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Abstract

Given a metric spaceX(dx), c > 1,r > 0, andp, g € [0, 1], a distribution over mapping#” : X —» N
is called af, cr, p, g)-sensitive hash family if any two points Kat distance at mostare mapped by#
to the same value with probability at legstand any two points at distance greater tbaare mapped
by 27 to the same value with probability at magtThis notion was introduced by Indyk and Motwani
in 1998 as the basis for arfifieient approximate nearest neighbor search algorithm, and has since been
used extensively for this purpose. The performance of these algorithms is governed by the parameter

p= ',gggg and constructing hash families with smakutomatically yields improved nearest neighbor

algorithms. Here we show that fot = ¢; it is impossible to achieve < 2—10 This almost matches the
construction of Indyk and Motwani which achieyes %

1 Introduction

In this note we study the complexity of finding the nearest neighbor of a query point in certain high di-
mensional spaces usithgcality Sensitive HashinfL.SH). The nearest neighbor problem is formulated as
follows: Given a database ofpoints in a metric space, preprocess it so that given a new query point it is
possible to quickly find the point closest to it in the data set. This fundamental problem arises in numerous
applications, including data mining, information retrieval, and image search, where distinctive features of
the objects are represented as point&dn There is a vast amount of literature on this topic, and we shall
not attempt to discuss it here. We refer the interested reader to the péy&:i4,[7], and especially to the
references therein, for background on the nearest neighbor problem.

While the exact nearest neighbor problem seems fieisirom the “curse of dimensionality”, many
efficient techniques have been devised for finding an approximate solution whose distance from the query
point is at mostc times its distance from the nearest neighbor. One of the most versatileffaziené
methods for approximate nearest neighbor search is based on Locality Sensitive Hashing, as introduced
by Indyk and Motwani in 1998€]. This method has been refined and improved in several papers- the
most recent algorithm can be found i4].] We also refer the reader to the LSH website, where more
information on this algorithm can be found, including its implementation and code- all this can be found
athttp://web.mit.edu/andoni/www/LSH/index.html. The LSH approach to the approximate nearest
neighbor problem is based on the following concept.

Definition 1.1. Let (X, dx) be a metric space;,, R > 0 and p,q € [0,1]. A distribution over mappings
. X — Nis called a(r, R, p, g)-sensitive hash family if for anyy € X,

o dx(X,y)<r = PriZ2(x) =) >p .
e dx(X,yY) >R = PriZ#(x) = #(¥)] <q .


 http://web.mit.edu/andoni/www/LSH/index.html�

Givenc > 1 we define

log(1/p) .
log(1/q)

Of particular interest is the cage= {’g, for somes > 1 andd € N. In this case we define

px(c) = supinf { A(r, cr, p, ) — sensitive hash family?’ : X — N} . 1)

r>0

ps(©) = lim suppg(c)

The importance of these parameters stems from the following application to approximate nearest neigh-
bor search. It will be convenient to discuss it in the framework of the following decision version of the
c-approximate nearest neighbor problem: Given a query point, find any element of the data set which is at
distance at mostr from it, provided that there is a data point at distance at mésim the query point.

This decision version is known as thedr)-near neighbor problem. It is well known that the reduction to
the decision version adds only a logarithmic factor in the time and space compk»&ly The following
theorem was proved ii6]; the exact formulation presented here is taken frdin [

Theorem 1.2. Let(X, dx) be a metric on a subset & . Suppose thatX, dx) admits a(r, cr, p, g)-sensitive

hash family.7#, and writep = :ggg//gg Then for anyn > %1 there exists a randomized algorithm fgr c)

near neighbor om-point subsets aX which use© (dn + n1+P) space, with query time dominated ©yn)
distance computations arﬁ(n” log, q n) evaluations of hash functions frop® .

Thus, obtaining bounds gk (c) is of great algorithmic interest. It is proved ifi][that p1(c) < 1/c,
and for small values of, namelyc € [1,10], is was shown in4] that this inequality is strict. We refer
to [4] for numerical data on the best know estimatesdgic) for smallc. Fors = 2 a recent result of
Andoni and Indyk 1] shows thaip»(c) < 1/c?, and for generas € [1, 2] the best known bound#] are
ps(€) < max1/c,1/c5}.

The main purpose of this note is to obtain lower boundg ) and p»(c) which nearly match the
bounds obtained from the constructions®n4, [1]. Our main result is:

Theorem 1.3. For everyc, s> 1,

1

ec—-1 e-1 1 0462
c) > > — =2 . 2
POZ T2 T 52 0

The second to last inequality i2)(follows from concavity of the functiob - 5;—1 on [0, ). Observe

also that ag — oo, iﬁ%ﬁ ~ 2. It would be very interesting to determine lim sup, ¢ - p1(c) exactly- due

to Theorenil.3and the results olg] we currently know that this number is in the interval211].

2 Proof of Theorem1.3

The basic idea in the proof of TheoréhB is simple. We consider the random subaeif the cubg(0, 1}¢
consisting of pointsi for which 7 (u) = 22 (0). The second condition in Definitidn1 forcesA to be small
in expectation. But, wheA is small we can bound from above the probability that aftetleps, the random
walk starting at a random point i will end up in A. We obtain this upper bound using a Fourier analytic
argument, and in combination with the first condition in Definitibd we deduce the desired bound on
p1(C).

Theorenil.2follows from the following result:



Proposition 2.1. Let.# be a(r, R, p, g)-sensitive hash family on the Hamming cif@®1}9, || - ||1). Assume
thatr is an odd integer and tha&R < g Then

e2/d_y

p < (q+ e dE-R) T

ChoosingR ~ g - y/dlogd andr ~ R/cin Propositiori2.1, and lettingd — oo, yields Theoreni.3in
the cases = 1. The case of general> 1 follows from the fact that fok, y € {0, 1}9, |[x — yl|s = [|IX — ylli/s.
The proof of Propositio2.1 will be broken into a few lemmas.

Lemma 2.2. Let.# be a(r, R, p, g)-sensitive hash family on the Hamming cyb@ 1}9, || - |]1). Consider
the random subs@& c {0, 1}9 given byA = {u € {0,1})¢ : ##(u) = #(0)}. Then

& (d 4 (d
ElAIsZ(k)+q- > (k) .
k=0 k=[R]+1
Proof. We simply write

EIA

> Pz () = #(0)]

ue{0,1}d
fue{o,1)%: fluls <R +q-[{ue{0,1}%: [uly > R)

|R] d
Je 2
= +Q- .
é (k k:LZF\’J:+1 K

IA

i
Corollary 2.3. Assume thaR < g Then, using the notation of LemiB&, we have that
E|A < 2 (q + e—%(%’—R)z) :
. ; . d _a?
Proof. This follows from Lemmé.2and the standard estimal_g_, (i) < 2*- €77 O

Lemma 2.4 (Random walk lemma).Letr be an odd integer. Giveth # B C {0, 19, consider the random
variable Qg € {0, 1}9 defined as follows: Choose a pot B uniformly at random, and performsteps of
the standard random walk on the Hamming cube starting frorfihe point thus obtained will be denoted
Qg. Then

er/d_y
|B|)€2W+_1

Proof. We begin by recalling some background and notation on Fourier analysis on the Hamming cube.
GivenS C {1,...d}, the Walsh functioWs : {0, 1}4 — {-1, 1} is defined by
Ws(U) = (-1)>isst .

For f : {0,1})¢ - R we set .
f(8)=2 D, fUWs)

ue{0,1}d
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so thatf can be decomposed as follows:

f= > f(SWs .
Sc{1,...,d}

For everyf, g : {0, 1}OI — R we write
1
(o= ), oW .
ue{0,1)d

By Parseval’s identity,

(o= > T(9HES) .
Sc(1,....d}

Fore € [0, 1] the Bonami-Beckner operatdt. is defined as

Tf= > 5F(S)Ws .
Sc{1,...,d}

The Bonami-Beckner inequalitg[2] states that for every : {0,1}¢ — R,

1 1+2-az
2
2 Z f (U) 1+& J )

ue{o,1}d

e25f(S)? = |IT. fnz- DT TP < IR, . =
Sc(1,...,d} ue(0,1}d

Specializing to the indicator d& c {0, 1)¢ we get that

3 SIy(s) < (|25|)1“ ' 3)

Scil,...d}

Now, letP be the transition matrix of the standard random walk®u}d, i.e. Py, = 1/d if uandv differ
in exactly one coordinat®,, = 0 otherwise. By a direct computation we have that for e&gy{1,...,d},
25|

PWS = (1— T)WS 5

i.e. Ws is an eigenvector dP with eigenvalue - @ The probability that the random walk starting form
a random point irB ends up irB afterr steps equals

PrlQs < B] = |B|Z( P)an
a,beB
= ®<P 15, 15)
d . r
) |ZB| SC;d}lB(S)Z(l_?)
d . r

|S\<d/2
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where we used the fact thats odd (i.e. we dropped negative terms).

Thus, using/8) we see that
1-eg2r/C

2

2d —~ 24 (|B|\ze2  [|B|\eZ

PrlQg € B] < — 1g(S)2- e 2Bl < = . [ = == .
Qe Bl = Bl Sgg.,d} ) B 2

O

Proof of Propositior2.1. Let A be as in Lemm2.2. Assume that is an odd integer anR < g Since the
Hamming distance frora to Ais at mostr, we know that PiQa € A] = Pr[7Z(Qa) = #(0)] > p. On the
other hand by Lemma.4, Corollary2.3 and Jensen’s inequality,

AT | (EiA)\E 2r/d_y
r + T " ) d
perione A <e((5) = (55) 7 = (aret®)T
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