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Abstract

In this paper we introduce the notion of nearest neighbor preserving embeddings. These are
randomized embeddings between two metric spaces which preserve the (approximate) nearest
neighbors. We give two examples of such embeddings, for Euclidean metrics with low “intrin-
sic” dimension. Combining the embeddings with known data structures yields the best known
approximate nearest neighbor data structures for such metrics.

1 Introduction

The nearest neighbor problem is defined as follows: given a set X of points in Rd, build a
data structure which given any q ∈ Rd, quickly reports the point in X that is (approximately)
closest to q. This problem, and its approximate versions, are some of the central problems in
computational geometry.

Since the late 1990’s, it became apparent that designing efficient approximate nearest neigh-
bor algorithms, at least for high-dimensional data, is closely related to the task of designing
low-distortion embeddings. A bi-Lipschitz embedding between two metric spaces (X, dX) and
(X ′, d′X) is a mapping f : X → X ′ such that for some scaling factor C > 0, for every p, q ∈ X
we have CdX(p, q) ≤ d′X(f(p), f(q)) ≤ DCdX(p, q), where the parameter D ≥ 1 called the
distortion of f . Of particular importance, in the context of approximate nearest neighbor, are
low-distortion embeddings that map X ⊆ Rd into Rk, where k is much smaller than d. For ex-
ample, a well-known theorem of Johnson and Lindenstrauss guarantees that for any set X ⊆ Rd

there is a (1 + ε)-distortion embedding of (X, ‖ · ‖2) into (Rk, ‖ · ‖2) for k = O(log |X|/ε2). This
embedding and its variants have been utilized e.g., in [20, 26], to give efficient approximate
nearest neighbor algorithms in high-dimensional spaces.

More recently (e.g., in [19]), it has been realized that the approximate nearest neighbor
problem requires embedding properties that are somewhat different from the above definition.
One (obvious) difference is that the embedding must be oblivious, that is, well-defined over the
whole space Rd, not just the input data points X. This is because, in general, a query point
q ∈ Rd does not belong to X. The aformentioned Johnson-Lindenstrauss lemma indeed satisfies
this (stronger) property. The second difference is that the embedding does not need to preserve
all interpoint distances. Instead, it suffices1 that the embedding f is randomized, and satisfies
the following definition which we introduce:

Definition 1.1. Let (Y, dY ), (Z, dZ) be metric spaces and X ⊆ Y . We say that a distribution
over mappings f : Y → Z is a nearest neighbor preserving embedding (or NN-preserving) with

1If we consider the approximate near neighbor problem, i.e., the decision version of the approximate nearest
neighbor, then the constraints that an embedding needs to satisfy are even weaker. Also, it is known [20, 16] that
the approximate nearest neighbor can be reduced to its decision version. However, such reductions are non-trivial
and introduce certain overhead in the query time and space. Thus, it is beneficial that the embedding preserves the
approximate nearest neighbor, not just the near neighbor.
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distortion D ≥ 1 and probability of correctness2 P ∈ [0, 1] if for every c ≥ 1 and any q ∈ Y , with
probability at least P , if x ∈ X is such that f(x) is a c-approximate nearest neighbor of f(q) in
f(X) (i.e. d(f(q), f(x)) ≤ c · d(f(q), f(X))), then x is a D · c approximate nearest neighbor of
q in X.

This notion is the appropriate generalization of oblivious embeddings à la Johnson and
Lindenstrauss: we want f to be defined on the entire space of possible query points Y , and we
require much less than a bi-Lipschitz condition. Clearly, the Johnson-Lindenstrauss theorem is
an example of a NN-preserving embedding. Another example of such a mapping is a (weak)
dimensionality reduction in `1 norm given in [19]. It maps (Rd, ‖ · ‖1) into (Rk, ‖ · ‖1), where
k is much smaller than d, and guarantees that, for any pair of points, the probability that the
distance between the pair gets contracted is ”very small”, while the probability of the distance
being expanded by a is at most 1/2. It is easy to see that such mapping is a-NN-preserving.
At the same time, the standard dimensionality reduction in `1 (that preserves all distances)
is provably impossible [8, 30]. Thus, the definition of NN-preserving embeddings allows us to
overcome the impossibility results for the stronger notion of bi-Lipschitz embeddings, while
being sufficient for the purpose of the nearest neighbor and related problems.

In this paper we initiate a systematic study of NN-preserving embeddings into low-dimensional
spaces. In particular, we prove that such embeddings exist for the following subsets X of the
Euclidean space (Rd, ‖ · ‖2):

1. Doubling sets. The doubling constant of X, denoted λX , is the smallest integer λ such
that for any p ∈ X and r > 0, the ball B(p, r) (in X) can be covered by at most λ balls of
radius r/2 centered at points in X. It is also convenient to define the doubling dimension
of X to be log λX (this terminology is used in [15]). See [9] for a survey of nearest neighbor
algorithms for doubling sets.
We give, for any ε > 0, δ ∈ (0, 1/2], a randomized mapping f : Rd → Rk that is (1 + ε)-
NN-preserving for X, with probability of correctness 1− δ, where

k = O

(
log(1/ε)

ε2
· log(1/δ) · log λX

)
.

2. Sets with small aspect ratio and small γ-dimension. Consider sets X of diameter 1. The
aspect ratio of X, ∆, is the inverse of the smallest interpoint distance in X. The γ-
dimension of X, which is a natural notion motivated by the theory of Gaussian processes,
is defined in Section 2. Here we just state that γ(X) = O(

√
log λX) for all X.

We give, for any ε > 0, a randomized mapping f : Rd → Rk that is (1 + ε)-NN-preserving
for X, where k = O(∆2γ2/ε2).
Although quadratic dependence of the dimension on ∆ might seem excessive, there exist
natural high dimensional data sets with (effectively) small aspect ratios. For example, in
the MNIST data set (investigated e.g., in [3]), for all but 2% of points, the distances to
nearest neighbors lie in the range [0.19, 0.72].

The above two results are not completely disjoint. This is because, for metrics with constant
aspect ratio, the γ dimension and doubling dimension coincide, up to constant factors. However,
this is not the case for ∆ = ω(1).

Our investigation here is related to the following fascinating open problem in metric geom-
etry: is it true that doubling subsets of `2 embed bi-Lipschitzly into low dimensional Euclidean
space? (see section 4 for a precise formulation). This question is of great theoretical interest,
but it is also clear that a positive answer to it will have algorithmic applications. Our result
shows that for certain purposes, such as nearest neighbor search, a weaker notion of embed-
ding suffices, and provably exists. It is worth noting that while our nearest neighbor preserving

2Whenever P is not specified, it is assumed to be equal to 1/2.
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mapping is linear, an embedding satisfying the conditions of this problem cannot be in general
linear (this is discussed in section 4).

Algorithmic implications. Our NN-preserving embeddings have, naturally, immediate
applications to efficient approximate nearest neighbor problems.

Our first application combines NN-preserving embeddings with efficient (1+ ε)-approximate
nearest neighbor data structures in the Euclidean space (Rk, ‖ · ‖2) [16, 4], which use O(|X|/εk)
space and have O(k log(|X|/ε)) query time (recall that we guarantee k = O(log λX log(1/ε)/ε2),
and that we need to add dk to the query time to account for the time needed to embed the query
point). This results in a very efficient (1 + ε)-approximate nearest neighbor data structure. For
comparison, the data structure of [25], which works for general metrics, suffers from query time
exponential in log λX . For the case of subsets of (Rd, ‖ · ‖2) (which we consider here), their
data structure can be made faster [Krauthgamer-Lee, personal communication] by using fast
approximate nearest neighbor algorithm of [20, 26] as a subroutine. In particular, the query
time becomes roughly O(dk + k · log ∆) and space O(|X|/εk). However, unlike in our case,
the query time of that algorithm depends on the aspect ratio ∆. Since for any X we have
that λX ≤ |X|, it follows that our algorithm always uses space |X|O([log(1/ε)/ε]2) and has query
time O(d log |X| log(1/ε)/ε2). Thus, our algorithm almost matches the bounds of the algorithm
of [20], while being much more general.

Our second application involves approximate nearest neighbor where the data set consists
of objects that are more complex than points. Specifically, we consider an arbitrary set X
containing n sets {S1 . . . Sn}, where Si ⊂ Rd, i = 1 . . . n. Let λ = maxi=1...n λSi

. If we
set δ = 1

2n , it follows that for any point q ∈ Rd, a random mapping G : Rd → Rk, k =
O(log λ · log n · log(1/ε)/ε2), preserves a (1 + ε)-nearest neighbor of q in ∪n

i=1Si with probability
at least 1/2. Therefore, if we find a (1+ε)-approximate nearest neighbor of Gq in {GS1 . . . GSn},
then, with probability 1/2, it is also a (1+O(ε))-approximate nearest neighbor of q in {S1 . . . Sn}.
This corollary provides a strong generalization of a result of [31], who showed this fact for the
case when S′is are affine spaces (although our bound is weaker by a factor of log(1/ε)).

Our embedding-based approach to design of approximate nearest neighbor algorithms has
the following benefits:

• Simplicity preservation: our data structure is as simple as the data structure we use as a
subroutine.

• Modularity: any potential future improvements to algorithms for the approximate nearest
neighbor problem in `k

2 will, when combined with our embedding, automatically yield a
better bound for the same problem in `2 metrics with low doubling constant.

Although in this paper we focused on embeddings into `2, it is interesting to design NN-
preserving embeddings into any space which supports fast approximate nearest neighbor search,
e.g., low dimensional `∞ [18].

2 Basic concepts

In this section we introduce the basic concepts used in this paper. In particular, we define the
doubling constant, the parameter EX , and the γ-dimension. We also point out the relations
between these parameters.

Doubling constant. Let (X, dX) be a metric space. In what follows, BX(x, ε) denotes the
ball in X of radius r centered at x ∈ X, i.e. BX(x, r) = {y ∈ X : dX(x, y) < r}. The doubling
constant of X (see [17]), denoted λX , is the least integer λ ≥ 1 such that for every x ∈ X and
r > 0 there is S ⊆ X with |S| ≤ λ such that

BX(x, 2r) ⊆
⋃

s∈S

BX(s, r).

3



The parameter EX . Fix an integer N and denote by 〈·, ·〉 the standard inner product in
RN . In what follows g = (g1, ..., gN ) is a standard Gaussian vector in RN (i.e. a vector with
independent coordinates which are standard Gaussian random variables). Given X ⊆ `N

2 we
denote:

EX = E sup
x∈X

|〈x, g〉| = E sup
(x1,...,xN )∈X

N∑

i=1

xigi. (1)

We observe that the parameter E of a given bounded set X ⊆ `d
2 can be estimated very

efficiently, that is, in time O(d|X|). This follows directly from the definition, and the fact that
for every t > 0, Pr[| supx∈X |〈g, x〉| − EX | > t] ≤ 2e−t2/(4 maxx∈X ‖x‖22) (this deviation inequality
is a consequence of the fact that the mapping g 7→ supx∈X |〈g, x〉| is Lipschitz with constant
maxx∈X ‖x‖2, and the Gaussian isoperimetric inequality– see [28]). In addition, even if X is
large, e.g., has size exponential in d, EX can often be computed in time polynomial in d [5, 6, 7].
For example, this is the case when X is a set of all matchings in a given graph G, where each
matching is represented by a characteristic vector of its edge set.

Doubling constant vs. the parameter EX . We observe that for every bounded X ⊆ `N
2 :

EX = O
(
diam(X)

√
log λX

)
. (2)

Indeed an, inequality of Dudley (see [28]) states that

EX ≤ 24
∫ diam(X)

0

√
log N(X, ε) dε,

where N(X, ε) are the entropy numbers of X, namely the minimal number of balls of radius
ε required to cover X. The doubling condition implies that for every ε > 0 we have that
N(X, ε diam(X)) ≤ (2/ε)log2 λX , so

EX ≤ 24 diam(X)
√

log2 λX

∫ 1

0

√
log2(2/ε) dε ≤ 80 diam(X)

√
log2 λX .

Another way to prove (2) is as follows. Let B(X) be the set of all Borel probability measures
on X. The celebrated Majorizing Measure Theorem of Talagrand [35] states that

EX = Θ

(
inf

µ∈B(X)
sup
x∈X

∫ ∞

0

√
log

(
1

µ(BX(x, ε))

)
dε

)
. (3)

A theorem of Konyagin and Vol′berg [24, 17] states that if X is a complete metric space
there exists a Borel measure µ on X such that for every x ∈ X and r > 0, µ(BX(x, 2r)) ≤
λ2

Xµ(BX(x, r)). Now we just plug µ into (3) and obtain (2).
γ-dimension. The right-hand side of (3) makes sense in arbitrary metric spaces, not just

subsets of `2. In fact, another equivalent formulation of (1) is based on Talagrand’s γ2 functional,
defined as follows. Given a metric space (X, dX) set

γ2(X) = inf sup
x∈X

∞∑
s=0

2s/2dX(x, As), (4)

where the infimum is taken over all choices of subsets As ⊆ X with |As| ≤ 22s

. Talagrand’s
“generic chaining” version of the majorizing measures theorem [36, 37] states that for every
X ⊆ `2, EX = Θ(γ2(X)) (we refer to [14] for a related characterization). The parameter γ2(X)
can be defined for arbitrary metric spaces (X, dX) and it is straightforward to check that in
general γ2(X) = O

(
diam(X)

√
log λX

)
. Thus, it is natural to define the γ dimension of X to

be:

γ dim(X) ≡
[

γ2(X)
diam(X)

]2

.
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3 The Case of Euclidean spaces with low γ-dimension

We introduce the following useful modification of the notion of bi-Lipschitz embedding. We
then use this notion to give NN-preserving embeddings of `2 submetrics with bounded aspect
ratio and γ-dimension, into low-dimensional `2.

Definition 3.1 (Bi-Lipschitz embeddings with resolution). Let (X, dX), (Y, dY ) be metric
spaces, and δ,D > 0. A mapping f : X → Y is said to be D bi-Lipschitz with resolution δ if
there is a (scaling factor) C > 0 such that

∀a, b ∈ X, dX(a, b) > δ =⇒ CdX(a, b) ≤ dY (f(a), f(b)) ≤ CDdX(a, b).

In what follows Sd−1 denotes the unit Euclidean sphere centered at the origin. We will use
the following theorem, which is due to Gordon [13]:

Theorem 3.2 (Gordon [13]). Fix X ⊆ Sd−1 and ε ∈ (0, 1). Then there exists an integer
k = O

(
E2

X

ε2

)
and a linear mapping T : Rd → Rk such that for every x ∈ X,

1− ε ≤ ‖Tx‖2 ≤ 1 + ε.

Remark 3.1. Since the proof of the above theorem uses probabilistic method (specifically,
Gordon [13] proved that if Γ is a k × d matrix whose coordinates are i.i.d. standard Gaussian
random variables then T = 1√

k
Γ will satisfy the assertion of Theorem 3.2 with high probability-

see also [34, 33]), it also follows that there exists a randomized embedding that satisfy the
thesis of the above theorem with probability 1/2. Recently Klartag and Mendelson [23] showed
that the same result holds true if the entries of Γ = (γij) are only assumed to be i.i.d., have
mean 0 and variance 1, and satisfy the ψ2 condition E eγ2

ij/C2 ≤ 2 for some constant C. In
this case the implied constants may depend on C. A particular case of interest is when Γ is a
random ±1 matrix- just like in Achlioptas’ variant [1] of the Johnson-Lindenstrauss lemma [22],
we obtain “database friendly” versions of Theorem 4.1. It should be pointed out here that
although several papers [12, 10, 21, 1] obtained alternative proofs of the Johnson-Lindenstrauss
lemma using different types of random matrices, it turns out that the only thing that matters
is that the entries are i.i.d. ψ2 random variables (to see this just note that when δ = 0 the set
X̃ contains at most |X|2 points, and for any n-point subset Z of Rd, EZ = O(

√
log n)).

A simple corollary of Theorem 3.2 is the following theorem.

Theorem 3.3. Fix ε, δ > 0 and a set X ⊆ Rd. Then there exists an integer k = O
(

E2
X

δ2ε2

)
such

that X embeds 1 + ε bi-Lipschitzly in Rk with resolution δ. Moreover, the embedding extends to
a linear mapping defined on all of Rd.

Proof. Consider the set X̃ =
{

x−y
‖x−y‖2 : x, y ∈ X, ‖x− y‖2 ≥ δ

}
. Then

EX̃ = E
(

sup
{ |〈x− y, g〉|
‖x− y‖2 : x, y ∈ X ‖x− y‖2 ≥ δ

})
≤ 1

δ
E sup

x,y∈X
|〈x− y, g〉| ≤ 2

δ
EX .

So the required result is a consequence of Theorem 3.2 applied to X̃.

Remark 3.2. We can make Theorem 3.3 scale invariant by normalizing by diam(X), in which
case we get a 1 + ε bi-Lipschitz embedding with resolution δ diam(X), where k = O

(
γ dim(X)

δ2ε2

)
.
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Remark 3.3. Let {ej}∞j=1 be the standard basis of `2. Fix ε, δ ∈ (0, 1/2), an integer n and set
m = dn1/δ2e. Consider the set X = {e1, . . . , en, δen+1, . . . , δen+m}. Then EX = Θ(

√
log n +

δ
√

log m) = Θ(
√

log n). Let f : X → Rk be a (not necessarily linear) 1+ε bi-Lipschitz embedding
with resolution δ (which is thus a 1+ε bi-Lipschitz embedding since the minimal distance in X is
δ
√

2). By a result of Alon [2] (see also [32]) we deduce that k = Ω
(

log m
ε2 log(1/ε)

)
= Ω

(
E2

X

δ2ε2 log(1/ε)

)
.

Thus Theorem 3.3 is nearly optimal.

4 The case of Euclidean doubling spaces

We recall some facts about random Gaussian matrices. Let a ∈ Sn−1 be a unit vector and
let {gij : 1 ≤ i ≤ k, 1 ≤ j ≤ n} be i.i.d. standard gaussian random variables. Denoting
G = 1√

k
(gij), by standard arguments (see [11]) the random variable ‖Ga‖22 has distribution

whose density is:
1

2k/2Γ(k/2)
· x k

2−1e−x/2, x > 0.

By a simple computation it follows that for D > 0

Pr
[∣∣‖Ga‖2 − 1

∣∣ ≥ D
] ≤ e−kD2/8 and Pr[‖Ga‖2 ≤ 1/D] ≤

(
3
D

)k

. (5)

The main result of this section is the following theorem:

Theorem 4.1. For X ⊆ Rd, ε ∈ (0, 1) and δ ∈ (0, 1/2) there exists k = O
(

log(2/ε)
ε2 · log(1/δ) · log λX

)

such that for every x0 ∈ X with probability at least 1− δ,

1. d(Gx0, G(X \ {x0})) ≤ (1 + ε)d(x0, X \ {x0})
2. Every x ∈ X with ‖x0 − x‖2 > (1 + 2ε)d(x0, X \ {x0}) satisfies

‖Gx0 −Gx‖ > (1 + ε)d(x0, X \ {x0}).
The following lemma can be proved using the methods of [13, 34, 33], but the doubling

assumption allows us to give a simple direct proof.

Lemma 4.2. Let X ⊆ B(0, 1) be a subset of the n-dimensional Euclidean unit ball. Then there
exist universal constants c, C > 0 such that for k ≥ C log λX + 1 and D > 1,

Pr[∃x ∈ X, ‖Gx‖2 ≥ D] ≤ e−ckD2
.

Proof. Without loss of generality 0 ∈ X. We construct subsets I0, I1, I2, . . . ⊆ X as follows. Set
I0 = {0}. Inductively, for every t ∈ Ij there is a minimal St ⊆ X with |St| ≤ λX such that
B(t, 2−j) ∩X ⊆ ∪s∈StB(s, 2−j−1) ∩X. We define Ij+1 = ∪t∈Ij St.

For x ∈ X there is a sequence {0 = t0(x), t1(x), t2(x), . . .} ⊆ X such that for all j we have
tj+1(x) ∈ Stj(x), and x =

∑∞
j=0[tj+1(x)− tj(x)]. Now, using the fact that ‖tj+1(x)− tj(x)‖2 ≤

2−j+1, we get

Pr[∃x ∈ X, ‖Gx‖2 ≥ D] ≤ Pr

[
∃x ∈ X ∃j ≥ 0, ‖G[tj+1(x)− tj(x)]‖2 ≥ D

3

(
3
2

)−j
]

≤
∞∑

j=0

Pr

[
∃t ∈ Ij ∃s ∈ St, ‖G(t− s)‖2 ≥ D

6

(
4
3

)j

‖t− s‖2
]

≤
∞∑

j=0

λ2j
X e−

kD2
400 (4/3)2j ≤ e−ckD2

,
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provided that k ≥ C log λX + 1 and using the first estimate in (5).

Proof of Theorem 4.1. Without loss of generality x0 = 0 and d(x0, X \ {x0}) = 1. If y ∈ X

satisfies ‖y‖2 = 1 then by (5) we get that Pr[‖Gy‖2 ≥ 1 + ε] ≤ e−kε2/8. Thus for k ≥ C/ε2 we
get that

Pr[d(Gx0, G(X \ {x0})) > (1 + ε)d(x0, X \ {x0})] < δ/2.

Define r−1 = 0, r0 = 1, ri = 1 + 2ε + ε(i− 1)/4, and consider the annuli

Xi = X ∩ [B(0, ri) \B(0, ri−1)] .

Fix an integer i ≥ 1, and use the doubling condition to find S ⊆ Xi such that Xi ⊆ ∪s∈SB(s, ε/4)
and |S| ≤ λ

log2(16ri/ε)
X . Then by Lemma 4.2

Pr

[
∃s ∈ S ∃x ∈ B(s, ε/4) ∩Xi, ‖Gs−Gx‖2 ≥ ε

√
i

4

]
≤ λ

log2(16ri/ε)
X · e−cki ≤ e−c′ki. (6)

On the other hand fix s ∈ S. If ‖Gs‖2 < 1 + ε + ε
√

i
4 then there exists a universal constant

C > 0 such that
‖Gs‖2
‖s‖2 ≤ 1 + ε + ε

√
i

4

1 + 2ε + ε(i−1)
4

≤
{

1− ε/4 i ≤ 1/ε2

C/
√

i i > 1/ε2.

Hence, by (5)

Pr

[
∃s ∈ S ‖Gs‖2 ≤ 1 + ε +

ε
√

i

4

]
≤

{
λ

log2(16ri/ε)
X e−c′′kε2

i ≤ 1/ε2

λ
log2(16ri/ε)
X · (3C/

√
i)k i > 1/ε2

≤
{

e−c′′′kε2
i ≤ 1/ε2

i−c′′′k i > 1/ε2.
(7)

provided k ≥ C log(2/ε)
ε2 · log λX for a large enough constant C.

Now, from (6) and (7) we see that there exists a constant c̃ such that

Pr[∀x ∈ Xi, ‖Gx‖2 > 1 + ε] ≥
{

1− 2e−c̃kε2
i ≤ 1/ε2

1− 2i−c̃k i > 1/ε2.

Hence,

Pr [∃x ∈ X, ‖x‖2 > 1 + 2ε ∧ ‖Gx‖2 < 1 + ε] ≤
∞∑

i=1

Pr[∃x ∈ Xi, ‖Gx‖2 < 1 + ε]

≤ 2
ε2

ec̃kε2 − 2
∑

i>1/ε2

i−c̃k < δ/2,

for large enough k. This completes the proof of Theorem 4.1.

Remark 4.1. Since γ dim(X) = O(log λX) Theorem 4.1 sheds some light on the following
well known problem (which is folklore, but apparently has been first stated explicitly in print
in [27]): is it true that any subset X ⊆ `2 embeds into `

d(λX)
2 with distortion D(λX), where

d(λX), D(λX) depend only on the doubling constant of X. Ideally d(λX) should be O(log λX),
but no bound depending only on λX is known. Moreover the analogous result in `1 is known
to be false [29]. The following example shows that more work needs to be done towards this
interesting problem: linear mappings cannot yield the required embedding without a positive
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lower bound on the resolution. Specifically, we claim that for every D > 1 there are arbitrarily
large n-point subsets Xn of `2 which are doubling with constant 6, such that if there exists a
linear mapping T : `2 → Rd which is D-bi-Lipschitz on Xn then d ≥ log n

log D (observe that by the
Johnson-Lindenstrauss lemma any n point subset of `2 embeds with distortion D via a linear
mapping into `k

2 , with k = O
(

log n
log D

)
).

To see this fix D > 1 and an integer d. Let N be a 1/(4D) net in Sd−1. Write n + 1 = |N |
and N = {x1, . . . , xn} ∪ {0}. Define X = {2−jxj}n

j=1. Whenever 1 ≤ i < j ≤ n we have that

2−i − 2−j ≤ ‖2−ixi − 2−jxj‖2 ≤ 2−i + 2−j ≤ 3(2−i − 2−j),

so X is embeddable into the real line with distortion 3. In particular, X is doubling with constant
at most 6. However, X cannot be embedded into low dimensions using a linear mapping.
Indeed, assume that T : Rd → Rk is a linear mapping such that for every x, y ∈ X, ‖x− y‖2 ≤
‖Tx − Ty‖2 ≤ D‖x − y‖2. Then for every i, ‖Txi‖2 = 2i‖T (2−ixi) − T (0)‖2 ∈ [1, D]. Take
x ∈ Sd−1 for which ‖Tx‖2 = ‖T‖ = maxy∈Sd−1 ‖Ty‖2. There is 1 ≤ i ≤ n such that ‖x−xi‖2 ≤
1/(4D) ≤ 1/2. Then ‖T‖ = ‖Tx‖2 ≤ ‖Txi‖2 +‖T (x−xi)‖2 ≤ D +‖T‖ · ‖x−xi‖2 ≤ D + 1

2‖T‖.
Thus ‖T‖ ≤ 2D. Now, for every y ∈ Sd−1 there is 1 ≤ j ≤ n for which ‖y − xj‖2 ≤ 1/(4D).
It follows that ‖Ty‖2 ≥ ‖Txj‖2 − ‖T (y − xj)‖2 ≥ 1 − ‖T‖/(4D) ≥ 1/2. This implies that T
is invertible, so necessarily k ≥ d. This proves our claim since by standard volume estimates
|X| ≤ (12D)d.
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