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Abstract

Let (X, dX) be an n-point metric space. We show that there exists a distribution D over non-contractive
embeddings into trees f : X → T such that for every x ∈ X,

ED

[
max

y∈X\{x}

dT ( f (x), f (y))
dX(x, y)

]
6 C(log n)2,

where C is a universal constant. Conversely we show that the above quadratic dependence on log n
cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield
a framework for the design of approximation algorithms for a wide range of clustering problems with
monotone costs, including fault-tolerant versions of k-median and facility location.

1 Introduction

Metric embeddings are an invaluable tool in analysis, Riemannian geometry, group theory, graph theory,
and the design of approximation algorithms. In most cases embeddings are used to “simplify” a geometric
object that we wish to understand, or on which we need to perform certain algorithmic tasks. Thus one tries
to faithfully represent a metric space as a subset of another space with controlled geometry, whose structure
is well enough understood to successfully address the problem at hand. There is some obvious flexibility in
this approach: Both the choice of target space and the notion of faithfulness of an embedding can be adapted
to the problem that we wish to solve. Of course, once these choices are made, the main difficulty is the
construction of the required embedding, and in the algorithmic context we have the additional requirement
that the embedding can be computed efficiently.

In this paper we introduce a new notion of embedding, called maximum gradient embeddings, which
turns out to be perfectly suited for approximating a wide range of clustering problems. We then provide op-
timal maximum gradient embeddings of general finite metric spaces, and use them to design approximation
algorithms for several clustering problems. These embeddings yield a generic approach to many problems,
and we give some examples that illustrate this fact.

Due to their special structure, it is natural to try to embed metric spaces into trees. This is especially
important for algorithmic purposes, as many hard problems are tractable on trees. Unfortunately, this is too
much to hope for in the bi-Lipschitz category: As shown by Rabinovich and Raz [35] the n-cycle incurs
distortion Ω(n) in any embedding into a tree. However, one can relax this idea and look for a random
embedding into a tree which is faithful on average.

Randomized embeddings into trees via mappings which do not contract distances (also known as prob-
abilistic embeddings into dominating trees) became an important algorithmic paradigm due to the work of
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Bartal [3, 4] (see also [1, 16] for the related problem of embedding graphs into distributions over spanning
trees). This work led to the design of many approximation algorithms for a wide range of NP hard prob-
lems. In some cases the best known approximation factors are due to the “probabilistic tree” approach,
while in other cases improved algorithms have been subsequently found after the original application of
probabilistic embeddings was discovered. But, in both cases it is clear that the strength of Bartal’s approach
is that it is generic: For a certain type of problem one can quickly get a polylogarithmic approximation
using probabilistic embedding into trees, and then proceed to analyze certain particular cases if one desires
to find better approximation guarantees. However, probabilistic embeddings into trees do not always work.
In [7] Bartal and Mendel introduced the weaker notion of multi-embeddings, and used it to design improved
algorithms for special classes of metric spaces. Here we strengthen this notion to maximum gradient embed-
dings, yielding a faithfulness measure which is nevertheless weaker than bi-Lipschitz, and use it to design
approximation algorithms for harder problems to which regular probabilistic embeddings do not apply.

Let (X, dX) and (Y, dY ) be metric spaces, and fix a mapping f : X → Y . We shall say that f is non-
contractive if for every x, y ∈ X we have dY ( f (x), f (y)) > dX(x, y). The maximum gradient of f at a point
x ∈ X is defined as

|∇ f (x)|∞ = sup
y∈X\{x}

dY ( f (x), f (y))
dX(x, y)

. (1)

Thus the Lipschitz constant of f is given by

∥ f ∥Lip = sup
x∈X
|∇ f (x)|∞.

Note that in the mathematical literature, mostly in the context of the study of isoperimetry on general
geodesic metric measure spaces (see for example [8,28]), it is common to define the modulus of the gradient
of f at x ∈ X as

|∇ f (x)| = lim sup
y→x

dY ( f (x), f (y))
dX(x, y)

. (2)

The definition in (2) is very natural in the context of connected metric spaces, but in the context of finite
metric spaces it clearly makes more sense to deal with the maximum gradient as defined in (1).

In what follows when we refer to a tree metric we mean the shortest-path metric on a graph-theoretical
tree with weighted edges. Recall that (U, dU) is an ultrametric if for every u, v,w ∈ U we have dU(u, v) 6
max{dU(u,w), dU(w, v)}. It is well known that ultrametrics are tree metrics. The following result is due to
Fakcharoenphol, Rao and Talwar [17], and is a slight improvement over an earlier theorem of Bartal [4]. For
every n-point metric space (X, dX) there is a distribution D over non-contractive embeddings into ultramet-
rics f : X → U such that

max
x,y∈X
x,y

ED

[
dU( f (x), f (y)

dX(x, y)

]
= O(log n). (3)

The logarithmic upper bound in (3) cannot be improved in general.
Inequality (3) is extremely useful for optimization problems whose objective function is linear in the

distances, since by linearity of expectation it reduces such tasks to trees, with only a logarithmic loss in the
approximation guarantee. When it comes to non-linear problems, the use of (3) is very limited. We will
show that this issue can be addressed using the following theorem, which is our main result.
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Theorem 1. Let (X, dX) be an n-point metric space. Then there exists a distribution D over non-contractive
embeddings into ultrametrics f : X → U (thus both the ultrametric (U, dU) and the mapping f are random)
such that for every x ∈ X,

ED
[|∇ f (x)|∞

]
6 C(log n)2,

where C is a universal constant.
On the other hand there exists a universal constant c > 0 and arbitrarily large n-point metric spaces Yn

such that for any distribution over non-contractive embeddings into trees f : Yn → T there is necessarily
some x ∈ Yn for which

ED
[|∇ f (x)|∞

]
> c(log n)2.

We call embeddings as in Theorem 1, i.e. embeddings with small expected maximum gradient, maxi-
mum gradient embeddings into distributions over trees (in what follows we will only deal with distributions
over trees, so we will drop the last part of this title when referring to the embedding, without creating any
ambiguity). The proof of the upper bound in Theorem 1 is a modification of an argument of Fakcharoenphol,
Rao and Talwar [17], which is based on ideas from [3, 11]. It uses the same stochastic decomposition of
metric spaces as in [17], but it relies on properties of it which are well known to experts, yet have not been
exploited in full strength in previous applications. The argument appears in Section 2. Alternative proofs of
the main technical step of the proof of the upper bound in Theorem 1 can be also deduced from the results
of [32] or an argument in the proof of Lemma 2.1 in [20]. In both of these references the required inequality
is deduced from an improved analysis of the specific stochastic decomposition of Calinescu, Karloff and
Rabani [11] that was used in [17]. Here we present a different approach, which shows that the “padding
inequality” proved by Fakcharoenphol, Rao and Talwar in [17] can be used as a “black box” to yield a max-
imum gradient embedding, and there is no need to recall how the stochastic decomposition was originally
defined.

The heart of this paper is the lower bound in Theorem 1. The metrics Yn in Theorem 1 are the diamond
graphs of Newman and Rabinovich [34], which will be defined in Section 3. These graphs have been
previously used as counter-examples in several embedding problems— see [10, 21, 29, 34]. In particular,
we were inspired to consider these examples by the proof in [21] of the fact that they require distortion
Ω(log n) in any probabilistic embedding into trees. However, our proof of the Ω((log n)2) lower bound in
Theorem 1 is considerably more delicate than the proof in [21]. This proof, together with other lower bounds
for maximum gradient embeddings, is presented in Section 3.

1.1 A framework for clustering problems with monotone costs

We now turn to some algorithmic applications of Theorem 1. The general reduction in Theorem 2 below
should also be viewed as an explanation why maximum gradient embeddings are so natural— they are
precisely the notion of embedding which allows such reductions to go through.

A general setting of the clustering problem is as follows. Let X be an n-point set, and denote by MET(X)
the set of all metrics on X. A possible clustering solution consists of sets of the form {(x1,C1), . . . , (xk,Ck)}
where x1, . . . , xk ∈ X and C1, . . . ,Ck ⊆ X. We think of C1, . . . ,Ck as the clusters, and xi as the “center” of Ci.
In this general framework we do not require that the clusters cover X, or that they are pairwise disjoint, or
that they contain their centers. Thus the space of possible clustering solution is S B 2X×2X

(though the exact
structure of S does not play a role in the proof of Theorem 2 below). Assume that for every point x ∈ X,
every metric d ∈ MET(X), and every possible clustering solution P ∈ S, we are given Γ(x, d, P) ∈ [0,∞],
which we think of as a measure of the dissatisfaction of x with respect to P and d. Our goal is to minimize
the average dissatisfaction of the points of X. Formally, given a measure of dissatisfaction (which we also
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call in what follows a clustering cost function) Γ : X ×MET(X) × S → [0,∞], we wish to compute for a
given metric d ∈ MET(X) the value

OptΓ(X, d) def
= min

∑
x∈X
Γ(x, d, P) : P ∈ S


(Since we are mainly concerned with the algorithmic aspect of this problem, we assume from now on that Γ
can be computed efficiently.)

We make two natural assumptions on the cost function Γ. First of all, we will assume that it scales
homogeneously with respect to the metric, i.e. for every λ > 0, x ∈ X, d ∈ MET(X) and P ∈ S we have
Γ(x, λd, P) = λΓ(x, d, P). Secondly we will assume that Γ is monotone with respecting to the metric, i.e.
if d, d ∈ MET(X) and x ∈ X satisfy d(x, y) 6 d(x, y) for every y ∈ X then Γ(x, d, P) 6 Γ(x, d, P). In other
words, if all the points in X are further with respect to d from x then they are with respect to d, then x is
more dissatisfied. This is a very natural assumption to make, as most clustering problems look for clusters
which are small in various (metric) senses. We call clustering problems with Γ satisfying these assumptions
monotone clustering problems. Essentially all the algorithmic minimization problems that have benefitted
from an application of (3) can be cast as monotone clustering problems, but this framework also applies to
some “non-linear” clustering optimization problems, as we shall see presently.

The following theorem is a simple application of Theorem 1. It shows that it is enough to solve monotone
clustering problems on ultrametrics, with only a polylogarithmic loss in the approximation factor.

Theorem 2 (reduction to ultrametrics). Let X be an n-point set and fix a homogeneous monotone clustering
cost function Γ : X ×MET(X) × S → [0,∞]. Assume that there is a randomized polynomial time algorithm
which approximates OptΓ(X, ρ) to within a factor α(n) on any ultrametric ρ ∈ MET(X). Then there is a
randomized polynomial time algorithm which approximates OptΓ(X, d) on any metric d ∈ MET(X) to within
a factor of O

(
α(n)(log n)2

)
.

Proof. Let (X, d) be an n-point metric space and let D be the distribution over random ultrametrics ρ on X
from Theorem 1 (which is computable in polynomial time, as follows directly from our proof of Theorem 1
in Section 2). In other words, ρ(x, y) > d(x, y) for all x, y ∈ X and

max
x∈X
ED

[
max

y∈X\{x}

ρ(x, y)
d(x, y)

]
6 C(log n)2.

Let P ∈ S be a clustering solution for which

OptΓ(X, d) =
∑
x∈X
Γ(x, d, P).

Using the monotonicity and homogeneity of Γ we see that

OptΓ(X, ρ) 6
∑
x∈X
Γ(x, ρ, P) 6

∑
x∈X
Γ

(
x,

[
max

y∈X\{x}

ρ(x, y)
d(x, y)

]
· d, P

)
=

∑
x∈X

[
max

y∈X\{x}

ρ(x, y)
d(x, y)

]
· Γ(x, d, P).

Taking expectation we conclude that

ED
[
OptΓ(X, ρ)

]
6

∑
x∈X

(
ED

[
max

y∈X\{x}

ρ(x, y)
d(x, y)

])
Γ(x, d, P) 6 C(log n)2 · OptΓ(X, d).
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Hence, with probability at least 1
2 we have

OptΓ(X, ρ) 6 2C(log n)2 · OptΓ(X, d).

For such ρ compute a clustering solution Q ∈ S satisfying∑
x∈X
Γ(x, ρ,Q) 6 α(n)OptΓ(X, ρ) 6 2Cα(n)(log n)2 · OptΓ(X, d).

Since ρ > d it remains to use the monotonicity of Γ once more to deduce that∑
x∈X
Γ(x, ρ,Q) >

∑
x∈X
Γ(x, d,Q) > OptΓ(X, d).

Thus Q is a O
(
α(n)(log n)2

)
approximate solution to the clustering problem on (X, d) with cost Γ. �

Theorem 2 is a generic reduction, and in many particular cases it might be possible use a case-specific
analysis to improve the O

(
(log n)2

)
loss in the approximation factor. However, as a general reduction

paradigm for clustering problems, Theorem 2 makes it clear why maximum gradient embeddings are natural.
We shall now demonstrate the applicability of the monotone clustering framework to two concrete ex-

amples called fault-tolerant k-median clustering and Σℓp clustering. We are not aware of a previous inves-
tigation of these problems, but we believe that they are quite natural. It also seems plausible that, just as in
the problems for which Bartal’s method originally yielded the first non-trivial algorithmic results, a better
approximation factor might be obtainable via more problem-specific tools.

Fault-tolerant k-median and facility location. The k-median problem is as follows. Given an n-point
metric space (X, dX) and k ∈ N, find x1, . . . , xk ∈ X that minimize the objective function∑

x∈X
min

j∈{x1,...,xk}
dX(x, x j). (4)

This very natural and well studied problem can be easily cast as monotone clustering problem by defining
Γ(x, d, {(x1,C1), . . . , (xm,Cm)}) to be∞ if m , k, and otherwise

Γ(x, d, {(x1,C1), . . . , (xm,Cm)}) = min
j∈{x1,...,xk}

d(x, x j).

The linear structure of (4) makes it a prime example of a problem which can be approximated using
Bartal’s probabilistic embeddings. Indeed, the first non-trivial approximation algorithm for k-median clus-
tering was obtained by Bartal in [4] (another such example is Min-Sum clustering— see [5]). Since then
this problem has been investigated extensively: The first constant factor approximation for it was obtained
in [13] using LP rounding, and the first combinatorial (primal-dual) constant-factor algorithm was obtained
in [24]. In [2] an analysis of a natural local search heuristic yields the best known approximation factor for
k-median clustering.

Here we study the following fault-tolerant version of the k-median problem. Let (X, d) be an n-point
metric space and fix k ∈ N. Assume that for every x ∈ X we are given an integer j(x) ∈ X (which we
call the fault-tolerant parameter of x). Given x1, . . . , xk and x ∈ X let x∗j(x; d) be the j-th closest point to
x in {x1, . . . , xk}. In other words, {x∗j(x; d)}kj=1 is a re-ordering of {x j}kj=1 such that d(x, x∗1(x; d)) 6 · · · 6
d(x, x∗k(x; d)). Our goal is to minimize the objective function∑

x∈X
d
(
x, x∗j(x)(x; d)

)
. (5)
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To understand (5) assume for the sake of simplicity that j(x) = j for all x ∈ X. If {x j}kj=1 minimize (5)
and j − 1 of them are deleted (due to possible noise), then we are still ensured that on average every point
in X is close to one of the x j. In this sense the clustering problem in (5) is fault-tolerant. In other words, the
optimum solution of (5) is insensitive to (controlled) noise. Observe that for j = 1 we return to the k-median
clustering problem.

We remark that another fault-tolerant version of k-median clustering was introduced in [25]. In this
problem we connect each point x in the metric space X to j(x) centers, but the objective function is the
sum over x ∈ X of the sum of the distances from x to all the j(x) centers. Once again, the linearity of the
objective function seems to make the problem easier, and in [37] a constant factor approximation is achieved
(this immediately implies that our version of fault-tolerant k-median clustering, i.e. the minimization of (5),
has a O (maxx∈X j(x)) approximation algorithm). In particular, the LP that was previously used for k-median
clustering naturally generalizes to this setting. This is not the case for our fault-tolerant version in (5).
Moreover, the local search techniques for k-median clustering (see for example [2]) do not seem to be easily
generalizable to the case j > 1, and in any case seem to require nΩ( j) time, which is not polynomial even for
moderate values of j.

Arguing as above in the case of k-median clustering we see that the fault-tolerant k-median clustering
problem in (5) is a monotone clustering problem. In Section 4.1 we show that it can be solved exactly in
polynomial time on ultrametrics. Thus, in combination with Theorem 2, we obtain a O

(
(log n)2

)
approxi-

mation algorithm for the minimization of (5) on general metrics.

Remark 1. Facility location type problems have been studied extensively since the 1960’s— we refer to the
book [33], and specifically to the chapter on uncapacitated facility location [15], for a discussion of such
problems. The uncapacitated metric facility location problem is closely related to k-median problem (indeed
k-median can be reduced to it via Lagrangian relaxation— see [24]), and has been studied extensively in
recent years (see [12, 19, 23, 24, 26, 36]). In the context of (5) we can also consider the following fault-
tolerant version of the facility location problem. Assume in addition that we are given non-negative facility
costs { fx}x∈X . Then the goal is to minimize over all x1, . . . , xk ∈ X the objective function

k∑
j=1

fx j +
∑
x∈X

d
(
x, x∗j(x)(x; d)

)
. (6)

The case j(x) ≡ 1 reduces to the classical un-capacitated metric facility location problem. The techniques
presented here can be easily generalized to yield a O

(
(log n)2

)
approximation algorithm for the minimization

of (6) as well.

Σℓp clustering. Another problem which illustrates the usefulness of Theorem 2 is the Σℓp clustering problem
which we now describe. Our argument for this problem is quite general, and it applies to more cost functions,
but it is beneficial to concentrate on a concrete example. For p ∈ [1,∞] the Σℓp clustering problem is as
follows: For a metric space (X, d) and k ∈ N the goal is to find x1, . . . , xk ∈ X and a partition of X into k sets
C1, . . . ,Ck ⊆ X which minimize the objective function

k∑
j=1

∑
x∈C j

d(x, x j)p


1/p

. (7)

When p = 1 this becomes the k-median problem, and when p = ∞ this is the “sum of the cluster
radii” problem, which has been studied in [14]. In both of these extreme cases there is a constant factor
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approximation algorithm known, so we automatically get a O
(
min{n1/p, n1−1/p}

)
approximation algorithm

for (7). Here we shall use the framework of Theorem 2 to give a O
(
(log n)2

)
approximation algorithm for

this problem for general p.
Observe that the Σℓp clustering problems are monotone clustering problems. Indeed, all we need to do

is define Γ(x, d, {(x1,C1), . . . , (xm,Cm)}) to be ∞ if {C1, . . . ,Cm} is not a partition of X or m , k. Otherwise
set Γ(x, d, {(x1,C1), . . . , (xk,Ck)}) = 0 if x < {x1, . . . , xk} and for j ∈ {1, . . . , k},

Γ(x j, d, {(x1,C1), . . . , (xk,Ck)}) =

∑
x∈C j

d(x, x j)p


1/p

.

This definition clearly makes Γ a homogeneous monotone clustering cost function for any p ∈ [1,∞].
The following lemma, combined with Theorem 2, therefore implies that the Σℓp clustering problem has a
O

(
(log n)2

)
approximation algorithm.

Lemma 3. The Σℓp clustering problem has a constant factor polynomial time approximation algorithm
(even a FPTAS) on ultrametrics.

Lemma 3 will be proved via dynamic programming in Section 4.1.

2 Proof of the upper bound in Theorem 1

We start by recalling some terminology and results concerning random partitions of metric spaces. Given a
partition P of a finite metric space (X, dX) and x ∈ X we denote by P(x) the unique element of P to which
x belongs. For ∆ > 0 the partition P is said to be ∆-bounded if for every x ∈ X we have diam(P(x)) 6 ∆.
We also fix a positive measure µ on X. The following fundamental result is due to [17] when µ is the uniform
measure on X. The case of general measures was observed in [27, 30], and the specific numerical constants
used below are taken from [32].

Lemma 4. For every ∆ > 0 there exists a distribution over ∆-bounded partitions P of X such that for every
x ∈ X and every 0 < t 6 ∆/8,

Pr [BX(x, t) *P(x)] 6
16t
∆
· log

µ(BX(x,∆))
µ(BX(x,∆/8))

. (8)

We also recall the notion of a quotient of a metric space (see [9, 18, 31]). Let W = {W1, . . . ,Wm} be a
partition of X. For W,W′ ∈ W write dX(W,W′) = min{dX(x, y) : x ∈ W, y ∈ W′}. The quotient metric space
(X/W , dX/W ) is define as follows. As a set X/W coincides with W . The metric dX/W is the maximal metric
on W which is majorized by dX(·, ·). In other words, for W,W′ ∈ W ,

dX/W (W,W′) = min


m−1∑
j=1

dX(V j−1,V j) : V0, . . . ,Vm−1 ∈ W , V0 = W, Vm−1 = W′
 .

Note that the V j’s in the definition above need not be distinct.
The following lemma is a well known “quotient version” of Lemma 4. The argument dates back at least

to Bartal [3], and appeared in various guises in several other places— see for example [22, 32]. Since we
couldn’t locate the formulation that we need in the literature, we include a proof here.
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Lemma 5. Let (X, dX) be an n-point metric space and ∆ > 0. Then there exists a distribution over ∆-
bounded partitions P of X such that for every x, y ∈ X, if dX(x, y) 6 ∆

2n then P(x) = P(y), and for every
x ∈ X and 0 < t 6 ∆/16,

Pr [BX(x, t) *P(x)] 6
32t
∆
· log

µ(BX(x,∆))
µ(BX(x,∆/16))

.

Proof. Define an equivalence relation on X by x ∼ y if there exists k ∈ N and x0, . . . , xk ∈ X such that
x0 = x, xk = y and dX(xi−1, xi) 6 δ

2n for all i ∈ {1, . . . , k}. Let W = {W1, . . . ,Wm} be the equivalence
classes of this relation, and consider the quotient metric space X/W . We also denote by π : X → W the
induced quotient map, i.e. for x ∈ W j, π(x) = W j. Let µ ◦ π−1 be the measure on W given for W ∈ W by
µ ◦ π−1(W) = µ(π−1(W)). Observe that for every x, y ∈ X,

dX(x, y) − ∆
2
6 dX/W (π(x), π(y)) 6 dX(x, y). (9)

Indeed, the upper bound in (9) is immediate from the definition of a quotient metric. The lower bound in (9)
is proved as follows. There are points x = x0, x1, . . . , xm−1 = y in X such that the sets {π(x j)}m−1

j=0 are distinct
(and hence disjoint), and dX/W (π(x), π(y)) =

∑m−1
j=1 dX(π(x j−1), π(x j)). For j ∈ {1, . . . ,m − 1} let a j ∈ π(x j−1)

and b j ∈ π(x j) be such that dX(a j, b j) = dX(π(x j−1), π(x j)). Since, by the definition of the equivalence
relation ∼, for all z ∈ X we have diam(π(z)) = maxa,b∈π(z) dX(a, b) 6 (|π(z)|−1)∆

2n we get that

dX(x, y) 6 dX(x, a1) +
m−1∑
j=1

dX(a j, b j) +
m−2∑
j=1

dX(b j, a j+1) + dX(bm−1, y)

6
m−1∑
j=0

(|π(x j)| − 1)∆
2n

+ dX/W (π(x), π(y)) 6
∆

2
+ dX/W (π(x), π(y)),

implying the lower bound in (9).
Let Q be a distribution over ∆/2-bounded partitions of X/W such that for every W ∈ W and every

0 < t 6 ∆/16 we have

Pr
[
BX/W (W, t) * Q(W)

]
6

32t
∆
· log

µ ◦ π−1(BX/W (W,∆/2))
µ ◦ π−1(BX/W (W,∆/16))

. (10)

The existence of Q follows from Lemma 4. Let P be the partition of X given by P = {π−1(A) : A ∈ Q}.
Note that (9) implies that for every x ∈ X we have π−1 (

BX/W (π(x),∆/2)
) ⊆ BX(x,∆) and for every t > 0,

π−1 (
BX/W (π(x), t)

) ⊇ BX(x, t). Thus (10) implies that for every x ∈ X and 0 < t 6 ∆/16,

Pr [BX(x, t) *P(x)] 6 Pr
[
BX/W (π(x), t) * Q(π(x))

]
6

32t
∆
· log

µ(BX(x,∆))
µ(BX(x,∆/16))

.

It remains to note that (9) implies that P is ∆-bounded and if dX(x, y) 6 ∆
2n then x ∼ y, which means that

π(x) = π(y), so that P(x) =P(y). �

Proof of the upper bound in Theorem 1. For every k ∈ Z let Pk be a random partition sampled from the
distribution over partitions of X from Lemma 5 with ∆ = 16k, where µ is the counting measure on X (we
assume in what follows that the distributions for different values of k are independent). For x, y ∈ X let k
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be the largest integer for which Pk(x) , Pk(y) (such a k must exists since for small enough k we have
Pk(z) = {z} for all z ∈ X). Denote ρ(x, y) = 16k+1. Then ρ is a (random) ultrametric on X. Indeed, if
x, y, z ∈ X and ρ(x, y) = 16k+1 then Pk(x) ,Pk(y). It follows that either Pk(z) ,Pk(x) or Pk(z) ,Pk(y).
Thus by the definition of ρ we have that max{ρ(x, z), ρ(y, z)} > ρ(x, y). Note also that if ρ(x, y) = 16k+1 then
Pk+1(x) = Pk+1(y), so that dX(x, y) 6 diam(P(x)) 6 16k+1 = ρ(x, y). It follows that the identity mapping
on X is a random non-contractive embedding of X into the ultrametric (X, ρ). Finally, since whenever
dX(x, y) 6 16k

2n we have Pk(x) =Pk(y), we are ensured that ρ(x, y) 6 32ndX(x, y) for every x, y ∈ X.
Denote for x ∈ X and i ∈ Z, Ai(x) = BX(x, 16i)\BX(x, 16i−1). For every j ∈ N and k ∈ Z if BX(x, 16k− j) ⊆

Pk(x) then for every y ∈ BX(x, 16k− j) we have Pk(x) = Pk(y), and therefore by the definition of ρ(x, y)
we have ρ(x, y) 6 16k. Thus, if y ∈ Ak− j(x) we have ρ(x, y) 6 16k < 16 j+1dX(x, y). This establishes the
following inclusion of events:{

max
y∈Ak− j(x)

ρ(x, y)
dX(x, y)

> 16 j+1
}
⊆

{
BX(x, 16k− j) *Pk(x)

}
.

hence

Pr
[

max
y∈Ak− j(x)

ρ(x, y)
dX(x, y)

> 16 j+1
]
6 Pr

[
BX(x, 16k− j) *Pk(x)

]
6

32
16 j · log

|BX(x, 16k)|
|BX(x, 16k−1)|

.

Thus, since X =
∪

i∈Z Ai(x), we see that

Pr
[

max
y∈X\{x}

ρ(x, y)
dX(x, y)

> 16 j
]
= Pr

∪
i∈Z

{
max

y∈Ai(x)

ρ(x, y)
dX(x, y)

> 16 j
} 6∑

i∈Z
Pr

[
max

y∈Ai(x)

ρ(x, y)
dX(x, y)

> 16 j
]

6
∑
i∈Z

32
16 j−1 · log

|BX(x, 16i+ j−1)|
|BX(x, 16i+ j−2)| 6

512
16 j · log n. (11)

It follows that there exists a universal constant C > 0 such that for all u > 0 we have

Pr
[

max
y∈X\{x}

ρ(x, y)
dX(x, y)

> u
]
6

C log n
u

.

Hence, using the a priori bound ρ(x, y) 6 32ndX(x, y), it follows that

E

[
max

y∈X\{x}

ρ(x, y)
dX(x, y)

]
=

∫ 32n

0
Pr

[
max

y∈X\{x}

ρ(x, y)
dX(x, y)

> u
]

du 6
∫ 32n

0
min

{
1,

C log n
u

}
du = O

(
1 + (log n)2

)
.

This completes the proof of the upper bound in Theorem 1. �

Remark 2. The above argument also shows that for every n-point metric space (X, dX) there exists a distri-
bution over non-contractive embeddings into ultrametrics f : X → U such that

ED
[|∇ f (x)|∞

]
= O

(
1 + (log n) logΦ(X)

)
,

where Φ(X) is the aspect ratio of X, which is defined by

Φ(X) =
diam X

minx,y∈X
x,y

dX(x, y)
=

maxx,y∈X dX(x, y)
minx,y∈X

x,y
dX(x, y)

.
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3 Tight lower bounds for cycles, paths, and diamond graphs

As mentioned in the introduction, the metrics Yn in Theorem 1 are the diamond graphs of Newman and
Rabinovich [34], which will be defined presently. Before passing to this more complicated (and strongest)
lower bound, we will analyze the simpler examples of cycles and paths, which are of independent interest.

Let Cn, n > 3, be the unweighted path on n-vertices. We will identify Cn with the group Zn of integers
modulo n. We first observe that in this special case the upper bound in Theorem 1 can be improved to
O(log n). This is achieved by using Karp’s embedding of the cycle into spanning paths— we simply choose
an edge of Cn uniformly at random and delete it. Let f : Cn → Z be the randomized embedding thus
obtained, which is clearly non-contractive.

As Karp observed, one can readily verify that as a probabilistic embedding into trees f has distortion at
most 2. We will now show that as a maximum gradient embedding, f has distortion Θ(log n). Indeed, fix
x ∈ Cn, and denote the deleted edge by {a, a + 1}. Assume that dCn(x, a) = t 6 n/2 − 1. Then the distance
from a + 1 to x changed from t + 1 in Cn to n − t − 1 in the path. It is also easy to see that this is where the
maximum gradient is attained. Thus

E
[|∇ f (x)|∞

] ≈ 2
n

∑
06t6n/2

n − t − 1
t + 1

= Θ(log n).

We will now show that any maximum gradient embedding of Cn into a distribution over trees incurs distor-
tion Ω(log n). For this purpose we will use the following lemma from [35].

Lemma 6. For any tree metric T , and any non-contractive embedding g : Cn → T, there exists an edge
(x, x + 1) of Cn such that dT (g(x), g(x + 1)) > n

3 − 1.

Now, let D be a distribution over non-contractive embeddings of Cn into trees f : Cn → T . By Lemma 6
we know that there exists x ∈ Cn such that dT ( f (x), f (x + 1)) > n−3

3 . Thus for every y ∈ Cn we have that
max{dT ( f (y), f (x)), dT ( f (y), f (x+1))} > n−3

6 . On the other hand max{dCn(y, x), dCn(y, x+1)} 6 dCn(x, y)+1.
It follows that

|∇ f (y)|∞ >
n − 3

6dCn(x, y) + 6
.

Summing this inequality over y ∈ Cn we see that∑
y∈Cn

|∇ f (y)|∞ >
∑

06k6n/2

n − 3
6k + 6

= Ω(n log n).

Thus
max
y∈Cn
ED

[|∇ f (y)|∞
]
>

1
n

∑
y∈Cn

ED |∇ f (y)|∞ = Ω(log n),

as required.

We will now deal with the more complicated case of maximum gradient embeddings of the unweighted
path on n-vertices, which we denote by Pn, into ultrametrics. The following proposition shows that Theo-
rem 1 is optimal when one considers embeddings into ultrametrics. This is weaker than the lower bound in
Theorem 1, which deals with embeddings into arbitrary trees (note that Pn is a tree).

Proposition 7. Let D be a distribution over non-contractive embeddings of Pn into ultrametrics f : Pn → U.
Then there exists x ∈ Pn such that ED

[|∇ f (x)|∞
]
= Ω((log n)2).
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Before proving Proposition 7 we record the following numerical inequalities.

Lemma 8. The following elementary inequalities hold true:

1. For every a, b ∈ {0, 1, 2, . . .},

a(log a)2 + b(log b)2 > (a + b)
(
log(a + b)

)2 − 2
[
1 + log

(
a + b

a

)]
a log(a + b).

2. For every x > 1,
(
1 + log x

)
log x 6 4

√
x.

Proof. The first inequality is trivial if a = 0 or b = 0, so assume that a, b > 1. Denote for t > 0, ψ(t) =
t(log t)2. Then

(a + b)
(
log(a + b)

)2 − b(log b)2 =

∫ a+b

b
ψ′(t)dt

=

∫ a+b

b

[
(log t)2 + 2 log t

]
dt

6 a
(
log(a + b)

)2
+ 2a log(a + b)

= a(log a)2 + a
[
log(a + b) + log a

] · log
(
a + b

a

)
+ 2a log(a + b)

6 a(log a)2 + 2
[
1 + log

(
a + b

a

)]
a log(a + b),

proving the first assertion in Lemma 8.
The second assertion in Claim 8 follows from the inequality log x 6 2 4√x − 1, which is true since the

minimum of the function y 7→ 2 4
√

y − 1 − log y, which is attained at y = 16, is positive. �

Proof of Proposition 7. We think of Pn as the interval of integers I = {0, . . . , n − 1} ⊆ R. Arguing the same
as in the case of the cycle Cn, it is enough to prove that if (U, dU) is an ultrametric and f : Pn → U is
non-contractive then

1
n

n−1∑
x=0

|∇ f (x)|∞ > c(log n)2, (12)

where c > 0 is a universal constant.
Given a sub-interval J = {a, a+1, . . . , a+t} ⊆ {0, . . . , n−1} let mJ be the largest point m ∈ {a+1, . . . , a+t}

for which dU( f (m − 1), f (m)) = ∥ f |J∥Lip = max16i6t dU( f (a + i − 1), f (a + i)) (if t = 0 then we set mJ = a).
Since the distortion of J in any embedding into an ultrametric is at least |J| − 1 (see Lemma 2.4 in [31]), we
know that dU( f (mJ − 1), f (mJ)) > t = |J| − 1. We shall denote in what follows Js to be the shorter of the two
intervals {a, a+ 1, . . . ,mJ − 1} and {mJ , . . . , a+ t} (breaking ties arbitrarily), and Jb will denote the longer of
these two intervals (when |J| = 1 we use the convention Js = Jb). Thus J = Js ∪ Jb and |Js| 6 |Jb|. Finally,
let xJ be the point in Js which is closest to Jb (so that xJ ∈ {mJ ,mJ−1}).

We define a function gJ : J → R inductively as follows. If 1 6 |Js| 6
√
|J| then

gJ(x) =


gJs(x) if x ∈ Js \ {xJ},
1
8

[
1 + log

( |J|
|Js |

)]
|Js| log |J| if x = xJ ,

gJb(x) if x ∈ Jb.

(13)

11



If, on the other hand, |Js| >
√
|J| then

gJ(x) =


gJs(x) if x ∈ Js and |x − xJ | > 4√|Js|,
|J|−1
|x−xJ |+1 if x ∈ Js and |x − xJ | 6 4√|Js|,
gJb(x) if x ∈ Jb.

(14)

The following claim summarizes the crucial properties of the these mappings. Recall that we are using
the notation I = {0, . . . , n − 1}.
Claim 9. The following assertions hold true for every sub-interval J ⊆ I.

1. For every x ∈ J we have gJ(x) 6 |∇( f |J)(x)|∞ = maxy∈J\{x}
dU ( f (x), f (y))
|x−y| .

2. For every x ∈ J, gJ(x) 6 |J| − 1.

3. If |Js| >
√

J and |x − xJ | 6 4√|Js| then gJs(x) 6 4
√
|Js|.

Proof. The proofs of all of the assertions in Claim 9 will be by induction on J. To prove the first assertion
assume first that 1 6 |Js| 6

√
|J|. From the recursive definition in (13) it follows that we should show

that 1
8

[
1 + log

( |J|
|Js |

)]
|Js| log |J| 6 |∇( f |J)(xJ)|∞. Since xJ ∈ {mJ − 1,mJ} the definition of mJ implies that

|∇( f |J)(xJ)|∞ > |J| − 1. Thus it is enough to show that 1
8
(
1 + log |J|) √|J| log |J| 6 |J| − 1, which follows

from the second assertion in Lemma 8. If, on the other hand, |Js| >
√
|J| then from the recursive definition

in (14) it follows that it is enough to show that for every x ∈ Js we have |J|−1
|x−xJ |+1 6 |∇( f |J)(x)|∞. But since U

is an ultrametric we know that

|J| − 1 6 dU( f (mJ − 1), f (mJ)) 6 max{dU( f (x), f (mJ − 1)), dU( f (x), f (mJ))},

which implies the required lower bound on |∇( f |J)(x)|∞ since xJ ∈ {mJ − 1,mJ}. The second assertion in
Claim 9 is proved similarly.

It remains to prove the third assertion in Lemma 9. Let K ⊆ Js be the sub-interval of Js in which
the value of gJs(x) was first set. In other words, K ⊆ Js is the smallest interval for which x ∈ Ks and
gK(x) = gJs(x). It follows in particular that |x − xK | 6 4√|Ks|. Also, by construction it is always the case that
either Ks or Kb is contained in the interval [min{xK , xJ},max{xK , xJ}]. Since Ks is shorter than Kb we are
assured that

|Ks| 6 |xK − xJ | 6 |xK − x| + |x − xJ | 6 4
√
|Ks| + 4

√
|Js| 6 2 4

√
|Js|. (15)

If |Ks| 6
√
|K| then necessarily x = xK and gK(x) was determined by the second line in (13). Hence

gJs(x) = gK(x) =
1
8

[
1 + log

(
|K|
|Ks|

)]
|Ks| log |K| 6 1

4
[
1 + log |Js|

] 4
√
|Js| log |Js| 6 4

√
|Js|, (16)

where we used (15) and the last inequality in (16) follows from the second assertion of Lemma 8.
Otherwise |Ks| >

√
|K| and gK(x) was determined by the second line in (14), i.e.

gJs(x) = gK(x) =
|K| − 1
|x − xK | + 1

< |K| < |Ks|2 6 4
√
|Js|,

where we used (15). This completes the proof of Claim 9. �
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With Claim 9 at hand we are in position to conclude the proof of Proposition 7. We will prove by
induction on |J| that ∑

x∈J

gJ(x) > c|J|(log |J|)2. (17)

This will prove (12), and hence imply Proposition 7, since by the first assertion of Claim 9 we get that

n−1∑
x=0

|∇ f (x)|∞ >
∑
x∈I

gI(x) > cn(log n)2.

Inequality (17) trivially holds true with small enough constant c if |J| 6 260, so assume that |J| > 260. To
prove (17) we distinguish between two cases. If |Js| 6

√
|J| then since gJs(xJ) 6 |Js| (by the second assertion

in Claim 9) we see by induction that∑
x∈J

gJ(x) =
∑
x∈Js

gJs(x) +
∑
x∈Jb

gJb(x) + gJ(xJ) − gJs(xJ)

> c
(
|Js|(log |Js|)2 + |Jb|(log |Jb|)2

)
+ 2

[
1 + log

(
|J|
|Js|

)]
|Js| log |J| − |Js| (18)

> c|J|(log |J|)2 − 2c
[
1 + log

(
|J|
|Js|

)]
|Js| log |J| +

[
1 + log

(
|J|
|Js|

)]
|Js| log |J| (19)

> c|J|(log |J|)2, (20)

where in (18) we used the inductive hypothesis and the inductive definition in (13) , in (19) we used
Lemma 8, and (20) holds for c 6 1

2 .
On the other hand if |Js| >

√
|J| then∑

x∈J

gJ(x) =
∑
x∈Js

gJs(x) +
∑
x∈Jb

gJb(x) +
∑
x∈Js

|x−xJ |6 4√|Js |

(
|J| − 1
|x − xJ | + 1

− gJs(x)
)

(21)

> c|J|(log |J|)2 − 2c
[
1 + log

(
|J|
|Js|

)]
|Js| log |J| +

⌊ 4√|Js |
⌋∑

k=0

|J| − 1
k + 1

− 8|Js|3/4 (22)

> c|J|(log |J|)2 − 2c
[
1 + log

(
|J|
|Js|

)]
|Js| log |J| + 1

4
(|J| − 1) log |Js| − 8|J|3/4

> c|J|(log |J|)2 − 2c
[
1 + log

(
|J|
|Js|

)]
|Js| log |J| + 1

8
(|J| − 1) log |Js| (23)

> c|J|(log |J|)2, (24)

where in (21) we used the inductive definition in (14), in (22) we used the inductive hypothesis, Lemma 8
and Claim 9, and inequalities (23) and (24) hold for |J| > 260 and small enough c, respectively, since
|J|
2 6 |Js| >

√
|J|. This completes the proof of Proposition 7. �

We now pass to the proof of the lower bound in Theorem 1 in its full strength, i.e. in the case of maximum
gradient embeddings into trees. We start by describing the diamond graphs {Gk}∞k=1, and a special labelling
of them that we will use throughout the ensuing arguments. The first diamond graph G1 is a cycle of length
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4, and Gk+1 is obtained from Gk by replacing each edge by a quadrilateral. Thus Gk has 4k edges and 2·4k+4
3

vertices. As we have done before, the required lower bound on maximum gradient embeddings of Gk into
trees will be proved if we show that for every tree T and every non-contractive embedding f : Gk → T we
have

1
4k

∑
e∈E(Gk)

∑
x∈e
|∇ f (x)|∞ = Ω

(
k2

)
. (25)

Note that the inequality (25) is different from the inequalities that we proved in the case of the cycle and
the path in that the weighting on the vertices of Gk that it induces is not uniform— high degree vertices get
more weight in the average in the left-hand side of (25).

We will prove (25) by induction on k. In order to facilitate such an induction, we will first strengthen
the inductive hypothesis. To this end we need to introduce a useful labelling of Gk. For 1 6 i 6 k the
graph Gk contains 4k−i canonical copies of Gi, which we index by elements of {1, 2, 3, 4}k−i, and denote{
G(k)

[α]

}
α∈{1,2,3,4}k−i . These graphs are defined as follows—see Figures 1 and 2 for a schematic description.

)2(
]1[G

)2(
]3[G)2(

]4[G

)2(
]2[G

Figure 1: The graph G2 and the labelling of the canonical copies of G1 contained in it.

)3(
]11[G

)3(
]12[G

)3(
]14[G

)3(
]13[G

)3(
]1[G

)3(
]2[G

)3(
]4[G )3(

]3[G

)3(
]21[G

)3(
]22[G

)3(
]23[G

)3(
]24[G

)3(
]31[G

)3(
]32[G

)3(
]33[G

)3(
]34[G

)3(
]42[G

)3(
]41[G

)3(
]44[G

)3(
]43[G

Figure 2: The graph G3 and the induced labelling of canonical copies of G1 and G2.

Formally, we set G(k)
[∅] = Gk, and assume inductively that the canonical subgraphs of Gk−1 have been

defined. Let H1,H2,H3,H4 be the top-right, top-left, bottom-right and bottom-left copies of Gk−1 in Gk,
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respectively. For α ∈ {1, 2, 3, 4}k−1−i and j ∈ {1, 2, 3, 4} we denote the copy of Gi in H j corresponding to
G(k−1)

[α] by G(k)
[ jα].

For every 1 6 i 6 k and α ∈ {1, 2, 3, 4}k−i let T (k)
[α], B

(k)
[α], L

(k)
[α],R

(k)
[α] be the topmost, bottom-most, left-most,

and right-most vertices of G(k)
[α], respectively. We will construct inductively a set of simple cycles C[α] in G(k)

[α]
and for each C ∈ C[α] an edge εC ∈ E

(
C[α]

)
, with the following properties.

1. The cycles in C[α] are edge-disjoint, and they all pass through the vertices T (k)
[α], B

(k)
[α], L

(k)
[α],R

(k)
[α]. There

are 2i−1 cycles in C[α], and each of them contains 2i+1 edges. Thus in particular the cycles in C[α] form
a disjoint cover of the edges in G(k)

[α].

2. If C ∈ C[α] and εC = {x, y} then dT ( f (x), f (y)) > 2i+1

3 − 1.

3. Denote E[α] = {εC : C ∈ C[α]} and ∆i =
∪
α∈{1,2,3,4}k−i E[α]. The edges in ∆i will be called the

designated edges of level i. For α ∈ {1, 2, 3, 4}k−i, C ∈ C[α] and j < i let ∆ j(C) = ∆ j ∩ E(C) be the
designated edges of level j on C. Then we require that each of the two paths T (k)

[α] − L(k)
[α] − B(k)

[α] and

T (k)
[α] − R(k)

[α] − B(k)
[α] in C contains exactly 2i− j−1 edges from ∆ j(C).

The construction is done by induction on i. For i = 1 and α ∈ {1, 2, 3, 4}k−1 we let C[α] contain only the
4-cycle G(k)

[α] itself. Moreover by Lemma 6 there is and edge εG(k)
[α]
∈ E

(
G(k)

[α]

)
such that if εG(k)

[α]
= {x, y} then

dT ( f (x), f (y)) > 1
3 . This completes the construction for i = 1. Assuming we have completed the construction

for i− 1 we construct the cycles at level i as follows. Fix arbitrary cycles C1 ∈ C[1α], C2 ∈ C[2α], C3 ∈ C[3α],
C4 ∈ C[4α]. We will use these four cycles to construct two cycles in C[α]. The first one consists of the
T (k)

[α] − R(k)
[α] path in C1 which contains the edge εC1 , the R(k)

[α] − B(k)
[α] path in C3 which does not contain the

edge εC3 , the B(k)
[α] − L(k)

[α] path in C4 which contains the edge εC4 , and the L(k)
[α] − T (k)

[α] path in C2 which does
not contain the edge εC2 . The remaining edges in E(C1) ∪ E(C2) ∪ E(C3) ∪ E(C4) constitute the second
cycle that we extract from C1,C2,C3,C4. Continuing in this manner by choosing cycles from C[1α] \ {C1},
C[2α] \ {C2}, C[3α] \ {C3}, C[4α] \ {C4} and repeating this procedure, and then continuing until we exhaust
the cycles in C[1α] ∪ C[2α] ∪ C[3α] ∪ C[4α], we obtain the set of cycles Cα. For every C ∈ Cα we then apply
Lemma 6 to obtain an edge εC with the required property.

For each edge e ∈ E(Gk) let α ∈ {1, 2, 3, 4}k−i be the unique multi-index such that e ∈ E
(
G(k)

[α]

)
. We

denote by Ci(e) the unique cycle in C[α] containing e. We will also denote êi(e) = εCi(e). Finally we let
ai(e) ∈ e and bi(e) ∈ êi(e) be vertices such that

dT ( f (ai(e)), f (bi(e))) = max
a∈e

b∈̂ei(e)

dT ( f (a), f (b)).

Note that by the definition of êi(e) and the triangle inequality we are assured that

dT ( f (ai(e)), f (bi(e))) >
1
2

(
2i+1

3
− 1

)
>

2i

12
. (26)

Recall that we plan to prove (25) by induction on k. Having done all of the above preparation, we are
now in position to strengthen (25) so as to make the inductive argument easier. Given two edges e, h ∈ Gk

we write e ⌢i h if both e, h are on the same canonical copy of Gi in Gk, Ci(e) = Ci(h) = C, and furthermore
e and h on the same side of C. In other words, e ⌢i h if there is α ∈ {1, 2, 3, 4}k−i and C ∈ C[α] such that if
we partition the edges of C into two disjoint T (k)

[α] − B(k)
[α] paths, then e and h are on the same path.
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Let m ∈ N be a universal constant that will be specified later. For every integer ℓ 6 k/m and any
α ∈ {1, 2, 3, 4}k−mℓ define

Lℓ(α) =
1

4mℓ

∑
e∈E

(
G(k)

[α]

) max
i∈{1,...,ℓ}

e⌢imêim(e)

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk (e, êim(e)) + 1
.

We also write Lℓ = minα∈{1,2,3,4}k−mℓ Lℓ(α). We will prove that Lℓ > Lℓ−1 + cℓ, where c > 0 is a universal
constant. This will imply that for ℓ = ⌊k/m⌋ we have Lℓ = Ω(k2) (since m is a universal constant). By simple
arithmetic (25) follows.

Observe that for every α ∈ {1, 2, 3, 4}k−mℓ we have

Lℓ(α) =
1

4m

∑
β∈{1,2,3,4}m

1
4m(ℓ−1)

∑
e∈E

(
G(k)

[βα]

) max
i∈{1,...,ℓ}

e⌢imêim(e)

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk (e, êim(e)) + 1

=
1

4m

∑
β∈{1,2,3,4}m

1
4m(ℓ−1)

∑
e∈E

(
G(k)

[βα]

) max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk (e, êim(e)) + 1

+
1

4mℓ

∑
e∈E

(
G(k)

[α]

) max

0,
dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1
· 1{e⌢ℓmêℓm(e)}

− max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk (e, êim(e)) + 1


=

1
4m

∑
β∈{1,2,3,4}m

Lℓ−1(βα)

+
1

4mℓ

∑
e∈E

(
G(k)

[α]

) max

0,
dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1
· 1{e⌢ℓmêℓm(e)}

− max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk (e, êim(e)) + 1


> Lℓ−1 +

1
4mℓ

∑
e∈E

(
G(k)

[α]

) max

0,
dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1
· 1{e⌢ℓmêℓm(e)}

− max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk (e, êim(e)) + 1

 .
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Thus it is enough to show that

A def
=

1
4mℓ

∑
e∈E

(
G(k)

[α]

) max

0,
dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1
· 1{e⌢ℓmêℓm(e)}

− max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk (e, êim(e)) + 1

 = Ω(ℓ). (27)

To prove (27) denote for C ∈ C[α]

S C =

e ∈ E(C) : εC ⌢ℓm e and

max
i∈{1,...,ℓ−1}
e⌢imêim(e)

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk (e, êim(e)) + 1
>

1
2
· dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1

 .
Then using (26) we see that

A >
1

2 · 4mℓ

∑
C∈C[α]

∑
e∈E(C)\S C
εC⌢ℓme

dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1

>
1

2 · 4mℓ

∑
C∈C[α]

∑
e∈E(C)
εC⌢ℓme

dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1
− 1

2 · 4mℓ

∑
C∈C[α]

∑
e∈S C

dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1

>
1

2 · 4mℓ

∑
C∈C[α]

2mℓ−1∑
i=1

2mℓ

12i
− 1

2 · 4mℓ

∑
C∈C[α]

∑
e∈S C

dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1

= Ω

(
1

4mℓ · |C[α]| · 2mℓ · mℓ
)
− 1

2 · 4mℓ

∑
C∈C[α]

∑
e∈S C

dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1

= Ω(mℓ) − 1
2 · 4mℓ

∑
C∈C[α]

∑
e∈S C

dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1
. (28)

To estimate the negative term in (28) fix C ∈ C[α]. For every edge e ∈ S C (which implies in particular
that êℓm(e) = εC) we fix an integer i < ℓ such that e ⌢im êim(e) and

2im

dGk (e, êim(e)) + 1
>

dT ( f (aim(e)), f (bim(e))) ∧ 2im

dGk (e, êim(e)) + 1
>

1
2
· dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1

>
1
12
· 2ℓm

dGk (e, εC) + 1
,

or

dGk (e, êim(e)) + 1 6 2(i−ℓ)m+4 [
dGk (e, εC) + 1

]
. (29)
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We shall call the edge êim(e) the designated edge that inserted e into S C . For a designated edge ε ∈ E(C) of
level im (i.e. ε ∈ ∆im(C)) we shall denote by EC(ε) the set of edges of C which ε inserted to S C . Denoting
Dε = dGk (ε, εC) + 1 we see that (29) implies that for e ∈ EC(ε) we have∣∣∣Dε −

[
dGk (e, εC) + 1

] ∣∣∣ 6 2(i−ℓ)m+4 [
dGk (e, εC) + 1

]
. (30)

Assuming that m > 5 we are assured that 2(i−ℓ)m+4 6 1
2 . Thus (30) implies that

Dε

1 + 2(i−ℓ)m+4 6 dGk (e, εC) + 1 6
Dε

1 − 2(i−ℓ)m+4 .

Hence ∑
e∈S C

dT ( f (aℓm(e)), f (bℓm(e))) ∧ 2ℓm

dGk (e, êℓm(e)) + 1
6

ℓ−1∑
i=1

∑
ε∈∆im(C)

∑
e∈EC(ε)

2ℓm

dGk (e, εC) + 1

6 2
ℓ−1∑
i=1

∑
ε∈∆im(C)

∑
j∈N

Dε
1+2(i−ℓ)m+4 6 j6 Dε

1−2(i−ℓ)m+4

2ℓm

j

= O(1) · 2ℓm
ℓ−1∑
i=1

|∆im(C)| · log
(
1 + 2(i−ℓ)m+4

1 − 2(i−ℓ)m+4

)
= O(1) · 2ℓmℓ · 2(ℓ−i)m · 2(i−ℓ)m = O(1) · 2ℓmℓ.

Thus, using (28) we see that

A = Ω(mℓ) − O(1) · 1
4ℓm
·
∣∣∣C[α]

∣∣∣ 2mℓℓ = Ω(mℓ) − O(1)ℓ = Ω(ℓ),

provided that m is a large enough absolute constant.
This completes the proof of the lower bound in Theorem 1. �

4 Monotone clustering problems

In this section we give some examples which illustrate how certain monotone clustering problems can be
solved efficiently on ultrametrics. Our arguments are quite flexible, and apply in more general situations.
Before passing to these algorithms, we make a few general remarks on the framework for monotone cluster-
ing that was discussed in the introduction.

In the definition of monotone clustering we required that Γ(x, d, P) is homogeneous in d. One might
wonder whether it is possible to consider also higher orders of homogeneity, i.e. clustering cost functions Γ
which satisfy Γ(x, λd, P) = λpΓ(x, d, P) for some p > 1 (this occurs, for example, in the k-means clustering
problem, where the goal is to find k “centers” that minimize the sum over the data points of the squared
distance to the closest center). For the proof of Theorem 2 to work in this setting we need a distribution
over non-contractive embeddings into ultrametrics f : X → U with a polylogarithmic upper bound on the
expected value of |∇ f (x)|p∞. Unfortunately, this is impossible to achieve in general. Indeed, let f : Cn → T
be a random non-contractive embedding of the n-cycle into trees. Lemma 6 implies that there exists an edge
(x, x + 1) ∈ E(Cn) for which dT ( f (x), f (x + 1)) > n

3 − 1. Thus∑
{x,y}∈E(Cn)

dT ( f (x), f (y))p >
np

12p .
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Taking expectation we see that

max
x∈V(Cn)

E
[
|∇ f (x)|p∞

]
>

1
n

∑
x∈V(Cn)

E
[
|∇ f (x)|p∞

]
>

np−1

12p .

We note, however, that the proof of Theorem 2 used the homogeneity of Γ in a weak way. In order to get
a polylogarithmic reduction to ultrametrics is enough to assume, for example, that for every λ > 1 we have
Γ(x, λd, P) = O

(
polylog(n)

) · λ · Γ(x, d, P).
Our second remark concerns the fact that the solution space for monotone clustering problem that was

presented in the introduction was 2X×2X
. This is a huge space, and as we have seen in Section 1.1, by setting

the clustering cost function to be ∞ on certain possible clustering solutions it is possible to reduce the size
of this space. Additionally, in the arguments is Section 1.1 the cost function Γ ignored the structure of the
solution space. Thus in a more generic formulation of the monotone clustering framework we can assume
that the solution space is some abstract finite set S(X). For example, in our version of the fault-tolerant
k-median problem we can take the solution space to be

(
X
k

)
.

4.1 Monotone clustering on ultrametrics via dynamic programming

We now pass to the design of some monotone clustering algorithms on ultrametrics. It is a standard fact (see
for example [6]) that any ultrametric (U, dU) can be represented as follows. There is a graph theoretical tree
T = (V, E) such that U is the set of leaves of T . The vertices of T are labelled by ∆ : V → [0,∞) and for
every u, v ∈ U we have dU(u, v) = ∆(lca(u, v)), where lca(u, v) is the least common ancestor of u and v in T .
We may, and will, assume in what follows that every vertex of T is either a leaf or has exactly two children.

We begin by showing that the fault-tolerant version of the k-median problem described in (5) can be
solved exactly on ultrametrics.

Lemma 10. The minimization of the objective function in (5) can be solved exactly on any n-point ultramet-
ric in time O(kn2).

Proof. Let (U, dU) be an n-point ultrametric and let T = (V, E) be a binary tree with vertex labels ∆ : V →
[0,∞) which represents U. We also assume that we are given fault-tolerant parameters { j(u)}u∈U . For every
v ∈ V let Tv denote the subtree of T rooted at v. Define for v ∈ V and s ∈ {0, . . . , k}

cost∗(v, s) = min


∑

x∈Tv∩U
j(x)6s

dU
(
x, x∗j(x)(x; dU)

)
: x1, x2, . . . , xs ∈ Tv ∩ U

 . (31)

Our goal is to compute cost∗(r, k), where r is the root of T . This will be done using dynamic program-
ming. For any leaf u ∈ U and s ∈ {0, . . . , k} define cost(u, s) = 0. Let v ∈ V be an internal vertex with two
children u,w ∈ V . Define recursively

cost(v, s) = min
t∈{0,...,s}

[
cost(u, t) + cost(w, s − t)

+ ∆(v) · (|{x ∈ Tu ∩ U : t < j(x) 6 s}| + |{x ∈ Tw ∩ U : s − t < j(x) 6 s}|)]. (32)

A bottom-up computation of the dynamic program in (32) computes cost(v, s) naı̈vely in O(kn2) time.
We will be done if we show that cost(v, s) = cost∗(v, s) for any v ∈ V and s ∈ {0, . . . , k}. The fact that
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cost∗(v, s) 6 cost(v, s) is obvious since (32) computes a feasible solution of (31) (this fact is proved by a
straightforward induction).

We prove the reverse inequality by induction on |Tv|. Let x1, . . . , xs ∈ Tv ∩ U be such that

cost∗(v, s) =
∑

x∈Tv∩U
j(x)6s

dU
(
x, x∗j(x)(x; dU)

)
.

Let u,w be the children of v in T . We may reorder the points so that for some t ∈ {0, . . . , s} we have
{x1, . . . , xt} = Tu ∩ {x1, . . . , xs} and {xt+1, . . . , xs} = Tw ∩ {x1, . . . , xs}. Then

cost∗(v, s) =
∑

x∈Tv∩U
j(x)6s

dU
(
x, x∗j(x)(x; dU)

)
=

∑
x∈Tu∩U

j(x)6t

dU
(
x, x∗j(x)(x; dU)

)
+

∑
x∈Tw∩U
j(x)6s−t

dU
(
x, x∗j(x)(x; dU)

)
+∆(v) · (|{x ∈ Tu ∩ U : t < j(x) 6 s}| + |{x ∈ Tw ∩ U : s − t < j(x) 6 s}|) (33)

> cost∗(u, t) + cost∗(w, s − t)

+∆(v) · (|{x ∈ Tu ∩ U : t < j(x) 6 s}| + |{x ∈ Tw ∩ U : s − t < j(x) 6 s}|) (34)

> cost(u, t) + cost(w, s − t)

+∆(v) · (|{x ∈ Tu ∩ U : t < j(x) 6 s}| + |{x ∈ Tw ∩ U : s − t < j(x) 6 s}|) (35)

> cost(v, s), (36)

where in (33) we used the fact that the tree T represents the ultrametric (U, dU), in (34) we used the definition
of cost∗(u, t) and cost∗(w, s − t) given by (31), in (35) we used the inductive hypothesis, and in (36) we
used (32). �

Our final result is the proof of Lemma 3, which yields a FPTAS for the Σℓp clustering problem on
ultrametrics. We start with the following inequality.

Lemma 11. Fix p > 1 and assume that a1 > a2 > · · · > an > 0 and b1, . . . , bn > 0. Then

n∑
j=1

(ap
j + bp

j )
1/p >

n∑
j=2

a j +

ap
1 +

n∑
j=1

bp
j


1/p

.

Proof. The proof is by induction on n, and the inductive hypothesis simplifies toap
1 +

n∑
j=1

bp
j


1/p

− an+1 >

ap
1 +

n+1∑
j=1

bp
j


1/p

− (ap
n+1 + bp

n+1)1/p. (37)

Denote for x > 0

f (x) =

ap
1 +

n∑
j=1

bp
j + x


1/p

− (ap
n+1 + x)1/p.
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Inequality (37) is f (bp
n+1) 6 f (0), so it is enough to prove that f is decreasing. But

f ′(x) =
1

p
(
ap

1 +
∑n

j=1 bp
j + x

)1−1/p −
1

p
(
ap

n+1 + x
)1−1/p 6

1

p
(
ap

1 + x
)1−1/p −

1

p
(
ap

n+1 + x
)1−1/p 6 0,

since a1 > an+1. �

Proof of Lemma 3. Let (U, dU) be an n-point ultrametric and let T = (V, E) be a binary tree with vertex
labels ∆ : V → [0,∞) which represents U. For v ∈ V , ℓ ∈ {0, . . . , k}, s ∈ {0, . . . , n} and t ∈ [0,∞) define
B∗(v, ℓ, s, t) to be the minimum cost according to (7) to cluster Tv ∩U using ℓ sets and centers, when we are
allowed to exclude s points from Tv ∩ U, and the most costly cluster has cost t.

We next define a “pseudo cost” B(v, ℓ, s, t) inductively as follows. If v is a leaf then define B(v, 1, 0, 0) =
B(v, 1, 1, 0) = B(v, 0, 1, 0) = 0, and for all other values of ℓ, s, t we set B(v, ℓ, s, t) = ∞. When v has children
u and w define:

B(v, ℓ, s, t) = min


B(u, ℓ1, s1, t1) + B(w, ℓ2, s2, t2)

+
(
tp
1 + r2∆(v)p

)1/p − t1 +
(
tp
2 + r1∆(v)p

)1/p − t2 :

s1,r1,s2,r2∈{0,...,s},
t1,t2∈[0,t],
ℓ1∈{0,...,ℓ},

r16s1,
r26s2,

s=s1+s2−r1−r2,
ℓ=ℓ1+ℓ2,

t=max
{
(tp

1+r2∆(v)p)1/p
, (tp

2+r1∆(v)p)1/p}


.

With these definition we will prove the following claim by induction.

Claim 12. For every v ∈ T, ℓ ∈ {0, . . . , k}, s ∈ {0, . . . , n} and t ∈ [0,∞) we have

B∗(v, ℓ, s, t) = B(v, ℓ, s, t).

Assuming the validity of Claim 12 for the moment, we conclude as follows. The dynamic programming
algorithm described above does not suffice since the parameter t takes values in the range [0,∞), while we
need it to take only poly(n) values. We fix this issue using an argument which is based on ideas from [5].

Normalize the distances in U so that the minimum distance is 1, and denote Φ = diam(U). We can
clearly assume that t 6 nΦ. Assume first of all that we can ensure that t 6 A = O

(
poly(n)

)
. Once this is

achieved then all we need to do is to apply a standard discretization procedure as follows. Fix an integer
M > 0 which will be determined presently and let A′ = {0, A/M, 2A/M, . . . , A}. For t ∈ [0, A] denote by
rd(t) the rounding of t to its closest value in A′. We can now define a discretized dynamic programming
procedure B′(v, ℓ, s, τ), where v, ℓ, s take the same values as in the definition of B(v, ℓ, s, t) and τ ∈ A′. This
is done by defining as before for a leaf v ∈ U B(v, 1, 0, 0) = B(v, 1, 1, 0) = B(v, 0, 1, 0) = 0, and for all other
values of ℓ, s, τ setting B(v, ℓ, s, τ) = ∞. When v has children u and w define:
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B′(v, ℓ, s, τ) = min


rd

((
τ

p
1 + r2∆(v)p

)1/p − τ1 +
(
τ

p
2 + r1∆(v)p

)1/p − τ2

)

+ B′(u, ℓ1, s1, τ1) + B′(w, ℓ2, s2, τ2) :

s1,r1,s2,r2∈{0,...,s},
τ1,τ2∈A′,
ℓ1∈{0,...,ℓ},

r16s1,
r26s2,

s=s1+s2−r1−r2,
ℓ=ℓ1+ℓ2,

τ=rd
(
max

{
(τp

1+r2∆(v)p)1/p
, (τp

2+r1∆(v)p)1/p})


.

It is straightforward to check by induction that for any v ∈ V , ℓ ∈ {0, . . . , k}, s ∈ {0, . . . , n} and t ∈ [0, A] we
have

|B(v, ℓ, s, t) − B′(v, ℓ, s, rd(t))| 6 4|Tv|
M

.

Since the optimal value of the Σℓp clustering problem is at least 1 (excluding trivial cases), as this is the
smallest distance in U, B′ will yield an approximation algorithm for this problem whose multiplicative error
is bounded by 1 + O(n/M). Taking M = n/ε for some ε ∈ (0, 1) we obtain the required PTAS.

We therefore need to argue that we can ensure that t = O(poly(n)). Recall that we can assume that t 6
nΦ. Let P = {(x1,C1), . . . , (xk,Ck)} be the (yet unknown) optimal solution of the Σℓp clustering problem with
k-centers on U. Let h be the maximum length appearing in the solution, i.e. h = max16i6k maxx∈Ci dU(xi, x).
Fix ε ∈ (0, 1) and define two “levels” of the tree T by

L =
{
v ∈ V : ∆(v) 6 h < ∆(parent(v))

}
,

and

Q =
{

v ∈ V : ∆(v) 6
εh
n2 < ∆(parent(v))

}
.

Let T ′ be the subtree obtained from T by deleting the subtrees {Tv \ {v}}v∈Q, and let U′ denote the leaves of
T ′. Equivalently, U′ is obtained from U by contracting all distances smaller that εh/n2. It is straightforward
to check that costU′(P) 6 costU(P) 6 (1 + ε) costU′(P).

Note that for every v ∈ L the aspect ratio (i.e. the ratio of the diameter and the shortest distance) of
T ′v∩U′ is at most n2/ε. So, by the above reasoning (in the case of an a priori polynomial bound on t) we can
approximate in polynomial time the value of B∗(v, ℓ, s, t) up to a factor 1 + O(ε). It remains to “glue” these
approximate solutions to a solution of the Σℓp clustering problem on T . This is done by a (simpler) dynamic
programming argument as follows. Denote by T̂ the subtree of T ′ whose root is the same as that of T ′ and
whose leaves are L. For v ∈ T̂ let C∗(v, ℓ) be the optimal solution of the Σℓp clustering problem on T̂v with
ℓ centers and assuming that the largest distance appearing in the solution is at most h. We calculate C∗(v, ℓ)
by dynamic programming: For v ∈ L define C(v, ℓ) = mint B∗(v, ℓ, 0, t), and if v has two children u,w in T̂
then

C(v, ℓ) = min {C(u, ℓ1) +C(w, ℓ2) : ℓ1 ∈ {0, . . . , ℓ}, ℓ1 + ℓ2 = ℓ} .
A straightforward induction shows that C∗(v, ℓ) = C(v, ℓ).

The only thing that is left to be explained is how to find the value h. This is done by exhaustive search:
We try all the

(
n
2

)
possible values of h, do the above procedure for each of them, and take the minimum of

the values that we get.
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The proof of Lemma 3 will be complete once we prove Claim 12. We first note that B∗(v, ℓ, s, t) 6
B(v, ℓ, s, t). This is true because B(·) represents a feasible solution of B∗(·). The proof of this fact is by
induction. If u,w ∈ V are the children of v in T then there exist s1, s2, t1, t2, r1, r2, ℓ1, ℓ2 such that

B(v, ℓ, s, t) = B(u, ℓ1, s1, t1) + B(w, ℓ2, s2, t2) +
(
tp
1 + r2∆(v)p

)1/p − t1 +
(
tp
2 + r1∆(v)p

)1/p − t2,

where s1, r1, s2, r2 ∈ {0, . . . , s}, t1, t2 ∈ [0, t], ℓ1 ∈ {0, . . . , ℓ}, r1 6 s1, r2 6 s2, s = s1 + s2 − r1 − r2,
ℓ = ℓ1 + ℓ2, and t = max

{(
tp
1 + r2∆(v)p

)1/p
,
(
tp
2 + r1∆(v)p

)1/p
}
. By the inductive hypothesis B(u, ℓ1, s1, t1)

and B(w, ℓ2, s2, t2) correspond to feasible solutions of B∗(·) on Tu ∩ U and Tw ∩ U, respectively. Hence
B(v, ℓ, s, t) corresponds to the following feasible solution: Take the union of the centers in Tu ∩ U and
Tw∩U and retain all the current clusters in Tu∩U and Tw∩U as is. Next add arbitrary r1 unclustered points
from Tu∩U (from the pool of s1 unclustered points that we are assuming exist in Tu∩U) to the cluster with
the most weight in Tw ∩U, and similarly add r2 unclustered points from Tw ∩U to the cluster with the most
weight in Tu ∩ U. This creates the required feasible solution.

We next prove by induction that B∗(v, ℓ, s, t) > B(v, ℓ, s, t). Consider the clustering solution at which
B∗(v, ℓ, s, t) is attained. It corresponds to s excluded leaves y1, . . . , ys ∈ Tv ∩ U, ℓ “centers” x1, . . . , xℓ ∈
(Tv ∩ U) \ {y1, . . . , ys} and a partition {C1, . . . ,Cℓ} of (Tv ∩ U) \ {y1, . . . , ys} such that

B∗(v, ℓ, s, t) =
ℓ∑

j=1

∑
x∈C j

d(x, x j)p


1/p

.

By reordering the points we may assume that x1, . . . , xℓ1 ∈ Tu and xℓ1+1, . . . , xℓ1+ℓ2 , ∈ Tw (where ℓ2 = ℓ−ℓ1).
Denote ∣∣∣∣∣∣∣∣

 ℓ1∪
j=1

C j

 ∩ Tw

∣∣∣∣∣∣∣∣ = r2 and

∣∣∣∣∣∣∣∣
 ℓ1+ℓ2∪

j=ℓ1+1

C j

 ∩ Tu

∣∣∣∣∣∣∣∣ = r1.

Finally, we may assume that

t1
def
=

∑
x∈C1∩Tu

d(x, x1)p = max
j∈{1,...,ℓ1}

∑
x∈C j∩Tu

d(x, x j)p,

and
t2

def
=

∑
x∈Cℓ1+1∩Tw

d(x, xℓ1+1)p = max
j∈{ℓ1+1,...,ℓ1+ℓ2}

∑
x∈C j∩Tw

d(x, x j)p.

Denote

Aw =

 ℓ1∪
j=1

C j

 ∩ Tw and Au =

 ℓ1+ℓ2∪
j=ℓ1+1

C j

 ∩ Tu.

We also write s1 = |{y1, . . . , ys} ∩ Tu| + r1 and s2 = |{y1, . . . , ys} ∩ Tw| + r2, so that s = s1 + s2 − r1 − r2.
Note that by definition

ℓ1∑
j=1

 ∑
x∈C j∩Tu

d(x, x j)p


1/p

> B∗(u, ℓ1, s1, t1), (38)

and

ℓ1+ℓ2∑
j=ℓ1+1

 ∑
x∈C j∩Tw

d(x, x j)p


1/p

> B∗(w, ℓ2, s2, t2). (39)
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Thus

B∗(v, ℓ, s, t) =
ℓ1∑
j=1

 ∑
x∈C j∩Tu

d(x, x j)p + |C j ∩ Aw|∆(v)p


1/p

+

ℓ1+ℓ2∑
j=ℓ1+1

 ∑
x∈C j∩Tw

d(x, x j)p + |C j ∩ Au|∆(v)p


1/p

> B∗(u, ℓ1, s1, t1) + B∗(w, ℓ2, s2, t2) +
(
tp
1 + r2∆(v)p

)1/p − t1 +
(
tp
2 + r1∆(v)p

)1/p − t2 (40)

> B(u, ℓ1, s1, t1) + B(w, ℓ2, s2, t2) +
(
tp
1 + r2∆(v)p

)1/p − t1 +
(
tp
2 + r1∆(v)p

)1/p − t2 (41)

> B(v, ℓ, s, t), (42)

where in (40) we used Lemma 11 together with (38) and (39), in (41) we used the inductive hypothesis, and
in (42) we used the definition of B(·). This completes the proof of Lemma 3. �
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