On the Maximum Satisfiability of Random Formulas

Dimitris Achlioptas*
Microsoft Research, Redmond, Washington
optas@microsoft.com
Assaf Naor
Microsoft Research, Redmond, Washington
anaor@microsoft.com
Yuval Peres ${ }^{\dagger}$
Departments of Statistics and Mathematics, University of California, Berkeley
peres@stat.berkeley.edu

Abstract

Say that a k-CNF a formula is p-satisfiable if there exists a truth assignment satisfying a fraction $1-2^{-k}+p 2^{-k}$ of its clauses (note that every k-CNF formula is 0 -satisfiable). Let $F_{k}(n, m)$ denote a random k-CNF formula on n variables with m clauses. For every $k \geq 2$ and every $r>0$ we determine p and $\delta=\delta(k)=O\left(k 2^{-k / 2}\right)$ such that with probability tending to 1 as $n \rightarrow \infty$, a random k-CNF formula $F_{k}(n, r n)$ is p-satisfiable but not $(p+\delta)$-satisfiable.

1 Introduction

Given a formula F in conjunctive normal form (CNF), the Satisfiability problem asks whether there exists a truth assignment under which F evaluates to true. In 1971, Cook proved that Satisfiability is NP-complete [7] and that it remains NP-complete when all clauses contain precisely k literals, for any fixed $k \geq 3$. This version of the problem is often referred to as k-SAT.

Given a k-CNF formula F, a natural generalization of k-SAT is to ask whether there exists a truth assignment satisfying at least a certain number of clauses of F (rather than all of them). This problem is known as Max k-SAT and it is NP-complete for $k \geq 2$ (see [11]). Observe that if a k-CNF formula has m clauses, the average over all 2^{n} truth assignments of the number of satisfied clauses is precisely $\left(1-2^{-k}\right) m$. In particular, one can always produce a truth assignment satisfying all but $2^{-k} m$ clauses using Johnson's algorithm [15], i.e., by sequentially setting the variables to their "heaviest" value among the still-unsatisfied clauses, where the occurrence of a variable in a clause of length i carries weight 2^{-i}. We will say that F is p-satisfiable, where $p \in[0,1]$, if there exists a truth assignment satisfying $1-2^{-k}+p 2^{-k}$ of all clauses.

A deep theorem of Håstad [12] states that, in general, the above algorithm is best possible: any polynomial-time algorithm that can distinguish between ε-satisfiable formulas and 1 -satisfiable formulas, can be used to solve the original satisfiability problem in polynomial time. This suggests that in the worst case (over the choice of formulas), even approximating the maximum fraction of satisfiable clauses in a k-CNF formula is a very hard problem. In fact, it seems that this task might be hard even for random formulas, i.e., formulas chosen uniformly at random among all k-CNF formulas with a given number of variables and clauses. Indeed, an important motivation for our work was the recent work of Feige [10] who showed that such hardness (Hypothesis 2 in [10]) implies a number of new inapproximability results.

[^0]In this paper we determine the maximum fraction of satisfiable clauses in random k-CNF formulas with very high accuracy. Our results hold uniformly for all $k \geq 2$ and for all formula densities. For example, we recover as a special case the recent lower bound of [2] for the random k-SAT threshold.

Let $F_{k}(n, m)$ denote a random formula on n variables formed by selecting uniformly and independently m out of all $(2 n)^{k}$ possible k-clauses on x_{1}, \ldots, x_{n}. When dealing with random k-CNF formulas ${ }^{1}$ we say a sequence of random events \mathcal{E}_{n} occurs with high probability (w.h.p.) if $\lim _{n \rightarrow \infty} \mathbf{P}\left[\mathcal{E}_{n}\right]=1$ and with uniformly positive probability if $\lim _{\inf }^{n \rightarrow \infty} \boldsymbol{P}\left[\mathcal{E}_{n}\right]>0$. We emphasize that throughout the paper k is arbitrarily large but fixed, while $n \rightarrow \infty$. We introduce the following parameters for every $k \geq 2$ and $p \in(0,1]$:

$$
\begin{aligned}
r_{k}(p) & \equiv \sup \left\{r: F_{k}(n, r n) \text { is } p \text {-satisfiable w.h.p. }\right\} \\
& \leq \inf \left\{r: F_{k}(n, r n) \text { is } \operatorname{not} p \text {-satisfiable w.h.p. }\right\} \equiv r_{k}^{*}(p)
\end{aligned}
$$

One of the most intriguing aspects of random formulas is the Satisfiability Threshold Conjecture asserting that $r_{k}(1)=r_{k}^{*}(1)$ for every $k \geq 3$. Much work has been done to bound $r_{k}(1)$ and $r_{k}^{*}(1)$. Trivially, $r_{k}(1)<2^{k} \log 2$, since the probability there exists a satisfying truth assignment is at most $2^{n}\left(1-2^{-k}\right)^{r n}$, a quantity that tends to 0 for $r \geq 2^{k} \log 2$. Recently [2], it was proved that this trivial upper bound is actually tight, up to second order terms: namely, $\frac{r_{k}(1)}{2^{k} \log 2} \rightarrow 1$ as $k \rightarrow \infty$.

For densities in the unsatisfiable regime, much less was known. In particular, the ratio of the previously known upper bound for $r_{k}^{*}(p)$ and the lower bound for $r_{k}(p)$ tended to infinity with k. The state of the art for general k was presented in a recent paper by Coppersmith, Gamarnik, Hajiaghayi, and Sorkin [6], where it was proved that for some absolute constant $c>0$ and $p \in\left(0, p_{0}(k)\right]$,

$$
\begin{equation*}
\frac{c}{k} \cdot \frac{2^{k+1} \log 2}{p^{2}}<r_{k}(p) \leq r_{k}^{*}(p)<\frac{2^{k+1} \log 2}{p^{2}} \tag{1}
\end{equation*}
$$

For small k the two bounds in (1) are reasonably close, but the ratio between them grows linearly in k. This naturally raises the question which bound is closer to the truth. Our main result resolves this question by pinpointing the values of $r_{k}(p)$ and $r_{k}^{*}(p)$ with relative error that tends to zero exponentially fast in k. For every $p \in(0,1)$ denote

$$
\begin{equation*}
T_{k}(p)=\frac{2^{k} \log 2}{p+(1-p) \log (1-p)} \tag{2}
\end{equation*}
$$

and let $T_{k}(1)=2^{k} \log 2$ so that $T_{k}(\cdot)$ is continuous on $(0,1]$.
Theorem 1. There exists a sequence $\delta_{k}=O\left(k 2^{-k / 2}\right)$, such that for all $k \geq 2$ and $p \in(0,1]$,

$$
\begin{equation*}
\left(1-\delta_{k}\right) T_{k}(p)<r_{k}(p) \leq r_{k}^{*}(p)<T_{k}(p) . \tag{3}
\end{equation*}
$$

Theorem 1 readily implies the following.
Corollary 1. For every $k \geq 2$ and every $r>2^{k} \log 2$, let

$$
p_{c}=p_{c}(k, r)=\Psi\left(\frac{2^{k} \log 2}{r}\right),
$$

where Ψ is the inverse of the function $f(p)=p+(1-p) \log (1-p)$. With high probability a random $k-C N F$ formula $F_{k}(n, r n)$ is not p_{c}-satisfiable, but is $\left(p_{c}-\delta_{k}\right)$-satisfiable, where $\delta_{k}=O\left(k 2^{-k / 2}\right)$ is as in Theorem 1 .

Proof. Let $s=\Psi\left(\frac{2^{k} \log 2}{r}\right)$. We have $r=T_{k}(s)>r_{k}^{*}(s)$ and, therefore, w.h.p. $F_{k}(n, r n)$ is not s-satisfiable. If $p \leq s\left(1-\delta_{k}\right)$, then $\frac{2^{k} \log 2}{r}=f(s) \geq f\left(p /\left(1-\delta_{k}\right)\right)>f(p) /\left(1-\delta_{k}\right)$, where the second inequality follows from the convexity of f. Thus, $r<T_{k}(p)\left(1-\delta_{k}\right)<r_{k}(p)$, implying that w.h.p. $F_{k}(n, r n)$ is p-satisfiable.

[^1]Our proof of Theorem 1 actually yields an explicit lower bound for $r_{k}(p)$ for each $k \geq 2$. For $k=2$, i.e., Max 2-SAT, the algorithm presented in [6] dominates our lower bound uniformly, i.e., for every value of p, it yields a better lower bound for $r_{2}(p)$. Already for $k \geq 3$, though, our methods yield a better bound for all p. The following plots indicate that even for relatively small k, our bounds are quite tight:

Figure 1. Bounds for r_{k}^{*} and r_{k} as functions of $q=1-p$.
The proof of Theorem 1 is based on a delicate application of the second moment method. The second moment method is a natural approach to many probabilistic and combinatorial problems, and we refer to Janson's survey article [14] for a presentation of this method and a useful conditional variant. For certain problems, a direct application of the second moment method fails due to high correlations, yet once the source of correlations is recognized, a suitable truncation or weighting can control it. Multiscale truncation was used in the solution of the Erdős-Taylor (1960) conjecture on simple random walk in the planar square lattice (see [9], [8]) and a weighting scheme motivated by entropy maximization was the key to the work of the first and third authors on random k-SAT [2].

In the present paper, in order to deal with correlations we study a random bivariate generating function that weighs truth assignments according to the fraction of satisfied clauses and the fraction of satisfied literal occurrences. This approach builds upon insights from both [8] and [2], yet obtaining tight bounds in the presence of an additional parameter (the fraction of satisfied clauses) presents new analytic challenges. The crucial new ingredient is a truncation that allows us to adapt the weight assigned to each pair of assignments to their overlap. Indeed, our lower bounds reported in Figure 1 are the result of performing such an adaptation using computer assistance. We emphasize that for Max k-SAT this adaptation is necessary even for determining the first order asymptotics (see Section 2.2). In general, it is notoriously difficult to obtain precise asymptotics from such random multivariate generating functions; for random Max k-SAT this is possible due to the surprising cancellation of four terms of equal magnitude in our analysis. This
cancellation hints at the existence of some unexpected hidden structure in random Max k-SAT; characterizing this structure combinatorially (rather than just analytically) appears to us worthy of further study.

2 Locating the p-satisfiability threshold via moment estimates

The upper bound in Theorem 1 follows readily by applying Markov's inequality to the number of p-satisfying truth assignments (see Section 3.1). While for any fixed value of k one can get a slightly better upper bound for $r_{k}^{*}(p)$ by employing a more refined counting argument, such as that of Janson, Stamatiou and Vamvakari [13], it is remarkable that the naive first moment bound is asymptotically tight.

For a random formula $F_{k}(n, m)$, denote by $s_{k}(n, m)$ the random variable equal to the maximum (over all truth assignments σ) of the number of clauses satisfied by σ. The first rigorous study of random Max k-SAT appeared in the work of Broder, Frieze and Upfal [4] where it was shown that $s_{k}(n, m)$ is sharply concentrated around its mean. Specifically, standard concentration inequalities imply that

Theorem 2 ([4]). $\mathbf{P}\left[\left|s_{k}(n, m)-\mathbb{E}\left[s_{k}(n, m)\right]\right|>t\right]<2 \exp \left(-\frac{2 t^{2}}{m}\right)$.
In proving the lower bound of Theorem 1, we will use the following corollary of Theorem 2:
Corollary 2. Assume that there exists $c=c(k, p, r)$ such that for n large enough $F_{k}(n, r n)$ is p-satisfiable with probability greater that n^{-c}. Then $F_{k}(n, r n)$ is p^{\prime}-satisfiable w.h.p. for every constant $p^{\prime}<p$.

Proof. Let $S \equiv\left(1-2^{-k}+p 2^{-k}\right) r n$. Then $\mathbb{E}\left[s_{k}(n, r n)\right]>S-n^{2 / 3}$, since otherwise Theorem 2 would imply that the probability of p-satisfiability is less than $2 e^{-2 r^{-1} n^{1 / 3}}$, contradicting our assumption. By the same token, $\mathbf{P}\left[s_{k}(n, r n)<S-2 n^{2 / 3}\right]=o(1)$.

Thus to establish the lower bound in (3) we will find for every $p \in(0,1]$ a value $r=r(p)$ such that $F_{k}(n, r n)$ is p-satisfiable with probability $\Omega(1 / n)$ and rely on Corollary 2 to get a corresponding high probability result. A natural way of bounding probabilities from below is the second moment method, which is based on the following easy consequence of the Cauchy-Schwartz inequality:

Lemma 1. For any non-negative random variable X,

$$
\begin{equation*}
\mathbf{P}[X>0] \geq \frac{\mathbb{E}[X]^{2}}{\mathbb{E}\left[X^{2}\right]} \tag{4}
\end{equation*}
$$

2.1 Why the standard second moment method fails

A natural way to apply Corollary 2 and Lemma 1 is the following: for any fixed $p \in(0,1]$ one can let X denote the number of p-satisfying assignments and apply (4) to bound $\mathbf{P}[X>0]$ from below. Unfortunately, it turns out that for all $k, p, r>0$ there exists a constant $\beta=\beta(k, p, r)>0$ such that $\mathbb{E}\left[X^{2}\right]>(1+\beta)^{n} \mathbb{E}[X]^{2}$. As a result, this straightforward approach only gives a trivial lower bound on the probability of p-satisfiability. As shown in [2] for the case $p=1$, a major factor in the excessive correlations behind the above failure is that p-satisfying truth assignments tend to lean toward the majority vote truth assignment. To see this, first observe that truth assignments that satisfy more literal occurrences than the average number $\mathrm{km} / 2$, have higher probability of being p-satisfying. Yet, in order to satisfy many literal occurrences, such assignments tend to agree with each other (and the majority truth assignment) on more than half the variables. As a result, the successes of such assignments tend to be highly correlated and dominate $\mathbb{E}\left[X^{2}\right]$.

2.2 A bivariate weighting scheme

An attractive feature of the second moment method is that we are free to apply it to any random variable X such that $X>0$ implies p-satisfiability. Hence, in order to avoid the above pitfall, we would like to apply
the second moment method to truth assignments that satisfy, approximately, half of all literal occurrences; we call such truth assignments "balanced".

In what follows we fix $p \in(0,1]$ and $k \geq 2$. We will denote by $F=F_{k}(n, m)$ a random k-CNF formula on n variables with $m=r n$ clauses. For any truth assignment $\sigma \in\{0,1\}^{n}$ let

1. $H=H(\sigma, F)$ be the number of satisfied literal occurrences in F under σ, minus the number of unsatisfied literal occurrences in F under σ.
2. $U=U(\sigma, F)$ be the number of unsatisfied clauses in F under σ.

We would like to focus on truth assignments that are balanced and p-satisfying, up to fluctuations that one would expect from the central limit theorem, i.e., truth assignments σ such that for some constant $A>0$,

$$
\begin{align*}
|H(\sigma, F)| & \leq A \sqrt{m} \tag{5}\\
\left|U(\sigma, F)-(1-p) 2^{-k} m\right| & \leq A \sqrt{m} . \tag{6}
\end{align*}
$$

To do this let us fix $0<\gamma, \eta<1$ and define $X(\gamma, \eta)$ as

$$
\begin{equation*}
X(\gamma, \eta)=\sum_{\sigma} \gamma^{H(\sigma, F)} \eta^{U(\sigma, F)-u_{0} m} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{0}=\frac{1-p}{2^{k}} . \tag{8}
\end{equation*}
$$

Since $\gamma, \eta<1$ we see that in $X(\gamma, \eta)$ the truth assignments σ for which $H(\sigma, F)>0$ or $U(\sigma, F)>u_{0} m$ are suppressed exponentially, while the rest are rewarded exponentially. Decreasing $\gamma, \eta \in[0,1)$ makes this phenomenon more and more acute, with the limiting case $\gamma, \eta=0$ corresponding to a $0-1$ weighting scheme (we adopt the convention $0^{0} \equiv 1$). Indeed, applying the second moment method to $X(\gamma, \eta)$ with $\eta=0$ corresponds to the approach of [2] for the random k-SAT threshold, where only satisfying assignments receive non-zero weight $\gamma^{H(\sigma, F)}$. Unfortunately, when attempting to apply the second moment method to $X(\gamma, \eta)$ with $\eta>0$ we immediately encounter two problems.

The first, less serious, problem is that while $X(\gamma, \eta)>0$ implies satisfiability when $\eta=0$, having $X(\gamma, \eta)>0$ does not imply p-satisfiability when $\eta>0$: in principle, $X(\gamma, \eta)$ could be positive due to the contribution of assignments falsifying many more clauses than $u_{0} m$. The second, more severe, problem is that $\mathbb{E} X(\gamma, \eta)^{2}$ becomes exponentially greater than $[\mathbb{E} X(\gamma, \eta)]^{2}$ when r is only, roughly, half the lower bound of Theorem 1 .

To overcome both of these difficulties we restrict the sum defining $X(\gamma, \eta)$ to truth assignments falsifying at most $u_{0} m+O(\sqrt{m})$ clauses, i.e., we truncate $X(\gamma, \eta)$. Specifically, for some fixed $A>0$ let

$$
\mathcal{S}^{*}=\left\{\sigma \in\{0,1\}^{n}: H(\sigma, F) \geq 0 \text { and } U(\sigma, F) \in\left[u_{0} m, u_{0} m+A \sqrt{m}\right]\right\} .
$$

Correspondingly, we define a truncated version of $X(\gamma, \eta)$ as

$$
\begin{equation*}
X_{*}(\gamma, \eta)=\sum_{\sigma \in \mathcal{S}^{*}} \gamma^{H(\sigma, F)} \eta^{U(\sigma, F)-u_{0} m} \tag{9}
\end{equation*}
$$

By definition, when $X_{*}(\gamma, \eta)>0$ at least one truth assignment must falsify at most $u_{0} m+A \sqrt{m}$ clauses. Thus, if we prove that there exists a constant $D>0$ (which may depend on k, p but not on n) such that

$$
\begin{equation*}
\mathbb{E} X_{*}(\gamma, \eta)^{2}<D n \cdot\left[\mathbb{E} X_{*}(\gamma, \eta)\right]^{2} \tag{10}
\end{equation*}
$$

then Corollary 2 will imply that $F_{k}(n, m)$ is w.h.p. p^{\prime}-satisfiable for all $p^{\prime}<p$.

A crucial feature of this truncation is that it allows us to bound $\mathbb{E}\left[X_{*}(\gamma, \eta)^{2}\right]$ as follows. Fix $\gamma, \eta>0$ and note that

$$
\begin{align*}
\mathbb{E}\left[X_{*}(\gamma, \eta)^{2}\right] & =\mathbb{E}\left[\left(\sum_{\sigma} \gamma^{H(\sigma, F)} \eta^{U(\sigma, F)-u_{0} m} \mathbf{1}_{\left\{\sigma \in \mathcal{S}^{*}\right\}}\right)^{2}\right] \\
& =\sum_{\sigma, \tau} \mathbb{E}\left[\gamma^{H(\sigma, F)+H(\tau, F)} \eta^{U(\sigma, F)+U(\tau, F)-2 u_{0} m} \mathbf{1}_{\left\{\sigma, \tau \in \mathcal{S}^{*}\right\}}\right] \tag{11}
\end{align*}
$$

Now, since $\sigma \in \mathcal{S}^{*}$ implies $H(\sigma, F) \geq 0$ and $U(\sigma, F) \geq u_{0} m$, we get that for every pair σ, τ and any $\tilde{\gamma} \geq \gamma$ and $\tilde{\eta} \geq \eta$,

$$
\begin{align*}
\mathbb{E}\left[\gamma^{H(\sigma, F)+H(\tau, F)} \eta^{U(\sigma, F)+U(\tau, F)-2 u_{0} m} \mathbf{1}_{\left\{\sigma, \tau \in \mathcal{S}^{*}\right\}}\right] & \leq \mathbb{E}\left[\tilde{\gamma}^{H(\sigma, F)+H(\tau, F)} \tilde{\eta}^{U(\sigma, F)+U(\tau, F)-2 u_{0} m} \mathbf{1}_{\left\{\sigma, \tau \in \mathcal{S}^{*}\right\}}\right] \\
& \leq \mathbb{E}\left[\tilde{\gamma}^{H(\sigma, F)+H(\tau, F)} \tilde{\eta}^{U(\sigma, F)+U(\tau, F)-2 u_{0} m}\right] \tag{12}
\end{align*}
$$

In other words, when using the right hand side of (12) to bound each term of the sum in (11), we are allowed to adapt the value of $\tilde{\gamma}$ and $\tilde{\eta}$ to the pair σ, τ, the only restrictions being $\tilde{\gamma} \geq \gamma$ and $\tilde{\eta} \geq \eta$. This is a crucial point and we will exploit it heavily when bounding the contribution of pairs σ, τ which agree on many variables. The resulting adaptive weighting scheme leads to an extremely delicate asymptotic analysis in the proof of (10).

3 Probabilistic Preliminaries

Relationship to other k-CNF models: Recall that the m clauses of $F_{k}(n, m)$ are chosen independently with replacement among all $(2 n)^{k}$ possibilities. Thus, the m clauses $\left\{c_{i}\right\}_{i=1}^{m}$ are i.i.d. random variables, each c_{i} being the conjunction of k i.i.d. random variables $\left\{\ell_{i j}\right\}_{j=1}^{k}$, each $\ell_{i j}$ being a uniformly random literal. This viewpoint of the formula as a sequence of $k m$ i.i.d. random literals will be very handy for our calculations.

Clearly, in this model some clauses might be improper, i.e., they might contain repeated and/or contradictory literals. Nevertheless, observe that the probability that any given clause is improper is smaller than k^{2} / n and, moreover, that the proper clauses are uniformly selected among all such clauses. Therefore, w.h.p. the number of improper clauses is $o(n)$ implying that if for a given $r, F_{k}(n, m=r n)$ is p-satisfiable w.h.p. then for $m=r n-o(n)$, the same is true in the model where we only select among proper clauses. The issue of selecting clauses without replacement is completely analogous as w.h.p. there are $o(n)$ clauses that contain the same k variables as some other clause.

3.1 The upper bound

As remarked in the Introduction, the upper bound in (3) can be readily derived from the entropic-form Chernoff bound for the binomial distribution (see Lemma A. 10 in [3]). Nevertheless, in deriving the lower bound of Theorem 1 it will be informative to have a self-contained proof of the upper bound.

Define for $\alpha, \gamma, \eta \in[0,1]$,

$$
\begin{align*}
& f(\alpha, \gamma, \eta) \\
& \quad=\eta^{-2 u_{0}}\left[\left(\alpha\left(\frac{\gamma^{2}+\gamma^{-2}}{2}\right)+1-\alpha\right)^{k}-2(1-\eta)\left(\frac{\alpha \gamma^{-2}+(1-\alpha)}{2}\right)^{k}+(1-\eta)^{2}\left(\frac{\alpha \gamma^{-2}}{2}\right)^{k}\right] \tag{13}
\end{align*}
$$

where u_{0} is as in (8). Additionally, let

$$
\begin{equation*}
g_{r}(\alpha, \gamma, \eta)=\frac{f(\alpha, \gamma, \eta)^{r}}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}} . \tag{14}
\end{equation*}
$$

Lemma 2. For $X(\gamma, \eta)$ as in (7) with $m=r n$, for every $0<\gamma, \eta<1$,

$$
\begin{equation*}
\mathbb{E} X(\gamma, \eta)=\frac{2^{n}}{\eta^{u_{0} m}}\left[\left(\frac{\gamma+\gamma^{-1}}{2}\right)^{k}-\frac{1-\eta}{(2 \gamma)^{k}}\right]^{m}=\left[2 g_{r}\left(\frac{1}{2}, \gamma, \eta\right)\right]^{n / 2} \tag{15}
\end{equation*}
$$

Proof. The second equality in (15) follows directly from the definitions of f, g_{r}. Write $F=c_{1} \wedge \cdots \wedge c_{m}$, where the c_{i} 's are k-clauses. Observe that for every truth assignment $\sigma, H(\sigma, F)=\sum_{i=1}^{r n} H\left(\sigma, c_{i}\right)$, and similarly for $U(\sigma, F)$. Since $c_{1}, \ldots, c_{r n}$ are i.i.d. it follows that if c denotes a random clause

$$
\eta^{u_{0} m} \mathbb{E} X(\gamma, \eta)=2^{n}\left[\mathbb{E}\left(\gamma^{H(\sigma, c)} \eta^{U(\sigma, c)}\right)\right]^{m}
$$

Observe that $U(\sigma, c)=1$ when c is violated by σ, i.e., with probability 2^{-k}; otherwise $U(\sigma, c)=0$. Writing $c=\ell_{1} \vee \cdots \vee \ell_{k}$, where $\ell_{1}, \ldots, \ell_{k}$ are i.i.d. uniformly distributed literals, it follows that:

$$
\begin{align*}
\mathbb{E}\left[\gamma^{H(\sigma, c)} \eta^{U(\sigma, c)}\right] & =\mathbb{E} \gamma^{H(\sigma, c)}-\mathbb{E}\left[\gamma^{H(\sigma, c)}\left(1-\eta^{U(\sigma, c)}\right)\right] \\
& =\left[\mathbb{E} \gamma^{H\left(\sigma, \ell_{1}\right)}\right]^{k}-\frac{1-\eta}{2^{k} \gamma^{k}} \\
& =\left(\frac{\gamma+\gamma^{-1}}{2}\right)^{k}-\frac{1-\eta}{2^{k} \gamma^{k}} \\
& =f(1 / 2, \gamma, \eta) . \tag{16}
\end{align*}
$$

Lemma 3. For all $k \geq 2$ and $p \in(0,1]$, if $q=1-p$ then

$$
\begin{equation*}
r_{k}^{*}(p) \leq \frac{2^{k} \log 2}{q \log q-\left(2^{k}-q\right) \log \left(\frac{2^{k}-1}{2^{k}-q}\right)}<T_{k}(p) \tag{17}
\end{equation*}
$$

where $T_{k}(\cdot)$ was defined in (2).
Proof. The right hand inequality of (17) follows from the inequality $\log t \leq t-1$ applied to $t=\frac{2^{k}-1}{2^{k}-q}$, so we just need to verify the left hand inequality. Recall that $u_{0}=2^{-k} q$. Let $\eta \in(0,1)$, and observe that if F is p-satisfiable, then $U(\sigma, F) \leq u_{0} m$ for some σ, whence

$$
X(1, \eta)=\sum_{\sigma} \eta^{U(\sigma, F)-u_{0} m} \geq 1
$$

By Lemma 2 we have

$$
\begin{equation*}
\mathbf{P}[X(1, \eta) \geq 1] \leq \mathbb{E}[X(1, \eta)]=2^{n} \eta^{-q r n 2^{-k}}\left(1-(1-\eta) 2^{-k}\right)^{r n} \tag{18}
\end{equation*}
$$

Thus, the probability of p-satisfiability decays exponentially in n if the the n-th root of the RHS of (18) is strictly smaller than 1 . Taking $\eta=q\left(2^{k}-1\right) /\left(2^{k}-q\right)$ yields the lemma.

3.2 The Lower Bound: Groundwork

Our first task is to show that for an appropriate choice of γ and η, the truncation replacing $X(\gamma, \eta)$ by $X_{*}(\gamma, \eta)$ does not reduce the expectation by more than a constant factor. The idea behind the proof below is motivated by Cramer's classical "change of measure" technique in large deviation theory.

Lemma 4. Given $u_{0} \in\left(0,2^{-k}\right)$, let γ_{0}, η_{0} be the unique real numbers satisfying

$$
\begin{equation*}
1-\eta_{0}=\left(1-\gamma_{0}^{2}\right)\left(1+\gamma_{0}^{2}\right)^{k-1} \quad \text { and } \quad u_{0}=\frac{\eta_{0}}{\left(1+\gamma_{0}^{2}\right)^{k}-\left(1-\eta_{0}\right)} \tag{19}
\end{equation*}
$$

There exists $\theta=\theta\left(k, \gamma_{0}, A\right)>0$ such that as $n \rightarrow \infty$,

$$
\frac{\mathbb{E} X_{*}\left(\gamma_{0}, \eta_{0}\right)}{\mathbb{E} X\left(\gamma_{0}, \eta_{0}\right)} \rightarrow \theta
$$

Remark. The fact that γ_{0}, η_{0} exist and are unique follows from elementary calculus. It will also be clear from (44), below.

Proof. It suffices to prove that there exists some $\theta=\theta\left(k, u_{0}, A\right)>0$ such that for the values of γ_{0}, η_{0} satisfying (19) and every truth assignment σ, we have

$$
\begin{equation*}
\frac{\mathbb{E}\left[\gamma_{0}^{H(\sigma, F)} \eta_{0}^{U(\sigma, F)} \mathbf{1}_{\left\{\sigma \in \mathcal{S}^{*}(\mathcal{F})\right\}}\right]}{\mathbb{E}\left[\gamma_{0}^{H(\sigma, F)} \eta_{0}^{U(\sigma, F)}\right]} \rightarrow \theta \tag{20}
\end{equation*}
$$

Fix a truth assignment σ and consider an auxiliary distribution \mathbf{P}_{σ} on k-CNF formulas where the clauses c_{1}, \ldots, c_{m} are again i.i.d. among all $(2 n)^{k}$ possible k-clauses, but where now for any fixed clause ω

$$
\begin{equation*}
\mathbf{P}_{\sigma}\left(c_{i}=\omega\right)=\frac{1}{(2 n)^{k}} \cdot \frac{\gamma_{0}^{H(\sigma, \omega)} \eta_{0}^{U(\sigma, \omega)}}{Z\left(\gamma_{0}, \eta_{0}\right)} \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
Z\left(\gamma_{0}, \eta_{0}\right)=\frac{1}{(2 n)^{k}} \sum_{c} \gamma_{0}^{H(\sigma, c)} \eta_{0}^{U(\sigma, c)}=\mathbb{E}\left[\gamma_{0}^{H(\sigma, c)} \eta_{0}^{U(\sigma, c)}\right]=f\left(1 / 2, \gamma_{0}, \eta_{0}\right) \tag{22}
\end{equation*}
$$

Let \mathbb{E}_{σ} be the expectation operator corresponding to \mathbf{P}_{σ}. A calculation similar to that leading to (16), adding the equal contributions from the k literals, gives that for a single random clause c

$$
\begin{equation*}
Z\left(\gamma_{0}, \eta_{0}\right) \mathbb{E}_{\sigma}[H(\sigma, c)]=k \frac{\gamma_{0}-\gamma_{0}^{-1}}{2}\left(\frac{\gamma_{0}+\gamma_{0}^{-1}}{2}\right)^{k-1}+\frac{k\left(1-\eta_{0}\right)}{\left(2 \gamma_{0}\right)^{k}} \tag{23}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
Z\left(\gamma_{0}, \eta_{0}\right) \mathbb{E}_{\sigma}[U(\sigma, c)]=\left(2 \gamma_{0}\right)^{-k} \eta_{0} \tag{24}
\end{equation*}
$$

Thus, the first equation in (19) along with (23) ensure that $\mathbb{E}_{\sigma}[H(\sigma, c)]=0$, while the second equation in (19) along with (22),(24) ensure that $\mathbb{E}_{\sigma}[U(\sigma, c)]=u_{0}$.

Next, we apply the multivariate central limit theorem (see, e.g. [16], page 182) to the i.i.d. mean-zero random vectors $\left(H\left(\sigma, c_{i}\right), U\left(\sigma, c_{i}\right)-u_{0}\right)$ for $i=1, \ldots, m$. Observe that, since $k \geq 2$, the common law of these random vectors is not supported on a line. We deduce that as $n \rightarrow \infty$,

$$
\mathbf{P}_{\sigma}\left[\sigma \in \mathcal{S}^{*}(F)\right]=\mathbf{P}_{\sigma}\left[H(\sigma, F) \geq 0 \text { and } U(\sigma, F) \in\left[m u_{0}, m u_{0}+A \sqrt{m}\right]\right] \rightarrow \theta\left(k, u_{0}, A\right)>0
$$

Here, the right hand side is the probability that a certain non-degenerate bivariate normal law assigns to a certain open set. Its exact value is unimportant for our purpose. By (21), this is equivalent to (20).

The next lemma bounds the second moment of $X_{*}\left(\gamma_{0}, \eta_{0}\right)$ from above:

Lemma 5. Let $\gamma(z), \eta(z)$ be arbitrary sequences such that $\gamma(z) \geq \gamma_{0}$ and $\eta(z) \geq \eta_{0}$ for every $0 \leq z \leq n$. Then, for every u_{0},

$$
\begin{equation*}
\mathbb{E}\left[X_{*}\left(\gamma_{0}, \eta_{0}\right)\right]^{2} \leq 2^{n} \sum_{z=0}^{n}\binom{n}{z} f\left(\frac{z}{n}, \gamma(z), \eta(z)\right)^{r n} \leq(n+1) \cdot\left[2 \cdot \max _{0 \leq z \leq n} g_{r}\left(\frac{z}{n}, \gamma(z), \eta(z)\right)\right]^{n} \tag{25}
\end{equation*}
$$

where g_{r} is as in (14).
Proof. Fix $\gamma, \eta>0$. For any pair of truth assignments σ, τ we first observe that since the m clauses $c_{1}, c_{2}, \ldots, c_{m}$ are i.i.d., letting c be a single random clause we have

$$
\begin{align*}
\mathbb{E}\left[\gamma^{H(\sigma, F)+H(\tau, F)} \eta^{U(\sigma, F)+U(\tau, F)}\right] & =\mathbb{E}\left[\prod_{i=1}^{m} \gamma^{H\left(\sigma, c_{i}\right)+H\left(\tau, c_{i}\right)} \eta^{U\left(\sigma, c_{i}\right)+U\left(\tau, c_{i}\right)}\right] \\
& =\prod_{i=1}^{m} \mathbb{E}\left[\gamma^{H\left(\sigma, c_{i}\right)+H\left(\tau, c_{i}\right)} \eta^{U\left(\sigma, c_{i}\right)+U\left(\tau, c_{i}\right)}\right] \\
& =\left(\mathbb{E}\left[\gamma^{H(\sigma, c)+H(\tau, c)} \eta^{U(\sigma, c)+U(\tau, c)}\right]\right)^{m} \tag{26}
\end{align*}
$$

Next, we observe that for every pair σ, τ, by symmetry, the expectation in (26) depends only on the number of variables to which σ, τ assign the same value. So, let σ, τ be any pair of truth assignments that agree on exactly $z=\alpha n$ variables, i.e., have overlap z. By first rewriting $\gamma^{H} \eta^{U}$ as $\gamma^{H}+\gamma^{H}\left(\eta^{U}-1\right)$ and then observing that $\eta^{U(\tau, c)}$ is distributed identically with $\eta^{U(\sigma, c)}$ we get

$$
\begin{align*}
& \mathbb{E}\left[\gamma^{H(\sigma, c)} \eta^{H(\sigma, c)} \gamma^{H(\tau, c)} \eta^{H(\tau, c)}\right] \\
& =\mathbb{E}\left[\left(\gamma^{H(\sigma, c)}-\gamma^{H(\sigma, c)}\left(1-\eta^{U(\sigma, c)}\right)\right)\left(\gamma^{H(\tau, c)}-\gamma^{H(\tau, c)}\left(1-\eta^{U(\tau, c)}\right)\right)\right] \\
& =\mathbb{E}\left[\gamma^{H(\sigma, c)+H(\tau, c)}\right]-2 \mathbb{E}\left[\gamma^{H(\sigma, c)+H(\tau, c)}\left(1-\eta^{U(\sigma, c)}\right)\right]+\mathbb{E}\left[\gamma^{H(\sigma, c)+H(\tau, c)}\left(1-\eta^{U(\sigma, c)}\right)\left(1-\eta^{U(\tau, c)}\right)\right] \\
& =\mathbb{E}\left[\gamma^{H(\sigma, c)+H(\tau, c)}\right]-2(1-\eta) \mathbb{E}\left[\gamma^{H(\sigma, c)+H(\tau, c)} \mathbf{1}_{\{\sigma \text { violates } c\}}\right]+\frac{\alpha^{k}(1-\eta)^{2}}{2^{k} \gamma^{2 k}} . \tag{27}
\end{align*}
$$

To evaluate (27) we note that since the literals $\ell_{1}, \ell_{2}, \ldots \ell_{k}$ comprising c are i.i.d. we have

$$
\begin{equation*}
\mathbb{E}\left[\gamma^{H(\sigma, c)+H(\tau, c)}\right]=\mathbb{E}\left[\prod_{i} \gamma^{H\left(\sigma, \ell_{i}\right)+H\left(\tau, \ell_{i}\right)}\right]=\prod_{i} \mathbb{E}\left[\gamma^{H\left(\sigma, \ell_{i}\right)+H\left(\tau, \ell_{i}\right)}\right]=\left(\alpha\left(\frac{\gamma^{2}+\gamma^{-2}}{2}\right)+1-\alpha\right)^{k} \tag{28}
\end{equation*}
$$

and, similarly,

$$
\begin{equation*}
\mathbb{E}\left[\gamma^{H(\sigma, c)+H(\tau, c)} \mathbf{1}_{\{\sigma \text { violates } c\}}\right]=\mathbb{E}\left[\prod_{i} \gamma^{H\left(\sigma, \ell_{i}\right)+H\left(\tau, \ell_{i}\right)} \mathbf{1}_{\left\{\sigma \text { violates } \ell_{i}\right\}}\right]=\left(\frac{\alpha \gamma^{-2}+(1-\alpha)}{2}\right)^{k} \tag{29}
\end{equation*}
$$

Substituting (28), (29) into (27) we get

$$
\begin{align*}
& \eta^{-2 u_{0}} \mathbb{E}\left[\gamma^{H(\sigma, c)} \eta^{H(\sigma, c)} \gamma^{H(\tau, c)} \eta^{H(\tau, c)}\right] \\
& =\eta^{-2 u_{0}}\left[\left(\alpha\left(\frac{\gamma^{2}+\gamma^{-2}}{2}\right)+1-\alpha\right)^{k}-2(1-\eta)\left(\frac{\alpha \gamma^{-2}+(1-\alpha)}{2}\right)^{k}+(1-\eta)^{2}\left(\frac{\alpha \gamma^{-2}}{2}\right)^{k}\right] \\
& =f(\alpha, \gamma, \eta) \tag{30}
\end{align*}
$$

Since the number of ordered pairs with overlap z is $2^{n}\binom{n}{z}$, using the reasoning in (11) and (12), we get

$$
\begin{equation*}
\mathbb{E} X_{*}\left(\gamma_{0}, \eta_{0}\right)^{2} \leq 2^{n} \sum_{z=0}^{n}\binom{n}{z} f\left(\frac{z}{n}, \gamma(z), \eta(z)\right)^{m} \tag{31}
\end{equation*}
$$

for any set of choices for $\gamma(z), \eta(z)$ such that $\gamma(z) \geq \gamma_{0}$ and $\eta(z) \geq \eta_{0}$ for all $0 \leq z \leq n$.
The final inequality in (25) follows from the fact that for all $n>1$ and $z=0,1, \ldots, n$ Stirling's formula implies that $\binom{n}{z} \leq[\tau(z / n)]^{n}$, where $\tau(\alpha)=\alpha^{-\alpha}(1-\alpha)^{\alpha-1}$ (see e.g. [1], eq. (18)).

The following corollary is a direct consequence of Lemmata 2, 4 and 5.
Corollary 3. Let $\chi:[0,1] \rightarrow\left[\gamma_{0}, 1\right)$ and $\omega:[0,1] \rightarrow\left[\eta_{0}, 1\right)$ be arbitrary functions satisfying $\chi(1 / 2)=\gamma_{0}$, $\omega(1 / 2)=\eta_{0}$, and let $g_{r}(\alpha)=g_{r}(\alpha, \chi(\alpha), \omega(\alpha))$. Assume that $g_{r}(\alpha) \leq g_{r}(1 / 2)$ for all $\alpha \in[0,1]$. Then there exists a constant $D=D_{\chi, \omega}(k, r, p)>0$ such that for all sufficiently large n

$$
\mathbb{E}\left[X_{*}\left(\gamma_{0}, \eta_{0}\right)^{2}\right] \leq D n \cdot\left[\mathbb{E} X_{*}\left(\gamma_{0}, \eta_{0}\right)\right]^{2}
$$

Therefore, in order to prove Theorem 1 it is enough to show that for every $p \in(0,1]$ and $r=\left(1-\delta_{k}\right) T_{k}(p)$, there exist functions χ, ω for which the conditions of Corollary 3 hold. To simplify the analysis, we use the crudest possible such functions, paying the price of this simplicity in the value of the constant C in Proposition 6 below. We note that by choosing a more refined (and more cumbersome) adaptation of γ, η to α this value can be improved greatly. Moreover, we emphasize that for any fixed value of k, one can get a sharper lower bound for $r_{k}(p)$ by partitioning $[0,1]$ to a large number of intervals and numerically finding a good value of γ, η for each one. Indeed, the bounds reported in the plots in the Introduction are the result of such optimization. (We discuss this point further in Section 5).

Recall that $q=1-p=u_{0} 2^{k}$. We define $\varphi:[0,1) \rightarrow[1 / 2,1)$ as

$$
\begin{equation*}
\varphi(q)=\frac{(1-\sqrt{q})^{2}}{1-q+q \log q} \tag{32}
\end{equation*}
$$

Theorem 1 will follow from the following proposition.
Proposition 6. Let $g_{r}(\alpha, \gamma, \eta)$ be as in (14) and define

$$
G_{r}(\alpha)= \begin{cases}g_{r}\left(\alpha, \gamma_{0}, \eta_{0}\right) & \text { if } \alpha \in\left[\frac{3 \log k}{k}, 1-\frac{3 \log k}{k}\right] \tag{33}\\ g_{r}\left(\alpha, \sqrt{\gamma_{0}}, \sqrt{\eta_{0}}\right) & \text { otherwise. }\end{cases}
$$

There exists a universal constant $C>0$ such that if $r \leq \frac{2^{k} \log 2}{1-q+q \log q}\left(1-C k 2^{-k \varphi(q)}\right)$, then for all $\alpha \in[0,1]$, $G_{r}(\alpha) \leq G_{r}(1 / 2)$.

The proof of Proposition 6 is presented in the following section. We remark that using the Laplace method from asymptotic analysis (see [5, §4.2] or Lemma 2 in [1]), a slight modification of the arguments below shows that the factor of n in Corollary 3 can be removed. However, this is immaterial for our purpose.

4 Asymptotic Analysis

We begin by observing that to prove Proposition 6 it suffices to consider $\alpha \in(1 / 2,1]$.
Lemma 7. For every $0<x \leq \frac{1}{2}, G_{r}(1 / 2+x)>G_{r}(1 / 2-x)$.

Proof. Since the function $\alpha \mapsto \alpha^{\alpha}(1-\alpha)^{1-\alpha}$ is symmetric around $1 / 2$, it suffices to prove that for $x \in(0,1 / 2]$

$$
\begin{equation*}
f\left(\frac{1}{2}+x, \gamma, \eta\right)>f\left(\frac{1}{2}-x, \gamma, \eta\right) . \tag{34}
\end{equation*}
$$

Substituting $\alpha=1 / 2+x$ in (13) and denoting $\varepsilon=1-\gamma^{2}$ we get that for all $x \in[-1 / 2,1 / 2]$

$$
\begin{align*}
\eta^{y / 2^{k-1}} 2^{2 k} \gamma^{2 k} f\left(\frac{1}{2}+x, \gamma, \eta\right) & =\left[2 x \varepsilon^{2}+(2-\varepsilon)^{2}\right]^{k}-2[2 x \varepsilon+(2-\varepsilon)]^{k}(1-\eta)+(1-\eta)^{2}(1+2 x)^{k} \\
& =\sum_{j=0}^{k}\binom{k}{j} 2^{j} x^{j}\left[\varepsilon^{2 j}(2-\varepsilon)^{2(k-j)}-2(1-\eta) \varepsilon^{j}(2-\varepsilon)^{k-j}+(1-\eta)^{2}\right] \\
& =\sum_{j=0}^{k}\binom{k}{j} 2^{j} x^{j}\left[\varepsilon^{j}(2-\varepsilon)^{k-j}-(1-\eta)\right]^{2} \tag{35}
\end{align*}
$$

Thus, $f(1 / 2+x, \gamma, \eta)-f(1 / 2-x, \gamma, \eta)=\sum_{j=1}^{\lceil k / 2\rceil} a_{j} x^{2 j-1}$, where at most one of the a_{j} 's is zero.
Before proceeding with the rest of the proof, we introduce some notation, and prove some elementary estimates that will be used throughout the remainder of this section.

Recalling the definition of η_{0} from (19) and substituting into the definition of f from (13) we get

$$
\begin{aligned}
& f\left(\alpha, \gamma_{0}, \eta_{0}\right)=\eta_{0}^{-q / 2^{k-1}} \\
& \quad \cdot\left[\left(1-\alpha+\alpha \frac{\gamma_{0}^{2}+\gamma_{0}^{-2}}{2}\right)^{k}-2\left(1-\gamma_{0}^{2}\right)\left(1+\gamma_{0}^{2}\right)^{k-1}\left(\frac{\alpha \gamma_{0}^{-2}+1-\alpha}{2}\right)^{k}+\frac{\alpha^{k}\left(1-\gamma_{0}^{2}\right)^{2}\left(1+\gamma_{0}^{2}\right)^{2 k-2}}{2^{k} \gamma_{0}^{2 k}}\right] .
\end{aligned}
$$

For some parts of the ensuing calculations, it will be convenient to use the following normalizations of $f\left(\alpha, \gamma_{0}, \eta_{0}\right)$ and $g_{r}\left(\alpha, \gamma_{0}, \eta_{0}\right)$ denoted as f_{0} and g_{0}, respectively,

$$
\begin{equation*}
f_{0}(\alpha)=2^{2 k} \gamma_{0}^{2 k} \eta_{0}^{q / 2^{k-1}} f\left(\alpha, \gamma_{0}, \eta_{0}\right) \quad \text { and } \quad g_{0}(\alpha)=2^{2 k r} \gamma_{0}^{2 k r} \eta_{0}^{q r / 2^{k-1}} g_{r}\left(\alpha, \gamma_{0}, \eta_{0}\right) \tag{36}
\end{equation*}
$$

We will also write $\varepsilon_{0}=1-\gamma_{0}^{2}$. With this notation, we have the following formula valid for all $x \in[-1 / 2,1 / 2]$

$$
\begin{equation*}
f_{0}\left(\frac{1}{2}+x\right)=\left[2 x \varepsilon_{0}^{2}+\left(2-\varepsilon_{0}\right)^{2}\right]^{k}-2 \varepsilon_{0}\left(2-\varepsilon_{0}\right)^{k-1}\left[2-\varepsilon_{0}+2 x \varepsilon_{0}\right]^{k}+\varepsilon_{0}^{2}\left(2-\varepsilon_{0}\right)^{2 k-2}(1+2 x)^{k} \tag{37}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
f_{0}\left(\frac{1}{2}\right)=\left(2-\varepsilon_{0}\right)^{2 k}-2 \varepsilon_{0}\left(2-\varepsilon_{0}\right)^{2 k-1}+\varepsilon_{0}^{2}\left(2-\varepsilon_{0}\right)^{2 k-2}=4\left(1-\varepsilon_{0}\right)^{2}\left(2-\varepsilon_{0}\right)^{2 k-2} . \tag{38}
\end{equation*}
$$

The function $y \mapsto 1-y+y \log y$, defined on $[0,1]$, appears throughout our analysis. The following elementary inequalities, valid for all $y \in[0,1]$, will be used

$$
\begin{equation*}
\frac{(1-y)^{2}}{2} \leq 1-y+y \log y \leq(1-y)^{2} \tag{39}
\end{equation*}
$$

Recalling that $q=1-p$ and Equations (8), (19) we claim that

$$
\begin{equation*}
\varepsilon_{0}=\frac{2(1-q)}{2^{k}-k-1}+O\left(\frac{k(1-q)^{2}}{2^{2 k}}\right) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{0}=q-\frac{(k+1)(1-q)}{2^{k}-k-1}+O\left(\frac{k(1-q)^{2}}{2^{k}}\right) . \tag{41}
\end{equation*}
$$

By the first equation in (19) we have that $\eta_{0}=1-\varepsilon_{0}\left(2-\varepsilon_{0}\right)^{k-1}$. Therefore, (41) is a consequence on (40). To prove (40) let

$$
\begin{equation*}
\psi(t)=\sum_{j=1}^{k-1} \frac{1}{(2-t)^{j}}=\frac{(2-t)^{k-1}-1}{(1-t)(2-t)^{k-1}} \tag{42}
\end{equation*}
$$

Evidently, ψ is increasing, and for $0 \leq t \leq 1 / k$,

$$
\begin{equation*}
\psi(t)=1-\frac{1}{2^{k-1}}+t-\frac{(k+1) t}{2^{k}}+O\left(t^{2}\right) \tag{43}
\end{equation*}
$$

Additionally, using the second equation in (19) we find that

$$
\begin{equation*}
\psi\left(\varepsilon_{0}\right)=1-\frac{q}{2^{k-1}} . \tag{44}
\end{equation*}
$$

Since ψ is increasing, (40) will be proved once we show that for some constants c_{1}, c_{2},

$$
\begin{equation*}
\psi\left(\frac{2(1-q)}{2^{k}-k-1}+\frac{c_{1}(1-q)^{2}}{2^{2 k}}\right) \leq 1-\frac{q}{2^{k-1}} \leq \psi\left(\frac{2(1-q)}{2^{k}-k-1}+\frac{c_{2}(1-q)^{2}}{2^{2 k}}\right) \tag{45}
\end{equation*}
$$

and (45) is a straightforward consequence of (43).
The following lemma proves Proposition 6 in the first range of the definition of G_{r}.
Lemma 8. For all $k \geq k_{0}$, if $r \leq \frac{2^{k} \log 2}{1-q+q \log q}$ then for $\alpha \in\left[\frac{1}{2}, 1-\frac{3 \log k}{k}\right]$ we have $G_{r}(\alpha) \leq G_{r}(1 / 2)$.
Proof. In this proof we use the normalization (36). It is enough to prove that $g_{0}^{\prime}(\alpha)<0$ for $\frac{1}{2}<\alpha \leq 1-\frac{3 \log k}{k}$. Now,

$$
\begin{equation*}
g_{0}^{\prime}(\alpha)=\frac{f_{0}(\alpha)^{r-1}\left\{r f_{0}^{\prime}(\alpha)+f_{0}(\alpha)[\log (1-\alpha)-\log \alpha]\right\}}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}} \tag{46}
\end{equation*}
$$

Differentiating (37) at $x=0$ we find that

$$
f_{0}^{\prime}\left(\frac{1}{2}\right)=2 k \varepsilon_{0}^{2}\left(2-\varepsilon_{0}\right)^{2 k-2}-4 \varepsilon_{0}^{2}\left(2-\varepsilon_{0}\right)^{2 k-2}+2 \varepsilon_{0}^{2}\left(2-\varepsilon_{0}\right)^{2 k-2}=0
$$

Since, by (35), $f_{0}(\alpha)>0$ it is enough to show that the following function is decreasing on $\left[\frac{1}{2}, 1-\frac{3 \log k}{k}\right]$

$$
\zeta(\alpha)=r f_{0}^{\prime}(\alpha)+f_{0}(\alpha)[\log (1-\alpha)-\log \alpha] .
$$

Now,

$$
\zeta^{\prime}(\alpha)=r f_{0}^{\prime \prime}(\alpha)+f_{0}^{\prime}(\alpha)[\log (1-\alpha)-\log \alpha]-f_{0}(\alpha)\left(\frac{1}{\alpha}+\frac{1}{1-\alpha}\right)
$$

Since for $1 / 2<\alpha \leq 1, \log (1-\alpha)<\log \alpha$ and, by $(35), f_{0}^{\prime}>0$ on $(1 / 2,1]$, it is thus enough to prove that

$$
r f_{0}^{\prime \prime}(\alpha) \leq f_{0}(\alpha)\left(\frac{1}{\alpha}+\frac{1}{1-\alpha}\right)
$$

Now, $\frac{1}{\alpha}+\frac{1}{1-\alpha} \geq 4$ and, using (38), we get that for $\alpha \geq 1 / 2$,

$$
f_{0}(\alpha) \geq f_{0}\left(\frac{1}{2}\right)=4\left(1-\varepsilon_{0}\right)^{2}\left(2-\varepsilon_{0}\right)^{2 k-2} \geq\left(2-\varepsilon_{0}\right)^{2 k-2}
$$

where for the last inequality we used that $\varepsilon_{0} \leq 1 / 2$ for k large enough (by (40)). Thus, it suffices to prove that for all $x \leq 1 / 2-\frac{3 \log k}{k}$

$$
\begin{equation*}
r f_{0}^{\prime \prime}\left(\frac{1}{2}+x\right) \leq 4\left(2-\varepsilon_{0}\right)^{2 k-2} \tag{47}
\end{equation*}
$$

Now, using that $x \leq \frac{1}{2}-\frac{3 \log k}{k}$, we differentiate (37) twice to get

$$
\begin{aligned}
& f_{0}^{\prime \prime}\left(\frac{1}{2}+x\right) \\
& =4 k(k-1)\left\{\varepsilon_{0}{ }^{4}\left[2 x \varepsilon_{0}{ }^{2}+\left(2-\varepsilon_{0}\right)^{2}\right]^{k-2}-2 \varepsilon_{0}{ }^{3}\left(2-\varepsilon_{0}\right)^{k-1}\left[2-\varepsilon_{0}+2 x \varepsilon_{0}\right]^{k-2}+\varepsilon_{0}{ }^{2}\left(2-\varepsilon_{0}\right)^{2 k-2}(1+2 x)^{k-2}\right\} \\
& \leq 4 k^{2}\left\{\varepsilon_{0}{ }^{4}\left(2-\varepsilon_{0}\right)^{2 k-4}\left(1+\frac{2 x \varepsilon_{0}{ }^{2}}{\left(2-\varepsilon_{0}\right)^{2}}\right)^{k-2}+\varepsilon_{0}{ }^{2}\left(2-\varepsilon_{0}\right)^{2 k-2}(1+2 x)^{k-2}\right\} \\
& \leq 4 k^{2}\left\{\varepsilon_{0}^{4}\left(2-\varepsilon_{0}\right)^{2 k-4}(1+2 x)^{k-2}+\varepsilon_{0}{ }^{2}\left(2-\varepsilon_{0}\right)^{2 k-2}(1+2 x)^{k-2}\right\} \\
& \leq 8 k^{2} \varepsilon_{0}{ }^{2}\left(2-\varepsilon_{0}\right)^{2 k-2}(1+2 x)^{k} \\
& \leq 8 k^{2} \varepsilon_{0}{ }^{2}\left(2-\varepsilon_{0}\right)^{2 k-2}\left[2-\frac{6 \log k}{k}\right]^{k} \\
& \leq 8 k^{2} \varepsilon_{0}^{2}\left(2-\varepsilon_{0}\right)^{2 k-2} \frac{2^{k}}{k^{3}} \\
& \leq \frac{2^{k+3}}{k}\left(\frac{4(1-q)}{2^{k}}\right)^{2}\left(2-\varepsilon_{0}\right)^{2 k-2},
\end{aligned}
$$

where in the last line we used the fact that for k large enough (40) implies $\varepsilon_{0} \leq 4(1-q) / 2^{k}$.
Combining this estimate with (47), we see that we must show that for sufficiently large k

$$
\frac{128 \log 2}{1-q+q \log q} \cdot \frac{(1-q)^{2}}{k} \leq 4
$$

and this is indeed the case by (39).
It remains to prove that $G_{r}(\alpha)<G_{r}(1 / 2)$ for $1-\frac{3 \log k}{k} \leq \alpha \leq 1$. This inequality simplifies to:

$$
\begin{equation*}
\left[\frac{f\left(\alpha, \sqrt{\gamma_{0}}, \sqrt{\eta_{0}}\right)}{f\left(1 / 2, \gamma_{0}, \eta_{0}\right)}\right]^{r}<2 \alpha^{\alpha}(1-\alpha)^{1-\alpha} \tag{48}
\end{equation*}
$$

The following lemma gives an upper bound for the left-hand side of (48).
Lemma 9. There exists a constant $c>0$ such that for all sufficiently large k and $\alpha \in[1 / 2,1]$,

$$
\begin{equation*}
\frac{f\left(\alpha, \sqrt{\gamma_{0}}, \sqrt{\eta_{0}}\right)}{f\left(1 / 2, \gamma_{0}, \eta_{0}\right)}<q^{q / 2^{k}}\left[1+\frac{2 \sqrt{q}-2 q+(1-\sqrt{q})^{2} \alpha^{k}}{2^{k}}+\frac{c k(1-q)^{2}}{2^{2 k}}\right] \tag{49}
\end{equation*}
$$

Proof. Denote $\varepsilon_{1}=1-\left(\sqrt{\gamma_{0}}\right)^{2}=1-\sqrt{1-\varepsilon_{0}}=\frac{\varepsilon_{0}}{2}+O\left(\varepsilon_{0}^{2}\right)$. Now,

$$
\begin{align*}
\eta_{0}^{q / 2^{k}} \gamma_{0}^{k} f\left(\alpha, \sqrt{\gamma_{0}}, \sqrt{\eta_{0}}\right) & =\left(1-\varepsilon_{1}+\frac{\alpha \varepsilon_{1}^{2}}{2}\right)^{k}-\frac{2\left(1-\sqrt{\eta_{0}}\right)\left(1-\varepsilon_{1}(1-\alpha)\right)^{k}+\left(1-\sqrt{\eta_{0}}\right)^{2} \alpha^{k}}{2^{k}} \\
& =1-\frac{k \varepsilon_{0}}{2}+\frac{k^{2} \varepsilon_{0}^{2}}{8}+O\left(k \varepsilon_{0}^{2}\right)-\frac{2\left(1-\sqrt{\eta_{0}}\right)+\left(1-\sqrt{\eta_{0}}\right)^{2} \alpha^{k}}{2^{k}}+O\left(\frac{k\left(1-\sqrt{\eta_{0}}\right) \varepsilon_{0}}{2^{k}}\right) \\
& =1-\frac{k \varepsilon_{0}}{2}+\frac{k^{2} \varepsilon_{0}^{2}}{8}-\frac{2\left(1-\sqrt{\eta_{0}}\right)+\left(1-\sqrt{\eta_{0}}\right)^{2} \alpha^{k}}{2^{k}}+O\left(\frac{k(1-q)^{2}}{2^{2 k}}\right) \tag{50}
\end{align*}
$$

where in (50) we have used (40) and (41). Observe now that $q>\eta_{0}$ since

$$
\frac{q}{2^{k}}=u_{0}=\frac{\eta_{0}}{\left(1+\gamma_{0}^{2}\right)^{k}-\left(1-\eta_{0}\right)}=\frac{\eta_{0}}{2^{k}\left(1-\varepsilon_{0}\right)\left(1-\varepsilon_{0} / 2\right)^{k-1}}>\frac{\eta_{0}}{2^{k}}
$$

where for the second and third equalities we used, respectively, the definitions of u_{0} and η_{0} from (19). The fact $q>\eta_{0}$ implies that for every $\alpha \in[0,1]$,

$$
\begin{equation*}
\left(1-\sqrt{\eta_{0}}\right)^{2} \alpha^{k}-2\left(1-\sqrt{\eta_{0}}\right) \leq(1-\sqrt{q})^{2} \alpha^{k}-2(1-\sqrt{q})+\eta_{0}-q, \tag{51}
\end{equation*}
$$

since the right-hand side minus the left-hand side of (51) equals $\left(1-\alpha^{k}\right)\left((2 \sqrt{q}-q)-\left(2 \sqrt{\eta_{0}}-\eta_{0}\right)\right)>0$. Using (41) to bound η_{0} in the right hand side of (51) we conclude that

$$
\left(1-\sqrt{\eta_{0}}\right)^{2} \alpha^{k}-2\left(1-\sqrt{\eta_{0}}\right) \leq(1-\sqrt{q})^{2} \alpha^{k}-2(1-\sqrt{q})-\frac{(k+1)(1-q)}{2^{k}-k-1}+O\left(\frac{k(1-q)^{2}}{2^{k}}\right)
$$

Substituting this estimate into (50), we get

$$
\begin{align*}
& \eta_{0}^{q / 2^{k}} \gamma_{0}^{k} f\left(\alpha, \sqrt{\gamma_{0}}, \sqrt{\eta_{0}}\right) \\
& =1-\frac{k \varepsilon_{0}}{2}+\frac{k^{2} \varepsilon_{0}^{2}}{8}-\frac{2(1-\sqrt{q})-(1-\sqrt{q})^{2} \alpha^{k}}{2^{k}}-\frac{(k+1)(1-q)}{2^{k}\left(2^{k}-k-1\right)}+O\left(\frac{k(1-q)^{2}}{2^{2 k}}\right) . \tag{52}
\end{align*}
$$

Using the identity (38) we can rewrite the ratio in (48) as

$$
\begin{equation*}
\frac{f\left(\alpha, \sqrt{\gamma_{0}}, \sqrt{\eta_{0}}\right)}{f\left(1 / 2, \gamma_{0}, \eta_{0}\right)}=\frac{\eta_{0}^{q / 2^{k}}\left(1-\varepsilon_{0}\right)^{\frac{k}{2}-2}}{\left(1-\varepsilon_{0} / 2\right)^{2 k-2}} \cdot \eta_{0}^{q / 2^{k}} \gamma_{0}^{k} f\left(\alpha, \sqrt{\gamma_{0}}, \sqrt{\eta_{0}}\right) . \tag{53}
\end{equation*}
$$

By (41)

$$
\begin{equation*}
\eta_{0}^{q / 2^{k}}=q^{q / 2^{k}}\left[1-\frac{(k+1)(1-q)}{2^{k}\left(2^{k}-k-1\right)}+O\left(\frac{k(1-q)^{2}}{2^{2 k}}\right)\right] . \tag{54}
\end{equation*}
$$

Expanding around ε_{0} and using (40) we get

$$
\begin{equation*}
\frac{\left(1-\varepsilon_{0}\right)^{\frac{k}{2}-2}}{\left(1-\varepsilon_{0} / 2\right)^{2 k-2}}=1+\left(\frac{k}{2}+1\right) \varepsilon_{0}+\frac{k^{2}}{8} \varepsilon_{0}^{2}+O\left(k \varepsilon_{0}^{2}\right)=1+\left(\frac{k}{2}+1\right) \varepsilon_{0}+\frac{k^{2}}{8} \varepsilon_{0}^{2}+O\left(\frac{k(1-q)^{2}}{2^{2 k}}\right) \tag{55}
\end{equation*}
$$

Direct substitution of (52),(54),(55) into (53) gives (56). Collecting terms, noting two cancellations and using (40) to bound the remaining terms involving ε_{0} gives (57)

$$
\begin{align*}
\frac{f\left(\alpha, \sqrt{\gamma_{0}}, \sqrt{\eta_{0}}\right)}{f\left(1 / 2, \gamma_{0}, \eta_{0}\right)}= & q^{q / 2^{k}}\left[1-\frac{(k+1)(1-q)}{2^{k}\left(2^{k}-k-1\right)}+O\left(\frac{k(1-q)^{2}}{2^{2 k}}\right)\right] \\
& {\left[1+\left(\frac{k}{2}+1\right) \varepsilon_{0}+\frac{k^{2}}{8} \varepsilon_{0}^{2}+O\left(\frac{k(1-q)^{2}}{2^{2 k}}\right)\right] . } \tag{56}\\
& {\left[1-\frac{k \varepsilon_{0}}{2}+\frac{k^{2} \varepsilon_{0}^{2}}{8}-\frac{2(1-\sqrt{q})-(1-\sqrt{q})^{2} \alpha^{k}}{2^{k}}-\frac{(k+1)(1-q)}{2^{k}\left(2^{k}-k-1\right)}+O\left(\frac{k(1-q)^{2}}{2^{2 k}}\right)\right] } \\
= & q^{q / 2^{k}}\left[1+\varepsilon_{0}-\frac{2(k+1)(1-q)}{2^{k}\left(2^{k}-k-1\right)}-\frac{2(1-\sqrt{q})-(1-\sqrt{q})^{2} \alpha^{k}}{2^{k}}+O\left(\frac{k(1-q)^{2}}{2^{2 k}}\right)\right] \tag{57}
\end{align*}
$$

Using (40) once more, (57) becomes

$$
\begin{equation*}
q^{q / 2^{k}}\left[1+\frac{2(1-q)}{2^{k}-k-1}-\frac{2(k+1)(1-q)}{2^{k}\left(2^{k}-k-1\right)}-\frac{2(1-\sqrt{q})-(1-\sqrt{q})^{2} \alpha^{k}}{2^{k}}+O\left(\frac{k(1-q)^{2}}{2^{2 k}}\right)\right] . \tag{58}
\end{equation*}
$$

Observe now that

$$
\frac{2(1-q)}{2^{k}-k-1}-\frac{2(k+1)(1-q)}{2^{k}\left(2^{k}-k-1\right)}-\frac{2(1-\sqrt{q})-(1-\sqrt{q})^{2} \alpha^{k}}{2^{k}}=\frac{2 \sqrt{q}-2 q+(1-\sqrt{q})^{2} \alpha^{k}}{2^{k}}
$$

which concludes the proof.
We are now in position to conclude the proof of Proposition 6.
Proof of Proposition 6. By (49), there is a constant $c>0$ such that for $\alpha \in[1 / 2,1]$

$$
\frac{f\left(\alpha, \sqrt{\gamma_{0}}, \sqrt{\eta_{0}}\right)}{f\left(1 / 2, \gamma_{0}, \eta_{0}\right)}<q^{q / 2^{k}}\left[1+\frac{2 \sqrt{q}-2 q+(1-\sqrt{q})^{2} \alpha^{k}}{2^{k}}+\frac{c k(1-q)^{2}}{2^{2 k}}\right] .
$$

Hence, to prove (48) it is enough to show that

$$
\left\{q^{q / 2^{k}}\left[1+\frac{2 \sqrt{q}-2 q+(1-\sqrt{q})^{2} \alpha^{k}}{2^{k}}+\frac{c k(1-q)^{2}}{2^{2 k}}\right]\right\}^{r}<2 \alpha^{\alpha}(1-\alpha)^{1-\alpha}
$$

Taking logarithms and using the inequality $\log (1+x) \leq x$, this amounts to showing

$$
\begin{equation*}
\frac{r}{2^{k}}\left[q \log q+2 \sqrt{q}-2 q+(1-\sqrt{q})^{2} \alpha^{k}+\frac{c k(1-q)^{2}}{2^{k}}\right] \leq \log 2-h(\alpha), \tag{59}
\end{equation*}
$$

where $h(\alpha)=-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)$.
To simplify notation let us define

$$
\begin{equation*}
A=(1-\sqrt{q})^{2} \quad \text { and } \quad B=q \log q+2 \sqrt{q}-2 q+\frac{c k(1-q)^{2}}{2^{k}} \tag{60}
\end{equation*}
$$

and observe that

$$
\begin{equation*}
\frac{A}{A+B}=\varphi(q)\left(1+O\left(k 2^{-k}\right)\right) \tag{61}
\end{equation*}
$$

With this notation (59) becomes

$$
\begin{equation*}
\frac{r}{2^{k}} \leq \frac{\log 2-h(\alpha)}{A \alpha^{k}+B} \equiv M(\alpha), \tag{62}
\end{equation*}
$$

and this should hold for all $\alpha \geq 1-\frac{3 \log k}{k}$.
We need to determine the minimal value of M on the interval $\left[1-\frac{3 \log k}{k}, 1\right]$. The derivative of M is

$$
\begin{equation*}
M^{\prime}(\alpha)=\frac{\left(A \alpha^{k}+B\right) \cdot[\log \alpha-\log (1-\alpha)]-k A \alpha^{k-1}[\log 2-h(\alpha)]}{\left(A \alpha^{k}+B\right)^{2}} \tag{63}
\end{equation*}
$$

In particular, $M^{\prime}(1)=\infty$, so M cannot be minimized at $\alpha=1$. Moreover, we claim that $M(\alpha)>M(1)$ for $\alpha \in\left[1-\frac{3 \log k}{k}, 2^{-1 / k}\right]$. To prove this observe that $h(\alpha)=o(1)$ since $\alpha \geq 1-\frac{3 \log k}{k}$. Since, also, $\alpha \leq 2^{-1 / k}$

$$
M(\alpha) \geq \frac{\log 2-o(1)}{A\left(2^{-1 / k}\right)^{k}+B} \geq \frac{\log 2(1-o(1))}{\frac{A}{2}+B} .
$$

On the other hand, $M(1)=\log 2 /(A+B)$. Thus, by (61), we have $M(1) / M(\alpha) \rightarrow 1-\varphi(q) / 2$.
It remains to bound $M(\alpha)$ from below when $\alpha>2^{-1 / k}$ and $M^{\prime}(\alpha)=0$. For such α, by (63), we have

$$
\begin{equation*}
-\log (1-\alpha)=-\log \alpha+\frac{k A \alpha^{k-1}}{A \alpha^{k}+B}[\log 2-h(\alpha)] \tag{64}
\end{equation*}
$$

Since $\alpha>2^{-1 / k}, h(\alpha)=o(1)$. Hence (64) implies that $\alpha \geq 1-e^{-k / 8}$ since for k large enough we must have

$$
\begin{equation*}
-\log (1-\alpha) \geq \frac{k A}{2(A+B)}(\log 2-o(1))>\frac{k \varphi(q)}{4} \geq \frac{k}{8} . \tag{65}
\end{equation*}
$$

Invoking (64) again, now starting with the premise $\alpha>1-e^{-k / 8}$, we get that for all sufficiently large k,

$$
\begin{equation*}
-\log (1-\alpha)>k \varphi(q) \log 2\left(1-e^{-k / 9}\right) \tag{66}
\end{equation*}
$$

and, thus, $\alpha>1-\exp \left(-k \varphi(q) \log 2\left(1-e^{-k / 9}\right)\right)$. Since $h\left(1-e^{-z}\right) \leq e^{-z}(1+z)$ for all $z \geq 0$ we get

$$
\begin{equation*}
h(\alpha) \leq k 2^{-k \varphi(q)\left(1-e^{-k / 9}\right)}=O\left(k 2^{-k \varphi(q)}\right) \tag{67}
\end{equation*}
$$

where for the equality above we used that $\varphi(q) \in[1 / 2,1)$. Therefore,

$$
M(\alpha)=\frac{\log 2-h(\alpha)}{A \alpha^{k}+B} \geq \frac{\log 2}{A+B}\left(1-O\left(k 2^{-k \varphi(q)}\right)\right) \geq \frac{\log 2}{1-q+q \log q}\left(1-O\left(k 2^{-k \varphi(q)}\right)\right)
$$

Hence the restriction on r in (62) becomes $r \leq \frac{2^{k} \log 2}{1-q+q \log q}\left(1-O\left(k 2^{-k \varphi(q)}\right)\right)$, proving Proposition 6 .

5 Bounds for Small values of k

As mentioned in Section 3, for small values of k the simple adaptation scheme of Proposition 6 does not yield the best possible lower bound for p-satisfiability afforded by our method. For that, one has to use a significantly more refined adaptation of γ, η with respect to α. Our lower bounds reported in Figure 1 are, indeed, the result of performing such optimization of γ, η numerically (For both the upper bound plots and the plots of the lower bound from [6] we used the explicit formulas.)

Specifically, to create the plots of the lower bounds we computed a lower bound for 100 equally spaced values of p on the horizontal axis and then had Maple's [17] plotting function "connect the dots". For each of these values of p, to prove the corresponding lower bound for r we had to establish that there exist a choice of functions χ, ω as in Lemma 3 such that for all $\alpha \in(1 / 2,1]$ we have $g_{r}\left(1 / 2, \gamma_{0}, \eta_{0}\right)>g_{r}(\alpha, \chi(\alpha), \omega(\alpha))$. To that end, we partitioned $(1 / 2,1]$ to 10,000 points and for each such point we searched for values of $\gamma \geq \gamma_{0}$ and $\eta \geq \eta_{0}$ such that this condition holds with a bit of room. (For $k>4$ we solved (19), defining γ_{0} and η_{0}, numerically to 10 digits of accuracy. For the optimization we exploited convexity to speed up the search.) Having determined such values, we (implicitly) extended the functions χ, ω to all $(1 / 2,1]$ by assigning to every not-chosen point the value at the nearest chosen point. Finally, we computed a (crude) upper bound on the derivative of g_{r} with respect to α in $(1 / 2,1]$. This bound on the derivative, along with our room factor, then implied that for every point that we did not check, the value of g_{r} was sufficiently close to its value at the corresponding chosen point to also be dominated by $g_{r}\left(1 / 2, \gamma_{0}, \eta_{0}\right)$.

Acknowledgement

We thank Cris Moore for helpful conversations in the early stages of this work.

References

[1] Dimitris Achlioptas and Cristopher Moore, The asymptotic order of the random k-SAT threshold, 43th Annual Symposium on Foundations of Computer Science (Vancouver, BC, 2002), pp. 779-788.
[2] Dimitris Achlioptas and Yuval Peres, The threshold for random k-SAT is $2^{k} \ln 2-O(k)$, Journal of the AMS, 17:947-973, 2004.
[3] Noga Alon and Joel H. Spencer, The Probabilistic Method, Wiley 1991.
[4] Andrei Z. Broder, Alan M. Frieze, and Eli Upfal, On the satisfiability and maximum satisfiability of random 3-CNF formulas, Proc. 4th Annual Symposium on Discrete Algorithms, 1993, pp. 322-330.
[5] Nicolaas Govert de Bruijn, Asymptotic methods in analysis, Dover Publications Inc., New York, 1981.
[6] Don Coppersmith, David Gamarnik, Mohammad T. Hajiaghayi, and Gregory B. Sorkin, Random MAX 2-SAT and MAX CUT. Random Structures Algorithms, 24:502-545, 2004.
[7] Stephen A. Cook, The complexity of theorem-proving procedures, 3rd Annual Symposium on Theory of Computing (Shaker Heights, OH, 1971), New York, 1971, pp. 151-158.
[8] Amir Dembo, Yuval Peres, Jay Rosen and Ofer Zeitouni. Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk. Acta Math., 186:239-270, 2001.
[9] Paul Erdős and Samuel James Taylor. Some problems concerning the structure of random walk paths. Acta Sci. Hung. 11:137-162, 1960.
[10] Uriel Feige, Relations between average case complexity and approximation complexity, 34 th Annual ACM Symposium on Theory of Computing (Montreal, QC), 2002, pp. 534-543.
[11] Michael R. Garey and David S. Johnson, Computers and intractability, Freeman, San Francisco, CA, 1979.
[12] Johan Håstad, Some optimal inapproximability results, Journal of ACM 48 (2001), 798-859.
[13] Svante Janson, Yannis C. Stamatiou and Malvina Vamvakari, Bounding the unsatisfiability threshold of random 3-SAT, Random Structures and Algorithms 17 (2000), no. 2, 103-116.
[14] Svante Janson, The second moment method, conditioning and approximation, Random discrete structures (Minneapolis, MN, 1993), 175-183, IMA Vol. Math. Appl., 76, Springer, New York, 1996.
[15] David S. Johnson, Approximation algorithms for combinatorial problems, Journal of Computer and System Sciences 9 (1974), 256-278.
[16] David Pollard, A user's guide to measure theoretic probability, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2002. MR 2002k:60003
[17] Darren Redfern, The Maple Handbook: Maple V Release 3, third ed., Springer Verlag, New York, 1994.

[^0]: *Part of this work was done while visiting UC Berkeley.
 \dagger Research supported by NSF Grants DMS-0104073 and DMS-0244479.

[^1]: ${ }^{1}$ Our results hold in all common models for random k-CNF, e.g. when literal replacement is not allowed; see Section 3 .

