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Abstract

Say that a k-CNF a formula is p-satisfiable if there exists a truth assignment satisfying a fraction
1 − 2−k + p 2−k of its clauses (note that every k-CNF formula is 0-satisfiable). Let Fk(n, m) denote a
random k-CNF formula on n variables with m clauses. For every k ≥ 2 and every r > 0 we determine p
and δ = δ(k) = O(k2−k/2) such that with probability tending to 1 as n →∞, a random k-CNF formula
Fk(n, rn) is p-satisfiable but not (p + δ)-satisfiable.

1 Introduction

Given a formula F in conjunctive normal form (CNF), the Satisfiability problem asks whether there exists a
truth assignment under which F evaluates to true. In 1971, Cook proved that Satisfiability is NP-complete [7]
and that it remains NP-complete when all clauses contain precisely k literals, for any fixed k ≥ 3. This version
of the problem is often referred to as k-SAT.

Given a k-CNF formula F , a natural generalization of k-SAT is to ask whether there exists a truth
assignment satisfying at least a certain number of clauses of F (rather than all of them). This problem is
known as Max k-SAT and it is NP-complete for k ≥ 2 (see [11]). Observe that if a k-CNF formula has m
clauses, the average over all 2n truth assignments of the number of satisfied clauses is precisely (1− 2−k)m.
In particular, one can always produce a truth assignment satisfying all but 2−km clauses using Johnson’s
algorithm [15], i.e., by sequentially setting the variables to their “heaviest” value among the still-unsatisfied
clauses, where the occurrence of a variable in a clause of length i carries weight 2−i. We will say that F is
p-satisfiable, where p ∈ [0, 1], if there exists a truth assignment satisfying 1− 2−k + p 2−k of all clauses.

A deep theorem of H̊astad [12] states that, in general, the above algorithm is best possible: any
polynomial-time algorithm that can distinguish between ε-satisfiable formulas and 1-satisfiable formulas,
can be used to solve the original satisfiability problem in polynomial time. This suggests that in the worst
case (over the choice of formulas), even approximating the maximum fraction of satisfiable clauses in a k-CNF
formula is a very hard problem. In fact, it seems that this task might be hard even for random formulas,
i.e., formulas chosen uniformly at random among all k-CNF formulas with a given number of variables and
clauses. Indeed, an important motivation for our work was the recent work of Feige [10] who showed that
such hardness (Hypothesis 2 in [10]) implies a number of new inapproximability results.

∗Part of this work was done while visiting UC Berkeley.
†Research supported by NSF Grants DMS-0104073 and DMS-0244479.
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In this paper we determine the maximum fraction of satisfiable clauses in random k-CNF formulas with
very high accuracy. Our results hold uniformly for all k ≥ 2 and for all formula densities. For example, we
recover as a special case the recent lower bound of [2] for the random k-SAT threshold.

Let Fk(n,m) denote a random formula on n variables formed by selecting uniformly and independently
m out of all (2n)k possible k-clauses on x1, . . . , xn. When dealing with random k-CNF formulas1 we say a
sequence of random events En occurs with high probability (w.h.p.) if limn→∞P[En] = 1 and with uniformly
positive probability if lim infn→∞P[En] > 0. We emphasize that throughout the paper k is arbitrarily large
but fixed, while n →∞. We introduce the following parameters for every k ≥ 2 and p ∈ (0, 1]:

rk(p) ≡ sup{r : Fk(n, rn) is p-satisfiable w.h.p.}
≤ inf{r : Fk(n, rn) is not p-satisfiable w.h.p.} ≡ r∗k(p) .

One of the most intriguing aspects of random formulas is the Satisfiability Threshold Conjecture asserting that
rk(1) = r∗k(1) for every k ≥ 3. Much work has been done to bound rk(1) and r∗k(1). Trivially, rk(1) < 2k log 2,
since the probability there exists a satisfying truth assignment is at most 2n(1 − 2−k)rn, a quantity that
tends to 0 for r ≥ 2k log 2. Recently [2], it was proved that this trivial upper bound is actually tight, up to
second order terms: namely, rk(1)

2k log 2
→ 1 as k →∞.

For densities in the unsatisfiable regime, much less was known. In particular, the ratio of the previously
known upper bound for r∗k(p) and the lower bound for rk(p) tended to infinity with k. The state of the art
for general k was presented in a recent paper by Coppersmith, Gamarnik, Hajiaghayi, and Sorkin [6], where
it was proved that for some absolute constant c > 0 and p ∈ (0, p0(k)],

c

k
· 2k+1 log 2

p2
< rk(p) ≤ r∗k(p) <

2k+1 log 2
p2

. (1)

For small k the two bounds in (1) are reasonably close, but the ratio between them grows linearly in k.
This naturally raises the question which bound is closer to the truth. Our main result resolves this question
by pinpointing the values of rk(p) and r∗k(p) with relative error that tends to zero exponentially fast in k.
For every p ∈ (0, 1) denote

Tk(p) =
2k log 2

p + (1− p) log(1− p)
, (2)

and let Tk(1) = 2k log 2 so that Tk(·) is continuous on (0, 1].

Theorem 1. There exists a sequence δk = O(k2−k/2), such that for all k ≥ 2 and p ∈ (0, 1],

(1− δk)Tk(p) < rk(p) ≤ r∗k(p) < Tk(p) . (3)

Theorem 1 readily implies the following.

Corollary 1. For every k ≥ 2 and every r > 2k log 2, let

pc = pc(k, r) = Ψ
(

2k log 2
r

)
,

where Ψ is the inverse of the function f(p) = p + (1− p) log(1− p). With high probability a random k-CNF
formula Fk(n, rn) is not pc-satisfiable, but is (pc− δk)-satisfiable, where δk = O(k2−k/2) is as in Theorem 1.

Proof. Let s = Ψ
(

2k log 2
r

)
. We have r = Tk(s) > r∗k(s) and, therefore, w.h.p. Fk(n, rn) is not s-satisfiable.

If p ≤ s(1 − δk), then 2k log 2
r = f(s) ≥ f(p/(1 − δk)) > f(p)/(1 − δk), where the second inequality follows

from the convexity of f . Thus, r < Tk(p)(1− δk) < rk(p), implying that w.h.p. Fk(n, rn) is p-satisfiable.

1Our results hold in all common models for random k-CNF, e.g. when literal replacement is not allowed; see Section 3.
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Our proof of Theorem 1 actually yields an explicit lower bound for rk(p) for each k ≥ 2. For k = 2, i.e.,
Max 2-SAT, the algorithm presented in [6] dominates our lower bound uniformly, i.e., for every value of p,
it yields a better lower bound for r2(p). Already for k ≥ 3, though, our methods yield a better bound for all
p. The following plots indicate that even for relatively small k, our bounds are quite tight:
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Figure 1. Bounds for r∗k and rk as functions of q = 1− p.

The proof of Theorem 1 is based on a delicate application of the second moment method. The second
moment method is a natural approach to many probabilistic and combinatorial problems, and we refer to
Janson’s survey article [14] for a presentation of this method and a useful conditional variant. For certain
problems, a direct application of the second moment method fails due to high correlations, yet once the
source of correlations is recognized, a suitable truncation or weighting can control it. Multiscale truncation
was used in the solution of the Erdős-Taylor (1960) conjecture on simple random walk in the planar square
lattice (see [9], [8]) and a weighting scheme motivated by entropy maximization was the key to the work of
the first and third authors on random k-SAT [2].

In the present paper, in order to deal with correlations we study a random bivariate generating function
that weighs truth assignments according to the fraction of satisfied clauses and the fraction of satisfied literal
occurrences. This approach builds upon insights from both [8] and [2], yet obtaining tight bounds in the
presence of an additional parameter (the fraction of satisfied clauses) presents new analytic challenges. The
crucial new ingredient is a truncation that allows us to adapt the weight assigned to each pair of assignments
to their overlap. Indeed, our lower bounds reported in Figure 1 are the result of performing such an
adaptation using computer assistance. We emphasize that for Max k-SAT this adaptation is necessary
even for determining the first order asymptotics (see Section 2.2). In general, it is notoriously difficult to
obtain precise asymptotics from such random multivariate generating functions; for random Max k-SAT
this is possible due to the surprising cancellation of four terms of equal magnitude in our analysis. This
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cancellation hints at the existence of some unexpected hidden structure in random Max k-SAT; characterizing
this structure combinatorially (rather than just analytically) appears to us worthy of further study.

2 Locating the p-satisfiability threshold via moment estimates

The upper bound in Theorem 1 follows readily by applying Markov’s inequality to the number of p-satisfying
truth assignments (see Section 3.1). While for any fixed value of k one can get a slightly better upper
bound for r∗k(p) by employing a more refined counting argument, such as that of Janson, Stamatiou and
Vamvakari [13], it is remarkable that the naive first moment bound is asymptotically tight.

For a random formula Fk(n, m), denote by sk(n,m) the random variable equal to the maximum (over
all truth assignments σ) of the number of clauses satisfied by σ. The first rigorous study of random Max
k-SAT appeared in the work of Broder, Frieze and Upfal [4] where it was shown that sk(n,m) is sharply
concentrated around its mean. Specifically, standard concentration inequalities imply that

Theorem 2 ([4]). P
[∣∣sk(n,m)− E[sk(n,m)]

∣∣ > t

]
< 2 exp

(
−2t2

m

)
.

In proving the lower bound of Theorem 1, we will use the following corollary of Theorem 2:

Corollary 2. Assume that there exists c = c(k, p, r) such that for n large enough Fk(n, rn) is p-satisfiable
with probability greater that n−c. Then Fk(n, rn) is p′-satisfiable w.h.p. for every constant p′ < p.

Proof. Let S ≡ (1− 2−k + p2−k)rn. Then E[sk(n, rn)] > S − n2/3, since otherwise Theorem 2 would imply
that the probability of p-satisfiability is less than 2e−2r−1n1/3

, contradicting our assumption. By the same
token, P[sk(n, rn) < S − 2n2/3] = o(1).

Thus to establish the lower bound in (3) we will find for every p ∈ (0, 1] a value r = r(p) such that Fk(n, rn)
is p-satisfiable with probability Ω(1/n) and rely on Corollary 2 to get a corresponding high probability result.
A natural way of bounding probabilities from below is the second moment method, which is based on the
following easy consequence of the Cauchy-Schwartz inequality:

Lemma 1. For any non-negative random variable X,

P[X > 0] ≥ E[X]2

E[X2]
. (4)

2.1 Why the standard second moment method fails

A natural way to apply Corollary 2 and Lemma 1 is the following: for any fixed p ∈ (0, 1] one can let X denote
the number of p-satisfying assignments and apply (4) to bound P[X > 0] from below. Unfortunately, it turns
out that for all k, p, r > 0 there exists a constant β = β(k, p, r) > 0 such that E[X2] > (1 + β)nE[X]2. As
a result, this straightforward approach only gives a trivial lower bound on the probability of p-satisfiability.
As shown in [2] for the case p = 1, a major factor in the excessive correlations behind the above failure is
that p-satisfying truth assignments tend to lean toward the majority vote truth assignment. To see this, first
observe that truth assignments that satisfy more literal occurrences than the average number km/2, have
higher probability of being p-satisfying. Yet, in order to satisfy many literal occurrences, such assignments
tend to agree with each other (and the majority truth assignment) on more than half the variables. As a
result, the successes of such assignments tend to be highly correlated and dominate E[X2].

2.2 A bivariate weighting scheme

An attractive feature of the second moment method is that we are free to apply it to any random variable
X such that X > 0 implies p-satisfiability. Hence, in order to avoid the above pitfall, we would like to apply
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the second moment method to truth assignments that satisfy, approximately, half of all literal occurrences;
we call such truth assignments “balanced”.

In what follows we fix p ∈ (0, 1] and k ≥ 2. We will denote by F = Fk(n,m) a random k-CNF formula
on n variables with m = rn clauses. For any truth assignment σ ∈ {0, 1}n let

1. H = H(σ, F ) be the number of satisfied literal occurrences in F under σ, minus the number of
unsatisfied literal occurrences in F under σ.

2. U = U(σ, F ) be the number of unsatisfied clauses in F under σ.

We would like to focus on truth assignments that are balanced and p-satisfying, up to fluctuations that
one would expect from the central limit theorem, i.e., truth assignments σ such that for some constant A > 0,

|H(σ, F )| ≤ A
√

m (5)

|U(σ, F )− (1− p)2−km| ≤ A
√

m . (6)

To do this let us fix 0 < γ, η < 1 and define X(γ, η) as

X(γ, η) =
∑

σ

γH(σ,F )ηU(σ,F )−u0m , (7)

where

u0 =
1− p

2k
. (8)

Since γ, η < 1 we see that in X(γ, η) the truth assignments σ for which H(σ, F ) > 0 or U(σ, F ) > u0m
are suppressed exponentially, while the rest are rewarded exponentially. Decreasing γ, η ∈ [0, 1) makes
this phenomenon more and more acute, with the limiting case γ, η = 0 corresponding to a 0-1 weighting
scheme (we adopt the convention 00 ≡ 1). Indeed, applying the second moment method to X(γ, η) with
η = 0 corresponds to the approach of [2] for the random k-SAT threshold, where only satisfying assignments
receive non-zero weight γH(σ,F ). Unfortunately, when attempting to apply the second moment method to
X(γ, η) with η > 0 we immediately encounter two problems.

The first, less serious, problem is that while X(γ, η) > 0 implies satisfiability when η = 0, having
X(γ, η) > 0 does not imply p-satisfiability when η > 0: in principle, X(γ, η) could be positive due to the
contribution of assignments falsifying many more clauses than u0m. The second, more severe, problem is
that EX(γ, η)2 becomes exponentially greater than [EX(γ, η)]2 when r is only, roughly, half the lower bound
of Theorem 1.

To overcome both of these difficulties we restrict the sum defining X(γ, η) to truth assignments falsifying
at most u0m + O(

√
m) clauses, i.e., we truncate X(γ, η). Specifically, for some fixed A > 0 let

S∗ = {σ ∈ {0, 1}n : H(σ, F ) ≥ 0 and U(σ, F ) ∈ [u0m,u0m + A
√

m]} .

Correspondingly, we define a truncated version of X(γ, η) as

X∗(γ, η) =
∑

σ∈S∗
γH(σ,F )ηU(σ,F )−u0m . (9)

By definition, when X∗(γ, η) > 0 at least one truth assignment must falsify at most u0m + A
√

m clauses.
Thus, if we prove that there exists a constant D > 0 (which may depend on k, p but not on n) such that

EX∗(γ, η)2 < Dn · [EX∗(γ, η)]2 (10)

then Corollary 2 will imply that Fk(n,m) is w.h.p. p′-satisfiable for all p′ < p.
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A crucial feature of this truncation is that it allows us to bound E[X∗(γ, η)2] as follows. Fix γ, η > 0 and
note that

E[X∗(γ, η)2] = E




(∑
σ

γH(σ,F )ηU(σ,F )−u0m 1{σ∈S∗}

)2



=
∑
σ,τ

E
[
γH(σ,F )+H(τ,F )ηU(σ,F )+U(τ,F )−2u0m 1{σ,τ∈S∗}

]
. (11)

Now, since σ ∈ S∗ implies H(σ, F ) ≥ 0 and U(σ, F ) ≥ u0m, we get that for every pair σ, τ and any γ̃ ≥ γ
and η̃ ≥ η,

E
[
γH(σ,F )+H(τ,F )ηU(σ,F )+U(τ,F )−2u0m 1{σ,τ∈S∗}

]
≤ E

[
γ̃H(σ,F )+H(τ,F )η̃U(σ,F )+U(τ,F )−2u0m 1{σ,τ∈S∗}

]

≤ E
[
γ̃H(σ,F )+H(τ,F )η̃U(σ,F )+U(τ,F )−2u0m

]
. (12)

In other words, when using the right hand side of (12) to bound each term of the sum in (11), we are
allowed to adapt the value of γ̃ and η̃ to the pair σ, τ , the only restrictions being γ̃ ≥ γ and η̃ ≥ η. This is
a crucial point and we will exploit it heavily when bounding the contribution of pairs σ, τ which agree on
many variables. The resulting adaptive weighting scheme leads to an extremely delicate asymptotic analysis
in the proof of (10).

3 Probabilistic Preliminaries

Relationship to other k-CNF models: Recall that the m clauses of Fk(n,m) are chosen independently
with replacement among all (2n)k possibilities. Thus, the m clauses {ci}m

i=1 are i.i.d. random variables, each
ci being the conjunction of k i.i.d. random variables {`ij}k

j=1, each `ij being a uniformly random literal. This
viewpoint of the formula as a sequence of km i.i.d. random literals will be very handy for our calculations.

Clearly, in this model some clauses might be improper, i.e., they might contain repeated and/or con-
tradictory literals. Nevertheless, observe that the probability that any given clause is improper is smaller
than k2/n and, moreover, that the proper clauses are uniformly selected among all such clauses. Therefore,
w.h.p. the number of improper clauses is o(n) implying that if for a given r, Fk(n,m = rn) is p-satisfiable
w.h.p. then for m = rn − o(n), the same is true in the model where we only select among proper clauses.
The issue of selecting clauses without replacement is completely analogous as w.h.p. there are o(n) clauses
that contain the same k variables as some other clause.

3.1 The upper bound

As remarked in the Introduction, the upper bound in (3) can be readily derived from the entropic-form
Chernoff bound for the binomial distribution (see Lemma A.10 in [3]). Nevertheless, in deriving the lower
bound of Theorem 1 it will be informative to have a self-contained proof of the upper bound.

Define for α, γ, η ∈ [0, 1],

f(α, γ, η)

= η−2u0

[(
α

(
γ2 + γ−2

2

)
+ 1− α

)k

− 2(1− η)
(

αγ−2 + (1− α)
2

)k

+ (1− η)2
(

αγ−2

2

)k
]

, (13)

where u0 is as in (8). Additionally, let

gr(α, γ, η) =
f(α, γ, η)r

αα(1− α)1−α
. (14)
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Lemma 2. For X(γ, η) as in (7) with m = rn, for every 0 < γ, η < 1,

EX(γ, η) =
2n

ηu0m

[(
γ + γ−1

2

)k

− 1− η

(2γ)k

]m

=
[
2gr

(
1
2
, γ, η

)]n/2

. (15)

Proof. The second equality in (15) follows directly from the definitions of f, gr. Write F = c1 ∧ · · · ∧ cm,
where the ci’s are k-clauses. Observe that for every truth assignment σ, H(σ, F ) =

∑rn
i=1 H(σ, ci), and

similarly for U(σ, F ). Since c1, ..., crn are i.i.d. it follows that if c denotes a random clause

ηu0mEX(γ, η) = 2n
[
E

(
γH(σ,c)ηU(σ,c)

)]m

.

Observe that U(σ, c) = 1 when c is violated by σ, i.e., with probability 2−k; otherwise U(σ, c) = 0. Writing
c = `1 ∨ · · · ∨ `k, where `1, . . . , `k are i.i.d. uniformly distributed literals, it follows that:

E
[
γH(σ,c)ηU(σ,c)

]
= EγH(σ,c) − E

[
γH(σ,c)

(
1− ηU(σ,c)

)]

=
[
EγH(σ,`1)

]k

− 1− η

2kγk

=
(

γ + γ−1

2

)k

− 1− η

2kγk

= f(1/2, γ, η) . (16)

Lemma 3. For all k ≥ 2 and p ∈ (0, 1], if q = 1− p then

r∗k(p) ≤ 2k log 2

q log q − (2k − q) log
(

2k−1
2k−q

) < Tk(p) , (17)

where Tk(·) was defined in (2).

Proof. The right hand inequality of (17) follows from the inequality log t ≤ t− 1 applied to t = 2k−1
2k−q

, so we
just need to verify the left hand inequality. Recall that u0 = 2−kq. Let η ∈ (0, 1), and observe that if F is
p-satisfiable, then U(σ, F ) ≤ u0m for some σ, whence

X(1, η) =
∑

σ

ηU(σ,F )−u0m ≥ 1 .

By Lemma 2 we have

P[X(1, η) ≥ 1] ≤ E[X(1, η)] = 2nη−qrn2−k
(
1− (1− η)2−k

)rn

. (18)

Thus, the probability of p-satisfiability decays exponentially in n if the the n-th root of the RHS of (18) is
strictly smaller than 1. Taking η = q(2k − 1)/(2k − q) yields the lemma.

3.2 The Lower Bound: Groundwork

Our first task is to show that for an appropriate choice of γ and η, the truncation replacing X(γ, η) by
X∗(γ, η) does not reduce the expectation by more than a constant factor. The idea behind the proof below
is motivated by Cramer’s classical “change of measure” technique in large deviation theory.
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Lemma 4. Given u0 ∈ (0, 2−k), let γ0, η0 be the unique real numbers satisfying

1− η0 = (1− γ2
0)(1 + γ2

0)k−1 and u0 =
η0

(1 + γ2
0)k − (1− η0)

. (19)

There exists θ = θ(k, γ0, A) > 0 such that as n →∞,

EX∗(γ0, η0)
EX(γ0, η0)

→ θ .

Remark. The fact that γ0, η0 exist and are unique follows from elementary calculus. It will also be clear
from (44), below.

Proof. It suffices to prove that there exists some θ = θ(k, u0, A) > 0 such that for the values of γ0, η0

satisfying (19) and every truth assignment σ, we have

E
[
γ

H(σ,F )
0 η

U(σ,F )
0 1{σ∈S∗(F)}

]

E
[
γ

H(σ,F )
0 η

U(σ,F )
0

] → θ . (20)

Fix a truth assignment σ and consider an auxiliary distribution Pσ on k-CNF formulas where the clauses
c1, . . . , cm are again i.i.d. among all (2n)k possible k-clauses, but where now for any fixed clause ω

Pσ(ci = ω) =
1

(2n)k
· γ

H(σ,ω)
0 η

U(σ,ω)
0

Z(γ0, η0)
, (21)

where
Z(γ0, η0) =

1
(2n)k

∑
c

γ
H(σ,c)
0 η

U(σ,c)
0 = E

[
γ

H(σ,c)
0 η

U(σ,c)
0

]
= f(1/2, γ0, η0) . (22)

Let Eσ be the expectation operator corresponding to Pσ. A calculation similar to that leading to (16),
adding the equal contributions from the k literals, gives that for a single random clause c

Z(γ0, η0)Eσ[H(σ, c)] = k
γ0 − γ−1

0

2

(
γ0 + γ−1

0

2

)k−1

+
k(1− η0)
(2γ0)k

. (23)

Moreover,
Z(γ0, η0)Eσ[U(σ, c)] = (2γ0)−kη0 . (24)

Thus, the first equation in (19) along with (23) ensure that Eσ[H(σ, c)] = 0, while the second equation
in (19) along with (22),(24) ensure that Eσ[U(σ, c)] = u0.

Next, we apply the multivariate central limit theorem (see, e.g. [16], page 182) to the i.i.d. mean-zero
random vectors

(
H(σ, ci), U(σ, ci) − u0

)
for i = 1, . . . ,m. Observe that, since k ≥ 2, the common law of

these random vectors is not supported on a line. We deduce that as n →∞,

Pσ[σ ∈ S∗(F )] = Pσ

[
H(σ, F ) ≥ 0 and U(σ, F ) ∈ [mu0,mu0 + A

√
m]

]
→ θ(k, u0, A) > 0 .

Here, the right hand side is the probability that a certain non-degenerate bivariate normal law assigns to a
certain open set. Its exact value is unimportant for our purpose. By (21), this is equivalent to (20).

The next lemma bounds the second moment of X∗(γ0, η0) from above:

8



Lemma 5. Let γ(z), η(z) be arbitrary sequences such that γ(z) ≥ γ0 and η(z) ≥ η0 for every 0 ≤ z ≤ n.
Then, for every u0,

E[X∗(γ0, η0)]2 ≤ 2n
n∑

z=0

(
n

z

)
f

( z

n
, γ(z), η(z)

)rn

≤ (n + 1) ·
[
2 · max

0≤z≤n
gr

( z

n
, γ(z), η(z)

)]n

, (25)

where gr is as in (14).

Proof. Fix γ, η > 0. For any pair of truth assignments σ, τ we first observe that since the m clauses
c1, c2, . . . , cm are i.i.d., letting c be a single random clause we have

E
[
γH(σ,F )+H(τ,F )ηU(σ,F )+U(τ,F )

]
= E

[
m∏

i=1

γH(σ,ci)+H(τ,ci)ηU(σ,ci)+U(τ,ci)

]

=
m∏

i=1

E
[
γH(σ,ci)+H(τ,ci)ηU(σ,ci)+U(τ,ci)

]

=
(
E

[
γH(σ,c)+H(τ,c)ηU(σ,c)+U(τ,c)

])m

. (26)

Next, we observe that for every pair σ, τ , by symmetry, the expectation in (26) depends only on the
number of variables to which σ, τ assign the same value. So, let σ, τ be any pair of truth assignments that
agree on exactly z = αn variables, i.e., have overlap z. By first rewriting γHηU as γH + γH(ηU − 1) and
then observing that ηU(τ,c) is distributed identically with ηU(σ,c) we get

E
[
γH(σ,c)ηH(σ,c)γH(τ,c)ηH(τ,c)

]

= E

[(
γH(σ,c) − γH(σ,c)

(
1− ηU(σ,c)

))(
γH(τ,c) − γH(τ,c)

(
1− ηU(τ,c)

))]

= E
[
γH(σ,c)+H(τ,c)

]
− 2E

[
γH(σ,c)+H(τ,c)

(
1− ηU(σ,c)

)]
+ E

[
γH(σ,c)+H(τ,c)

(
1− ηU(σ,c)

)(
1− ηU(τ,c)

)]

= E
[
γH(σ,c)+H(τ,c)

]
− 2(1− η)E

[
γH(σ,c)+H(τ,c)1{σ violates c}

]
+

αk(1− η)2

2kγ2k
. (27)

To evaluate (27) we note that since the literals `1, `2, . . . `k comprising c are i.i.d. we have

E
[
γH(σ,c)+H(τ,c)

]
= E

[∏

i

γH(σ,`i)+H(τ,`i)

]
=

∏

i

E
[
γH(σ,`i)+H(τ,`i)

]
=

(
α

(
γ2 + γ−2

2

)
+ 1− α

)k

(28)

and, similarly,

E
[
γH(σ,c)+H(τ,c)1{σ violates c}

]
= E

[∏

i

γH(σ,`i)+H(τ,`i)1{σ violates `i}

]
=

(
αγ−2 + (1− α)

2

)k

. (29)

Substituting (28), (29) into (27) we get

η−2u0 E
[
γH(σ,c)ηH(σ,c)γH(τ,c)ηH(τ,c)

]

= η−2u0

[(
α

(
γ2 + γ−2

2

)
+ 1− α

)k

− 2(1− η)
(

αγ−2 + (1− α)
2

)k

+ (1− η)2
(

αγ−2

2

)k
]

= f(α, γ, η) . (30)
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Since the number of ordered pairs with overlap z is 2n
(
n
z

)
, using the reasoning in (11) and (12), we get

EX∗(γ0, η0)2 ≤ 2n
n∑

z=0

(
n

z

)
f

( z

n
, γ(z), η(z)

)m

, (31)

for any set of choices for γ(z), η(z) such that γ(z) ≥ γ0 and η(z) ≥ η0 for all 0 ≤ z ≤ n.
The final inequality in (25) follows from the fact that for all n > 1 and z = 0, 1, . . . , n Stirling’s formula

implies that
(
n
z

) ≤ [τ(z/n)]n, where τ(α) = α−α(1− α)α−1 (see e.g. [1], eq. (18)) .

The following corollary is a direct consequence of Lemmata 2, 4 and 5.

Corollary 3. Let χ : [0, 1] → [γ0, 1) and ω : [0, 1] → [η0, 1) be arbitrary functions satisfying χ(1/2) = γ0,
ω(1/2) = η0, and let gr(α) = gr(α, χ(α), ω(α)). Assume that gr(α) ≤ gr(1/2) for all α ∈ [0, 1]. Then there
exists a constant D = Dχ,ω(k, r, p) > 0 such that for all sufficiently large n

E[X∗(γ0, η0)2] ≤ Dn · [EX∗(γ0, η0)
]2

.

Therefore, in order to prove Theorem 1 it is enough to show that for every p ∈ (0, 1] and r = (1−δk)Tk(p),
there exist functions χ, ω for which the conditions of Corollary 3 hold. To simplify the analysis, we use
the crudest possible such functions, paying the price of this simplicity in the value of the constant C in
Proposition 6 below. We note that by choosing a more refined (and more cumbersome) adaptation of γ, η
to α this value can be improved greatly. Moreover, we emphasize that for any fixed value of k, one can get a
sharper lower bound for rk(p) by partitioning [0, 1] to a large number of intervals and numerically finding a
good value of γ, η for each one. Indeed, the bounds reported in the plots in the Introduction are the result
of such optimization. (We discuss this point further in Section 5).

Recall that q = 1− p = u02k. We define ϕ : [0, 1) → [1/2, 1) as

ϕ(q) =
(1−√q)2

1− q + q log q
. (32)

Theorem 1 will follow from the following proposition.

Proposition 6. Let gr(α, γ, η) be as in (14) and define

Gr(α) =





gr(α, γ0, η0) if α ∈
[

3 log k
k , 1− 3 log k

k

]

gr(α,
√

γ0,
√

η0) otherwise.
(33)

There exists a universal constant C > 0 such that if r ≤ 2k log 2
1−q+q log q

(
1− Ck2−kϕ(q)

)
, then for all α ∈ [0, 1],

Gr(α) ≤ Gr(1/2).

The proof of Proposition 6 is presented in the following section. We remark that using the Laplace
method from asymptotic analysis (see [5, §4.2] or Lemma 2 in [1]), a slight modification of the arguments
below shows that the factor of n in Corollary 3 can be removed. However, this is immaterial for our purpose.

4 Asymptotic Analysis

We begin by observing that to prove Proposition 6 it suffices to consider α ∈ (1/2, 1].

Lemma 7. For every 0 < x ≤ 1
2 , Gr(1/2 + x) > Gr(1/2− x).
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Proof. Since the function α 7→ αα(1−α)1−α is symmetric around 1/2, it suffices to prove that for x ∈ (0, 1/2]

f

(
1
2

+ x, γ, η

)
> f

(
1
2
− x, γ, η

)
. (34)

Substituting α = 1/2 + x in (13) and denoting ε = 1− γ2 we get that for all x ∈ [−1/2, 1/2]

ηy/2k−1
22kγ2kf

(
1
2

+ x, γ, η

)
= [2xε2 + (2− ε)2]k − 2 [2xε + (2− ε)]k(1− η) + (1− η)2(1 + 2x)k

=
k∑

j=0

(
k

j

)
2jxj [ε2j(2− ε)2(k−j) − 2(1− η)εj(2− ε)k−j + (1− η)2]

=
k∑

j=0

(
k

j

)
2jxj [εj(2− ε)k−j − (1− η)]2. (35)

Thus, f(1/2 + x, γ, η)− f(1/2− x, γ, η) =
dk/2e∑

j=1

ajx
2j−1, where at most one of the aj ’s is zero.

Before proceeding with the rest of the proof, we introduce some notation, and prove some elementary
estimates that will be used throughout the remainder of this section.

Recalling the definition of η0 from (19) and substituting into the definition of f from (13) we get

f(α, γ0, η0) = η
−q/2k−1

0

·
[(

1− α + α
γ2
0 + γ−2

0

2

)k

− 2 (1− γ2
0)(1 + γ2

0)k−1

(
αγ−2

0 + 1− α

2

)k

+
αk(1− γ2

0)2(1 + γ2
0)2k−2

2kγ2k
0

]
.

For some parts of the ensuing calculations, it will be convenient to use the following normalizations of
f(α, γ0, η0) and gr(α, γ0, η0) denoted as f0 and g0, respectively,

f0(α) = 22kγ2k
0 η

q/2k−1

0 f(α, γ0, η0) and g0(α) = 22krγ2kr
0 η

qr/2k−1

0 gr(α, γ0, η0). (36)

We will also write ε0 = 1−γ2
0 . With this notation, we have the following formula valid for all x ∈ [−1/2, 1/2]

f0

(
1
2

+ x

)
= [2xε0

2 + (2− ε0)2]k − 2ε0(2− ε0)k−1[2− ε0 + 2xε0]k + ε0
2(2− ε0)2k−2(1 + 2x)k . (37)

In particular,

f0

(
1
2

)
= (2− ε0)2k − 2ε0(2− ε0)2k−1 + ε0

2(2− ε0)2k−2 = 4(1− ε0)2(2− ε0)2k−2 . (38)

The function y 7→ 1 − y + y log y, defined on [0, 1], appears throughout our analysis. The following
elementary inequalities, valid for all y ∈ [0, 1], will be used

(1− y)2

2
≤ 1− y + y log y ≤ (1− y)2 . (39)

Recalling that q = 1− p and Equations (8), (19) we claim that

ε0 =
2(1− q)

2k − k − 1
+ O

(
k(1− q)2

22k

)
, (40)
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and

η0 = q − (k + 1)(1− q)
2k − k − 1

+ O

(
k(1− q)2

2k

)
. (41)

By the first equation in (19) we have that η0 = 1− ε0(2− ε0)k−1. Therefore, (41) is a consequence on (40).
To prove (40) let

ψ(t) =
k−1∑

j=1

1
(2− t)j

=
(2− t)k−1 − 1

(1− t)(2− t)k−1
. (42)

Evidently, ψ is increasing, and for 0 ≤ t ≤ 1/k,

ψ(t) = 1− 1
2k−1

+ t− (k + 1)t
2k

+ O(t2) . (43)

Additionally, using the second equation in (19) we find that

ψ(ε0) = 1− q

2k−1
. (44)

Since ψ is increasing, (40) will be proved once we show that for some constants c1, c2,

ψ

(
2(1− q)

2k − k − 1
+

c1(1− q)2

22k

)
≤ 1− q

2k−1
≤ ψ

(
2(1− q)

2k − k − 1
+

c2(1− q)2

22k

)
, (45)

and (45) is a straightforward consequence of (43).

The following lemma proves Proposition 6 in the first range of the definition of Gr.

Lemma 8. For all k ≥ k0, if r ≤ 2k log 2
1−q+q log q then for α ∈

[
1
2 , 1− 3 log k

k

]
we have Gr(α) ≤ Gr(1/2).

Proof. In this proof we use the normalization (36). It is enough to prove that g′0(α) < 0 for 1
2 < α ≤ 1− 3 log k

k .
Now,

g′0(α) =
f0(α)r−1

{
rf ′0(α) + f0(α)

[
log(1− α)− log α

]}

αα(1− α)1−α
. (46)

Differentiating (37) at x = 0 we find that

f ′0

(
1
2

)
= 2kε0

2(2− ε0)2k−2 − 4ε0
2(2− ε0)2k−2 + 2ε0

2(2− ε0)2k−2 = 0 .

Since, by (35), f0(α) > 0 it is enough to show that the following function is decreasing on
[

1
2 , 1− 3 log k

k

]

ζ(α) = rf ′0(α) + f0(α)[log(1− α)− log α] .

Now,

ζ ′(α) = rf ′′0 (α) + f ′0(α)[log(1− α)− log α]− f0(α)
(

1
α

+
1

1− α

)
.

Since for 1/2 < α ≤ 1, log(1− α) < log α and, by (35), f ′0 > 0 on (1/2, 1], it is thus enough to prove that

rf ′′0 (α) ≤ f0(α)
(

1
α

+
1

1− α

)
.
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Now, 1
α + 1

1−α ≥ 4 and, using (38), we get that for α ≥ 1/2,

f0(α) ≥ f0

(
1
2

)
= 4(1− ε0)2(2− ε0)2k−2 ≥ (2− ε0)2k−2 ,

where for the last inequality we used that ε0 ≤ 1/2 for k large enough (by (40)). Thus, it suffices to prove
that for all x ≤ 1/2− 3 log k

k

rf ′′0

(
1
2

+ x

)
≤ 4(2− ε0)2k−2 . (47)

Now, using that x ≤ 1
2 − 3 log k

k , we differentiate (37) twice to get

f ′′0

(
1
2

+ x

)

= 4k(k − 1)
{
ε0

4[2xε0
2 + (2− ε0)2]k−2 − 2ε0

3(2− ε0)k−1[2− ε0 + 2xε0]k−2 + ε0
2(2− ε0)2k−2(1 + 2x)k−2

}

≤ 4k2

{
ε0

4(2− ε0)2k−4

(
1 +

2xε0
2

(2− ε0)2

)k−2

+ ε0
2(2− ε0)2k−2(1 + 2x)k−2

}

≤ 4k2
{

ε0
4(2− ε0)2k−4 (1 + 2x)k−2 + ε0

2(2− ε0)2k−2(1 + 2x)k−2
}

≤ 8k2ε0
2(2− ε0)2k−2(1 + 2x)k

≤ 8k2ε0
2(2− ε0)2k−2

[
2− 6 log k

k

]k

≤ 8k2ε0
2(2− ε0)2k−2 2k

k3

≤ 2k+3

k

(
4(1− q)

2k

)2

(2− ε0)2k−2 ,

where in the last line we used the fact that for k large enough (40) implies ε0 ≤ 4(1− q)/2k.
Combining this estimate with (47), we see that we must show that for sufficiently large k

128 log 2
1− q + q log q

· (1− q)2

k
≤ 4 ,

and this is indeed the case by (39).

It remains to prove that Gr(α) < Gr(1/2) for 1− 3 log k
k ≤ α ≤ 1. This inequality simplifies to:

[
f(α,

√
γ0,

√
η0)

f(1/2, γ0, η0)

]r

< 2αα(1− α)1−α . (48)

The following lemma gives an upper bound for the left-hand side of (48).

Lemma 9. There exists a constant c > 0 such that for all sufficiently large k and α ∈ [1/2, 1],

f(α,
√

γ0,
√

η0)
f(1/2, γ0, η0)

< qq/2k

[
1 +

2
√

q − 2q + (1−√q)2αk

2k
+

ck(1− q)2

22k

]
. (49)

13



Proof. Denote ε1 = 1− (
√

γ0)2 = 1−√1− ε0 = ε0
2 + O(ε2

0). Now,

η
q/2k

0 γk
0 f (α,

√
γ0,

√
η0) =

(
1− ε1 +

αε2
1

2

)k

− 2(1−√η0)(1− ε1(1− α))k + (1−√η0)2αk

2k

= 1− kε0

2
+

k2ε2
0

8
+ O(kε2

0)−
2(1−√η0) + (1−√η0)2αk

2k
+ O

(
k(1−√η0)ε0

2k

)

= 1− kε0

2
+

k2ε2
0

8
− 2(1−√η0) + (1−√η0)2αk

2k
+ O

(
k(1− q)2

22k

)
, (50)

where in (50) we have used (40) and (41). Observe now that q > η0 since
q

2k
= u0 =

η0

(1 + γ2
0)k − (1− η0)

=
η0

2k(1− ε0)(1− ε0/2)k−1
>

η0

2k
,

where for the second and third equalities we used, respectively, the definitions of u0 and η0 from (19). The
fact q > η0 implies that for every α ∈ [0, 1],

(1−√η0)2αk − 2(1−√η0) ≤ (1−√q)2αk − 2(1−√q) + η0 − q , (51)

since the right-hand side minus the left-hand side of (51) equals (1 − αk)
(
(2
√

q − q)− (2
√

η0 − η0)
)

> 0.
Using (41) to bound η0 in the right hand side of (51) we conclude that

(1−√η0)2αk − 2(1−√η0) ≤ (1−√q)2αk − 2(1−√q)− (k + 1)(1− q)
2k − k − 1

+ O

(
k(1− q)2

2k

)
.

Substituting this estimate into (50), we get

η
q/2k

0 γk
0 f (α,

√
γ0,

√
η0)

= 1− kε0

2
+

k2ε2
0

8
− 2(1−√q)− (1−√q)2αk

2k
− (k + 1)(1− q)

2k(2k − k − 1)
+ O

(
k(1− q)2

22k

)
. (52)

Using the identity (38) we can rewrite the ratio in (48) as

f(α,
√

γ0,
√

η0)
f(1/2, γ0, η0)

=
η

q/2k

0 (1− ε0)
k
2−2

(1− ε0/2)2k−2
· ηq/2k

0 γk
0 f (α,

√
γ0,

√
η0) . (53)

By (41)

η
q/2k

0 = qq/2k

[
1− (k + 1)(1− q)

2k(2k − k − 1)
+ O

(
k(1− q)2

22k

)]
. (54)

Expanding around ε0 and using (40) we get

(1− ε0)
k
2−2

(1− ε0/2)2k−2
=1 +

(
k

2
+ 1

)
ε0 +

k2

8
ε2
0 + O(kε2

0) = 1 +
(

k

2
+ 1

)
ε0 +

k2

8
ε2
0 + O

(
k(1− q)2

22k

)
. (55)

Direct substitution of (52),(54),(55) into (53) gives (56). Collecting terms, noting two cancellations and
using (40) to bound the remaining terms involving ε0 gives (57)

f(α,
√

γ0,
√

η0)
f(1/2, γ0, η0)

= qq/2k

[
1− (k + 1)(1− q)

2k(2k − k − 1)
+ O

(
k(1− q)2

22k

)]
·

[
1 +

(
k

2
+ 1

)
ε0 +

k2

8
ε2
0 + O

(
k(1− q)2

22k

)]
· (56)

[
1− kε0

2
+

k2ε2
0

8
− 2(1−√q)− (1−√q)2αk

2k
− (k + 1)(1− q)

2k(2k − k − 1)
+ O

(
k(1− q)2

22k

)]

= qq/2k

[
1 + ε0 − 2(k + 1)(1− q)

2k(2k − k − 1)
− 2(1−√q)− (1−√q)2αk

2k
+ O

(
k(1− q)2

22k

)]
.(57)
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Using (40) once more, (57) becomes

qq/2k

[
1 +

2(1− q)
2k − k − 1

− 2(k + 1)(1− q)
2k(2k − k − 1)

− 2(1−√q)− (1−√q)2αk

2k
+ O

(
k(1− q)2

22k

)]
. (58)

Observe now that

2(1− q)
2k − k − 1

− 2(k + 1)(1− q)
2k(2k − k − 1)

− 2(1−√q)− (1−√q)2αk

2k
=

2
√

q − 2q + (1−√q)2αk

2k

which concludes the proof.

We are now in position to conclude the proof of Proposition 6.

Proof of Proposition 6. By (49), there is a constant c > 0 such that for α ∈ [1/2, 1]

f(α,
√

γ0,
√

η0)
f(1/2, γ0, η0)

< qq/2k

[
1 +

2
√

q − 2q + (1−√q)2αk

2k
+

c k(1− q)2

22k

]
.

Hence, to prove (48) it is enough to show that

{
qq/2k

[
1 +

2
√

q − 2q + (1−√q)2αk

2k
+

ck(1− q)2

22k

]}r

< 2αα(1− α)1−α .

Taking logarithms and using the inequality log(1 + x) ≤ x, this amounts to showing

r

2k

[
q log q + 2

√
q − 2q + (1−√q)2αk +

ck(1− q)2

2k

]
≤ log 2− h(α) , (59)

where h(α) = −α log α− (1− α) log(1− α).
To simplify notation let us define

A = (1−√q)2 and B = q log q + 2
√

q − 2q +
ck(1− q)2

2k
(60)

and observe that
A

A + B
= ϕ(q)(1 + O(k2−k)) . (61)

With this notation (59) becomes

r

2k
≤ log 2− h(α)

Aαk + B
≡ M(α) , (62)

and this should hold for all α ≥ 1− 3 log k
k .

We need to determine the minimal value of M on the interval
[
1− 3 log k

k , 1
]
. The derivative of M is

M ′(α) =
(Aαk + B) · [log α− log(1− α)]− kAαk−1[log 2− h(α)]

(Aαk + B)2
. (63)

In particular, M ′(1) = ∞, so M cannot be minimized at α = 1. Moreover, we claim that M(α) > M(1) for
α ∈

[
1− 3 log k

k , 2−1/k
]
. To prove this observe that h(α) = o(1) since α ≥ 1− 3 log k

k . Since, also, α ≤ 2−1/k

M (α) ≥ log 2− o(1)

A
(
2−1/k

)k + B
≥ log 2 (1− o(1))

A
2 + B

.
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On the other hand, M(1) = log 2/(A + B). Thus, by (61), we have M(1)/M(α) → 1− ϕ(q)/2.
It remains to bound M(α) from below when α > 2−1/k and M ′(α) = 0. For such α, by (63), we have

− log(1− α) = − log α +
kAαk−1

Aαk + B
[log 2− h(α)] . (64)

Since α > 2−1/k, h(α) = o(1). Hence (64) implies that α ≥ 1− e−k/8 since for k large enough we must have

− log(1− α) ≥ kA

2(A + B)
(log 2− o(1)) >

kϕ(q)
4

≥ k

8
. (65)

Invoking (64) again, now starting with the premise α > 1− e−k/8, we get that for all sufficiently large k,

− log(1− α) > kϕ(q) log 2 (1− e−k/9) (66)

and, thus, α > 1− exp(−kϕ(q) log 2 (1− e−k/9)). Since h(1− e−z) ≤ e−z(1 + z) for all z ≥ 0 we get

h(α) ≤ k2−kϕ(q)(1−e−k/9) = O(k2−kϕ(q)) , (67)

where for the equality above we used that ϕ(q) ∈ [1/2, 1). Therefore,

M(α) =
log 2− h(α)
Aαk + B

≥ log 2
A + B

(
1−O

(
k2−kϕ(q)

))
≥ log 2

1− q + q log q

(
1−O

(
k2−kϕ(q)

))
.

Hence the restriction on r in (62) becomes r ≤ 2k log 2
1−q+q log q

(
1−O

(
k2−kϕ(q)

))
, proving Proposition 6.

5 Bounds for Small values of k

As mentioned in Section 3, for small values of k the simple adaptation scheme of Proposition 6 does not
yield the best possible lower bound for p-satisfiability afforded by our method. For that, one has to use a
significantly more refined adaptation of γ, η with respect to α. Our lower bounds reported in Figure 1 are,
indeed, the result of performing such optimization of γ, η numerically (For both the upper bound plots and
the plots of the lower bound from [6] we used the explicit formulas.)

Specifically, to create the plots of the lower bounds we computed a lower bound for 100 equally spaced
values of p on the horizontal axis and then had Maple’s [17] plotting function “connect the dots”. For each of
these values of p, to prove the corresponding lower bound for r we had to establish that there exist a choice
of functions χ, ω as in Lemma 3 such that for all α ∈ (1/2, 1] we have gr(1/2, γ0, η0) > gr(α, χ(α), ω(α)). To
that end, we partitioned (1/2, 1] to 10,000 points and for each such point we searched for values of γ ≥ γ0

and η ≥ η0 such that this condition holds with a bit of room. (For k > 4 we solved (19), defining γ0 and η0,
numerically to 10 digits of accuracy. For the optimization we exploited convexity to speed up the search.)
Having determined such values, we (implicitly) extended the functions χ, ω to all (1/2, 1] by assigning to
every not-chosen point the value at the nearest chosen point. Finally, we computed a (crude) upper bound
on the derivative of gr with respect to α in (1/2, 1]. This bound on the derivative, along with our room
factor, then implied that for every point that we did not check, the value of gr was sufficiently close to its
value at the corresponding chosen point to also be dominated by gr(1/2, γ0, η0).
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