On Some Low Distortion Metric Ramsey Problems

Yair Bartal^{*} Nathan Linial[†] Manor Mendel[‡] Assaf Naor

December 17, 2002

Abstract

In this note, we consider the metric Ramsey problem for the normed spaces ℓ_p . Namely, given some $1 \leq p \leq \infty$ and $\alpha \geq 1$, and an integer n, we ask for the largest m such that every n-point metric space contains an m-point subspace which embeds into ℓ_p with distortion $\leq \alpha$. In [1] it is shown that in the case of ℓ_2 , the dependence of m on α undergoes a phase transition at $\alpha = 2$. Here we consider this problem for other ℓ_p , and specifically the occurrence of a phase transition for $p \neq 2$. It is shown that a phase transition occurs at 2 for every $p \in [1, 2]$. For p > 2 we are unable to determine the answer, but estimates are provided for the possible location of such a phase transition. We also study the analogous problem for isometric embedding and show that for every $1 there are arbitrarily large metric spaces, no four points of which embed isometrically in <math>\ell_p$.

1 Introduction

A Ramsey-type theorem states that large systems necessarily contain large, highly structured sub-systems. Here we consider Ramsey-type problem for finite metric spaces, interpreting "highly structured" as having low distortion embedding in ℓ_p .

A mapping between two metric spaces $f: M \to X$, is called an embedding of M in X. The *distortion* of the embedding is defined as

$$\operatorname{dist}(f) = \sup_{\substack{x,y \in M \\ x \neq y}} \frac{d_X(f(x), f(y))}{d_M(x, y)} \cdot \sup_{\substack{x,y \in M \\ x \neq y}} \frac{d_M(x, y)}{d_X(f(x), f(y))}.$$

The least distortion required to embed M in X is denoted by $c_X(M)$. When $c_X(M) \leq \alpha$ we say that $M \alpha$ -embeds in X. In this note we study the following notion.

Definition 1 (Metric Ramsey function). We denote by $R_X(\alpha, n)$ the largest integer m such that every n-point metric space has a subspace of size m that α -embeds into X.

When $X = \ell_p$ we use the notations c_p and R_p . Note that for $p \in [1, \infty]$, it is always true that $R_p(\alpha, n) \ge R_2(\alpha, n)$. When $\alpha = 1$ we drop it from the notation, i.e., $R_X(n) = R_X(1, n)$.

Bourgain, Figiel, and Milman [4] study this function for $X = \ell_2$, as a non-linear analog of Dvoretzky's theorem [6]. They prove

Theorem 1 ([4]). For any $\alpha > 1$ there exists $C(\alpha) > 0$ such that $R_2(\alpha, n) \ge C(\alpha) \log n$. Furthermore, there exists $\alpha_0 > 1$ such that $R_2(\alpha_0, n) = O(\log n)$.

^{*}Supported in part by a grant from the Israeli National Science Foundation.

[†]Supported in part by a grant from the Israeli National Science Foundation.

[‡]Supported in part by the Landau Center.

In [1] the metric Ramsey problem is studied comprehensively. In particular, the following phase transition is established in the case of $X = \ell_2$.

Theorem 2 ([1]). Let $n \in \mathbb{N}$. Then:

- 1. For every $1 < \alpha < 2$: $c(\alpha) \log n \leq R_2(\alpha, n) \leq 2 \log n + C(\alpha)$, where $c(\alpha), C(\alpha)$ may depend only on α .
- 2. For every $\alpha > 2$: $n^{c'(\alpha)} \leq R_2(\alpha, n) \leq n^{C'(\alpha)}$, where $c'(\alpha), C'(\alpha)$ depend only on α and $0 < c'(\alpha) \leq C'(\alpha) < 1$. Moreover, $c'(\alpha)$ tends to 1 as α tends to ∞ .

By Dvoretzky's theorem, the lower bound in part 2 of Theorem 2 implies in particular that if $\alpha > 2$, and X is any infinite dimensional normed space, then $R_X(\alpha, n) \ge n^{c'(\alpha)}$. Therefore, in our search for a possible phase transition for $R_p(\cdot, n)$, $p \ne 2$, it is natural to extend the upper bound in part 1 of Theorem 2 to this range. The main result proved in this note is the following:

Theorem 3. There is an absolute constant c > 0 such that for every $0 < \delta < 1$,

1. For
$$1 \le p < 2$$
, $R_p(2 - \delta, n) \le e^{\frac{1}{\delta^2}} \log n$.

2. For $2 , <math>R_p(2^{2/p} - \delta, n) \le e^{\frac{c}{p^2\delta^2}} \log n$.

Thus we extend the result of [1] to show that a phase transition occurs in the metric Ramsey problem for ℓ_p , $p \in [1, 2)$, at $\alpha = 2$. The asymptotic behavior of $R_p(\alpha, n)$ for p > 2, and $\alpha \in [2^{2/p}, 2]$, is left as an open problem. In particular, we do not know whether or not this function undergoes a similar phase transition. We find this problem potentially significant: if there is a phase transition at 2 also in the range 2 , then this result will certainly beof great interest. On the other hand, if it is possible to improve the lower bound in part 2 ofTheorem 2 for <math>p > 2 and certain distortions strictly less than 2, then this would involve an embedding technique that is different from the method used in [1], which doesn't distinguish between the various ℓ_p spaces.

The proof of the upper bound on $R_2(\alpha, n)$ for $\alpha < 2$ stated in Theorem 2 uses the Johnson-Lindenstrauss dimension reduction lemma for ℓ_2 [9]. For ℓ_p , $p \neq 2$, no such dimension reduction is known to hold. Our proof is based on a non-trivial modification of the random construction in [4], in the spirit of Erdös' upper bound on the Ramsey numbers [8, 3]. In the process we prove tight bounds on the embeddability of the metrics of complete bipartite graphs in ℓ_p . Specifically we show that

$$c_p(K_{n,n}) = \begin{cases} 2 - \Theta(n^{-1}) & p \in [1,2] \\ 2^{2/p} - \Theta((pn)^{-1}) & p > 2. \end{cases}$$

The second part of this note addresses the isometric Ramsey problem for $p \in (1, \infty)$. It turns out that this problem is naturally tackled within the class of uniformly convex normed spaces (see Section 3 for the definition).

Theorem 4 (Isometric Ramsey Problem). Let X be a uniformly convex normed space with $\dim(X) \ge 2$. Then $R_X(1, n) = 3$ for $n \ge 3$.

Since for $p \in (1, \infty)$, ℓ_p is uniformly convex, the conclusion of Theorem 4 holds in these cases. Note that the theorem does not apply for ℓ_1 and ℓ_∞ which are not uniformly convex. Specifically, it is known that ℓ_∞ is universal in that it contains an isometric copy of every finite metric space, whence $R_\infty(n) = n$. It is known [5] that any 4-point metric space is isometrically embeddable in ℓ_1 , and therefore $R_1(n) \ge 4$ for $n \ge 4$. The determination of $R_1(n)$ is left as an open problem.

2 An Upper Bound For $\alpha < 2$

In this section we prove that for any $\alpha < \min\{2, 2^{2/p}\}$, $R_p(\alpha, n) = O(\log n)$. Our technique both improves and simplifies the technique of [4], which is itself in the spirit of Erdös' original upper bound for the Ramsey coloring numbers. The basic idea is to exploit a universality property of random graphs $G \in G(n, 1/2)$. Namely, that any fixed graph of constant size appears as induced subgraph of every induced subgraph of G of size $\Omega(\log n)$. More precisely, we define the following notion of universality.

Definition 2. Let H be a graph. A graph G is called (H, s)-universal if every set of s vertices in G contains an induced subgraph isomorphic to H.

Proposition 1. For every k-vertex graph H there exists a constant C > 0 and an integer n_0 such that for any $n > n_0$ there exists a $(H, C \log n + 1)$ -universal graph. Furthermore,

$$C \leq O\left(k^2 2^{\binom{k}{2}}\right)$$
 and $n_0 \leq O\left(k^3 2^{\binom{k}{2}}\right)$.

Such facts are well-known in random graph theory, and similar arguments can be found for example in [11]. We sketch the standard details for the sake of completeness.

Recall that a family of sets \mathcal{F} is called *almost disjoint* if $|A \cap B| \leq 1$ for every $A, B \in \mathcal{F}$.

Lemma 2. For every integer k and a finite set S with $k < \sqrt{|S|/2}$, there exists an almost disjoint family $K \subset {S \choose k}$, such that $|K| \ge \lfloor \frac{s}{2k} \rfloor^2$.

Proof. Let p be a prime satisfying $\frac{s}{2k} \leq p \leq \frac{|S|}{k}$, and assume that

$$L = \{(i, j); i, j \in \mathbb{Z}_p, i \in \{0, \dots, k-1\}\} \subseteq S.$$

For each $a, b \in \mathbb{Z}_p$, define

$$A_{a,b} = \{(i,j); j = ai + b \pmod{p}, i \in \{0, \dots, k-1\}\},\$$

and take $K = \{A_{a,b} | a, b \in \mathbb{Z}_p\}$. The set K is easily checked to satisfy the requirements. \Box

Lemma 3. Let H be a k-vertex graph and let $s > 2k^2$. The probability that a random graph $G \in G(s, 1/2)$ does not contain an induced subgraph isomorphic to H, is at most $(1 - 2^{-\binom{k}{2}})^{\lfloor \frac{s}{2k} \rfloor^2}$.

Proof. Construct, as in Lemma 2, an almost disjoint family \mathcal{F} of $\lfloor \frac{s}{2k} \rfloor^2$ subsets of $\{1, \ldots, s\}$, the vertex set of G. If $F_1 \neq F_2 \in \mathcal{F}$, then the event that the restriction of G to F_1 (resp. F_2) is isomorphic to H are independent. Hence, the probability that none of the sets $F \in \mathcal{F}$ spans a subgraph isomorphic to H is at most $(1 - 2^{-\binom{k}{2}}) \lfloor \frac{s}{2k} \rfloor^2$.

Proof of Proposition 1. Let G be a random graph in G(n, 1/2). By the previous lemma, the expected number of sets of s vertices which contain no induced isomorphic copy of H is at most $\binom{n}{s} \left(1 - 2^{-\binom{k}{2}}\right)^{\lfloor \frac{s}{2k} \rfloor^2}$. If this number is < 1, then there is an (H, s)-universal graph, as claimed. It is an easy matter to check that this holds with the parameters as stated. \Box

A class C of finite metric spaces is called a *metric class* if it is closed under isometries. C is said to be *hereditary*, if $M \in C$ and $N \subset M$ imply $N \in C$. We call a metric space (X,d) a $\{0,1,2\}$ metric space if for all $x, y \in X$, $d(x,y) \in \{0,1,2\}$. There is a simple 1:1 correspondence between graphs and $\{0,1,2\}$ metrics. Namely, associated with a $\{0,1,2\}$ metric space M = (X,d) is the graph G = (X,E) where $[x,y] \in E$ iff $d_M(x,y) = 1$. **Lemma 4.** Let C be a hereditary metric class of finite metric spaces, and suppose that there exists some finite $\{0, 1, 2\}$ metric space M_0 which is not in P. Then there exist metric spaces $M = M_n$ of arbitrarily large size n such that every subspace $S \subset M_n$ with at least $C \log n$ points is not in C. The constant C depends only on the cardinality of M_0 .

Proof. Let H_0 be the graph corresponding to the metric space M_0 . We apply Proposition 1, to construct arbitrarily large graphs $G_n = (V_n, E_n)$ with $|V_n| = n$, in which every set of $\geq C \log n$ vertices contains an induced subgraph isomorphic to H_0 . Let M_n be the *n*-point metric space corresponding to G_n . It follows that every subspace of M_n of size $\geq C \log n$ contains a metric subspace that is isometric to M_0 . Since C is hereditary, $S \notin C$.

Note that $\{M; M \text{ is a metric space, } c_p(M) \leq \alpha\}$ is a hereditary metric class. Therefore, in order to show that for $\alpha < 2$, $R_p(\alpha, n) = O(\log n)$, it is enough to find a $\{0, 1, 2\}$ metric space whose ℓ_p distortion is greater than α . We use the complete bipartite graphs $K_{n,n}$. The ℓ_p -distortion of $K_{n,n}$, $1 \leq p < \infty$, is estimated in the following proposition.

Proposition 5. For every $1 \le p \le 2$,

$$2\left(\frac{n-1}{n}\right)^{1/p} \le c_p(K_{n,n}) \le 2\sqrt{\frac{n-1}{n}}$$

For every $2 \leq p < \infty$,

$$2^{2/p} \left(\frac{n-1}{n}\right)^{1/p} \le c_p(K_{n,n}) \le 2^{2/p} \left(1 - \frac{1}{2n}\right)^{1/p}.$$

Before proving Proposition 5, we will deduce the main result of this section:

Theorem 5. There is an absolute constant c > 0 such that for every $0 < \delta < 1$, if $1 \le p \le 2$ then:

$$R_p(2-\delta,n) \le e^{\frac{c}{\delta^2}} \log n,$$

and if 2 then:

$$R_p(2^{2/p} - \delta, n) \le e^{\frac{c}{p^2\delta^2}} \log n.$$

Proof. Proposition 1 implies that there is an absolute constant C such that for every $n \ge 2^{Ck^3}$ there exists a $\{0, 1, 2\}$ metric space M_n such that any subset $S \subset M_n$ of cardinality at least $2^{Ck^2} \log n$ contains an isometric copy of $K_{k,k}$.

We start with $1 \le p \le 2$. Let $k = \lfloor \frac{2}{\delta} \rfloor + 1$. By Proposition 5,

$$c_p(K_{k,k}) \ge 2\left(1 - \frac{1}{k}\right)^{1/p} > 2\left(1 - \frac{\delta}{2}\right) = 2 - \delta,$$

so that for n large enough $(\geq e^{\frac{C'}{\delta^3}})$, and hence for all n (by proper choice of constants),

$$R_p(2-\delta,n) \le e^{\frac{C'}{\delta^2}}\log n.$$

When p > 2 take $k = 2 \left\lfloor \frac{4}{p\delta} \right\rfloor$. In this case one easily verifies that:

$$c_p(K_{k,k}) \ge 2^{2/p} \left(1 - \frac{1}{k}\right)^{1/p} \ge 2^{2/p} - \delta,$$

from which the required result follows as above.

Preliminary to the proof of Proposition 5, we require some preparation.

Lemma 6. Let $A = (a_{ij})$ be an $n \times n$ matrix and $2 \le p < \infty$. Then:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\left| \sum_{k=1}^{n} a_{ik} - \sum_{k=1}^{n} a_{jk} \right|^{p} + \left| \sum_{k=1}^{n} a_{ki} - \sum_{k=1}^{n} a_{kj} \right|^{p} \right) \le \frac{(2n)^{p}}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{p}.$$

Proof. We identify $\ell_p^{n^2}$ with space of all $n \times n$ matrices $A = (a_{ij})$, equipped with the ℓ_p norm:

$$||A||_p = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^p\right)^{1/p}.$$

Define a linear operator $T: \ell_p^{n^2} \to \ell_p^{n^2} \oplus \ell_p^{n^2}$ by:

$$T(a_{ij}) = \left(\sum_{k=1}^{n} a_{ik} - \sum_{k=1}^{n} a_{jk}\right)_{ij} \oplus \left(\sum_{k=1}^{n} a_{ki} - \sum_{k=1}^{n} a_{kj}\right)_{ij}$$

Our goal is to show that $||T||_{p\to p} \leq 2^{1-1/p}n$. By standard results from the complex interpolation theory (see [2]), it is enough to prove this estimate for p = 2 and $p = \infty$. The case $p = \infty$ is simple:

$$||T(A)||_{\infty} = \max_{1 \le i,j \le n} \max\left\{ \left| \sum_{k=1}^{n} a_{ik} - \sum_{k=1}^{n} a_{jk} \right|, \left| \sum_{k=1}^{n} a_{ki} - \sum_{k=1}^{n} a_{kj} \right| \right\} \le 2n ||A||_{\infty}.$$

For p = 2 we have to show that:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\left| \sum_{k=1}^{n} a_{ik} - \sum_{k=1}^{n} a_{jk} \right|^2 + \left| \sum_{k=1}^{n} a_{ki} - \sum_{k=1}^{n} a_{kj} \right|^2 \right) \le 2n^2 \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2.$$

This inequality follows from the following elementary identity:

$$2n^{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \left[\left(\sum_{k=1}^{n} a_{ik} - \sum_{k=1}^{n} a_{jk} \right)^{2} + \left(\sum_{k=1}^{n} a_{ki} - \sum_{k=1}^{n} a_{kj} \right)^{2} \right] + 2\sum_{i=1}^{n} \sum_{j=1}^{n} \left(na_{ij} - \sum_{k=1}^{n} a_{ik} - \sum_{k=1}^{n} a_{kj} \right)^{2}.$$

Corollary 7. Let $1 \leq p < \infty$ and $x_1, \ldots, x_n, y_1 \ldots y_n \in \ell_p$. Then if $2 \leq p < \infty$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\|x_i - x_j\|_p^p + \|y_i - y_j\|_p^p \right) \le 2^{p-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \|x_i - y_j\|_p^p.$$

If $1 \le p \le 2$ then:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\|x_i - x_j\|_p^p + \|y_i - y_j\|_p^p \right) \le 2 \sum_{i=1}^{n} \sum_{j=1}^{n} \|x_i - y_j\|_p^p$$

Proof. By summation it is clearly enough to prove these inequalities for $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$. If $2 \leq p < \infty$ then the required result follows from an application of Lemma 6 to the matrix $a_{ij} = x_i - y_j$. If $1 \leq p \leq 2$ then consider ℓ_p equipped with the metric $d(x, y) = ||x - y||_p^{p/2}$. It is well known (see [12]) that (ℓ_p, d) embeds isometrically in ℓ_2 , so that the case $1 \leq p \leq 2$ follows from the case p = 2.

Remark. In [7] P. Enflo defined the notion on generalized roundness of a metric space. A metric space (M, d) is said to have generalized roundness $q \ge 0$ if for every $x_1, \ldots, x_n, y_1, \ldots, y_n \in M$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (d(x_i, x_j)^q + d(y_i, y_j)^q) \le 2 \sum_{i=1}^{n} \sum_{j=1}^{n} d(x_i, y_j)^q.$$

Enflo proved that Hilbert space has generalized roundness 2 and in [10] the concept of generalized roundness was investigated and was shown to be equivalent to the notion of negative type (see [5, 12] for the definition). Particularly, it was proved in [10] that for $1 \leq p < 2$, ℓ_p has generalized roundness p, which is precisely the second statement in Corollary 7. In [10] it was also shown that for $2 \leq p < \infty$, ℓ_p doesn't have generalized roundness q for any q > 0. Finally, we would like to remark that the case p = 1 of Corollary 7 has a particularly simple proof using density functions. As before it is enough to prove that for $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (|x_i - x_j| + |y_i - y_j|) \le 2 \sum_{i=1}^{n} \sum_{j=1}^{n} |x_i - y_j|.$$
(1)

Define for $x \in \mathbb{R}$:

$$I(x) = |\{i \in \{1, \dots, n\}; x_i \le x\}|,$$

$$J(x) = |\{i \in \{1, \dots, n\}; y_i \le x\}|.$$

Let:

$$f_L(x) = I(x)(n - I(x)) + J(x)(n - J(x)),$$

$$f_R(x) = I(x)(n - J(x)) + J(x)(n - I(x)).$$

Then:

$$2\sum_{i=1}^{n}\sum_{j=1}^{n}|x_{i}-y_{j}| - \sum_{i=1}^{n}\sum_{j=1}^{n}(|x_{i}-x_{j}|+|y_{i}-y_{j}|)$$

= $2\int_{-\infty}^{\infty}f_{R}(x)dx - 2\int_{-\infty}^{\infty}f_{L}(x)dx$
= $2\int_{-\infty}^{\infty}[I(x)(n-J(x)) + J(x)(n-I(x)) - I(x)(n-I(x)) - J(x)(n-J(x))]dx$
= $2\int_{-\infty}^{\infty}[I(x) - J(x)]^{2}dx \ge 0.$

Proof of Proposition 5. We identify $K_{n,n}$ with the metric on $\{u_1, \ldots, u_n, v_1, \ldots, v_n\}$ where $d(u_i, u_j) = d(v_i, v_j) = 2$ for all $i \neq j$, and $d(u_i, v_j) = 1$ for every $1 \leq i, j \leq n$. Fix some

 $1 \leq p < \infty$ and let $f : \{u_1, \ldots, u_n, v_1, \ldots, v_n\} \to \ell_p$ be an embedding such that for every $x, y \in K_{n,n}, d(x, y) \leq \|f(x) - f(y)\|_p \leq Ld(x, y)$. Then,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (\|f(u_i) - f(u_j)\|_p^p + \|f(v_i) - f(v_j)\|_p^p) \ge 2n(n-1)2^p$$

and

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \|f(u_i) - f(v_j)\|_p^p \le n^2 L^p.$$

For $1 \le p \le 2$ Corollary 7 gives:

$$2n(n-1)^p 2^p \le 2n^2 L^p \Longrightarrow L \ge 2\left(\frac{n-1}{n}\right)^{1/p}.$$

For $2 \le p < \infty$ we get that:

$$2n(n-1)2^p \le 2^{p-1}n^2L^p \Longrightarrow L \ge 2^{2/p} \left(\frac{n-1}{n}\right)^{1/p}.$$

This proves the required lower bounds on $c_p(K_{n,n})$.

To prove the upper bound assume first that p = 2 and denote by $\{e_i\}_{i=1}^{\infty}$ the standard unit vectors in ℓ_2 . Define $f: K_{n,n} \to \ell_2^{2n}$ by:

$$f(u_i) = \sqrt{2} \left(e_i - \frac{1}{n} \sum_{j=1}^n e_j \right),$$

$$f(v_i) = \sqrt{2} \left(e_{n+i} - \frac{1}{n} \sum_{j=1}^n e_{n+j} \right)$$

Then for $i \neq j$, $||f(u_i) - f(u_j)||_2 = ||f(v_i) - f(v_j)||_2 = d(u_i, u_j) = d(v_i, v_j)$. On the other hand:

$$\|f(u_i) - f(v_j)\|_2 = \sqrt{\|f(u_i)\|_2^2 + \|f(v_j)\|_2^2}$$
$$= \sqrt{4\left(1 - \frac{1}{n}\right)^2 + 4(n-1) \cdot \frac{1}{n^2}} = 2\sqrt{\frac{n-1}{n}}.$$

This finishes the calculation of $c_2(K_{n,n})$. For $1 \le p < 2$, since for every $\epsilon > 0$ and for every k, ℓ_p contains a $(1 + \epsilon)$ distorted copy of ℓ_2^k , we get the estimate $c_p(K_{n,n}) \le 2\sqrt{\frac{n-1}{n}}$.

The case $2 requires a different embedding. We begin by describing an embedding with distortion <math>2^{2/p}$ and then explain how to modify it so as to reduce the distortion by a factor of $(1 - \frac{1}{2n})^{1/p}$. Let z_1, \ldots, z_n be a collection of n mutually orthogonal ± 1 vectors of dimension m = O(n). (For example the first n rows in an $m \times m$ Hadamard matrix). In our first embedding we define $f(u_i)$ as the (2m)-dimensional vector $(z_i, 0)$, namely, z_i concatenated with m zeros. Likewise, $f(v_i) = (0, z_i)$ for all i. Now $||f(u_i) - f(u_j)||_p = 2\left(\frac{m}{2}\right)^{1/p}$ and $||f(u_i) - f(v_j)||_p = (2m)^{1/p}$, and so f has distortion $2^{2/p}$. To get the $\left(1 - \frac{1}{2n}\right)^{1/p}$ improvement, note that for some $m \leq 4n$ it is possible to select the z_i so that the m-th coordinate in all of them is +1. Modify the previous construction to an embedding into 2m - 1 dimensions as follows: Now $g(u_i)$ is z_i concatenated with m - 1 zeros, whereas $g(v_i)$ has zeros in the first m - 1 coordinates, 1 in the m-th and this is followed by the first m - 1 coordinates of the vector z_i . The easy details are omitted.

Remark: The upper bounds in Proposition 5 were not used in the proof of Theorem 5. Apart from their intrinsic interest, these upper estimates show that the above technique cannot prove an upper bound of $O(\log n)$ on $R_2(2 - \epsilon, n)$ which is independent of ϵ . In fact, this can never be achieved using $\{0, 1, 2\}$ metric spaces due to the following proposition.

Proposition 8. Let X be an n-point $\{0, 1, 2\}$ metric space. Then $c_2(X) \le 2\sqrt{\frac{n-1}{n}}$.

Proof. We think of X as a metric on $\{1, \ldots, n\}$ and denote $d(i, j) = d_{ij}$. Define an $n \times n$ matrix A as follows:

$$A_{ij} = \begin{cases} 2 & \text{if } i = j \\ 0 & \text{if } d_{ij} = 2 \\ \frac{2}{n} & \text{if } d_{ij} = 1 \end{cases}$$

We claim that A is positive semi-definite. Indeed, for any $z \in \mathbb{R}^n$

$$\begin{split} \langle Az, z \rangle &= \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} z_{i} z_{j} \\ &\geq \sum_{i=1}^{n} 2z_{i}^{2} - \sum_{i \neq j} \frac{2}{n} |z_{i}| \cdot |z_{j}| \\ &\geq \sum_{i=1}^{n} 2z_{i}^{2} - \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{2}{n} |z_{i}| \cdot |z_{j}| \\ &= 2 \|z\|_{2}^{2} - \frac{2}{n} \|z\|_{1}^{2} \geq 2 \|z\|_{2}^{2} - \frac{2}{n} n \|z\|_{2}^{2} = 0. \end{split}$$

Let e_1, \ldots, e_n be the standard unit vectors in \mathbb{R}^n . Define $f: X \to \mathbb{R}^n$ by $f(i) = A^{1/2}e_i$. Now,

$$\|f(i) - f(j)\|_2^2 = \langle Ae_i, e_i \rangle + \langle Ae_j, e_j \rangle - 2\langle Ae_i, e_j \rangle = A_{ii} + A_{jj} - 2A_{ij},$$

so that if $d_{ij} = 1$ then $||f(i) - f(j)||_2 = \sqrt{4 - \frac{4}{n}}$ and if $d_{ij} = 2$ then $||f(i) - f(j)||_2 = 2$. It follows that

$$\operatorname{dist}(f) = 2\sqrt{\frac{n-1}{n}}$$

3 The Isometric Ramsey Problem

In this section we prove that for $n \ge 3$, $1 , <math>R_p(n) = R_p(1, n) = 3$. In fact, we show that this is true for any uniformly convex normed space. We begin by sketching an argument that is specific to ℓ_2 :

Proposition 9. $R_2(n) = 3$ for $n \ge 3$.

Proof. That $R_2(n) \ge 3$ follows since any metric space on 3 points embeds isometrically in ℓ_2^2 . To show that $R_2(n) \le 3$, we construct a metric space on n > 3 points, no 4 point subspace of which embeds isometrically in ℓ_2 . Fix an integer n > 3 and let $\{a_i\}_{i=0}^n$ be an increasing sequence such that $a_0 = 0$, $a_1 = 1$ and for $1 \le i < n$, $a_{i+1} \ge 2(n+1)a_i$. Fix some

 $0 < \epsilon < 1/(2a_n)$. It is easily verified that $d(i,j) = |i-j| - \epsilon a_{|i-j|}$ is a metric on $\{1, 2, \dots, n\}$. We show that for ϵ small enough no four points in $(\{1, \ldots, \}, d)$ embed isometrically in ℓ_2 . Fix four integers $1 \le i_1 < i_2 < i_3 < i_4 \le n$ and set $j = i_2 - i_1$, $k = i_3 - i_2$, $l = i_4 - i_3$. Suppose that for every $\epsilon > 0$ there exists an isometric embedding $f: (\{i_1, i_2, i_3, i_4\}, d) \to \ell_2^3$. Without loss of generality we may assume that $f(i_1) = (\alpha, \beta, \gamma), f(i_2) = (0, 0, 0), f(i_3) = (k - \epsilon a_k, 0, 0)$ and $f(i_4) = (p, q, 0)$. Then:

$$2\alpha(k - \epsilon a_k) = 2\langle f(i_1), f(i_3) \rangle$$

= $||f(i_1) - f(i_2)||_2^2 + ||f(i_3) - f(i_2)||_2^2 - ||f(i_3) - f(i_1)||_2^2$
= $(j - \epsilon a_j)^2 + (k - \epsilon a_k)^2 - (j + k - \epsilon a_{j+k})^2.$

Hence,

$$\alpha \leq -j + \frac{\epsilon}{k} [(k+j)a_{k+j} - ja_j - ka_k - ja_k] + O(\epsilon^2).$$

Similarly:

$$p \ge (k+l) + \frac{\epsilon}{k} [(k+l)a_k - (k+l)a_{k+l} - ka_k + la_l] + O(\epsilon^2).$$

Now:

$$j + k + l - \epsilon a_{j+k+l} =$$

$$= \|f(i_4) - f(i_1)\|_2$$

$$\ge p - \alpha$$

$$\ge j + k + l + \frac{\epsilon}{k}[(k+l)a_k - (k+l)a_{k+l} + la_l - (k+j)a_{k+j} + ja_j + ja_k] + O(\epsilon^2).$$

Letting ϵ tend to zero we deduce that:

$$\begin{aligned} a_{j+k+l} &\leq \\ &\leq \left(1 + \frac{j}{k}\right)a_{k+j} + \left(1 + \frac{l}{k}\right)a_{k+l} - \frac{l}{k}a_l - \frac{j}{k}a_j - \frac{j+k+l}{k}a_k < 2(n+1)a_{j+k+l-1}, \end{aligned}$$
hich is a contradiction.

which is a contradiction.

The argument above is quite specific to ℓ_2 , and so we now consider any uniformly convex normed space. The modulus of uniform convexity of a normed space X is defined by:

$$\delta_X(\epsilon) = \inf \left\{ 1 - \frac{\|a+b\|}{2}; \|a\|, \|b\| \le 1 \text{ and } \|a-b\| \ge \epsilon \right\}.$$

X is said to be uniformly convex if $\delta_X(\epsilon) > 0$ for every $0 < \epsilon \leq 2$. The L_p spaces 1 ,are known to be uniformly convex. For a uniformly convex space X, δ_X is known to be continuous and strictly increasing on (0, 2].

Assume that X is a uniformly convex normed space and $a, b \in X \setminus \{0\}$. Then:

$$\begin{split} \left\| \frac{a}{\|a\|} + \frac{b}{\|b\|} \right\| &= \\ &= \left\| \left(\frac{1}{\|a\|} + \frac{1}{\|b\|} \right) (a+b) - \frac{a}{\|b\|} - \frac{b}{\|a\|} \right\| \\ &\geq \left(\frac{1}{\|a\|} + \frac{1}{\|b\|} \right) \|a+b\| - \frac{\|a\|}{\|b\|} - \frac{\|b\|}{\|a\|} \\ &= 2 - \left(\frac{1}{\|a\|} + \frac{1}{\|b\|} \right) (\|a\| + \|b\| - \|a+b\|). \end{split}$$

Now,

$$\delta_X \left(\left\| \frac{a}{\|a\|} - \frac{b}{\|b\|} \right\| \right) \le \\ \le 1 - \frac{1}{2} \cdot \left\| \frac{a}{\|a\|} + \frac{b}{\|b\|} \right\| \le \frac{1}{2} \cdot \left(\frac{1}{\|a\|} + \frac{1}{\|b\|} \right) (\|a\| + \|b\| - \|a + b\|).$$

Hence

$$\left\|\frac{a}{\|a\|} - \frac{b}{\|b\|}\right\| \le \delta_X^{-1} \left(\frac{1}{2} \cdot \left(\frac{1}{\|a\|} + \frac{1}{\|b\|}\right) \left(\|a\| + \|b\| - \|a + b\|\right)\right).$$

Take $x, y, z \in X$ and apply this inequality for a = x - y, b = y - z. It follows that:

$$\begin{aligned} \left\| y - \left(\frac{\|y - z\|}{\|x - y\| + \|y - z\|} \cdot x + \frac{\|x - y\|}{\|x - y\| + \|y - z\|} \cdot z \right) \right\| &\leq \\ &\leq \frac{\|x - y\| \cdot \|y - z\|}{\|x - y\| + \|y - z\|} \cdot \delta_X^{-1} \left(\frac{\|x - y\| + \|y - z\| - \|x - z\|}{\min\{\|x - y\|, \|y - z\|\}} \right). \end{aligned}$$

This inequality is the way uniform convexity is going to be applied in the sequel. Indeed, we have the following "metric" consequence of it:

Lemma 10. Let X be a uniformly convex normed space and $x_1, x_2, x_3, x_4 \in X$ be distinct. Then:

$$\begin{aligned} \frac{\|x_1 - x_2\| + \|x_2 - x_3\| - \|x_1 - x_3\|}{2\|x_2 - x_3\|} &\leq \\ &\leq \delta_X^{-1} \left(\frac{\|x_1 - x_3\| + \|x_3 - x_4\| - \|x_1 - x_4\|}{\min\{\|x_1 - x_3\|, \|x_3 - x_4\|\}} \right) + \\ &+ \delta_X^{-1} \left(\frac{\|x_2 - x_3\| + \|x_3 - x_4\| - \|x_2 - x_4\|}{\min\{\|x_2 - x_3\|, \|x_3 - x_4\|\}} \right). \end{aligned}$$

Proof. Define:

$$\lambda = \frac{\|x_3 - x_4\|}{\|x_1 - x_3\| + \|x_3 - x_4\|} \quad \text{and} \quad \mu = \frac{\|x_3 - x_4\|}{\|x_2 - x_3\| + \|x_3 - x_4\|}.$$

An application of the above inequality twice gives:

$$\|x_3 - (\lambda x_1 + (1 - \lambda)x_4)\| \le \frac{\|x_1 - \|x_3\| \cdot \|x_3 - x_4\|}{\|x_1 - x_3\| + \|x_3 - x_4\|} \cdot \delta_X^{-1} \left(\frac{\|x_1 - x_3\| + \|x_3 - x_4\| - \|x_1 - x_4\|}{\min\{\|x_1 - x_3\|, \|x_3 - x_4\|\}}\right),$$

and

$$\|x_3 - (\mu x_2 + (1 - \mu)x_4)\| \le \frac{\|x - 2 - x_3\| \cdot \|x_3 - x_4\|}{\|x_2 - x_3\| + \|x_3 - x_4\|} \cdot \delta_X^{-1} \left(\frac{\|x_2 - x_3\| + \|x_3 - x_4\| - \|x_2 - x_4\|}{\min\{\|x_2 - x_3\|, \|x_3 - x_4\|\}}\right)$$

By symmetry, we may assume without loss of generality that $\lambda \leq \mu$. Now,

$$\begin{split} \left\| x_2 - \frac{\lambda(1-\mu)}{\mu(1-\lambda)} x_1 - \frac{\mu-\lambda}{\mu(1-\lambda)} x_3 \right\| &\leq \\ &= \frac{1}{\mu} \left\| \mu x_2 + (1-\mu)x_4 - x_3 + \frac{1-\mu}{1-\lambda} (x_3 - \lambda x_1 - (1-\lambda)x_4) \right\| \\ &\leq \frac{1}{\mu} \| x_3 - \mu x_2 - (1-\mu)x_4 \| + \frac{1-\mu}{\mu(1-\lambda)} \cdot \| x_3 - \lambda x_1 - (1-\lambda)x_4 \| \\ &\leq \frac{\| x_2 - x_3 \| + \| x_3 - x_4 \|}{\| x_3 - x_4 \|} \cdot \frac{\| x_2 - x_3 \| \cdot \| x_3 - x_4 \|}{\| x_2 - x_3 \| + \| x_3 - x_4 \|} \cdot \\ &\quad \cdot \delta_X^{-1} \left(\frac{\| x_2 - x_3 \| + \| x_3 - x_4 \|}{\min\{\| x_2 - x_3 \|, \| x_3 - x_4 \|\}} \right) + \\ &\quad + \frac{\| x_2 - x_3 \|}{\| x_3 - x_4 \|} \frac{\| x_1 - x_3 \|}{\| x_1 - x_3 \|} \frac{\| x_1 - \| x_3 \| \cdot \| x_3 - x_4 \|}{\| x_1 - x_3 \| + \| x_3 - x_4 \|} \cdot \\ &\quad \cdot \delta_X^{-1} \left(\frac{\| x_1 - x_3 \| + \| x_3 - x_4 \|}{\min\{\| x_1 - x_3 \|, \| x_3 - x_4 \|\}} \right) \\ &= \| x_2 - x_3 \| \delta_X^{-1} \left(\frac{\| x_1 - x_3 \| + \| x_3 - x_4 \|}{\min\{\| x_1 - x_3 \|, \| x_3 - x_4 \|\}} \right) + \\ &\quad + \| x_2 - x_3 \| \delta_X^{-1} \left(\frac{\| x_2 - x_3 \| + \| x_3 - x_4 \|}{\min\{\| x_1 - x_3 \|, \| x_3 - x_4 \|\}} \right). \end{split}$$

Additionally,

$$\begin{aligned} \|x_{2} - x_{1}\| &\leq \\ &\leq \left\|x_{2} - \frac{\lambda(1-\mu)}{\mu(1-\lambda)}x_{1} - \frac{\mu-\lambda}{\mu(1-\lambda)}x_{3}\right\| + \left\|x_{1} - \frac{\lambda(1-\mu)}{\mu(1-\lambda)}x_{1} - \frac{\mu-\lambda}{\mu(1-\lambda)}x_{3}\right\| \\ &= \left\|x_{2} - \frac{\lambda(1-\mu)}{\mu(1-\lambda)}x_{1} - \frac{\mu-\lambda}{\mu(1-\lambda)}x_{3}\right\| + \frac{\mu-\lambda}{\mu(1-\lambda)}\|x_{1} - x_{3}\|, \end{aligned}$$

and

$$\begin{aligned} \|x_2 - x_3\| &\leq \\ &\leq \left\|x_2 - \frac{\lambda(1-\mu)}{\mu(1-\lambda)}x_1 - \frac{\mu-\lambda}{\mu(1-\lambda)}x_3\right\| + \left\|x_3 - \frac{\lambda(1-\mu)}{\mu(1-\lambda)}x_1 - \frac{\mu-\lambda}{\mu(1-\lambda)}x_3\right\| \\ &= \left\|x_2 - \frac{\lambda(1-\mu)}{\mu(1-\lambda)}x_1 - \frac{\mu-\lambda}{\mu(1-\lambda)}x_3\right\| + \frac{\lambda(1-\mu)}{\mu(1-\lambda)}\|x_1 - x_3\|. \end{aligned}$$

Summing up these estimates gives the required result.

We can now prove the main result of this section:

Theorem 6. Let X be a uniformly convex normed space with $\dim(X) \ge 2$. Then for every $n \ge 3$, $R_X(n) = 3$. Moreover, for every $\delta : (0, 2] \to (0, \infty)$ which is continuous, increasing and $\delta \le \delta_{\ell_2}$, let UC_{δ} be the class of all normed spaces X with $\delta_X \ge \delta$. Then for each $n \ge 3$ there is a constant $\epsilon_n(\delta) > 0$ such that $R_{UC_{\delta}}(1 + \epsilon_n(\delta), n) = 3$.

Proof. That $R_X(n) \ge 3$ follows since any 3 point metric embeds isometrically into any 2 dimensional normed space, by a standard continuity argument.

Fix some $\delta : (0,2] \to (0,\infty)$ which is continuous, increasing and $\delta \leq \delta_{\ell_2}$. We shall construct inductively a sequence $\{M_n\}_{n=3}^{\infty}$ of metric spaces and numbers $\{\eta_n\}_{n=3}^{\infty}$ such that:

a) For every $n \ge 3$, $\eta_n > 0$. Each M_n is a metric on $\{1, \ldots, n\}$, and we denote $d_{ij}^n = d_{M_n}(i, j)$. b) For every $1 \le i < j < k \le n$,

$$d_{i,j}^{n} + d_{jk}^{n} - d_{i,k}^{n} - \eta_{n} \ge 2d_{j,k}^{n} \left[\delta^{-1} \left(\frac{d_{i,k}^{n} + d_{k,n}^{n} - d_{i,n}^{n}}{\min\{d_{i,k}^{n}, d_{k,n}^{n}\}} \right) + \delta^{-1} \left(\frac{d_{j,k}^{n} + d_{k,n}^{n} - d_{j,n}^{n}}{\min\{d_{j,k}^{n}, d_{k,n}^{n}\}} \right) \right].$$

Lemma 10 immediately implies that there is a constant $\epsilon_n(\delta) > 0$ such that for every $1 \le i < j < k < l \le n$ and for every normed space X with $\delta_X \ge \delta$:

$$c_X(\{i, j, k, l\}, d_{M_n}) \ge 1 + \epsilon_n(\delta),$$

as required.

 M_3 is the equilateral metric on $\{1, 2, 3\}$, in which case $\eta_3 = 1$. We construct $M_{n+1} = (\{1, \ldots, n+1\}, d^{n+1})$ as an extension of M_n , by setting

$$d_{n,n+1}^{n+1} = 1 - s/2$$
 and $\forall 1 \le i < n, \ d_{i,n+1}^{n+1} = d_{in}^{n} + 1 - s.$

This is indeed a definition of a metric as long as $0 < s \leq \min\{1, 2\min_{1 \leq i < n} d_{i,n}^n\}$ (this fact follows from a simple case analysis).

We are left to check condition **b**). Fix $1 \le i < j < k \le n$. If $k \ne n$ then:

$$\begin{split} d_{i,j}^{n+1} + d_{j,k}^{n+1} - d_{i,k}^{n+1} - \eta_n &= d_{i,j}^n + d_{j,k}^n - d_{i,k}^n - \eta_n \\ &\geq 2d_{j,k}^n \left[\delta^{-1} \left(\frac{d_{i,k}^n + d_{k,n}^n - d_{i,n}^n}{\min\{d_{i,k}^n, d_{k,n}^n\}} \right) + \delta^{-1} \left(\frac{d_{j,k}^n + d_{k,n}^n - d_{j,n}^n}{\min\{d_{j,k}^n, d_{k,n}^n\}} \right) \right] \\ &\geq 2d_{j,k}^n \left[\delta^{-1} \left(\frac{d_{i,k}^n + (d_{k,n}^n + 1 - s) - (d_{i,n}^n + 1 - s)}{\min\{d_{i,k}^n, d_{k,n}^n + 1 - s\}} \right) \right] \\ &+ \delta^{-1} \left(\frac{d_{j,k}^n + (d_{k,n}^n + 1 - s) - (d_{j,n}^n + 1 - s)}{\min\{d_{j,k}^n, d_{k,n}^n + 1 - s\}} \right) \right] \\ &= 2d_{j,k}^{n+1} \left[\delta^{-1} \left(\frac{d_{i,k}^{n+1} + d_{k,n+1}^{n+1} - d_{i,n+1}^{n+1}}{\min\{d_{i,k}^{n+1}, d_{k,n+1}^{n+1}\}} \right) + \delta^{-1} \left(\frac{d_{j,k}^{n+1} + d_{k,n+1}^{n+1} - d_{j,n+1}^{n+1}}{\min\{d_{j,k}^{n+1}, d_{k,n+1}^{n+1}\}} \right) \right] \end{split}$$

It remains to check **b**) for the quadruple $\{i, j, n, n+1\}$. Condition **b**) for M_n implies that:

$$d_{ij}^{n+1} + d_{jn}^{n+1} - d_{in}^{n+1} \ge \eta_n.$$

On the other hand,

$$2d_{j,n}^{n+1} \left[\delta^{-1} \left(\frac{d_{i,n}^{n+1} + d_{n,n+1}^{n+1} - d_{i,n+1}^{n+1}}{\min\{d_{i,n}^{n+1}, d_{n,n+1}^{n+1}\}} \right) + \delta^{-1} \left(\frac{d_{j,n}^{n+1} + d_{n,n+1}^{n+1} - d_{j,n+1}^{n+1}}{\min\{d_{j,n}^{n+1}, d_{n,n+1}^{n+1}\}} \right) \right] = 2d_{j,n}^{n} \left[\delta^{-1} \left(\frac{s/2}{\min\{d_{i,n}^{n}, 1 - s/2\}} \right) + \delta^{-1} \left(\frac{s/2}{\min\{d_{j,n}^{n}, 1 - s/2\}} \right) \right],$$

so that condition **b**) will hold when s is small enough such that the quantity above is at most $\eta_n/2$ and with $\eta_{n+1} = \eta_n/2$.

Corollary 11. For all $1 , <math>R_p(n) = 3$ for $n \ge 3$.

We end this section with a simple lower bound for the isometric Ramsey problem for graphs. We do not know what is the asymptotically correct bound in this setting.

Proposition 12. Let G be an un-weighted graph of order n. Then there is a set of $\Omega\left(\sqrt{\frac{\log n}{\log \log n}}\right)$ vertices in G whose metric embeds isometrically into ℓ_2 .

Proof. Let Δ be the diameter of G. The shortest path between two diameterically far vertices is isometrically embeddable in ℓ_2 . On the other hand, the Bourgain, Figiel, Milman theorem [4] yields that for every $0 < \epsilon < 1$ a subset $N \subset V$ which is $(1 + \epsilon)$ embeddable in Hilbert space and $|N| = \Omega\left(\frac{\epsilon}{\log(2/\epsilon)}\log n\right)$. When $\epsilon = \frac{1}{2\Delta}$, such an embedding is an isometry. Hence we can always extract a subset of V which is isometrically embeddable in ℓ_2 with cardinality

$$\Omega\left(\max\left\{\Delta, \frac{\log n}{\Delta\log\Delta}\right\}\right) = \Omega\left(\sqrt{\frac{\log n}{\log\log n}}\right),$$

as claimed.

Acknowledgments: The authors would like to express their gratitude to Guy Kindler for some helpful discussions.

References

- Y. Bartal, N. Linial, M. Mendel, and A. Naor. On Metric Ramsey-type Phenomena, 2002. Preprint.
- [2] J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.
- [3] B. Bollobás. Random graphs. Cambridge University Press, Cambridge, second edition, 2001.
- [4] J. Bourgain, T. Figiel, and V. Milman. On Hilbertian subsets of finite metric spaces. Israel J. Math., 55(2):147–152, 1986.
- [5] M. M. Deza and M. Laurent. Geometry of cuts and metrics. Springer-Verlag, Berlin, 1997.
- [6] A. Dvoretzky. Some results on convex bodies and Banach spaces. In Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), pages 123–160. Jerusalem Academic Press, Jerusalem, 1961.
- [7] P. Enflo. On a problem of Smirnov. Ark. Mat., 8:107–109, 1969.
- [8] P. Erdös. Some remarks on the theory of graphs. Bull. Amer. Math. Soc., 53:292–294, 1947.

- [9] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), pages 189–206. Amer. Math. Soc., Providence, RI, 1984.
- [10] C. J. Lennard, A. M. Tonge, and A. Weston. Generalized roundness and negative type. Michigan Math. J., 44(1):37–45, 1997.
- [11] C. Lund and M. Yannakakis. The approximation of maximum subgraph problems. In ICALP, volume 700 of Lecture Notes in Computer Science. Springer, 1993.
- [12] J. H. Wells and L. R. Williams. *Embeddings and extensions in analysis*. Springer-Verlag, New York, 1975. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84.

Yair Bartal, Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel. yair@cs.huji.ac.il

Nathan Linial, Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel. nati@cs.huji.ac.il

Manor Mendel, Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel. mendelma@cs.huji.ac.il

Assaf Naor, Theory Group, Microsoft Research, One Microsoft Way 113/2131, Redmond WA 98052-6399, USA.

anaor@microsoft.com

2000 AMS Mathematics Subject Classification: 52C45, 05C55, 54E40, 05C12, 54E40.