥ C(Y )n

1
p− 1

q , where the constant C(Y ) depends only
on the UMD constant of Y . In particular, for 2 ≤ q < ∞ we get that
cq([m]np ) ≥ C(q)n

1
p− 1

2 , and this is optimal (up to constants depending only
on q) since the Banach-Mazur distance between `n

p and `n
q is of order n

1
p− 1

2

(see [26]).
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(2) For the `∞ integer lattice we can take p = log (min{m, n}) in Theorem 3.2
to get that

cY ([m]n∞) ≥ 1
400K2(Y )2

·min
{√

n

log n
,

m√
log m

}
.

We conjecture that this lower bound is not optimal, namely that whenever
Y is a 2-uniformly convex Banach space, cY ([m]np ) = Ω(min{√n,m}). In [5]
Bourgain shows that if Y has cotype q then cY ([m]m∞) = Ω(n1/q), provided
that m ≥ n1+1/q. Thus, the above conjecture is true for m ≥ n3/2. The
results of [15, 17] imply that there exist arbitrarily large n-point metric
spaces Xn (namely expander graphs) with the property that for every x, y ∈
Xn, d(x, y) ∈ [1, 10 log n], and for p ≥ 1, cp(Xn) = Ω

(
log n

p

)
. Using the

Fréchet embedding, we can embed Xn isometrically into `n
∞. Moreover,

since the distances in Xn are in the range [1, 10 log n], we can embed Xn

with distortion 2, say, into [d20 log ne]n∞. Thus, it follows that cp([m]n∞) =
Ω(m/p), at least for m ≤ 20 log n.

(3) A natural approach to the above conjecture would be to show that for a 2-
uniformly convex space Y , any Lipschitz mapping from [m]n∞ into Y can be
extended to `n

∞ with only a universally bounded multiplicative loss in the
Lipschitz constant. The above argument shows that this would imply that
cY ([m]n∞) = Ω(min{√n,m}), and it would improve the results of [5, 3].

(4) The lower bounds on distortion which were presented in this paper do
not belong to the usual type of non-embeddability results, since they are
not based on Poincaré type inequalities. In our forthcoming paper [19]
we introduce a family of Poincaré type inequalities which can be used to
prove non-embeddability results for the integer lattice, and which are a
non-linear analogue of the notion of cotype. We defer the discussion on this
(more complicated) argument to [19], but we wish to state that it shows in
particular that at least for Hilbert space, c2([m]n∞) = Θ(min{√n,m}).
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