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Abstract

Given a metric space (X,dX), c ≥ 1, r > 0, andp,q ∈ [0,1], a distribution over mappingsH : X→ N
is called a (r, cr, p,q)-sensitive hash family if any two points inX at distance at mostr are mapped byH
to the same value with probability at leastp, and any two points at distance greater thancr are mapped
by H to the same value with probability at mostq. This notion was introduced by Indyk and Motwani
in 1998 as the basis for an efficient approximate nearest neighbor search algorithm, and has since been
used extensively for this purpose. The performance of these algorithms is governed by the parameter
ρ =

log(1/p)
log(1/q) , and constructing hash families with smallρ automatically yields improved nearest neighbor

algorithms. Here we show that forX = `1 it is impossible to achieveρ ≤ 1
2c. This almost matches the

construction of Indyk and Motwani which achievesρ ≤ 1
c .

1 Introduction

In this note we study the complexity of finding the nearest neighbor of a query point in certain high di-
mensional spaces usingLocality Sensitive Hashing(LSH). The nearest neighbor problem is formulated as
follows: Given a database ofn points in a metric space, preprocess it so that given a new query point it is
possible to quickly find the point closest to it in the data set. This fundamental problem arises in numerous
applications, including data mining, information retrieval, and image search, where distinctive features of
the objects are represented as points inRd. There is a vast amount of literature on this topic, and we shall
not attempt to discuss it here. We refer the interested reader to the papers [6, 5, 4, 7], and especially to the
references therein, for background on the nearest neighbor problem.

While the exact nearest neighbor problem seems to suffer from the “curse of dimensionality”, many
efficient techniques have been devised for finding an approximate solution whose distance from the query
point is at mostc times its distance from the nearest neighbor. One of the most versatile and efficient
methods for approximate nearest neighbor search is based on Locality Sensitive Hashing, as introduced
by Indyk and Motwani in 1998 [6]. This method has been refined and improved in several papers- the
most recent algorithm can be found in [4]. We also refer the reader to the LSH website, where more
information on this algorithm can be found, including its implementation and code- all this can be found
athttp://web.mit.edu/andoni/www/LSH/index.html. The LSH approach to the approximate nearest
neighbor problem is based on the following concept.

Definition 1.1. Let (X, dX) be a metric space,r,R > 0 and p, q ∈ [0,1]. A distribution over mappings
H : X→ N is called a(r,R, p,q)-sensitive hash family if for anyx, y ∈ X,

• dX(x, y) ≤ r =⇒ Pr[H (x) = H (y)] ≥ p .

• dX(x, y) > R =⇒ Pr[H (x) = H (y)] ≤ q .
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Givenc ≥ 1 we define

ρX(c) = sup
r>0

inf

{
log(1/p)
log(1/q)

: ∃(r, cr, p,q) − sensitive hash familyH : X→ N

}
. (1)

Of particular interest is the caseX = `d
s, for somes≥ 1 andd ∈ N. In this case we define

ρs(c) = lim sup
d→∞

ρ`d
s
(c) .

The importance of these parameters stems from the following application to approximate nearest neigh-
bor search. It will be convenient to discuss it in the framework of the following decision version of the
c-approximate nearest neighbor problem: Given a query point, find any element of the data set which is at
distance at mostcr from it, provided that there is a data point at distance at mostr from the query point.
This decision version is known as the (r, cr)-near neighbor problem. It is well known that the reduction to
the decision version adds only a logarithmic factor in the time and space complexity [6, 5]. The following
theorem was proved in [6]; the exact formulation presented here is taken from [4].

Theorem 1.2. Let (X, dX) be a metric on a subset ofRd. Suppose that(X,dX) admits a(r, cr, p,q)-sensitive
hash familyH , and writeρ =

log(1/p)
log(1/q) . Then for anyn ≥ 1

q there exists a randomized algorithm for(r, c)

near neighbor onn-point subsets ofX which usesO
(
dn+ n1+ρ

)
space, with query time dominated byO (nρ)

distance computations andO
(
nρ log1/q n

)
evaluations of hash functions fromH .

Thus, obtaining bounds onρX(c) is of great algorithmic interest. It is proved in [6] that ρ1(c) ≤ 1/c,
and for small values ofc, namelyc ∈ [1,10], is was shown in [4] that this inequality is strict. We refer
to [4] for numerical data on the best know estimates forρ1(c) for small c. For s = 2 a recent result of
Andoni and Indyk [1] shows thatρ2(c) ≤ 1/c2, and for generals ∈ [1,2] the best known bounds [4] are
ρs(c) ≤ max{1/c,1/cs}.

The main purpose of this note is to obtain lower bounds onρ1(c) andρ2(c) which nearly match the
bounds obtained from the constructions in [6, 4, 1]. Our main result is:

Theorem 1.3. For everyc, s≥ 1,

ρs(c) ≥ e
1
cs − 1

e
1
cs + 1

≥ e− 1
e+ 1

· 1
cs ≥

0.462
cs . (2)

The second to last inequality in (2) follows from concavity of the functiont 7→ et−1
et+1 on [0,∞). Observe

also that asc→ ∞, e1/c−1
e1/c+1

∼ 1
2c. It would be very interesting to determine lim supc→∞ c · ρ1(c) exactly- due

to Theorem1.3and the results of [6] we currently know that this number is in the interval [1/2, 1].

2 Proof of Theorem1.3

The basic idea in the proof of Theorem1.3 is simple. We consider the random subsetA of the cube{0,1}d
consisting of pointsu for whichH (u) = H (0). The second condition in Definition1.1forcesA to be small
in expectation. But, whenA is small we can bound from above the probability that afterr steps, the random
walk starting at a random point inA will end up inA. We obtain this upper bound using a Fourier analytic
argument, and in combination with the first condition in Definition1.1 we deduce the desired bound on
ρ1(c).

Theorem1.3follows from the following result:
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Proposition 2.1. LetH be a(r,R, p,q)-sensitive hash family on the Hamming cube({0,1}d, ‖ · ‖1). Assume
that r is an odd integer and thatR< d

2. Then

p ≤
(
q + e−

1
d( d

2−R)2
) e2r/d−1

e2r/d+1
.

ChoosingR ≈ d
2 −

√
d logd andr ≈ R/c in Proposition2.1, and lettingd → ∞, yields Theorem1.3 in

the cases = 1. The case of generals≥ 1 follows from the fact that forx, y ∈ {0,1}d, ‖x− y‖s = ‖x− y‖1/s1 .
The proof of Proposition2.1will be broken into a few lemmas.

Lemma 2.2. Let H be a(r,R, p,q)-sensitive hash family on the Hamming cube({0,1}d, ‖ · ‖1). Consider
the random subsetS ⊆ {0,1}d given byA = {u ∈ {0, 1}d : H (u) = H (0)}. Then

E|A| ≤
bRc∑

k=0

(
d
k

)
+ q ·

d∑

k=bRc+1

(
d
k

)
.

Proof. We simply write

E|A| =
∑

u∈{0,1}d
Pr[H (u) = H (0)]

≤
∣∣∣{u ∈ {0,1}d : ‖u‖1 ≤ R}

∣∣∣ + q ·
∣∣∣{u ∈ {0,1}d : ‖u‖1 > R}

∣∣∣

=

bRc∑

k=0

(
d
k

)
+ q ·

d∑

k=bRc+1

(
d
k

)
.
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Corollary 2.3. Assume thatR< d
2. Then, using the notation of Lemma2.2, we have that

E|A| ≤ 2d
(
q + e−

1
d( d

2−R)2
)
.

Proof. This follows from Lemma2.2and the standard estimate
∑

k≤ d
2−a

(
d
k

)
≤ 2d · e− a2

d . �

Lemma 2.4 (Random walk lemma).Let r be an odd integer. Given∅ , B ⊆ {0,1}d, consider the random
variableQB ∈ {0, 1}d defined as follows: Choose a pointx ∈ B uniformly at random, and performr-steps of
the standard random walk on the Hamming cube starting fromx. The point thus obtained will be denoted
QB. Then

Pr[QB ∈ B] ≤
( |B|
2d

) e2r/d−1
e2r/d+1

.

Proof. We begin by recalling some background and notation on Fourier analysis on the Hamming cube.
GivenS ⊆ {1, . . .d}, the Walsh functionWS : {0,1}d → {−1,1} is defined by

WS(u) = (−1)
∑

j∈S u j .

For f : {0, 1}d → R we set

f̂ (S) =
1

2d

∑

u∈{0,1}d
f (u)WS(u) ,
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so thatf can be decomposed as follows:

f =
∑

S⊆{1,...,d}
f̂ (S)WS .

For everyf , g : {0, 1}d → R we write

〈 f , g〉 =
1

2d

∑

u∈{0,1}d
f (u)g(u) .

By Parseval’s identity,
〈 f , g〉 =

∑

S⊆{1,...,d}
f̂ (S)̂g(S) .

Forε ∈ [0,1] the Bonami-Beckner operatorTε is defined as

Tε f =
∑

S⊆{1,...,d}
ε|S| f̂ (S)WS .

The Bonami-Beckner inequality [3, 2] states that for everyf : {0, 1}d → R,

∑

S⊆{1,...,d}
ε2|S| f̂ (S)2 = ‖Tε f ‖22 =

1

2d

∑

u∈{0,1}d
(Tε f (u))2 ≤ ‖ f ‖21+ε2 =


1

2d

∑

u∈{0,1}d
f (u)1+ε2



2
1+ε2

.

Specializing to the indicator ofB ⊆ {0, 1}d we get that

∑

S⊆{1,...,d}
ε2|S|1̂B(S)2 ≤

( |B|
2d

) 2
1+ε2

. (3)

Now, letP be the transition matrix of the standard random walk on{0, 1}d, i.e. Puv = 1/d if u andv differ
in exactly one coordinate,Puv = 0 otherwise. By a direct computation we have that for everyS ⊆ {1, . . . ,d},

PWS =

(
1− 2|S|

d

)
WS ,

i.e. WS is an eigenvector ofP with eigenvalue 1− 2|S|
d . The probability that the random walk starting form

a random point inB ends up inB afterr steps equals

Pr[QB ∈ B] =
1
|B|

∑

a,b∈B

(
Pr )

ab

=
2d

|B| 〈P
r1B, 1B〉

=
2d

|B|
∑

S⊆{1,...,d}
1̂B(S)2

(
1− 2|S|

d

)r

≤ 2d

|B|
∑

S⊆{1,...,d}
|S|≤d/2

1̂A(S)2
(
1− 2|S|

d

)r

,
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where we used the fact thatr is odd (i.e. we dropped negative terms).
Thus, using (3) we see that

Pr[QB ∈ B] ≤ 2d

|B|
∑

S⊆{1,...,d}
1̂B(S)2 · e−2r |S|/c ≤ 2d

|B| ·
( |B|
2d

) 2
1+e−2r/c

=

( |B|
2d

) 1−e−2r/c

1+e−2r/c

.

�

Proof of Proposition2.1. Let A be as in Lemma2.2. Assume thatr is an odd integer andR < d
2. Since the

Hamming distance fromQA to A is at mostr, we know that Pr[QA ∈ A] = Pr[H (QA) = H (0)] ≥ p. On the
other hand by Lemma2.4, Corollary2.3, and Jensen’s inequality,

p ≤ Pr[QA ∈ A] ≤ E

( |A|
2d

) e2r/d−1
e2r/d+1

 ≤
(
E|A|
2d

) e2r/d−1
e2r/d+1 ≤

(
q + e−

1
d( d

2−R)2
) e2r/d−1

e2r/d+1
.

�
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