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Week 1 (9/7/2010)

Overview

What do we mean by Local Theory? We care about structures of infinite dimensional Banach spaces,
for example:

• Lp(µ)

• C(K) for K compact, Hausdorff

• lp

• lp
n6 (Rn, ‖ · ‖p)

• c0, space of null sequences (limit as n→∞ is 0)

It turns out that many global properties of Banach spaces can be learned from properties of finite dimen-
sional substructures, and this is what we mean by “local”. Of course, this means that we have to start
caring about finite dimensional spaces.

In finite dimensional spaces, all norms on Rn are equivalent. If ‖ · ‖ is a norm on Rn, we can associate the
norm to the unit ball

B‖·‖= {x∈Rn: ‖x‖≤ 1}

Denoting K =B‖·‖, we know that K is convex and symmetric (x∈K� − x∈K). Conversely, if we have
some subset K ⊂Rn which is convex, symmetric, and has nonempty interior, then we can define a norm

‖x‖K6 inf
{

λ> 0:
x

λ
∈K

}

for which K =B‖·‖K
.

Thus, studying norms in Rn is equivalent to studying convex bodies. For instance, for lp
3, the unit ball for

p = 2 is the sphere, the unit ball for p = ∞ is the unit cube, and the unit ball for p = 1 is a tetrahedron.

The ball in l1
3 has sharp edges (pointy), but in higher dimensions the ball in l1

n is harder to visualize, and
in fact this pointy intuition is not correct:

2



Theorem 1. (Figiel-Lindenstrauss-Milman) For all ε > 0, there exists c(ε) > 0 such that for all n,
there exists a linear subspace F ⊂Rn and r > 0 such that

1. r(Bl2
n ∩F )⊂ (F ∩Bl1

n)⊂ (1 + ε)r(Bl2
n ∩F )

2. dimF ≥ c(ε)n

In words, there exists a lower dimensional slice of Bl1
n (which is supposedly pointy) wedged between slices

of two Euclidean balls (round) with arbitrarily close radii.

For l∞
n the theorem is the same with c(ε)n replaced by c(ε) log n, and it can be shown that l∞

n is the worst
in some sense (that if the above property holds, then dimF .C2(ε) log n also).

Next, consider a normed space (X, ‖ · ‖), with n unit vectors x1,	 , xn ∈X , ‖xi‖= 1. We have the triangle
inequality

‖ε1x1 +	 + εnxn‖≤n

for all choice of signs εi∈{± 1}. Also,

Eε ‖ε1x1 +	 + εnxn‖≤n

for some probability distribution over εi ∈ ± 1. This inequality is sharp in the case when X = l1
n, xi = ei.

We make the remark that if εi is uniform ± 1, and all xi = x are identical, then this corresponds to a
random walk, with expectation bounded above by n

√
, and without the presence of the sign terms εi, the

inequality can be achieved by setting all xi =x, but this is a case to rule out.

We will prove (eventually) that l1
n is the only obstruction for improving this inequality:

Theorem 2. (Pisier) For all (X, ‖ · ‖), one of the following holds:

1. There exists α< 1 and constant K, such that for all n and x1,	 , xn∈X unit vectors,

E

[

∥

∥

∥

∥

∑

i

εi xi

∥

∥

∥

∥

]

≤Knα

2. Or, for all n and ε > 0, there exists a linear operator T : l1
n →X with ‖x‖ ≤ ‖Tx‖ ≤ (1 + ε)‖x‖ (in

which case the bound cannot be improved from (1± ε)n)

This says that if you cannot improve triangle inequality bound, then there is a l1
n lurking inside the space.

Now we turn to basic results that we will be using throughout the course.

Basic Results and Tools

Existence of Haar Measure

Theorem 3. Let (M,d) be a compact metric space, G a group acting on M by isometries, i.e.

d(gx, gy)= d(x, y) for all x, y ∈M and g ∈G
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Then there exists a regular measure on the Borel sets which is G-invariant, i.e.

µ(gA) = µ(A) for all Borel setsA, g ∈G

Moreover, if G acts transitively on M (Gx = M for all x ∈ M), then µ is unique up to multiplication by
scalars.

Many proofs, and here is one that is particularly short and tricky.

Proof. For all ε > 0, let Nε be a minimal ε-net in M , i.e.
⋃

x∈Nε
B(x, ε) = X and |Nε| is minimal with

respect to this property. (Notation: B(x, ε) will always refer to the closed ball {y: d(x, y)≤ ε}).
Look at C(M), the space of continuous functions on M , and define the linear functional

µε(f)=
1

nε

∑

x∈Nε

f(x)

In addition to being linear, µε(1) = 1, µε is positive, i.e. if f ≥ 0 then µ(f) ≥ 0, and also, the operator
norm of µε is ‖µε‖≤ 1. We have a sequence of measures that are uniformly bounded in norm, and thus by
Banach-Alaoglu weak* compactness there exists a sequence εi→ 0 and a linear functional µ on C(M) such
that µεi

→ µ in the weak* sense, i.e. for all f ∈C(M),

µεi
(f)→ µ(f)

The limiting µ inherits the same properties, that µ(1) = 1 and positivity f ≥ 0� µ(f) ≥ 0. Now by the
Riesz Representation Theorem for C(M)∗, µ is actually a measure on M , so we can write

µ(f)=

∫

M

fdµ

and since µ(1)= 1, µ is a probability measure.

Now we have a small claim:

Claim: If {Nε
′}ε>0 is any minimal ε-net, and we define a corresponding µε

′(f)=
1

nε

∑

x∈Nε
′ f(x), then also

µεi

′ (f)→ µ(f) for all f

as well. In other words, the limiting µ is independent of the minimal ε-net that we use.

To prove this, we will show that there exists a 1-1 and onto mapping ψ: Nε → Nε
′ such that d(x, ψ(x)) ≤

2ε. If this is true, then

|µε(f)− µε
′(f)|=

∣

∣

∣

∣

∣

1

nε

∑

x∈Nε

(f(x)− f(ψ(x)))

∣

∣

∣

∣

∣

≤ sup
d(a,b)≤2ε

|f(a)− f(b)| �(ε→0)
0

noting that f is a continuous function on a compact set, and is therefore uniformly continuous, so the last
quantity goes to 0 as ε→ 0.

To prove that we can find ψ, we can use a combinatorial result called the Hall Marriage Theorem:

Theorem 4. (Hall Marriage Theorem) Let X, Y be sets with |X |= |Y | in a bipartite graph:
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X Y

For x ∈X and y ∈ Y we use x∼ y to notate that x knows y (is connected to). For a subset A⊂X, denote K(A)
to be the set of people that A knows, i.e.

K(A) = {y ∈ Y : x∼ y for some x∈A}

Then there exists a one-to-one and onto function f : X → Y such that x ∼ f(x) if and only if |K(A)| ≥ |A| for
all A⊂X.

The proof of this theorem is by induction, trivial for the case where |X | = |Y | = 1. First, note that if we have
that |A| = |K(A)| for some subset A ⊂ X , then we can decompose this problem into two smaller problems, one
with A and K(A), and one with B 6 X \A and K(B). Note that for A, K(A), the condition is automatically
satisfied. For B, K(B), if the condition is not satisfied by some set S, then we note that the condition will not
be satisfied by X ∪ S for the full graph. The only case left is if |A| < |K(A)| for all A. In this case we may
remove any connected pair (x, y) and apply induction to the rest of the graph.

To apply this theorem, we will use Nε and Nε
′, and say that x ∈ Nε knows y ∈ Nε

′ if B(x, ε) ∩ B(y, ε) is
nonempty. Now we show that for any A ⊂ Nε that |A| ≤ |K(A)| by contradiction. Suppose that |A| >
|K(A)|. Then we can create a new covering with (Nε\A) ∪ K(A) with fewer elements, which is a contra-
diction. Note that K(A) necessarily must cover at least the same region that A covers, since if z ∈ M is
covered by B(x, ε), then there is some y ∈ Nε

′ which also covers z, in which case z ∈ B(x, ε) ∩ B(y, ε).
Thus the conditions of the Hall Marriage Theorem are satisfied, and we can find a mapping ψ: Nε → Nε

′

which is one to one and onto, and moreover, d(x, ψ(x))≤ 2ε from the knowing condition.

Note that we have not used any of the group conditions so far. Now consider g ∈ G. Since G acts on M

by isometries, we have that gNε is also a minimal ε-net. Thus, we have that

µ(f) = lim
i→∞

µεi
(f)= lim

i→∞
µεi

(f ◦ g)= µ(f ◦ g)

Thus
∫

f(x)dµ(x)=

∫

f(gx)dµ(x) for all g ∈G, f ∈C(M)

and so we have found a measure µ which is invariant under the action of G.

Uniqueness. To show uniqueness, first note that G inherits a metric from M :

ρ(g, h)6 sup
x∈M

d(gx, hx)

for g, h∈G. This satisfies the triangle inequality:

ρ(g1, g2) = sup
x∈M

d(g1x, g2x)

≤ sup
x∈M

d(g1x, hx) + d(hx, g2 x)

≤ sup
x∈M

d(g1x, hx)+ sup
y∈M

d(hy, g2 y)

= ρ(g1, h)+ ρ(g2, h)
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but it may not be the case that ρ(g, h) = 0� g = h. If not, this means that gx= hx for all x, or h−1 g

acts as the identity on M . To remedy this situation, we simply replace G by the quotient G/H where H
is the subgroup of all elements of the form h for which hx= x for all x. This is just a technical detail, and
in most examples we will use this will not occur (for example, for G = O(n), the set of n × n orthogonal
matrices, and M =Sn−1, the unit sphere)

Since G acts on M by isometries, G acts on itself by isometries with right multiplication, since

ρ(gk , hk )= sup
x∈M

d(gkx, hkx)= sup
y=kx∈M

d(gy, hy)= ρ(g, h)

Also, (G, ρ) is a compact metric space since M is compact:

Can show through diagonalization that a sequence gn has a subsequence for which gn′ x converges for all x.
Transitivity shows that there is some g for which the limit above is gx (somehow). Since gn are isometries, we
can prove that ρ(gn, g)→ 0 (look at successive ε-nets).

Now by what we just proved, there exists a measure ν on G which is G-invariant (under right-multiplica-
tion). In other words, for any f ∈C(G),

∫

f(g)dν(g)=

∫

f(gh)dν(g)

Now consider any measure µ which is G-invariant, and take f ∈ C(M). We have the following computa-
tion:

ν(G)

∫

M

fdµ =

∫

G

∫

M

f(x)dµ(x)dν(g)

(G-invariance of µ) =

∫

G

∫

M

f(gx)dµ(x)dν(g)

(Fubini) =

∫

M

[ ∫

G

f(gx)dν(g)

]

dµ(x)

We show that the bracketed term is independent of x. Take some other y ∈M , then by transitivity there
is some h∈G for which hx= y, and thus

∫

G

f(gy)dν(g)=

∫

G

f(ghx)dν(g) =

∫

G

f(gx)dν(g)

noting that f( · x) is a continuous function on G. This means if we denote the bracketed term by ν̄ (f), we
have that

ν(G)

∫

M

fdµ= ν̄ (f)

∫

M

dµ(x)

or

∫

M

fdµ=
ν̄ (f)

ν(G)
µ(M)

and this implies the result (integral is determined up to the multiplicative constant µ(M)).

�
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Prékopa-Leindler Inequality

Theorem 5. Let f , g, m: Rn → [0,∞) be integrable functions, and take λ ∈ (0, 1). Assume that for all x,
y ∈Rn we have the following inequality:

m(λx+ (1−λ)y)≥ f(x)λ g(y)1−λ

Then

∫

Rn

m(x)dx≥
( ∫

Rn

f(x)dx

)λ( ∫

Rn

g(x)dx

)1−λ

Proof. Let µn denote the n dimensional Lebesgue measure. We will prove the result by induction on n.
For the case n=1, we use the fact that if A,B⊂R are nonempty and measurable, then

µ1(A+B)≥ µ1(A)+ µ1(B)

To prove this, it suffices to prove this for compact sets by set approximation results. Also, we are allowed to
translate A, B as we please, since µ1 is translation invariant. Thus, move A so that the max value is 0, and
move B so that the min value is 0, then A ∩ B = {0}. Now note that since 0 ∈ A ∩ B, A + B ⊃ A ∪ B, and this
gives the result since

µ1(A+ B)≥ µ1(A∪B) = µ1(A) + µ1(B)

as A, B overlap on a set of measure zero {0}.

Continuing the proof, by approximation results again it suffices to prove the result for bounded f , g. By
scaling we may assume that ‖f ‖∞ = ‖g‖∞ = 1. Set some t ∈ (0, 1). Let A= {x: f(x) ≥ t}, B = {x: g(x) ≥
t}, and C = {x:m(x)≥ t}. Now if x∈A, y ∈B, then

m(λx+(1−λ)y) ≥ f(x)λg(y)1−λ

≥ tλ t1−λ = t

so that λA+ (1 − λ)B ⊂ C. Note that by assumption and since t < 1, A, B are nonempty. Thus applying
the earlier result, we have that

µ1(C) ≥ µ1(λA+ (1−λ)B)

≥ µ1(λA) + µ1((1−λ)B)

= λµ1(A) + (1−λ)µ1(B)

µ1(m≥ t) ≥ λµ1(f ≥ t)+ (1−λ)µ1(g ≥ t)

Integrating over t and using Fubini, we get that

∫

0

∞
µ1(m≥ t)dt ≥ λ

∫

0

∞
µ1(f ≥ t)dt+ (1−λ)

∫

0

∞
µ1(g ≥ t)dt

∫

R

m(x)dx ≥ λ

∫

R

f(x)dx+ (1−λ)

∫

R

g(x)dx

(AM-GM inequality) ≥
( ∫

R

f(x)dx

)λ( ∫

R

g(x)dx

)1−λ
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Note that for n = 1 a stronger results holds, that we can bound by the arithmetic mean. This does not
hold for larger dimensions.

For the induction step, assume the result holds for n − 1. We will use Rn = R × Rn−1. For (t, s) ∈ R ×
Rn−1, define ft(s) = f(t, s), gt(s) = g(t, s) and mt(s) = m(t, s). Take t0, t1 ∈R and define t = λt0 + (1 −
λ)t1. If x, y ∈Rn−1 then

mt(λx+ (1−λ)y) = m(λ(t, x)+ (1−λ)(t, y))

≥ f(t0, x)
λ g(t, y)1−λ

≥ ft0(x)
λ gt1(y)

1−λ

and thus the triple ft0, gt1, and mt satisfy the assumptions for n− 1. Induction gives

∫

Rn−1

mt(x)dµn−1(x)≥
( ∫

Rn−1

ft0(x)dµn−1(x)

)λ( ∫

Rn−1

gt1(x)dµn−1(x)

)1−λ

if we denote

m̄(t) =

∫

Rn−1

mt(x)dµn−1(x)

f̄ (t) =

∫

Rn−1

ft(x)dµn−1(x)

ḡ (t) =

∫

Rn−1

gt(x)dµn−1(x)

then the above says that

m̄(λt0 +(1−λ)t1)≥ f̄ (t0)λḡ (t1)1−λ

Thus the triple m̄, f̄ , and ḡ satisfy the hypothesis for the case n= 1 and we have that

∫

R

m̄(t)dµ1(t)≥
( ∫

R

f̄ (t)dµ1(t)

)λ( ∫

R

ḡ (t)dµ1(t)

)1−λ

and this is exactly the result we want. �

Brunn-Minkowski Inequality

Corollary 6. (Brunn-Minkowski inequality) Let A,B⊂Rn be measurable and non-empty. Then

1. For all λ∈ [0, 1],

vol(λA+ (1−λ)B)≥ vol(A)λ vol(B)1−λ

2. vol(A+B)1/n ≥ vol(A)1/n + vol(B)1/n

Proof. For (1), we apply Prékopa-Leindler for f = 1A, g= 1B,m= 1λA+(1−λ)B so that

m(λx+ (1−λ)y)≥ f(x)λ g(y)1−λ

8



since if x ∈A and y ∈B then λx+ (1 − λ)y ∈ λA+ (1 − λ)B, and otherwise the inequality holds trivially.
Then the inequality gives

vol(λA+(1−λ)B) =

∫

R

1λA+(1−λ)B dx≥
( ∫

R

1A dx

)λ( ∫

R

1B dx

)1−λ

= vol(A)λ vol(B)1−λ

(2) is a consequence of 1. First we normalize the sets so that A =
Ã

(vol(A))1/n
, B =

B̃

(vol(B))1/n
. Then we see

that

vol

(

vol(A)1/n

vol(A)1/n + vol(B)1/n
Ã +

vol(B)1/n

vol(A)1/n + vol(B)1/n
B̃

)

≥ 1

(note vol(Ã) = vol(B̃) =1). But then

vol(A)1/n

vol(A)1/n + vol(B)1/n
Ã+

vol(B)1/n

vol(A)1/n + vol(B)1/n
B̃ =

A+B

vol(A)1/n + vol(B)1/n

and thus we have

vol(A+B)

(vol(A)1/n + vol(B)1/n)n
≥ 1

and rearranging gives the desired result. �

Week 2 (9/14/2010)

The goal for this part of the course is Dvoretzky’s Theorem:

Theorem 7. For every ε∈ (0, 1), there exists a constant C(ε) such that the following statement holds:

If K ⊂ Rn is a centrally symmetric convex body (compact, with nonempty interior), then there exists a
linear subspace V ⊂Rn such that

1. Exists r > 0 such that

r(B2
n∩V )⊂ (K ∩ V )⊂ (1 + ε)r(B2

n∩ V )

2. dimV ≥ c(ε) log n

B2
n = {x∈Rn:

∑

xi
2≤ 1} is the Euclidean unit ball.

Last time we covered the Brunn-Minkowski inequality (Corollary 6). There are many nontrivial conse-
quences of this inequality.

Isoperimetric Theorem

Let A⊂Rn, a subset with smooth boundary, and define

voln−1(∂A) = lim
ε→0

vol(A+ εB2
n)− vol(A)

ε

9



Theorem 8. If B is a Euclidean ball with the same volume as A, then

voln−1(∂B)≤ voln−1(∂A)

We will use the notation Aε6 A+ εB2
n = {x∈Rn : d(x,A)≤ ε}.

Proof. We will show that vol(Aε)≥ vol(Bε). First, let’s compute the radius of B= rB2
n. We have that

vol(B)= rn vol(B2
n)= vol(A)

and thus

r=

[

vol(B)

vol(A)

]1/n

Now using Brunn-Minkowski,

vol(Aε)
1/n = vol(A+ εB2

n)1/n

(Brunn-Minkowski) ≥ vol(A)1/n + vol(εB2
n)1/n

= r vol(B2
n)1/n + ε vol(B2

n)1/n

= vol((r+ ε)B2
n)1/n

= vol(Bε)
1/n

This shows that

vol(Aε)− vol(A)

ε
≥ vol(Bε)− vol(B)

ε

and thus voln−1(∂B)≤ voln−1(∂A) (taking limit as ε→ 0).

�

Kahane’s Inequality

Theorem 9.
1

2
Eε

∥

∥

∑

i=1
n

εi xi

∥

∥

1

2
Eε

∥

∥

∑

i=1
n

εi xi

∥

∥For all ∞> p≥ 1, there exists Kp> 0 such that the fol-

lowing statement holds:

If (X, ‖ · ‖) is any normed space and x1,	 , xn∈X, then

E

∥

∥

∥

∥

∥

∑

i=1

n

εixi

∥

∥

∥

∥

∥

≤
(

E

∥

∥

∥

∥

∥

∑

i=1

n

εixi

∥

∥

∥

∥

∥

p)1/p

≤KpE

∥

∥

∥

∥

∥

∑

i=1

n

εixi

∥

∥

∥

∥

∥

E is expectation with respect to a random variable ε∈{± 1}n.

Remark: It can be shown that Kp ≈ p
√

, but we will give a proof with Kp ≈ p. Also, the first inequality

follows directly from convexity (Jensen).

Definition 10. If µ is a Borel measure on Rn we say that µ is log-concave if for all A, B measurable
sets, we have

µ(λA+(1−λ)B)≥ µ(A)λµ(B)1−λ

10



for all λ∈ (0, 1)

Example 11. If L⊂Rn is a convex body, let µ be the normalized volume on L:

µ(A) =
vol(A∩L)

vol(L)

µ is a log-concave probability measure on R:

(λA+ (1−λ)B)∩L ⊃ λ(A∩L) + (1−λ)(B ∩L)
vol((λA+ (1−λ)B)∩L)

vol(L)
≥ vol(λ(A∩L)+ (1−λ)(B ∩L))

vol(L)

≥
(

vol(A∩L)

vol(L)

)λ(
vol(B ∩L)

vol(L)

)1−λ

Lemma 12. (Borell’s Inequality) Let K be a centrally symmetric convex body, µ a log-concave proba-
bility measure on Rn, t > 1. Then

µ(Rn\(tK))≤ µ(K)

(

1

µ(K)
− 1

)
t+1

2

K

tK

Rn\(tK)

Proof. We claim that

Rn\K ⊃ 2

t+1
(Rn\(tK)) +

t− 1

t+ 1
K

Suppose not, then there exists a∈K, b � tK such that

2

t+ 1
b+

t− 1

t+ 1
a= c∈K

This means that

b=
t+ 1

2
c− t− 1

2
a

1

t
b=

t+ 1

2t
c+

t− 1

2t
(−a)

with t > 1. Since a ∈K, −a∈K by symmetry, and c∈K already. Thus by convexity,
1

t
b∈K, which con-

tradicts b � tK.

11



Now we can apply Brunn-Minkowski:

1− µ(K)= µ(Rn\K) ≥ µ

(

2

t+ 1
(Rn\(tK))+

t− 1

t+1
K

)

≥ µ(Rn\(tK))
2

t+1µ(K)
t−1

t+1

≥ µ(Rn\(tK))
2

t+1µ(K)

and this implies that

µ(Rn\(tK))≤
[

1

µ(K)
− 1

]
t+1

2

�

Now let L =
[

− 1

2
,

1

2

]n

, and µ(A) =
µ(A∩ L)

µ(L)
, (X, ‖ · ‖) a normed space, and x1, 	 , xn ∈X , a1, 	 , an ∈ L.

Assume that

∫

L

∥

∥

∥

∥

∥

∑

i=1

n

aixi

∥

∥

∥

∥

∥

da= 1

Define K =
{

a ∈ Rn:
∥

∥

∑

i=1
n

ai xi

∥

∥ ≤ 3
}

. K is convex and centrally symmetric. Then by Borell’s

inequality, we have that

µ

(

a∈L:

∥

∥

∥

∥

∥

∑

i=1

n

ai xi

∥

∥

∥

∥

∥

> 3t

)

≤ µ(K)

(

1

µ(K)
− 1

)
t+1

2

≤ 1 ·
(

1

2/3
− 1

)
t+1

2

=

(

1

2

)
t+1

2

where we note that µ(K)≥ 2

3
by Markov’s inequality, using the assumption:

µ(Kc) = µ

{∥

∥

∥

∥

∥

∑

i=1

n

ai xi

∥

∥

∥

∥

∥

> 3

}

≤
∫

L

∥

∥

∑

i=1
n

aixi

∥

∥ da

3
=

1

3

Now we integrate:

∫

Rn

∥

∥

∥

∥

∥

∑

i=1

n

aixi

∥

∥

∥

∥

∥

p

dµ(a) =

∫

0

∞
ptp−1µ

(∥

∥

∥

∥

∥

∑

i=1

n

aixi

∥

∥

∥

∥

∥

> t

)

dt

≤
∫

0

3

ptp−1 dt+

∫

3

∞
ptp−1

(

1

2

)
t/3+1

2

dt

≤ Kp

The first step holds by Fubini, and for the rest, the important part is that towards ∞ we have exponential
decay, and thus it is integrable. Thus (after scaling) we have proved:

(

∫

Rn

∥

∥

∥

∥

∥

∑

i=1

n

ai xi

∥

∥

∥

∥

∥

p

dµ(a)

)1/p

≤Kp

∫

L

∥

∥

∥

∥

∥

∑

i=1

n

ai xi

∥

∥

∥

∥

∥

da ( ∗ )

12



Note that the distribution of µ is that ai is independent and uniform on
[

−1

2
,

1

2

]

.

To transfer this result to ± 1 random variables as in the statement of Kahane’s inequality (Theorem 9),
we need the following useful trick:

Lemma 13. (Contraction Principle) Let (X, ‖ · ‖) be a normed space, a1, 	 , an ∈Rn, and x1, 	 , xn ∈
X with p≥ 1. Then

(

Eε

∥

∥

∥

∥

∥

∑

i=1

n

εi ai xi

∥

∥

∥

∥

∥

p)1/p

≤
(

max
1≤i≤n

|ai|
)

(

Eε

∥

∥

∥

∥

∥

∑

i=1

n

εi xi

∥

∥

∥

∥

∥

p)1/p

where ε is the uniform random variable on {± 1}n.

Proof. First, normalize so that |ai| ≤ 1 for all i (the general result follows by scaling). We will prove this
by induction on the number of i such that |ai|� 1.

If ai = ± 1 for all i, then we note that
∑

ai εi xi has the same distribution as
∑

εi xi, and we have
equality above.

Otherwise, take |a1|< 1, and we write a1 =λ · 1+ (1−λ) · (− 1). Then we have that

∑

i=1

n

εi ai xi =λ

(

ε1x1 +
∑

i≥2

εi aixi

)

+ (1−λ)

(

−ε1x1 +
∑

i≥2

εi aixi

)

Convexity of ‖ · ‖ gives

∥

∥

∥

∥

∥

∑

i=1

n

εi ai xi

∥

∥

∥

∥

∥

≤λ

∥

∥

∥

∥

∥

ε1x1 +
∑

i≥2

εi aixi

∥

∥

∥

∥

∥

+ (1−λ)

∥

∥

∥

∥

∥

−ε1x1 +
∑

i≥2

εi aixi

∥

∥

∥

∥

∥

Taking p norms in ε:

Eε

[∥

∥

∥

∥

∥

∑

i=1

n

εi aixi

∥

∥

∥

∥

∥

p]1/p

≤ Eε







λ

∥

∥

∥

∥

∥

ε1x1 +
∑

i≥2

εi ai xi

∥

∥

∥

∥

∥

+(1−λ)

∥

∥

∥

∥

∥

−ε1x1 +
∑

i≥2

εi ai xi

∥

∥

∥

∥

∥





p




1/p

≤ λEε





∥

∥

∥

∥

∥

ε1x1 +
∑

i≥2

εi aixi

∥

∥

∥

∥

∥

p




1/p

+(1−λ)Eε





∥

∥

∥

∥

∥

−ε1x1 +
∑

i≥2

εi aixi

∥

∥

∥

∥

∥

p




1/p

(induction) ≤ λ · |1| ·Eε

[∥

∥

∥

∥

∥

∑

i=1

n

εi xi

∥

∥

∥

∥

∥

p]1/p

+ (1−λ) · |−1| ·Eε

[∥

∥

∥

∥

∥

∑

i=1

n

εi xi

∥

∥

∥

∥

∥

p]1/p

= Eε

[∥

∥

∥

∥

∥

∑

i=1

n

εixi

∥

∥

∥

∥

∥

p]1/p

where we have used convexity of Eε[( · )p]
1/p and induction.

�

Now we can transfer between ai uniform on L=
[

−1

2
,

1

2

]n

and εi uniform on {± 1}n. First note that

∫

Rn

∥

∥

∥

∥

∥

∑

i=1

n

ai xi

∥

∥

∥

∥

∥

dµ(a)=

∫

Rn

Eε

∥

∥

∥

∥

∥

∑

i=1

n

aiεixi

∥

∥

∥

∥

∥

dµ(a)
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since the distribution of ai is equal to the distribution of ai εi (in particular, the equation above is true
without the Eε). Then applying the contraction principle, we have that

∫

Rn

Eε

∥

∥

∥

∥

∥

∑

i=1

n

aiεixi

∥

∥

∥

∥

∥

dµ(a)≤ 1

2
Eε

[∥

∥

∥

∥

∥

∑

i=1

n

εi xi

∥

∥

∥

∥

∥

]

∫

Rn

dµ(a)=
1

2
Eε

∥

∥

∥

∥

∥

∑

i=1

n

εi xi

∥

∥

∥

∥

∥

Along with ( ∗ ), this gives the second inequality of Theorem 9.

To get the other inequality, we note that

(

∫

Rn

∥

∥

∥

∥

∥

∑

i=1

n

aixi

∥

∥

∥

∥

∥

p

dµ(a)

)1/p

=

(

∫

Rn

Eε

[∥

∥

∥

∥

∥

∑

i=1

n

|ai|εixi

∥

∥

∥

∥

∥

p]

dµ(a)

)1/p

(Minkowski) ≥
(

Eε

∥

∥

∥

∥

∥

∫

Rn

∑

i=1

n

|ai|εi xi dµ(a)

∥

∥

∥

∥

∥

p)1/p

=

(

Eε

∥

∥

∥

∥

∥

∑

i=1

n
(

∫

−1/2

1/2

|ai| dai

)

εixi

∥

∥

∥

∥

∥

p)1/p

=

(

Eε

∥

∥

∥

∥

∥

∑

i=1

n
1

4
εi xi

∥

∥

∥

∥

∥

p)1/p

(Jensen) ≥ 1

4
Eε

∥

∥

∥

∥

∥

∑

i=1

n

εixi

∥

∥

∥

∥

∥

Concentration of Measure on the Sphere

Let (X, ‖ · ‖) be a normed space, and K = {x∈X: ‖x‖≤ 1}.

Definition 14. The modulus of uniform convexity for the normed space (X, ‖ · ‖) is

δ‖·‖(ε)= inf

{

1−
∥

∥

∥

∥

x+ y

2

∥

∥

∥

∥

: ‖x‖, ‖y‖≤ 1, ‖x− y‖≤ ε

}

x

y
0

x + y

2 ≥ δ

x

y

x + y

2

δ=0

‖x− y‖≤ ε

The left picture shows an example where δ > 0 (Euclidean norm), and the right shows the kind of spaces
we want to avoid (l1 norm). When δ= 0, there are “flat edges”.

Example 15. If X is a Hilbert space, then we have the parallelogram identity:

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

14



and if ‖x‖= ‖y‖= 1, and ‖x− y‖≥ ε, then

‖x+ y‖2 + ε2≤ 4

so that
∥

∥

∥

x + y

2

∥

∥

∥
≤ 1− ε2

4

√

≈ 1− ε2

8
.

It is a nontrivial result to show that if for a normed space, δ(ε) >
ε2

8
, then it must be a Hilbert space. In

other words, Hilbert spaces have the best modulus of uniform convexity.

Now let K be a centrally symmetric convex body, and let ∂K =S.

Define

ν(A) =
vol(A∩K)

vol(K)
, A⊂K

µ(A) =
vol({ta: a∈A, t∈ (0, 1)}

vol(K)
, A⊂S

µ is the “cone measure” on S:

A⊂S

{ta: a∈A, t∈ (0, 1)}

Fact: If K = B2
n, then µ is the surface measure (normalized) on Sn−1. This can be checked directly, but

one way to see this quickly is to use the uniqueness of the Haar measure. Since O(n) the group of orthog-
onal n × n matrices acts transitively on Sn−1, and µ is invariant under O(n), µ must be the surface mea-
sure on Sn−1 (which is also invariant under O(n)).

Exercise 1. If K = B1
n or K =B∞

n then µ is the surface area measure. This is not true for p � {1, 2,∞}.

Theorem 16. (Gromov-Milman Theorem) Let K ⊂Rn be centrally symmetric convex body, and S =
∂K. Let δ= δ‖·‖. Then

1. For all A⊂K, ν(Aε)≥ 1− 1

ν(A)
e−2nδ(ε)

2. For all A⊂S, µ(Aε)≥ 1− 2

µ(A)
e−2nδ(ε/4)

Here Aε =A+ εK = {x∈Rn: d(x, A)≤ ε} and d(x, y)= ‖x− y‖.

If K =B2
n, then S = Sn−1. Then if µ(A) =

1

2
then µ(Aε) ≥ 1 − ce−c′ nε2

. This is a highly unintuitive fact!
For very large n, this result says that if you start with a set with half the measure, and increase by a
small amount, you end up with almost everything.

Proof. (Ball, de-Renga, Villa)
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(1) Let A⊂K. Define B=K\Aε. If a∈A and b∈B then ‖a− b‖≥ ε, and

∥

∥

∥

∥

a+ b

2

∥

∥

∥

∥

≤ 1− δ(ε)

This shows that

A+B

2
⊂ (1− δ(ε))K

and by Brunn-Minkowski,

ν(A)1/2ν(B)1/2≤ ν

(

A+B

2

)

≤ ν((1− δ(ε))K) = (1− δ(ε))n ≤ e−nδ(ε)

This implies that

1− ν(Aε)= ν(B)≤ 1

ν(A)
e−2nδ(ε)

(2) Now let’s take A⊂S, and again use B=S\Aε. Define the partial cones

Ã=

{

ta: a∈A, 1
2
≤ t≤ 1

}

, B̃ =

{

tb: b∈B, 1
2
≤ t≤ 1

}

If ã ∈ Ã and b̃ ∈ B̃ , then ‖ã − b̃ ‖≥ ε

4
. We will show this algebraically, but it is intuitively true from exam-

ining the picture:

A, Ã

B, B̃

ε

ε

2

The smallest gap is ε/2 in this picture of the case when K is the circle. Now let ã = αa and b̃ = βb, so
that α, β ∈ [1/2, 1] and a∈A, b∈B. We split this into cases:

• If |α− β | ≥ ε

4
, then we are done by the triangle inequality

‖ã − b̃ ‖≥ |α− β | ≥ ε

4

• Otherwise, |α− β | ≤ ε

4
, and we have

‖ã − b̃ ‖ = ‖α(a− b) + (α− β)b‖
≥ ‖α(a− b)‖− ‖(α− β)b‖
≥ 1

2
ε− ε

4
=
ε

4

This implies that
Ã + B̃

2
⊂
(

1− δ
( ε

4

))

K, and with the same computation as before, we have that

ν(B̃)≤ 1

ν(Ã)
e−2nδ(ε/4)
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To finish the result, we note that

µ(A) = ν([0, 1]A)

ν(Ã) = ν([0, 1]A\[0, 1/2]A)

= µ(A)− ν

(

1

2
[0, 1]A

)

=

(

1− 1

2n

)

µ(A)

and this means that
(

1− 1

2n

)2

µ(B)≤ 1

µ(A)
e−2nδ(ε/4)

Since B=S\Aε, we have that

µ(Aε)≥ 1− 1

µ(A)
e−2nδ(ε/4)

(

1− 1

2n

)−2

≈ 1− 1

µ(A)
e−2nδ(ε/4)

�

Now with µ being the normalized Haar measure on Sn−1, we have the following corollary:

Corollary 17. Let f :Sn−1→R be an L-Lipschitz map, i.e. for all x, y ∈Sn−1 we have that

|f(x)− f(y)| ≤L ‖x− y‖2

Let M be a median of f, i.e. µ(f ≥M), µ(f ≤M) ≥ 1

2
(which always exists for any probability measure).

Then for all ε> 0,

µ(x∈Sn−1: |f(x)−M | ≥ ε)≤Ce−c′ nε2/L2

This says that a Lipschitz function is essentially a constant on Sn−1 for large n.

Proof. Let A= {x∈Sn−1: f(x)≤M }. Then x∈Aε/L if and only if there exists y ∈A with ‖x− y‖≤ ε/L,
in which case |f(x)− f(y)| ≤ ε and f(x)≤M + ε. This means that

{x∈Sn−1: f(x)>M + ε}⊂Sn−1\Aε/L

Since µ(A)≥ 1

2
, we have that

µ(x∈Sn−1: f(x)−M >ε)≤Ce−c′ n(ε/L)2

applying the previous result. By symmetry, examining B = {x ∈ Sn−1: f(x) ≥M }, we have the opposite
inequality, that

µ(x∈Sn−1: f(x)−M <− ε)≤Ce−c′ n(ε/L)2

and since the union of these sets is µ(x∈Sn−1: ‖f(x)−M ‖>ε) the result follows by subadditivity.

�

The same result holds for the mean as well:
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Corollary 18. If f :Sn−1→R, and is L-Lipschitz,

µ

(

x∈Sn−1:

∣

∣

∣

∣

f(x)−
∫

fdµ

∣

∣

∣

∣

≥ ε

)

≤Ce−c′ nε2/L2

We will show this next time.

Week 3 (9/21/2010)

Proof. (of Corollary 18) Without loss of generality, L=1 (by scaling). Denote

E6 ∫

Sn−1

fdµ

Take the product measure µ× µ on Sn−1×Sn−1. Note

(µ× µ)
(

(x, y)∈Sn−1×Sn−1: |f(x)− f(y)| ≥ ε) ≤ (µ× µ)
({

|f(x)−M | ≥ ε

2

}

∪
{

|f(y)−M | ≥ ε

2

}

≤ 2µ
({

|f(x)−M | ≥ ε

2

})

≤ 2ae−bnε2/4

This means, for most pair of points, f(x) and f(y) are close. Now fix λ > 0, we will be using a Chernoff
bound:

µ(|f(x)−E |>ε) = µ
(

eλ2|f(x)−E |2≥ eλ2 ε2
)

≤ e−λ2ε2

∫

Sn−1

eλ2|f(x)−E |2 dµ(x)

Note that since eλ2t2 is convex, Jensen gives

eλ2|f(x)−∫ f(y)dµ(y)|2≤
∫

Sn−1

eλ2|f(x)−f(y)|2 dµ(y)

and hence
∫

Sn−1

eλ2|f(x)−E |2dµ(x)≤
∫

Sn−1

∫

Sn−1

eλ2|f(x)−f(y)|2 dµ(x)dµ(y)

Now using Fubini, note that if ψ is an increasing function from R+→R+, then

E[ψ] =

∫

0

∞
ψ ′(t)P (X ≥ t)dt

Thus

∫

Sn−1

∫

Sn−1

eλ2|f(x)−f(y)|2 dµ(x)dµ(y) ≤
∫

0

∞
2λ2 teλ2t (µ× µ)({(x, y): |f(x)− f(y)≥ t|}) dt

≤
∫

0

∞
2λ2 teλ2t 2ae−bnt2/4 dt

(

λ2 =
bn

8

)

= 2a

∫

0

∞ bn

8
2t e−bnt2/8 dt

= 2a

Putting everything together, we conclude that

µ(|f(x)−E |>ε)≤ 2ae−bnε2/8

18



�

Theorem 19. (Johnson-Lindenstrauss) For all ε ∈ (0, 1), there exists C(ε)> 0 such that for all n, the
following holds:

If x1, 	 , xn are arbitrary points in a Hilbert space H, then there exists K ≤ C(ε) log n and y1, 	 , yn ∈ l2K
such that

‖xi − xj‖≤‖yi − yj‖≤ (1 + ε)‖xi − xj‖ for all i, j

We may assume that x1, 	 , xn ∈ l2n since we can restrict our attention to the span, which is finite dimen-
sional, and norms on finite dimensional spaces are all equivalent. The conclusion is that essentially we can
map n points to a significantly lower dimensional space K while roughly preserving the distances between
the points.

Proof. Let ν be the normalized Haar measure on O(n), the orthogonal group. Let P0 be the orthogonal
projection onto the span of e1,	 , eK, i.e.

Px= (x1,	 , xk, 0,	 , 0)

Fix x0∈Sn−1, we will look at U−1P0Ux0 for U ∈O(n) (a random K-dimensional projection).

Observation: The random variable Ux0 on O(n) has the same distribution as x ∈ Sn−1(µ), identifying the
points x(U)=Ux0. In fact, for A⊂Sn−1,

µ(A)= ν(U ∈O(n): Ux0∈A)

(if we define µ̃ to be the RHS above, it is O(n)-invariant (since ν is), and O(n) is transitive, so that the
O(n)-invariant Haar measure is unique).

Now let

E=

∫

Sn−1

‖P0x‖2 dµ(x)=

∫

O(n)

‖P0Ux0‖2 dν(U)

Exercise 2. Compute E directly.

Note µ is normalized, so to transfer to polar coordinates we need to throw back the surface area of Sn−1, denote this by

Sn−1 = n
πn/2

Γ(n/2 + 1)
. Polar coordinates with Gaussian:

Sn−1

(2π)n/2

∫

0

∞
rn e−r2/2dr

∫

Sn−1

‖P0x‖2 dµ(x) =
1

(2π)n/2

∫

0

∞ ∫

Sn−1

‖P0 (rx)‖2 e−r2/2 rn−1drSn−1dµ(x)

=

∫

Rn

‖P0 x‖2 dγn

Note we can do a change of variable u =
r2

2
, du = rdr, to get

Sn−1

(2π)n/2

∫

0

∞
rn e−r2/2 dr =

Sn−1

(2π)n/2

∫

0

∞
(2u)

n+1

2
−1

e−u du

=
n

Γ(n/2 + 1)
2−1/2Γ

(

n + 1
2

)

∼ n

πn
√

(n/2e)n/2

4π

n + 1

√
(

n + 1
2e

)
n+1

2

= C n
√ (

2e(n+ 1)

n

)n/2

∼C n
√

19



applying Stirling’s approximation.

Now

∫

Rn

‖P0x‖2 dγn =

∫

RK

‖x‖2 dγK

∫

Rn−K

dγn−K

=
SK−1

(2π)K/2

∫

0

∞
rK e−r2/2dr

=
KΓ(K/2+ 1/2)

2
√

Γ(K/2+ 1)
∼C K

√

Thus,

E =
Γ(n/2+ 1)

nΓ(n/2+ 1/2)
· K Γ(K/2 +1/2)

Γ(K/2+ 1)
∼C

K

n

√

We can actually get away without computing E with some concentration estimates.

Claim: E ≥C K/n
√

.

Computing the second moment gives:

∫

Sn−1

‖P0 x‖2
2 dµ(x) =

∫

Sn−1

(

∑

i=1

K

xi
2

)

dµ(x)

=
∑

i=1

K ∫

Sn−1

xi
2 dµ(x) = K

∫

Sn−1

x1
2 dµ(x)

=
K

n

∫

Sn−1

(

∑

i=1

n

xi
2

)

dµ(x) =
K

n

where we have used the rotation invariance of µ to show that
∫

Sn−1 xi
2 dµ(x)=

∫

Sn−1 x1
2 dµ(x).

We also compute the fourth moment:

∫

Sn−1

‖P0 x‖2
4 dµ(x) =

∫

0

∞
4u3 µ(‖P0 x‖2≥ u)du

≤
∫

0

2E

4u 3 du +

∫

2E

∞
4u3 µ

(

|‖P0x‖−E | ≥ u

2

)

du

since if u > 2E and ‖P0 x‖≥ u, then ‖P0 x‖−E ≥u− u

2
=

u

2
. Continuing,

. E4 +

∫

2E

∞
u3 e−bnu2

du

(nu2 = v2) = E4 +
1

n2

∫

2E n
√

∞
v3 e−bv2

dv

. E4 +
1

n2

.

( ∫

Sn−1

‖P0 x‖2
2 dµ(x)

)2

where we used the second moment computation above and the fact that

E4 =

( ∫

Sn−1

‖P0x‖dµ(x)

)4

≤
( ∫

Sn−1

‖P0x‖2 dµ(x)

)2

by Jensen (convexity of | · |2). Now letting Z = ‖P0x‖ be a random variable on Sn−1, i.e. E = E[Z], we have

just shown that E[Z4] < C(E[Z2])2, and this also gives an estimate for comparing the second moment with the
first using Hölder with p =3/2, q = 3:

E[Z2] =E[Z2/3Z4/3]≤ (E[Z])2/3(E[Z4])1/3≤ (E[Z])2/3 C1/3 (E[Z2])2/3
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The last inequality above uses the estimate between the fourth and second moments. Finally,

E [Z2]≤C (E[Z])2

and therefore

E =E[Z]≥ 1

C
√ (E[Z2])1/2 &

K

n

√

Since x � ‖P0 x‖2 is a 1-Lipschitz function, we have the following concentration result for ‖P0 x‖ around
its mean E:

µ
(

x∈Sn−1: | ‖P0x‖2−E | ≥ εE
)

≤ ae−bnε2E2≤ ae−b2 Kε2
(nE2≥K)

This transfers by the uniqueness of Haar measure to a concentration result for the random projection
‖U−1P0Ux0‖2:

ν
(

U ∈O(n):
∣

∣‖U−1P0Ux0‖2−E
∣

∣≥ εE
)

= µ
(

x∈Sn−1: | ‖P0x‖2−E | ≥ εE
)

≤ ae−b2 Kε2

(note ‖U−1P0Ux0‖2 = ‖P0Ux0‖2 since U is orthogonal).

We will plug in x0 =
xi −xj

‖xi −xj‖2
for each pair i, j, and this will give the result. The union bound tells us

that at least one of the
(

n

2

)

pairs xi, xj fails to satisfy
∣

∣

∣

∥

∥

∥
U−1P0 U

xi −xj

‖xi − xj‖2

∥

∥

∥

2
− E

∣

∣

∣
≤ εE with probability

bounded above by
(

n

2

)

ae−b2 Kε2
. This probability is < 1 if K >

C

ε2 log n, in which case there must exist

some U ∈O(n) for which all of the pairs satisy
∣

∣

∣

∥

∥

∥
U−1P0U

xi −xj

‖xi −xj‖2

∥

∥

∥

2
−E

∣

∣

∣
≤ εE.

Setting yi =
U−1P0 Uxi

(1− ε)E
, this means that

∣

∣

∣

∣

∥

∥

∥

∥

(1− ε)E(yi − yj)

‖xi − xj‖2

∥

∥

∥

∥

2

−E

∣

∣

∣

∣

≤ εE

|(1− ε)‖yi − yj‖2−‖xi −xj‖2| ≤ ε‖xi − xj‖2

or

‖xi − xj‖2≤‖yi − yj‖2≤ 1 + ε

1− ε
‖xi − xj‖2

for all i, j, which is the desired result.

�

Remark 20. We proved the JL Lemma above with K ≈ logn

ε2 . This is almost sharp. Alon proved the

result with K ≥ c
logn

ε2 log(1/ε)
. It is still accessible, but needs more work.

Now we are working towards proving Dvoretsky’s Theorem (Theorem 7).

Terminology: A subset N in a metric space is called ε-dense if for all x∈X, there exists y ∈N such that
d(x, y)<ε. In other words, N ε =X.

Lemma 21. Let X be a finite dimensional normed space, Y a normed space, and T :X→ Y a linear oper-
ator. Let N ⊂SX = {x∈X : ‖x‖= 1} be ε-dense. If for all x∈N, B ≤‖Tx‖≤A, then

(

B − εA

1− ε

)

‖x‖≤ ‖Tx‖≤ A

1− ε
‖x‖ for all x∈X
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This is an approximation lemma, which tells us that if we can estimate ‖Tx‖ for just an ε-dense set of X,
then we can obtain an estimate for the rest of X .

Proof. Let x∈SX, then there exists y ∈N such that ‖x− y‖≤ ε. Then

‖Tx‖≤‖Ty‖+ ‖T (x− y)‖≤A+ ‖T ‖‖x− y‖≤A+ ‖T ‖ε

which shows that ‖T ‖ ≤ ε‖T ‖ +A and thus ‖T ‖ ≤ A

1− ε
. This shows that ‖Tx‖ ≤A‖x‖ for all x ∈X . For

the other direction, we have for x∈SX,

‖Tx‖≥‖Ty‖− ‖T (x− y)‖≥B −‖T ‖ε≥B − Aε

1− ε

and thus by scaling we have the lower bound.

�

We also have the following Lemma that gives us ε-dense sets of a particular size.

Lemma 22. Let ‖ · ‖ be a norm for Rn and K = {x ∈Rn: ‖x‖ ≤ 1}. Then there exists N ⊂K that is ε-
dense with

#N ≤ (3/ε)n = en log (3/ε)

Proof. Let N ≤K be a maximal subset with respect to ‖x− y‖>ε for all x, y ∈N . Note that N is an ε-
net, since otherwise if we have not covered some z ∈K, then N ∪{z} is another subset with all points sep-
arated by ε, contradicting maximality. Furthermore, {x +

ε

2
K}x∈N are disjoint sets whose union is con-

tained in (1+ ε/2)K. We then compare volumes:

(

1 +
ε

2

)n

vol(K) = vol
((

1 +
ε

2

)

K
)

≥ vol

(

⋃

x∈N

{

x+
ε

2
K
}

)

=
∑

x∈N
vol
{

x+
ε

2
K
}

= (#N )
(

ε

2

)n

vol(K)

and thus (#N )≤
(

1 + ε/2

ε/2

)n

≤ (3/ε)n.

�

From here, there are 3 steps to Dvoretsky’s Theorem.

Dvoretsky Criterion

Theorem 23. (Dvoretsky Criterion) Let X = (RN , ‖ · ‖) be a N-dimensional normed space. Define

L 6 sup
x∈Sn−1

‖x‖

M 6 ∫

Sn−1

‖x‖dµ(x)

For all ε∈ (0, 1), there exists C(ε)> 0 such that for all X (any normed space!), if

K ≤C(ε)

(

M

L

)2

N
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then there exists a K dimensional subspace V ⊂RN such that for all x∈ V,

(1− ε)M ‖x‖2≤‖x‖X ≤ (1+ ε)M ‖x‖2

or equivalently,

1

(1+ ε)M
(B2

N ∩V ) ⊆ V ∩K ⊆ 1

(1− ε)M
(B2

N ∩ V )

(norm inequality and geometric inclusions get reversed)

Proof. Fix V0⊂RN of dimension K. Let N ⊂SN−1∩ V0 be ε-dense subset with

#N ≤ eK log(3/ε)

(from Lemma 22). Let ν be the Haar measure on O(N), and fix x0∈SN−1∩ V0. As before, we have

ν(U ∈O(N): |‖Ux0‖−M | ≥ εM)= µ
(

x∈SN−1: |‖x‖−M | ≥ εM
)

since x� ‖x‖ is a L-Lipschitz map from the assumptions, and thus the measure above is bounded by

ν(U ∈O(N): |‖Ux0‖−M | ≥ εM) = µ
(

x∈SN−1: |‖x‖−M | ≥ εM
)

≤Ae−BNε2 M2/L2

This is for a fixed x0. Now let’s vary x0 to be elements of our ε-net N . From the union bound, at least
one of the #N elements x∈N will fail to satisfy |‖Ux‖−M | ≥ εM with probability bounded above by

(#N )Ae−BNε2M2/L2≤AeK log(3/ε)−BNε2M2/L2

which is < 1 if K ≤ c
ε2

log(3/ε)

(

M

L

)2
N , in which case there exists U ∈O(N) such that

M(1− ε)≤‖Ux‖≤M(1 + ε) for all x∈N

Now let V = UV0, and N ′ = UN which is a net in SN−1 ∩ V . Let T be the identity mapping between (V ,
‖ · ‖2) and (V , ‖ · ‖X). By approximation lemma with the operator TU , we have that for all x∈V ,

(

1− ε− ε

1− ε

)

M ‖x‖2≤‖x‖≤M
1+ ε

1− ε
‖x‖2

�

The next step is to find a normed space for which we can control M, L so that we can find high dimen-
sional subspaces V .

Definition: An ellipsoid E ⊂Rn is an image of B2
n under an invertible linear transformation. (Think sin-

gular value decomposition, which tells us exactly how the axes of the unit ball get rotated and stretched).

We have the following observation:

Proposition 24. If X = (Rn, ‖ · ‖), and K = {x ∈Rn: ‖x‖ ≤ 1}, then there exists an ellipsoid with max-
imum volume contained in K.

Actually, the ellipsoid is unique, and is called the John ellipsoid. We will not prove this now, however.
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Proof. This follows by a compactness argument. We want T :B2
n→Rn with TB2

n ⊂K, which means that
‖T ‖l2

n→X ≤ 1 (the operator norm). The set of such T form a compact set, since it is the unit ball of some

n2-dimensional normed space (in finite dimensions, the unit ball is compact). Therefore since the volume
|det(T )| is a continuous function, it achieves its maximum on this compact set. This shows the existence
of an ellipsoid of maximum volume contained in K. �

Next time we will prove the final ingredient.

Week 4 (9/28/2010)

Remark 25. Note that for E ⊂ Rn, E = TB2
n is the unit ball of the norm ‖X‖E = ‖T−1x‖2, and in fact

the norm comes from a Hilbert space with an inner product defined by

〈x, y〉E6 〈

T−1x, T−1y
〉

Dvoretsky-Rogers Lemma

Lemma 26. (Dvoretsky-Rogers) Let X = (Rn, ‖ · ‖) be a normed space, K = {x: ‖x‖ ≤ 1}, and E an
ellipsoid of maximal volume contained in K. Then there exists an orthonormal basis {x1, 	 , xn} of (Rn,

〈 · , · 〉E) such that

‖xi‖≥ 1

2
1− i− 1

n

√

Afterwards we will analyze what M,L are for this space, and the result will soon follow.

Proof. Construct x1,	 , xn inductively. Take x1 to be an arbitrary point such that ‖x‖E = ‖x‖= 1. Since
E is the maximal ellipsoid contained in K, there must exist such a point. Now suppose we have defined
x1,	 , xi−1. Let xi be a point of E such that

‖xi‖=max {‖x‖: 〈x, xj〉E = 0, j= 1,	 , i− 1, x∈E}

By construction, this is already an orthonormal basis with respect to E . Now we try to find a bound for
‖xi‖. Note that for x∈ span{xi,	 , xn}, we have that 〈x, xj〉E = 0 for j=1,	 , i− 1 and thus

∥

∥

∥

∥

x

‖x‖E

∥

∥

∥

∥

≤‖xi‖

by definition of ‖xi‖. Now fix i, and let a, b > 0, to be chosen later. Define a new ellipsoid E ′:

E ′6 {

∑

j=1

i−1

aajxj +
∑

j=i

n

bajxj:
∑

j=1

n

aj
2 ≤ 1

}

That is, E ′=TE with T =

















a 
a

b 
b

















where a appears i− 1 times and b appears n− i+ 1 times.
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Note that if
∑

j=1
n

bjxj ∈E ′ then
∑

j=1
i−1

(

bj

a

)2
+
∑

j=i

n
(

bj

b

)2
≤ 1. Now:

∥

∥

∥

∥

∥

∑

j=1

n

bjxj

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∑

j=1

i−1

bjxj

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑

j=i

n

bj xj

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∑

j=1

i−1

bjxj

∥

∥

∥

∥

∥

E
+ ‖xi‖

∥

∥

∥

∥

∥

∑

j=i

n

bjxj

∥

∥

∥

∥

∥

E

=

(

∑

j=1

i−1

bj
2

)1/2

+ ‖xi‖
(

∑

j=i

n

bj
2

)1/2

= a

(

∑

j=1

i−1 (
bj

a

)2
)1/2

+ b‖xi‖
(

∑

j=i

n (

bj

b

)2
)1/2

≤ a2 + b2‖xi‖2
√

(

∑

j=1

i−1 (
bj

a

)2

+
∑

j=i

n (

bj

b

)2
)

≤ a2 + b2‖xi‖2
√

where we used the fact that
∑

j=i

n
bjxj ∈ {x1, 	 , xi−1}⊥E and the fact that E ⊂ K so ‖x‖ ≤ ‖x‖E in the

second inequality. The equalities in the middle follow from {x1, 	 , xn} bein an orthonormal basis with
respect to E (Parseval). The second to last inequality follows from aλ + bµ ≤ (a2 + b2)1/2(λ2 + µ2)1/2

(Cauchy-Schwarz).

So E ′⊂K if a2 + b2 ‖xi‖2≤ 1. In this case, by the maximality of E , we have that

ai−1bn−i+1 vol(E)= vol(E ′)≤ vol(E)

and this implies that ai−1 bn−i+1≤ 1 as long as a2 + b2 ‖xi‖2≤ 1. Now let’s choose a, b to maximize

max
{

ai−1bn−i+1: a2 + b2 ‖xi‖2≤ 1
}

Lagrange Multipliers: Equivalent to maximize (i − 1) log a + (n − i + 1) log b , so we get the equations
i − 1

a
=

λ2a,
n − i + 1

b
= λ2b‖xi‖2.

λ =
i− 1

2a2
=

n− i + 1

2b2 ‖xi‖2

or b2 =
a2 (n − i + 1)

(i − 1)‖xi‖2 , so plugging to constraint gives

a2

(

n

i− 1

)

=1

i.e. a =
i − 1

n

√

and b =
1− a2

√

‖xi‖
=

n − i + 1

n‖xi‖2

√

(from constraint).

Using this choice of a, b, we have that

(

i− 1

n

)
i−1

2
(

n− i+1

n‖xi‖2

)
n−i+1

2

≤ 1

and therefore

‖xi‖≥
(

1 +
n− i+1

i− 1

)− i−1

2(n−i+1)

1− i− 1

n

√

≥ 1

2
1− i− 1

n

√
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noting that we can bound
(

1 +
1

x

)x

≤ 4. Note that since the limit as x→ ∞ tends to e and the limit as

x→ 0 tends to 1, we can already bound by some constant. Can be more precise as well:

For x < 1, we have the estimate

x log

(

1 +
1
x

)

≤
log
(

2

x

)

1

x

Now
log 2u

u
achieves its maximum when

1

2
− log 2u

u2 = 0 or at u =
1

2
e1/2 with the value e−1/2. Thus

x log

(

1+
1

x

)

≤
log

2

x
1

x

≤ e−1/2≤ 1

Thus
(

1+
1

x

)x

≤ e for x < 1.

For other x, we have a bound using power series:

x log

(

1+
1

x

)

= x

(

1

x
− 2

x2
+

3

x3
−	 )≤ x

(

1

x

)

= 1

so long as
k

xk
≥ k + 1

xk+1 for all k ≥ 1, or x ≥ k + 1

k
= 1 +

1

k
≥ 2 (alternating series estimate), and thus

(

1 +
1

x

)x

≤ e for

x≥ 2.

Now for 1≤ x < 2, we have
(

1+
1

x

)x

≤
(

1+
1

x

)2

≤ 4

Thus
(

1+
1

x

)x

≤ 4 and
(

1 +
1

x

)−x/2

≥ 1

2
.

This proves the result. �

Theorem 27. (Ellipsoid Version of Dvoretzky’s Theorem) For all ε > 0, there exists C(ε)> 0 such
that the following holds:

If ‖ · ‖ is a norm on Rn and K is the corresponding unit ball, then there exists an ellipsoid E0⊂Rn and a
linear subspace V ⊂Rn such that

1. There exists r > 0 for which

r(E0∩ V ) ⊆ K ∩ V ⊆ (1 + ε) r(E0∩V )

2. dimV ≥C(ε) logn

Proof. Let E be an ellipsoid of maximum volume, with E = TB2
n. First we note that it suffices to prove

the result for the case when T = Id or E =B2
n:

This is because B2
n is the ellipsoid of maximal volume in T −1K. Now suppose we proved the result for B2

n.
This means that there exists V ⊂Rn with dim V ≥C(ε) log n and

r (B2
n∩V ) ⊆ K ∩ V ⊆ (1+ ε) r(B2

n∩ V )

This means that

r( E ∩ (TV ))⊆ K ∩ (TV ) ⊆ (1+ ε)r (E ∩ (TV ))

and TV is the desired subspace (with the same dimension since T is invertible).
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Thus, without loss of generality we will assume that B2
n is the ellipsoid of maximum volume of K. By

Dvoretsky’s Criterion (Theorem 23), there exists a subspace V ⊂Rn with dimV ≥C(ε)M2n where

1

(1+ ε)M
(V ∩B2

n) ⊆ V ∩K ⊆ 1

(1− ε)M
(V ∩B2

n)

Note that in our case L=maxx∈Sn−1 ‖x‖=1. We will show that M &
logn

n

√

, which proves the result.

Claim: M ≥ c
logn

n

√

.

By Dvoretsky-Rogers (Lemma 26) there exists an orthonormal basis x1,	 , xn with

‖xi‖≥C for i≤ n

2

(this is a weaker statement than the Lemma). Computing:

M =

∫

Sn−1

‖x‖dµ(x)

(rotation) =

∫

Sn−1

∥

∥

∥

∑

aixi

∥

∥

∥
dµ(a)

(same distribution) =

∫

Sn−1

∥

∥

∥

∑

εi aixi

∥

∥

∥
dµ(a) for each fixed εi ∈{± 1}

(

M =
1

2n

∑

ε

M

)

=

∫

Sn−1

1

2n

∑

ε∈{±1}n

∥

∥

∥

∥

∥

∑

i=1

n

εi ai xi

∥

∥

∥

∥

∥

dµ(a)

Here we note that

1

2n

∑

ε∈{±1}n

∥

∥

∥

∥

∥

∑

i=1

n

εi ai xi

∥

∥

∥

∥

∥

≥max ‖aixi‖

because

1

2n

∑

ε∈{±1}n

∥

∥

∥

∥

∥

∑

i=1

n

εi ai xi

∥

∥

∥

∥

∥

=
1

2n−1

∑

ε1,	 ,εj−1,
εj+1,	 ,εn=±1

∥

∥

∥
ajxj +

∑

i� j
εi ai xi

∥

∥

∥
+
∥

∥

∥
−ajxj +

∑

i� j
εi ai xi

∥

∥

∥

2

≥ 1

2n−1

∑

‖ajxj‖
= ‖aj xj‖

where we used the triangle inequality
‖x + y‖+ ‖x − y‖

2
≥
∥

∥

∥

x + y

2
− x − y

2

∥

∥

∥
= ‖y‖.

This means that continuing the computation above,

M =

∫

Sn−1

1

2n

∑

ε∈{±1}n

∥

∥

∥

∥

∥

∑

i=1

n

εi aixi

∥

∥

∥

∥

∥

dµ(a)

≥
∫

Sn−1

max
1≤i≤n

(|ai|‖xi‖) dµ(a)

≥
∫

Sn−1

max
1≤i≤n/2

(|ai|‖xi‖) dµ(a)

≥ C

∫

Sn−1

max
1≤i≤n/2

|ai|dµ(a)
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We want to show that

∫

Sn−1

max
1≤i≤n/2

|ai|dµ(a)≥ logn

n

√

and we will be finished. This will follow from two facts:

1. Let γn be the standard Gaussian on Rn, with dγn(x) =
1

(2π)n/2
e−||x‖2

2/2. If f :Rn→Rn is integrable

and homogeneous of order 1, i.e. f(rx) = rf(x) for all r > 0, then

∫

Sn−1

f(x)dµ(x)=

∫

Rn f(x)dγn
∫

Rn ‖x‖2 dγn

≈ 1

n
√

∫

Rn

f(x)dγn(x)

2. Gaussian tail bound:

γ1({|x|> t})=
2

2π
√

∫

t

∞
e−u2/2du≤ 1

10
e−t2/2

First assuming these facts: we have that

∫

Sn−1

max
1≤i≤n/2

|ai|dµ(a)≈ 1

n
√

∫

Rn

max
1≤i≤n/2

|xi|dγn(x)

We then need to show that
∫

Rn max1≤i≤n/2 |xi|dγn & log n
√

. Let t > 1. Then

γn

(

max
1≤i≤n/2

|xi| ≥ t

)

= 1− (γ1(|x1|< t))n/2≥ 1−
(

1− 1

10
e−t2/2

)n/2

using the Gaussian tail bound here. Choosing t= 2 log (n)
√

, we then have that this is bounded below by

≥ 1−
(

1− 1

10n

)n/2

≥C

Thus,
∫

Rn

max
1≤i≤n/2

|xi|dγn ≥
∫

max1≤i≤n/2|xi|≥ 2 log n
√ |xi|dγn ≥C 2 logn

√

as desired.

�

Proof. (of Gaussian Integral Facts)

(1) This is a direct computation in polar coordinates.

∫

Rn

f(x)dγn = cn

∫

0

∞
rn−1 e−r2/2

∫

Sn−1

f(rx) dµ(x) dr

= cn

( ∫

0

∞
rn e−r2/2 dr

)( ∫

Sn−1

f(x)dµ(x)

)

We note that if we look at f(x)= ‖x‖2, the above computation shows that

cn

∫

0

∞
rn e−r2/2 dr=

∫

Rn

‖x‖2 dγn
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We claim that
∫

Rn ‖x‖2 dγn≈ n
√

. With the second moment, we have

∫

Rn

‖x‖2
2 dγn(x)=

∫

Rn

∑

i=1

n

xi
2 dγn(x)=

∑

i=1

n ∫

R

xi
2 dγ1(xi) =n

Also,

∫

Rn

‖x‖2
4 dγn(x) =

∫

Rn

(

∑

i,j

xi
2xj

2

)

dγn(x)

=
∑

i� j

∫

R

xi
2 dγ1(xi)

∫

R

xj
2 dγ1(xj)+

∑

i

∫

R

xi
4 dγ1(xi)

= (n2−n)+Cn

. n2

If we let Z = ‖x‖2, we have shown that
(

EZ4
)1/4

. EZ2
√

. Then using Jensen and Holder as we did in
the proof of Theorem 19, we have

EZ2
√

≥EZ & EZ2
√

and thus EZ =
∫

Rn ‖x‖2 dγn∼ n
√

.

(2) To show the Gaussian tail estimate,

∫

t

∞
e−u2/2 du =

∫

t

∞ 1

u
·ue−u2/2 du

= −1

u
e−u2/2

∣

∣

∣

∣

t

∞
−
∫

t

∞ 1

u2
e−u2/2 du

This means that
∫

t

∞ (

1+
1

u2

)

e−u2/2 du=
1

t
e −t2/2

∫

t

∞
e−u2/2 du≤

∫

t

∞ (

1+
1

u2

)

e−u2/2 du=
1

t
e−t2/2

and thus
∫

t

∞
e−u2/2 du≤ 1

10
e−t2/2

for sufficiently large t (in fact, t > 10).

�

Recall that in Dvoretsky’s Theorem (Theorem 7) we wanted to use B2
n rather than the ellipsoid E . The

final step is to show that there is a further subspace for which Dvoretsky will hold with E replaced by B2
n.

Lemma 28. Let E ⊂ Rn be an ellipsoid. Then there exists a subspace V ⊂ Rn and a number r > 0 such
that

1. dimV ≥ n

16

2. E ∩V = r(B2
n∩V )

29



Proof. Assume that n is divisible by 4, and find V with dim V ≥ n

4
. We will start by constructing x1, 	 ,

xn/2 in Rn such that

1. ‖xi‖2 = 1 for all i

2. For all i� j, 〈xi, xj〉= 〈xi, xj〉E = 0

Start with an arbitrary ‖x1‖2 = 1. Assume we have defined x1	 , xi. Look at

U =
{

x∈Rn, 〈x, xi〉= 〈x, xi〉E =0, for all j ≤ i
}

Note that dim U ≥ n− 2i. (There are 2i linear constraints imposed on U) So if i < n/2, then U � {0} and
we can find xi+1� 0 in U , and normalize it.

Now assume that ‖x1‖E ≥	 ≥‖xn/2‖E. Choose λ such that

‖xn/4‖E ≥λ≥‖xn/4+1‖E

Then there exists a λ1∈ (0, 1) such that

y1 6 λ1x1 + 1−λ1
2

√

xn/2

satisfies ‖y1‖E =λ. This follows simply from the fact that

‖y1‖E = λ1
2 ‖x1‖E2 + (1−λ1

2)‖xn/2‖E2
√

Likewise, we can find λ2∈ (0, 1) such that

y26 λ2x2 + 1−λ2
2

√

xn/2−1

satisfies ‖y2‖E = λ. Continue this to obtain y1, 	 , yn/4. We now have a collection for which ‖yi‖2 = 1,

‖yi‖E =λ and 〈yi, yj〉= 〈yi, yj〉E = δij. Take V = span{y1	 , yn/4}. Then x=
∑

i=1
n/4

ai vi and

‖x‖2 =
∑

i≤n/4

ai
2

√

, ‖x‖E =λ
∑

i≤n/4

ai
2

√

which is what we wanted.

�

Remark 29. Note above that we may even take V to be a subspace of any other linear subspace W ,
since in the construction we have started with an arbitrary subspace of a specified dimension.

This finishes the proof of Dvoretsky’s Theorem. We use the Ellipsoid version to find E and V , and then
find a further subspace W ⊂V so that E ∩W becomes a slice of B2

n.

Sharpness of Dvoretsky

Let us look at what happens when we look at the l∞ norm.

Lemma 30. Let ε∈ (0, 1). If V ⊂Rn is a subspace such that for all x∈ V,

r ‖x‖∞≤‖x‖2≤ (1+ ε)r ‖x‖∞
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Then

dimV ≤ C

log(1/ε)
log n

This shows that the log n factor is sharp. In our proof, we obtained the ε-dependent constant C(ε) =
ε2

log(1/ε)
(Proof of Theorem 23). It is a known result (Schechtman) that we can obtain

C(ε)∼ cε

(log 1/ε)2

There is a gap of a factor of ε/(log 1/ε), and closing the gap is currently an open problem.

Proof. (of Lemma) Write dimV = k. Then if x∈V , we have that

max
1≤i≤n

|fi(x)| ≤ ‖x‖2≤ max
1≤i≤n

|fi(x)| (1 + ε)

where fi(x) = 〈x, rei〉, n linear functionals on Rn. We will show that n must be big. The left inequality
says that ‖fi‖ ≤ 1 for all i, and the right inequality says that for all x ∈ Sk−1 = Sn−1 ∩ V , there exists i

such that |fi(x)| ≥ 1

1+ ε
. Then if we consider the cap

Ci 6 {

x∈Sk−1: fi(x)≥ 1

1 + ε

}

then ±Ci covers all of S
k−1. We can cover each cap Ci by a ball using Pythagorean theorem:

1

≥ 1

1+ ε

t

yi

fi ≥ 1

1+ ε

Ci

(Note ‖yi‖2≥ |fi(yi)| ≥ 1

1+ ε
) Pythagorean theorem gives that

t≤ 1−
(

1

1 + ε

)2
√

≤ 2 ε
√

and that Ci ⊂B(yi, 2 ε
√

) (note in the direction of yi that 1− 1

1+ ε
=

ε

1 + ε
≤ ε < 2 ε

√
). This implies that we

have y1,	 , y2n of length ≥ 1

1 + ε
, yet

Sk−1⊆
⋃

i=1

2n

B(yi, 2 ε
√

)

Now we use a volume argument. First we cover a tubular region by enlarging the balls:

(1− ε
√

, 1 + ε
√

)Sk−1⊆
⋃

i=1

2n

B(yi, 4 ε
√

)
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Thus

[

(1 + ε
√

)k − (1− ε
√

)k] vol(B2
k)≤ 2n(4 ε

√
)k vol(B2

k)

Since (1 + ε
√

)k − (1− ε
√

)k ≥ 1

2
k ε
√

, we have that

k

4k
.n ε

√ k−1

log k− k log 4 . log n+ k log ε
√ − log ε

√

log k− k log 4 +
1

2
log 1/ε. logn+

1

2
log 1/ε

k.
log n

log 1/ε

�

Week 5 (10/5/2010)

Notation: For D ≥ 1, if X, Y are normed spaces, we will write X�D Y if there exists a one-to-one linear
map T :X→Y such that ‖T ‖‖T−1‖≤D.

Summary of Dvoretsky’s Theorem

Here we state the various ways of writing the conclusion of Dvoretsky’s Theorem (Theorem 7):

For every ε∈ (0, 1), there exists a constant C(ε) such that the following statement holds:

If K ⊂ Rn is a centrally symmetric convex body (compact, with nonempty interior), then there exists a
linear subspace V ⊂Rn such that

1. Exists r > 0 such that

r(B2
n∩V )⊂ (K ∩ V )⊂ (1 + ε)r(B2

n∩ V )

2. dimV ≥ c(ε) log n

B2
n = {x∈Rn:

∑

xi
2≤ 1} is the Euclidean unit ball.

If ‖ · ‖ is the norm associated to K, then we can write the first statement as

1

(1+ ε)r
‖x‖2≤‖x‖≤ 1

r
‖x‖2 for all x∈V

If we let T be the mapping from l2
k = (V , ‖ · ‖2)→ (Rn, ‖ · ‖) =X, where k ≥ c(ε) log n, the right inequality

says that ‖T ‖ ≤ 1

r
whereas the left inequality says that ‖T−1‖ ≤ (1 + ε)r so that ‖T ‖‖T−1‖ ≤ 1 + ε, and

with our notation we have that

l2
k�1+ε

X
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Last time we showed in Lemma 30 that if we have l2
k�1+ε

l∞
n , then k ≤ C

log(1/ε)
log n.

Exercise 3. Prove that there exists k & 1

log(1/ε)
log n such that l2

k�1+ε
l∞
n . In other words, the result of the lemma is

sharp. (Hint: Reverse the argument we used in the Lemma)

The goal is to find U ∈O(n) such that if we choose yi = Uei, then the union of B(± yi, 2 ε
√

) covers Sn−1.

Now we already have that ‖x‖∞≤‖x‖2, and to prove that ‖x‖∞≥ 1

1 + ε
‖x‖2, we can use this cover. For ‖x‖= 1, i.e. x ∈

Sn−1, we have that there is some yi for which ‖x− yi‖2≤ 2 ε
√

. This means that

4ε ≥ ‖x − yi‖2
2

4ε = 1− 2
1+ ε

〈x, ei〉+
1

(1+ ε)2

xi ≥ 1
2

[

1+ ε +
1

1+ ε
− 4ε(1+ ε)

]

∼ 1
1 + ε′

and thus ‖x‖∞≥ 1

1 + ε′
, which proves the result.

However, not sure how to show the existence of such a U by reversing the argument.

This tells us how small k can be so that an embedding exists.

Let us now look at how large k can be for specific spaces X = lp
n (note already that it is trivial to embed

l2
k �1

l2
n for k all the way up to n with any orthognal projection)

We return to the Dvoretsky Criterion (Theorem 23), which states that if ‖ · ‖ is a norm on Rn and K is
the corresponding unit ball, where ‖x‖ ≤ L ‖x‖2 for all x ∈ Rn, then there exists k ≥ C(ε)(M/L)2n such
that

l2
k�1+ε

(Rn, ‖ · ‖)

where M =
∫

Sn−1 ‖x‖dµ(x).

It turns out that this is good enough to obtain sharp results for the lp
n spaces, for 1 ≤ p <∞. Let us com-

pute the different values of L,M .

• L .

For p ≥ 2, we note that ‖x‖p ≤ ‖x‖2, which implies that L ≤ 1. By homogeneity it suffices to show
the result for when ‖x‖2≤ 1. In this case, we must have |xi| ≤ 1 as well, and thus

∑

|xi|p ≤
∑

|xi|2 = 1

so that ‖x‖p ≤ 1.

For p≤ 2, we have Hölder with 2/p,
1

1− p/2
:

‖x‖p
p =
∑

i=1

n

|xi|2·
p

2 · 1≤
(

∑

i=1

n

|xi|2
)p/2

·n1−p/2 = ‖x‖2
pn1−p/2

Thus ‖x‖p ≤n
1

p
−1

2 ‖x‖2 so that L≤n
1

p
−1

2

In summary,

L≤
{

1 p≥ 2

n
1

p
− 1

2 p≤ 2
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• M . We will just do the polar coordinate computation as in the proof of Theorem 27 (Ellipsoid ver-
sion of Dvoretsky) or in Exercise 2.

M =

∫

Sn−1

‖x‖p dµ(x) ∼ 1

n
√

∫

Rn

‖x‖p dγn(x)

Minkowski ≥ 1

n
√
∥

∥

∥

∥

∫

Rn

|x| dγn(x)

∥

∥

∥

∥

p

=
1

n
√
(

∑

i=1

n ∣

∣

∣

∣

∫

Rn

|xi|dγn(x)

∣

∣

∣

∣

p
)1/p

& n
1

p
− 1

2

Above we used that
∫

Rn |xi|dγn(x)=C for all i, by rotational invariance of the Gaussian measure.

This means that applying the Dvoretsky criteria gives that for all ε,

(

k&C(ε)
(

M

L

)2
n

)

l2
k�1+ε

lp
n for some k&

{

n2/p p> 2
n 1≤ p≤ 2

In particular for p ≤ 2 we know we can achieve embeddings for l2
k into lp

n for k all the way up to some
proportion of n. This proves Theorem 1 that we presented in the overview.

Exercise 4. Show that
∫

Rn

‖x‖p dγn(x) & p
√

n1/p for p ≥ 2

Thus, for p ≥ 2, get k & pn2/p.

∫

Rn

‖x‖p
p
dγn(x) =

∫

Rn

(

∑

i=1

n

|xi|p
)

dγn(x)

=
∑

i=1

n ∫

Rn

|xi|p dγn(x)

=
2n

2π
√

∫

0

∞
xp e−x2/2 dx

=
2n

2π
√

∫

0

∞
2

p−1

2 u
p+1

2
−1

e−u du

=
n2p/2

π
√ Γ

(

p + 1
2

)

∼ n(cp)p/2

This computation just shows
( ∫

Rn

‖x‖p dγn

)p·1/p

≤
( ∫

Rn

‖x‖p
p

)1/p

∼n1/p p
√

for any p. The reverse can be proved by mimicking the idea in the proof of the Johnson Lindenstrauss Lemma (Theorem

19). We first compute the 2p-th power:

∫

Rn

‖x‖p
2p

dγn(x) =

∫

Rn

(

∑

i=1

n

|xi|p
)2

dγn(x)

=
∑

i,j

∫

Rn

|xi|p |xj |p dγn(x)

=
∑

i=1

n ∫

Rn

|xi|2p dγn(x) +
∑

i� j

∫

Rn

|xi|p|xj |p dγn(x)

= n(c2p)p +
∑

i� j

( ∫

R

|x|dγ1(x)

)2

∼ n2 (cp)p
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Comparing this with the p-th power, we have that letting Z = ‖x‖p,

E[Zp]∼E[Z2p]1/2

We will use this to show that E[Zp] ∼E[Z]p. We already showed with convexity that E[Zp] &E[Z]p. To show the other

direction, we find an a < p for which

E[Zp] =E[ZaZp−a]≤E[Z2p]a/2p
E[Z]p−a

where
a

2p
+ p − a = 1 (applying Hölder). This means a =

p − 1

1− 1

2p

= p
2p − 2

2p − 1
, which is always less than p. Now with this

choice of a, using the relationship between the 2p-th power and the p-th power derived above,

E[Zp]≤E[Z2p]a/2p
E[Z]p−a .E[Zp]a/p

E[Z]p−a

so that

E[Zp] .E[Z]
p−a

1−a/p =E[Z]p

Thus, we have that
∫

Rn

‖x‖p dγn =E[Z]&E[Zp]1/p∼ p
√

n1/p

Lemma 31. For ∞ > p > 2, D > 1, if l2
k�D lp

n , then k . pD2 n2/p. In other words, the result above is
sharp for p> 2.

Proof. Assume that l2
k �D lp

n. Then there exists a one to one linear map T : l2
k → lp

n such that
‖T ‖‖T−1‖ ≤D. By rescaling, we can assume without loss of generality that ‖T−1‖ = 1, so that ‖T ‖ ≤D.
Let e1,	 , ek be the standard basis of l2

k. Write Tei = ui = (ui1,	 , uin)∈Rn. Our assumption is that for all
a1,	 , ak ∈R,

(

∑

i=1

k

ai
2

)1/2

≤
(

∑

j=1

n
∣

∣

∣

∣

∣

∑

i=1

k

ai uij

∣

∣

∣

∣

∣

p)1/p

≤D

(

∑

i=1

k

ai
2

)1/2

where the left inequality follows from ‖T−1‖≤ 1 and the right inequality follows from ‖T ‖≤D.

Now we play around with the inequalities. First fix l∈{1,	 , n}. We look at

∑

i=1

k

uil
2 ≤

(

∑

j=1

n
∣

∣

∣

∣

∣

∑

i=1

k

uiluij

∣

∣

∣

∣

∣

p)1/p

≤D

(

∑

i=1

k

uil
2

)

where the first inequality follows since we are adding positive terms (when j = l the left hand side comes
out), and the second is from the right inequality earlier. This implies that

(

∑

i=1

k

uil
2

)1/2

≤D for all 1≤ l≤n

Now we use the left ineqality above. For all x1,	 , xn∈R, we have that

(

∑

i=1

k

xi
2

)p/2

≤
∑

j=1

n
∣

∣

∣

∣

∣

∑

i=1

k

xiuij

∣

∣

∣

∣

∣

p

(taking the left inequality and raising it to the p-th power).
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Integrate both sides by dγk and use Jensen’s inequality:

(

∫

Rk

∑

i=1

k

xi
2 dγk

)p/2

≤
∫

Rk

(

∑

i=1

k

xi
2

)p/2

dγk ≤
∑

j=1

n ∫

Rk

∣

∣

∣

∣

∣

∑

i=1

k

xiuij

∣

∣

∣

∣

∣

p

dγk

Note that we can think of
∫

Rk

∣

∣

∣

∑

i=1
k

xi uij

∣

∣

∣

p

dγk as Eg1,	 ,gk
[|∑ gi uij |p] where g1, 	 , gk are standard

Gaussian random variables. We know that
∑

gi uij also is a centered Gaussian distribution with variance
∑

uij
2 . Therefore

∑

j=1

n ∫

Rk

∣

∣

∣

∣

∣

∑

i=1

k

xiuij

∣

∣

∣

∣

∣

p

dγk =
∑

j=1

n
(

∑

i=1

k

uij
2

)p/2
∫

R

|x|pdγ1

= nDp (cp)p/2

The last equality is just the computation:

∫

R

|x|p dγ1 =
2

2π
√

∫

0

∞
xp e−x2/2 dx

=
2

2π
√

∫

0

∞
2p/2 u

(

p+1

2
−1

)

e−u du

=
2

2π
√ 2p/2 Γ

(

p+ 1

2

)

∼ (Cp)p/2

using Stirling’s approximation. �

Kashin’s Volume Method

In this part we will investigate a different method for studying Euclidean sections. The same method will
be used to prove the following theorems:

Theorem 32. (Kashin’s First Theorem) There exists X,Y ⊂R2n linear subspaces such that

1. dimX =dimY =n

2. X ⊥Y, i.e. 〈x, y〉= 0 for all x∈X, y ∈Y

3. For all x∈X ∪ Y,
1

100
2n

√
‖x‖2≤‖x‖1≤ 2n

√
‖x‖2

(Note the right inequality is always true by Cauchy Schwarz)

The third condition essentially says that X ∪Y is essentially like l1.

Theorem 33. (Kashin’s Second Theorem) There exists U ∈O(n) such that

1

n
√ B2

n⊂B1
n∩ (UB1

n) ⊂ 100

n
√ B2

n
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This leads to the following theorem that we will not prove:

Theorem 34. (Litvak-Milman-Schechtman)

1. For all ε > 0, there exists k(ε)∈N and U1,	 , Uk ∈O(n) such that

1

n
√ B2

n ⊂
⋂

i=1

k

U1 B1
n ⊂

(

π

2
+ ε
) 1

n
√ B2

n

2. For all ε > 0, there exists C(ε)> 0 such that if U1,	 , Uk ∈O(n) and

1

n
√ B2

n ⊂
⋂

i=1

k

Ui B1
n ⊂

(

π

2
− ε
) 1

n
√ B1

n

then k ≥ eC(ε)n

(i.e. Kashin’s method cannot find a subspace that goes down to 1 + ε)

Theorem 35. (Kashin’s Third Theorem) For all δ ∈ (0, 1), there exists C(δ)> 0 such that

l2
k�C(δ)

l1
n, k ≥ (1− δ)n

(Dvoretsky does not allow us to go arbitrarily close to n, just to some proportion of n)

Lemma 36. Let K ⊂Rn be the unit ball of some norm ‖ · ‖. Then

vol(K) = vn

∫

Sn−1

1

‖x‖n
dµ(x)

where vn = vol(B2
n) =

πn

Γ(n/2 +1)
∼ 1

nn/2
.

Proof. This is a computation in polar coordinates. For f :Rn→Rn, we have

∫

Rn

f(x)dx=Cn

∫

0

∞ ∫

Sn−1

rn−1 f(rθ)dµ(θ)dr

Note that if f = 1B2
n, we have that

vol(B2
n) =Cn

∫

0

1

rn−1dr=
Cn

n

so that Cn =n vol(B2
n).

Now for f = 1K, we have that (using Fubini)

vol(K) = nvn

∫

Sn−1

(

∫

0

1/‖θ‖
rn−1 dr

)

dµ(θ)

= nvn

∫

Sn−1

1

n‖θ‖n
dµ(θ)

= vn

∫

Sn−1

1

‖θ‖n
dµ(θ)

37



�

We will be making use of the following facts, to be proven as an exercise:

Exercise 5.

• vol(B2
n)1/n≈ 1

n
√

Just the polar computation using the Gaussian density f(x) =
1

(2π)n/2
e−‖x‖2/2.

1=

∫

Rn

dγn = n vol(B2
n)

∫

0

∞
rn−1 1

(2π)n/2
e−r2/2 dr

=
n

(2π)n/2
vol(B2

n)

∫

0

∞
(2u)n/2−1 e−u du

=
n

2πn/2
vol(B2

n)Γ
(

n

2

)

∼ n

2πn/2

(

n

2e

)n/2
πn

√
vol(B2

n)

=
π

√
nn/2+3/2

2(2πe)n/2
vol(B2

n)

• vol(B∞
n )1/n = 2

Cube of side length 2.

• vol(B1
n)1/n =

(

2n

n!

)1/n
≈ 1

n

Symmetry argument: B1
n = {x:

∑ |xi| ≤ 1}, so

vol(B1
n) =

∑

ε∈{±1}n

vol
({

x: sgnxi = εi,
∑

|xi| ≤ 1
})

= 2nvol
({

x: xi ≥ 0,
∑

xi ≤ 1
})

Now using the transformation

{

x: xi ≥ 0,
∑

xi ≤ 1
}�T {u: 0≤u1≤	 ≤un ≤ 1}

i.e. xi = ui −ui−1, so x = Tu with T =













1 −1
1 − 1

1  − 1
1













, since det(T ) = 1, we note that

vol
{

x: xi ≥ 0,
∑

xi ≤ 1
}

= vol{u: 0≤u1≤	 ≤un ≤ 1}

However, note that

1 =vol{u: 0≤ui ≤ 1} =
∑

π

vol
{

u: 0≤uπ(1)≤	 ≤uπ(n)≤ 1
}

= n! vol{u: 0≤u1≤	 ≤un ≤ 1}

we conclude that vol{u: 0≤u1≤	 ≤un ≤ 1}=
1

n!
and thus

vol(B1
n)=

2n

n!

• For 0 < δ ≤ 2, x0∈Sn−1, if we look at the spherical cap

Cδ,x0
6 {x∈Sn−1: ‖x − x0‖≤ δ}
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then µ(Cδ,x0
)≥
(

δ

2

)n
.

Let’s study the number of spherical caps needed to cover Sn−1.

1= µ(Sn−1)≤ (# caps)µ(Cδ,x0
)

so that µ(Cδ,x0
)≥ 1

# caps
. Note that the minimum number of caps needed is bounded above by the size of a max-

imal δ-separated set {xi}, which we denote by m. Note that Bδ(xi) forms a cover for Sn−1, otherwise maximality

is contradicted. We have that
⋃

i
Bδ/2(xi)⊂B1+δ/2(0), where the union is disjoint, and by volume comparisons,

m (δ/2)nvol(B2
n)≤ (1+ δ/2)n vol(B2

n)

and thus m ≤ (1+ 2/δ)n and µ(Cδ, x0)≥ (1+ 2/δ)−n =
(

δ

2 + δ

)n
. Not sure how to improve this.

Theorem 37. Let K ⊂Rn be the unit ball of norm ‖ · ‖. Assume that

1. K ⊃B2
n, i.e. (‖x‖≤ ‖x‖2)

2.
(

vol(K)

vol(B2
n)

)1/n

≤R

Then there exists U ∈O(n) such that

B2
n ⊆K ∩ (UK)⊆ 8R2B2

n

Remarks.

• Note that Kashin’s second theorem follows immediately as a corollary. Using the facts above





vol(B1
n)

vol
(

1

n
√ B2

n
)





1/n

∼ 2e

2πe
√ ≤ 5

4

• Also, Kashin’s second thoerem implies Kashin’s first theorem:

If we have U ∈O(n) such that

1

n
√ B2

n ⊆B1
n∩ (UB1

n)⊆ 100

n
√ B2

n

let X = {(x, Ux), x∈Rn} and Y = {(−y, Uy), y ∈Rn}. Note that X ⊥Y , since

〈(x, Ux) , (−y, Uy)〉=−〈x, y〉+ 〈Ux,Uy〉=0

Now B1
n∩UB1

n = {x∈Rn: max {‖x‖1 , ‖Ux‖1}≤ 1}, and our assumption above can be rewritten as

1

100
n

√ ‖x‖2≤max {‖x‖1, ‖Ux‖1}≤ n
√ ‖x‖2

Now for (x, Ux)∈X , , we have that

‖(x, Ux)‖l1
2n = ‖x‖1 + ‖Ux‖1≈max {‖x‖1, ‖Ux‖1}≈ n

√ ‖x‖2≈ n
√ ‖(x, Ux)‖l2

2n
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The same holds for (−y, Uy) by the exact same argument.

Let us now prove the thoerem.

Proof. (of Theorem) For all U ∈O(n), define the norm [x]
U

=
‖x‖+ ‖Ux‖

2
. By assumption we have

Rn ≥ vol(K)

vn
=

∫

Sn−1

1

‖x‖n
dµ(x)

(the equality is from the polar coordinate computation of Lemma 36). We will show that there exists
some U ∈O(n) such that

∫

Sn−1

1

[x]U
dµ(x)≤R2n

Let ν be the Haar probability measure on O(n). Then

∫

O(n)

( ∫

Sn−1

1

[x]U
2n
dµ(x)

)

dν(U) =

∫

O(n)

∫

Sn−1

1
(

‖x‖+ ‖Ux‖
2

)2n
dµ(x)dν(U)

(AM-GM) ≤
∫

O(n)

∫

Sn−1

1

‖x‖n‖Ux‖n
dµ(x)dν(U)

=

∫

Sn−1

1

‖x‖n

(

∫

O(n)

1

‖Ux‖n
dν(U)

)

dµ(x)

=

∫

Sn−1

1

‖x‖n
dµ(x)

∫

Sn−1

1

‖y‖n
dµ(y)

=

( ∫

Sn−1

1

‖x‖n
dµ(x)

)2

≤R2n

We have just shown that EU

[

∫

Sn−1

1

[x]U
2ndµ(x)

]

≤ R2n and thus there exists U for which this holds

without the expectation.

Now, fix y ∈Sn−1, write [y]U = r with r ≤ 1 (note ‖ · ‖≤ ‖ · ‖2). Consider the spherical cap

Cr = {x∈Sn−1, ‖x− y‖2≤ r}

From the facts we know that µ(Cr)≥
( r

2

)n
.

Note

[x]U ≤ [x− y]U + [y]U ≤‖x− y‖2 + [y]U ≤ 2r

Then we have that

∫

Sn−1

1

[x]U
2n
dµ(x)≥

∫

Cr

1

(2r)2n
dµ(x)=

(

1

2r

)2n(
r

2

)n

=

(

1

8r

)n

On the other hand, we know that the integral on the left is bounded above by R2n, thus
1

8r
≤R2 and

[y]U = r≥ 1

8R2
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Thus, for all y ∈Rn, we have that

[y]U ≥ 1

8R2
‖y‖2

and using [x]U ≤max {‖x‖, ‖Ux‖}, we have

max {‖y‖, ‖Uy‖}≥ 1

8R2
‖y‖2

This implies the result, that

B2
n ⊆K ∩ (UK)⊆ 8R2B2

n

�

We can adjust the method slightly to obtain Kashin’s Third Theorem.

Theorem 38. Let ‖ · ‖ be a norm on Rn with unit ball K such that

1. For all x∈Rn, ‖x‖≤ ‖x‖2

2.
(

volK

vol(B2
n)

)1/n

≤R

Then for all k ≤n, there exists a subspace V ⊂Rn with dim V = k and

1

2
n+k

n−k

· 1

R
n

n−k

‖x‖2≤‖x‖≤‖x‖2 for all x∈ V

Remark: This proves the Third Theorem since we can take k = (1 − δ)n and K =B1
n, and we know from

before that we can take R =
5

4
. Remember that while the Third Theorem allows k to be arbitrarily close

to n, the embedding becomes worse (cannot get to l2
k�1+ε′

l1
n).

Proof. As before we have that
∫

Sn−1

1

‖x‖n
dµ(x)=

volK

vn
≤Rn

Now denote Gn,k = {V ⊂Rn, V a subspace of dim k}. O(n) acts on Gn,k transitively, and with an appro-
priately defined metric O(n) acts by isometries:

dG(V ,W )6 Hausdorff distance between V ∩Sn−1and W ∩Sn−1

where the Hausdorff distance is the minimal d such that W ∩Sn−1⊂ V ∩Sn−1 + dB2
n and vice versa (how

much we need to grow one set to swallow the other set). This is invariant under O(n) by definition. Thus
there is a unique Haar probability measure on Gn,k which we denote νn,k.

By uniqueness of Haar measure,

∫

Sn−1

1

‖x‖n
dµ(x)=

∫

Gn,k

∫

V ∩Sn−1

1

‖x‖n
dµV (x) dνn,k
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where µV is the measure µ restricted to V ∩Sn−1 properly normalized. This says exactly that

EGn,k

[ ∫

V ∩Sn−1

1

‖x‖n
dµV (x)

]

≤Rn

and thus there exists V ∈Gn,k for which
∫

Sn−1∩V

1

‖x‖n dµV (x)≤Rn.

We will then show that for all x ∈ V ∩ Sn−1, ‖x‖ ≥ 1

2

n+k

n−k

· 1

R

n

n−k

using the spherical cap estimate as in the

previous proof. Let Sk−1 =V ∩Sn−1. Fix y ∈Sk−1, and denote r= ‖y‖≤ 1. Consider the cap

Cr = {x∈Sk−1: ‖x− y‖2≤ r}

Again x∈Cr implies that ‖x‖≤ 2r, and

Rn ≥
∫

Sk−1

1

‖x‖n
dµV (x)≥

∫

Cr

1

(2r)n
dµV (x) =

1

(2r)n
µV (Cr)≥ 1

(2r)n
·
(

r

2

)k

Then simplifying gives the result, that

‖y‖= r≥ 1

2
n+k

n−k R
n

n−k

for all y ∈Sk−1 =V ∩Sn−1.

�

Week 6 (10/12/2010)

Summability in Banach Spaces

(Grothendieck)

Definition: A sequence {xn}n=1
∞ in a Banach space X is

• unconditionally summable if
∑

n=1
∞

xσ(n) converges for all permutations σ of the integers

• absolutely summable if
∑

n=1
∞ ‖xn‖<∞.

Remark: In every Banach space, absolutely summable sequences are unconditionally summable.

∥

∥

∥

∥

∥

∑

n=m

N

xσ(n)

∥

∥

∥

∥

∥

≤
∑

n=m

N

‖xσ(n)‖� 0 as m→∞ (min {σ(n), n >m}� ∞)

Dirichlet’s Theorem: In R unconditional summability implies absolute summability. The same is also
true for finite dimensional Banach spaces.

The following Lemma characterizes unconditional summability:

Lemma 39. Let X be a Banach space and {xn}n=1
∞ ⊂X. Then the following are equivalent:

1. {xn}n=1
∞ is unconditionally summable
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2. For all ε > 0, there exists nε > 0 such that for all finite index sets S ⊆N with min S ≥ nε, we have
that ‖∑

i∈S
xi‖≤ ε.

3. For all strictly increasing subsequences {xnk
}, ∑

l=1
∞

xnk
converges.

4. For all ε1, ε2,	 ∈ {± 1}, ∑
i=1
∞

εixi converges.

Proof. (1)� (2). Suppose (2) does not hold, so that for some ε, we can find index sets Ji with max Ji<

min Ji+1, and ‖ ∑
k∈Ji

xk‖ > ε. Then we will find a permutation for which
∑

xσ(i) is not summable,

which is done by choosing σ so that Ji becomes contiguous (= σ({ai, ai + 1,	 bi − 1, bi})) .
(2)� (1). Let σ, ε be given. By (2) we know there exists nε after which ‖∑

i∈S
xi‖ ≤ ε for any finite S

with min S ≥ nε. If we find Nε,σ for which
{

1, 	 , nε} ⊂ {σ(1), 	 , σ(Nε,σ)}, then it follows immediately

that ‖∑
m

n
xσ(i)‖≤ ε for m,n>Nε,σ (i >Nε,σ� σ(i)>nε).

(2)� (3) is also immediate, since we have convergence if for every ε> 0, we have ‖∑
k=m

n
xnk

‖≤ ε for n,
m sufficiently large, so we can take S= {nk, n≤ k ≤m}.
(3)� (4) Let P be the index set for which εi = 1 and N be the index set for which εi = −1. Then by (3)
we have that

∑

i∈P
xi and

∑

i∈N
xi both converge (ordered in increasing order). Now let ε> 0. Note that

∥

∥

∥

∥

∥

∑

k=m

n

εixi

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

∑

{m≤k≤n}∩P

xi

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑

{m≤k≤n}∩N

xi

∥

∥

∥

∥

∥

≤ 2ε

for n,m sufficiently large.

(4)� (2). Suppose that (2) is false, then for some ε, we can find S1, S2, 	 (each finite) with max Si ≤
minSi+1 such that ‖∑

k∈Si
xk‖>ε. Now set εi =

{

1 i ∈ ⋃
k

Sk

− 1 else
. We then have

∑

i=1

∞
(1+ εi)xi = 2

∑

i∈∪kSk

xi

which diverges, and thus either
∑

i=1
∞

xi diverges or
∑

i=1
∞

εi xi diverges. Either way, we have found a

sign sequence for which
∑

i=1
∞

εi
′xi diverges, so (4) is false.

�

Remark 40. Here is an example that is unconditionally summable but not absolutely summable:

Take X = l∞, and ei the standard basis. Take the sequence

e1,
1

2
e2,

1

2
e3,

1

4
e4,	 , 1

4
e7,	

i.e. definitely not absolutely summable. However, this sequence is summable:

For any ε, there exists n0 after which ‖∑
n

m
ciei‖= cn ≤ ε. In fact, this is true for all choice of signs. Thus

by the Lemma it is unconditionally summable.

It turns out that such examples can only come from infinite dimensional Banach spaces.

Theorem 41. (Dvoretsky-Rogers) If a Banach space X has the property that unconditional summa-
bility implies absolute summability, then dimX <∞.
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Proof. We will prove the contrapositive. Assuming dim X = ∞, the goal is to construct an uncondition-
ally convergent sequence that is not absolutely convergent.

Take any (ai)i=1
∞ with

∑

i=1
∞

ai
2<∞. Find a subsequence n1<n2<	 such that

∑

i≥nk
ai
2≤ 2−2k.

By the Dvoretsky-Rogers Lemma (Lemma 26), there exists {yi}i=1
∞ ⊂ BX such that ‖yi‖ ≥ C (for some

absolute constant C) and if nk ≤ l <nk+1 and λi ∈R then

∥

∥

∥

∥

∥

∑

i=nk

l

λiyi

∥

∥

∥

∥

∥

≤
∑

i=nk

l

λi
2

√

√

√

√

(Take any arbitrarily large subspace of X and apply the Lemma) Now set xi = ai
yi

‖yi‖ and let εi = ± 1 be

an arbitrary choice of signs. Then for nk ≤ l≤nk+1,

∥

∥

∥

∥

∥

∑

i=nk

l

εi xi

∥

∥

∥

∥

∥

≤
∑

i=nk

l

ai
2 · 1

‖yi‖2

√

√

√

√ ≤ 1

C

∑

i≥nk

ai
2

√

≤ 1

C
2−k

and thus
{
∑

i=1
n

εi xi

}

n
is a Cauchy sequence so that {xi}i=1

∞ is unconditionally summable.

However, ‖xi‖ = ai and we can easily choose ai (i.e. ai =
1

i
) for which ai is not absolutely summable and

that
∑

i=1
∞

ai
2<∞. Thus {xi}i=1

∞ is not absolutely summable. �

Lemma 42. Let X,Y be Banach spaces, and let T :X→Y be linear. Then the following are equivalent:

1. For all unconditionally summable sequences {xi}i=1
∞ ⊂X, {Txn} is absolutely summable.

2. There exists C > 0 such that for all n and x1, 	 , xn ∈ X, there exists a norm 1 linear functional
x∗∈X∗ such that

∑

i=1

n

‖Txi‖≤C
∑

i=1

n

|x∗(xi)|

Proof. (2)� (1). Assume {xn}n=1
∞ is unconditionally summable. Fix n. Let x∗∈BX∗ be the functional

from condition (2). Take εi = sign(x∗(xi)), then

∑

i=1

n

‖Txi‖≤Cx∗
(

∑

i=1

n

εixi

)

≤C

∥

∥

∥

∥

∥

∑

i=1

n

εixi

∥

∥

∥

∥

∥

and thus if xi is unconditionally sumamble, Txi is absolutely summable.

(1)� (2). First, we prove the following claim: If {xn}n=1
∞ is unconditionally summable, then

sup
x∗∈BX∗

∑

i=1

∞
|x∗(xi)|<∞

To show this, define F : X∗→ l1 by F (x∗) = (x∗(xn))n=1
∞ ∈ l1 (by unconditional convergence). Check that F has

a closed graph {(x∗, Fx∗), x∗∈X∗}, i.e. if (xn
∗ , Fxn

∗)→ (x∗, y) then y = Fx∗.
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xn
∗ → x∗ means that xn

∗(x) → x∗(x) for all x (in particular). Fxn
∗ → y means that

∑

i
|xn

∗(xi) − yi| → 0. Now by
Fatou’s lemma,

∑

i

|x∗(xi)− yi| ≤ liminf
n

∑

i

|xn
∗(xi)− yi|=0

and thus x∗(xi) = yi, i.e. y =Fx∗

By the closed graph theorem this shows F is continuous, i.e.

∑

i=1

∞
|x∗(xi)|= ‖F (x∗)‖l1 . ‖x∗‖X∗

Taking the supremum over all x∗∈BX∗ proves the claim.

Define Z to be the space of all unconditionally summable sequences in X . Define

‖(xn)n=1
∞ ‖6 sup

x∗∈BX∗

∑

i

|x∗(xi)|

Check that under this norm, Z is a Banach space.

To check that it is a norm, first we check that it is finite:

∑

i

|x∗(xi)|= x∗
(

∑

i

εi xi

)

≤
∥

∥

∥

∥

∥

∑

i=1

n

εi xi

∥

∥

∥

∥

∥

<∞

Since the right hand side does not depend on x∗, taking the sup over x∗∈BX∗ preserves finiteness.

Triangle inequality is immediate:

‖xn + yn‖≤ sup
x∗∈BX∗

∑

i

|x∗(xi)|+ |x∗(yi)| ≤ sup
x∗∈BX∗

∑

i

|x∗(xi)|+ sup
y∗∈BX∗

∑

i

|y∗(yi)|= ‖xn‖+ ‖yn‖

and if ‖(xn)n=1
∞ ‖ = 0, this means

∑

i
|x∗(xi)| = 0 for all x∗ and thus |x∗(xi)| = 0 for all i and all x∗. Then by

duality we have that

‖xi‖= sup
x∗∈BX∗

|x∗(xi)|=0

and thus xi = 0 for all i. Also need to check completeness...(?)

Let l1(Y ) denote the space of all sequences yi with the norm
∑

i=1
∞ ‖yi‖. Define S:Z→ l1(Y ) by

S((xi)) = (Txi)

Now we check that S has a closed graph.

This means checking that if (Zn, S(Zn))→ (Ẑ , Ŷ ) then Ŷ = S(Ẑ ). Here Zn = (zn,1, zn,2,	 ) and Ẑ = (ẑ1, , ẑ2,	 )

and Ŷ = (ŷ1, ŷ2,	 ). Zn→ Ẑ means that zn,i→ ẑi for all i (in particular). S(Zn) → Ŷ means that
∑

i
‖Tzn,i −

ŷi‖→ 0. Then again Fatou’s lemma shows the result that
∑

i
‖T ẑi − ŷi‖=0.

This implies by the closed graph theorem that S is continuous, i.e.

‖(Txi)‖l1(Y ) . ‖(xi)‖Z = sup
x∗∈BX∗

∑

i

|x∗(xi)|<∞

(where we have used the claim) In particular this implies the result.
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�

p-Summability and Properties

Definition Let X, Y be Banach spaces, and let 1 ≤ p < ∞. We say that a linear map T : X → Y is p-
absolutely summable if there exists C > 0 such that for all n and all x1,	 , xn∈X,

(

∑

i=1

n

‖Txi‖p

)1/p

≤ C sup
x∗∈BX∗

(

∑

i=1

n

|x∗(xi)|p
)1/p

The best constant C is denoted πp(T ), the p-summing norm of T .

Facts.

• ‖T ‖≤ πp(T )

This follows from the case where n=1, we note that ‖Tx‖≤ πp(T ) supx∗ |x∗(x)|=πp(T )‖x‖.

• The identity map Id: l2→ l2 is not 2-summing. Taking the standard basis e1, e2,	 we have that

n
√ ≤C sup

‖x‖2≤1

∑

|〈x, ei〉|2
√

≤C

Lemma 43. Let H1, H2 be Hilbert spaces. For all T :H1→H2,

π2(T )= ‖T ‖HS : =
(

∑

i

‖Tei‖2

)1/2

where ei is an orthonormal basis of H1 (can show that the HS norm does not depend on the choice of
orthonormal basis).

For finite dimensions, then we can represent T as a matrix T = (aij) in which case the HS norm is the

Frobenius norm
∑

ij
aij
2

√

.

Proof. First, we note

‖T ‖HS =

(

∑

i=1

n

‖Tei‖2

)1/2

≤ π2(T ) sup
‖x‖≤1

∑

i=1

n

〈x, ei〉2
√

=π2(T )

We will write the opposite inequality in a slightly funny manner in anticipation of a later result. Let
{gj}j∈J be an orthonormal basis of H2. Fix x∈H1, then we have

‖Tx‖2 =
∑

j∈J

〈Tx, gj〉2 =
∑

j∈J

〈x, T ∗gj〉2

=

(

∑

j∈J

‖T ∗gj‖2

)

∑

j∈J

〈

x,
T ∗gj

‖T ∗gj‖

〉2 ‖T ∗gj‖2

(

∑

j∈J
‖T ∗gj‖2

)

= ‖T ‖HS
2

∫

K

(x∗(x))2 dµ(x∗)
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where we note ‖T ‖HS
2 = ‖T ∗‖HS

2 =
∑

j
‖T ∗gj‖2 since

∑

j

〈T ∗ gj , T
∗gj〉=

∑

i,j

〈gi, T
∗gj〉〈T ∗gj , gi〉=

∑

i,j

〈Tgi, gj〉〈gj , Tgi〉=
∑

i

〈Tgi, Tgi〉

and where µ is just the atomic measure supported on the linear functionals x� 〈x, T∗ gj

‖T∗gj‖

〉

with weights

‖T ∗ gj‖2 appropriately normalized. Thus we have shown that for all x∈X ,

‖Tx‖2≤‖T ‖HS
2

∫

K

|x∗(x)|2 dµ(x∗)

and fixing x1,	 , xn, we have

(

∑

‖Txi‖2
)1/2

≤ ‖T ‖HS

∫

(

∑

i=1

n

|x∗(xi)|2
)

dµ(x∗)

√

√

√

√

≤ ‖T ‖HS sup
x∗∈BH1

∗

∑

i=1

n

|x∗(xi)|2
√

so that π2(T )≤‖T ‖HS. �

Lemma 44. (Ideal Property of πp) Suppose we have the maps

U�A X�T Y�B V

then

πp(BTA)≤‖A‖‖B‖πp(T )

Proof. For x1,	 , xn∈X, we have the computation

(

∑

i=1

n

‖BTAxi‖p

)1/p

≤ ‖B‖
(

∑

i=1

n

‖TAxi‖p

)1/p

≤ ‖B‖πp(T ) sup
x∗∈BX∗

(

∑

i=1

n

|x∗(Axi)|p
)1/p

≤ ‖A‖‖B‖πp(T ) sup
x∗∈BX∗

(

∑

i=1

n ∣

∣

∣

∣

x∗ ◦A
‖A‖ (xi)

∣

∣

∣

∣

p
)1/p

≤ ‖A‖‖B‖πp(T ) sup
u∗∈BU∗

(

∑

i=1

n

|u∗(xi)|p
)1/p

�

The p-summability operators follows a similar inclusion as for lp spaces, in that it is easier to be
summable for higher powers:
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Lemma 45. Let 1≤ r < p<∞ and T :X→Y. Then

πp(T )≤ πr(T )

Proof. Let q satisfy
1

p
+

1

q
=

1

r
, i.e.

1

p/r
+

1

q/r
= 1. Take x1,	 , xn∈X such that

sup
x∗∈BX∗

(

∑

i=1

n

|x∗(xi)|p
)1/p

= 1

By homogeneity it suffices to show that

(

∑

i=1

n

‖Txi‖p

)1/p

≤πr(T )

Let (c1,	 , cn) such that
∑

i=1
n |ci|q = 1. Then using Hölder,

(

∑

i=1

n

|ci|r |x∗(xi)|r
)1/r

≤
(

∑

i=1

n

|ci|q
)1/q(

∑

i=1

n

|x∗(xi)|p
)1/p

=

(

∑

i=1

n

|x∗(xi)|p
)1/p

By definition of πr(T ), we have

(

∑

i=1

n

|ci|r ‖Txi‖r

)1/r

≤ πr(T ) sup
x∗

(

∑

i=1

n

|ci|r |x∗(xi)|r
)1/r

≤ πr(T ) sup
x∗

(

∑

i=1

n

|x∗(xi)|p
)1/p

= πr(T )

Now if we maximize the left hand side subject to the constraint ‖c‖q = 1, will get that ci =
‖Txi‖p/r−1

(

∑ ‖Txi‖q(p/r−1)
)1/q

and plugging this value of ci above gives the result.

|ci|r =
‖Txi‖p−r

(

∑ ‖Txi‖q(p/r−1)
)r/q

|ci|r ‖Txi‖r =
‖Txi‖p

(

∑ ‖Txi‖q (p/r−1)
)r/q

(

∑

|ci|r ‖Txi‖r
)1/r

=
(
∑ ‖Txi‖p)

1/r

(
∑ ‖Txi‖p)1/q

=

(

∑

i=1

n

‖Txi‖p

)1/p

(Note: p+ q= qp/r and 1/r− 1/q= 1/p)

�

Proposition 46. Assume T :X→ Y with p≥ 1, and K ⊆BX∗ is a norming subset, i.e. for all x∈X,
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‖x‖= supx∗∈K |x∗(x)| (i.e. can use K in the dual expression for norm instead of all of BX∗). Then

sup
x∗∈BX∗

(

∑

i=1

n

|x∗(xi)|p
)1/p

= sup
x∗∈K

(

∑

i=1

n

|x∗(xi)|p
)1/p

= sup
‖α‖p∗=1

∥

∥

∥

∥

∥

∑

i=1

n

αixi

∥

∥

∥

∥

∥

Proof. Let p∗=
p

p − 1
. Then by duality,

sup
x∗∈BX∗

(

∑

i=1

n

|x∗(xi)|p
)1/p

= sup
x∗∈BX∗

sup
‖α‖p∗=1

∑

i=1

n

x∗(xi)αi

= sup
‖α‖p∗=1

sup
x∗∈BX∗

x∗
(

∑

i=1

n

αixi

)

= sup
‖α‖p∗=1

∥

∥

∥

∥

∥

∑

i=1

n

αi xi

∥

∥

∥

∥

∥

where α ∈ (Rn, Lp∗
) above. Now the same computation holds if we replace X∗ by K since K is assumed

to be a norming subset. This implies the result. �

Lemma 47. Let T :X→Y. Then

πp(T ) = sup {πp(TS) s.t. S: lp∗
n →X, ‖S‖≤ 1}

= sup







(

∑

i=1

n

‖TSei‖p

)1/p

s.t. S: lp∗
n →X, ‖S‖≤ 1







Proof. Denote K = sup {πp(TS) s.t. S: lp∗
n →X, ‖S‖ ≤ 1}. Note that the ideal property shows that K ≤

πp(T ) (πp(TS)≤‖S‖πp(T )). Choose x1,	 , xn such that both

sup
x∗∈BX∗

(

∑

i=1

n

|x∗(xi)|p
)1/p

= 1

(

∑

i=1

n

‖Txi‖p

)1/p

≥ πp(T )− ε

(definition of πp(T ) being the sharpest constant for which the inequality holds). Now define S: lp∗
n →X by

S( (αi)i=1
n )=

∑

i=1

n

αi xi

From the computation in the previous fact, we note that ‖S‖= 1 since

sup
x∗∈BX∗

(

∑

i=1

n

|x∗(xi)|p
)1/p

= sup
‖α‖p∗≤1

∑

i=1

n

αixi = 1

Then we have

(

∑

i=1

n

‖TSei‖p

)1/p

=

(

∑

i=1

n

‖Txi‖p

)1/p

≥ πp(T )− ε
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on one hand, and
(

∑

i=1

n

‖TSei‖p

)1/p

≤ πp(TS) sup
‖β‖p≤1

(

∑

〈β, ei〉p
)1/p

= πp(TS)

(note here that TS is an operator on lp∗
n , so the dual is lp

n). Combining the last two observations we have
that

πp(T )≤ πp(TS) + ε≤ sup
S

πp(TS)+ ε

and as ε is arbitrary, we have the result. �

Week 7 (10/19/2010)

Here is another observation about p-summing operators.

Proposition 48. Let µ be any probability measure on Ω. Then the identity operator Id: L∞(µ) → Lp(µ)
satisfies πp(Id)≤ 1

Proof. For all a = (a1, 	 , an) ∈ lp∗
n , and f1, 	 , fn ∈ L∞(µ) ⊂ Lp(µ) there exists Ea ⊂ Ω of measure zero

such that for all ω ∈Ea,
∣

∣

∣

∣

∣

∑

i=1

n

ai fi(ω)

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

∑

i=1

n

ai fi

∥

∥

∥

∥

∥

∞

Let F ⊂ lp∗
n be a countable dense subset, then E=

⋃

a∈F Ea has measure zero. Then

(

∑

i=1

n

‖fi‖Lp(µ)
p

)1/p

=

(

∫

Ω

(

∑

i=1

n

|fi(ω)|p
)

dµ(ω)

)1/p

≤ sup
ω∈Ω\E

(

∑

i=1

n

|fi(ω)|p
)1/p

= sup
ω∈Ω\E

sup
a∈F

‖a‖p∗≤1

∣

∣

∣

∣

∣

∑

i=1

n

ai fi(ω)

∣

∣

∣

∣

∣

≤ sup
a∈lp∗

n

∥

∥

∥

∥

∥

∑

i=1

n

ai fi

∥

∥

∥

∥

∥

∞

which shows using the definition and Proposition 46 that πp(Id)≤ 1.

�

Pietsch Domination Theorem

Theorem 49. (Pietsch Domination) Let X, Y Banach spaces, p ≥ 1, and let K ⊆ BX∗ norming and
weak*-closed.

If T :X→Y is p-summing then there exists regular Borel Prob. measure µ on K such that for all x∈X,

‖Tx‖≤σp(T )

( ∫

K

|x∗(x)|p dµ(x∗)

)1/p
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Exercise 6. Show that if an operator T satisfies the above inequality for some Borel Probability measure that T is p-

summing.

Solution:

(

∑

‖Txi‖p
)1/p

≤ σp(T )

( ∫

K

∑

|x∗(xi)|p dµ(x∗)
)1/p

≤ σp(T ) sup
x∗∈K

(

∑

|x∗(xi)|p
)1/p

= σp(T ) sup
x∗∈BX∗

(

∑

|x∗(xi)|p
)1/p

Interpretation:

For a fixed x ∈ X, the right side of the inequality above is the Lp(µ) norm of the function fx(x
∗) = x∗(x)

for x∗∈K, i.e. fx∈C(K)� Lp(K, µ).

Define J :X→C(K) by J(x)= fx, i.e. J(x)(x∗)= x∗(x). Then

‖J(x)‖∞= sup
x∗∈K

|x∗(x)|= sup
x∗∈BX∗

|x∗(x)|= ‖x‖

using the fact that K is norming. This shows that J is an isometry, and is invertible as a map from X→
JX.

Denote the I by the identification of C(K) as elements of Lp(K, µ). Note

‖IJ(x)‖Lp(µ) =

( ∫

K

|x∗(x)|p dµ(x∗)

)1/p

≤‖J(x)‖∞

so that ‖I‖C(K)→Lp(µ) ≤ 1, and let Xp = IJX be the range of I on JX . In particular, I is invertible as a
map from JX→Xp by definition.

Then we have the following diagram:

C(K) �I
Lp(K, µ)

∪ ∪
JX �

I |JX

Xp

J" # S
X �T Y

and we can define S so that the diagram above commutes, i.e. S(IJx)=Tx (I , J are invertible).

We note that as an operator S:Xp→Y , the norm is

‖S(IJx)‖Y
p = ‖Tx‖Y

p ≤ πp(T )p

∫

K

|x∗(x)|pdµ(x∗) =πp(T )p ‖IJx‖Lp(µ)
p

and thus ‖S‖Xp→Y ≤ πp(T ).

Special case p= 2. In this case, we have that Xp = L2(µ) is a Hilbert space, and we can use the orthog-
onal projection from L2(µ)→X2. Then let A=Proj ◦ I ◦ J and B= S, again ‖B‖≤ π2(T ) from the above,
and from the ideal property (Lemma 44),

π2(A)≤‖Proj‖‖J ‖π2(I)≤ 1
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so that π2(A) ≤ 1. Above we used Proposition 48, where we showed that I : L∞ → Lp is p-summing with
norm 1. Thus we have shown the following useful corollary:

Corollary 50. (Pietsch Factorization) If T :X→ Y is 2-summing, then there exists a Hilbert space H,
and mappings A:X→H, B:H→ Y such that the following diagram commutes:

H
Aր ցB

X �T Y

i.e. T =BA and ‖B‖≤ π2(T ), π2(A)≤ 1.

From here we can prove an interesting result:

Theorem 51. Let X be an n-dimensional space, IX:X→X be the identity map. Then

π2(IX)= n
√

Proof. By Pietsch Factorization (Corollary 50), we have a Hilbert space H , and mappings A, B so that
the following diagram commutes:

H
Aր ցB

X �IX

X

and that π2(A)≤ 1, ‖B‖≤ π2(IX). Replacing H with AX we can assume without loss of generality that A
is onto. We have IX =BA, and it must be the case that dimH = n (otherwise impossible to get identity),
and since we are working in finite dimensions, B =A−1. Then denoting the identity on H by IH, we have
that since IX =BIHA, IH =B−1 IXA

−1 =AB. This implies that

n
√

=π2(IH)≤ π2(A)‖B‖≤ π2(IX)

where we have used the ideal property of π2 (Lemma 44) above and the fact that π2 in a Hilbert space is
just the Hilbert Schmidt norm (Lemma 43).

To show the upper bound, we use Lemma 47:

π2(IX)= sup {π2(IXS) , S: l2
m→X, ‖S‖≤ 1, m∈N}

For ε > 0 let S be chosen such that π2(IX) ≤ π2(S) − ε. We will use the isomorphism H 6 l2
m/ker(S) D

S(l2
m). Define Q: l2

m → H to be the natural identification of l2
m to the quotient l2

m/ker(S), i.e. Qx = x +

ker(S)∈H , which is an isometry (‖Q‖≤ 1), and define S̃ so that S=QIH S̃ . In particular, ‖S̃ ‖= ‖S‖≤ 1
and by the ideal property,

π2(IX)≤ π2(S)− ε= π2(QIHS̃ )− ε≤‖Q‖π2(IH)‖S̃ ‖− ε= n
√ − ε

and since ε is arbitrary, we have the upper bound. �

Corollary 52. Let K ⊂ Rn be a centrally symmetric convex body. Then there exists an ellipsoid E ⊂ K

such that n
√ E ⊃K. (Later we will see that John’s ellipsoid satisfies this inequality).

Exercise 7. Show that the n
√

is sharp above, looking at K = [−1, 1]n.
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Proof. Let X be the Banach space whose unit ball is K. Denote IX by the identity map on X . By
Pietsch Factorization (Corollary 50) again, we have a Hilbert space H , and mappings A,B so that the fol-
lowing diagram commutes:

H
Aր ցB

X �IX

X

and π2(A) ≤ 1, ‖B‖ ≤ π2(IX) = n
√

(using the previous result). As before, we may assume without loss of
generality that H = AX , and again we have dim H = n and BA = IX so that B = A−1. Now choose E =
A−1(B2

n)

n
√ . Now we see that if x∈E =

1

n
√ A−1(B2

n), this means that ‖Ax‖2≤ 1

n
√ . But then we have that

‖x‖= ‖BAx‖≤ ‖B‖‖Ax‖2≤ 1

so that x∈K, i.e. E ⊂K. Then for x∈K, we have that ‖x‖≤ 1 and ‖Ax‖2≤‖A‖‖x‖≤ π2(A)≤ 1 so that
x∈A−1(B2

n)= n
√ E .

�

Now we turn to the proof of the Pietsch Domination Theorem.

Proof. (of Pietsch Domination, Theorem 49) By the Theorem of Banach-Alaoglu, we know that K
(the norming subset of BX∗ that is weak* closed) is compact in the weak* topology. For all x1,	 , xn ∈X,
define g(x1,	 ,xn):K→R by

g(x1,	 ,xn)(x
∗) =

∑

i=1

n

‖Txi‖p −πp(T )p
∑

i=1

n

|x∗(x)|p

Let C(K) = (C(K), ‖ · ‖sup) be the continuous functions on K with the sup norm.

g(x1,	 ,xn)∈C(K). Define Q⊂C(K) by

Q=
{

g(x1,	 ,xn): n∈N, x1,	 , xn∈X
}

We check that Q is a convex set since for λ∈ [0, 1] and x1	 , xn, y1,	 , ym∈X, we have that

λg(x1,	 ,xn) + (1−λ)g(y1,	 ,ym) = g(
λ1/px1,	 ,λ1/pxn,(1−λ)1/py1,	 ,(1−λ)1/pym

)

Now let P = {f ∈ C(K): f(x∗)> 0 for all x∗ ∈K}. P is easily convex, and it is also open since K is com-
pact (f ∈ P achieves its minimum on K, say it is ε, then {g, ‖g − f ‖∞ < ε} is an open set contained in
P ).

Note that P ∩Q= {}, otherwise there exists x1,	 , xn∈X such that

∑

i=1

n

‖Txi‖p>πp(T )p
∑

i=1

n

|x∗(xi)|p for all x∗∈K

which contradicts T being p-summing with constant πp(T ).

By the hyperplane separation theorem (geometric Hahn Banach) and the Riesz Representation theorem
for C(K), there exists a regular Borel measure µ on K and c∈R such that for all g ∈Q and f ∈P ,

∫

K

gdµ≤ c<

∫

K

fdµ
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since 0 ∈ Q, c must be nonnegative, and thus we have that for all f ≥ 0 (i.e. in P ),
∫

K
fdµ ≥ 0 so that

µ is a positive measure. For all ε> 0, if we take ε1K ∈P we have that

c< εµ(K)

and since ε is arbitrary this implies c = 0. By normalizing, without loss of generality µ is a probability
measure. For x∈X, apply

∫

K
gdµ≤ 0 to g= g{x}, then

∫

K

(‖Tx‖p − πp(T )p |x∗(x)|p) dµ(x∗)≤ 0

and this implies the existence of some x∗ for which

‖Tx‖p ≤πp(T )p

∫

K

|x∗(x)|p dµ(x∗)

which proves the result. �

Notation: Let X,Y be Banach spaces, and denote

Πp(X,Y ) = {T :X→ Y , πp(T )<∞}
L(X,Y ) = {bounded operators from X→Y }

Recall that for 1≤ r < p<∞, that Πr(X, Y )⊂Πp(X,Y ), i.e. for T :X→ Y , πp(T )≤πp(T ) (Lemma 45)

Next, we show that if the reverse inequality is true up to a constant, then we can show the same for the 1-
summing norm.

Theorem 53. (Maurey Extrapolation Theorem) Let X be a Banach space, and 1 ≤ r < p <∞ such
that

Πp(X, lp)= Πr(X, lp)

Then for all Banach spaces Y,

Π1(X,Y )= Πp(X,Y )

Remarks

1. Using the closed graph theorem, the hypothesis Πp(X, lp) =Πr(X, lp) is the same as the following:

There exists a constant C > 0 such that for all T :X→ lp,

πr(T )≤Cπp(T )

Let Π = Πp = Πr. That this condition is sufficient follows immediately. To show the necessity, we
need that the identity map Id: (Π, πp)→ (Π, πr) is continuous (which implies the inequality). Closed
graph theorem says that if the graph (T , T ) ∈ Πp × Πr is closed, then T is continuous. In other

words, given a sequence Tk for which Tk → T (p) in Πp and Tk → T (r) in Πr that T (p) = T (r). Note

that since ‖T ‖ ≤ min (πp(T ), πr(T )), we know that ‖Tk − T (p)‖ → 0 and ‖Tk → T (r)‖ → 0. By

uniqueness of limits for ‖ · ‖ we have that T (p) =T (r) as desired.
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Quantitative Version: We will end up showing that for all T :X→Y ,

π1(T )≤ 2(2c)
r(p−1)

p−r πp(T )

2. We note that the condition πr(T )≤Cπp(T ) for all T :X→ lp implies that

πr(T )≤Cπp(T ) for all T :X→ lp
n

and this statement in turn implies that for ε> 0,

πr(T )≤C(1+ ε)πp(T ) for all T :X→Lp(µ)

Proof. (From lp → lp
n) Given T : X → lp

n, we can extend trivially to a function T̃ : X → lp where

T̃x=(? TxC , 0, 0,	 ), and we note that

πp(T ) = πp(T̃ ), as ‖Tx‖lp
n = ‖Tx‖lp

for all x. So by assumption since πr(T̃ ) ≤ Cπp(T̃ ), we have

immediately that πr(T )≤Cπp(T ). �

Proof. (From lp
n→Lp(µ)) Let T :X→Lp(µ), and fix x1,	 , xn∈X . Let E = span{Tx1,	 , Txn}.

Let f1, 	 , fn ∈BX be a basis for E. Because all norms are equivalent in finite dimensions, we note
that there is some constant M > 0 with

∑

i=1

n

|ai| ≤
∥

∥

∥

∥

∥

∑

i=1

n

ai fi

∥

∥

∥

∥

∥

Lp(µ)

≤M
∑

i=1

n

|ai|

Let h1, 	 , hn ∈ Lp(µ) be simple functions such that ‖fi − hi‖Lp(µ) ≤ ε

M
. Let A1, 	 , AN be the sub-

sets of positive measure for which all the hi are constant.

Let F = span{1Ai
}i=1

N . If we define S:F→ lp
N by S(1Ai

)= µ(Ai)
1/p ei, then S is an isometry.

Now define U :E→F by the mapping Ufi = hi. Note that

∥

∥

∥

∥

∥

∑

i=1

N

aifi −
∑

i=1

N

aihi

∥

∥

∥

∥

∥

Lp

≤ M
∑

i=1

N

|ai|‖fi − hi‖Lp

≤ M
∑

i=1

N

|ai| ε
M

≤
∥

∥

∥

∥

∥

∑

i=1

N

ai fi

∥

∥

∥

∥

∥

Lp

ε

or in other words, using triangle inequality we have that

(1− ε)

∥

∥

∥

∥

∥

∑

i=1

N

ai fi

∥

∥

∥

∥

∥

Lp

≤
∥

∥

∥

∥

∥

∑

i=1

N

aihi

∥

∥

∥

∥

∥

Lp

≤ (1 + ε)

∥

∥

∥

∥

∥

∑

i=1

N

ai fi

∥

∥

∥

∥

∥

Lp

so that ‖U ‖≤ 1 + ε and ‖U−1‖≤ 1

1− ε
. The rest follows from the ideal property:

Let P be the projection from Lp(µ)→F defined by the conditional expectation:

P (f)=E[f |σ(h1,	 , hN)]
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noting that ‖P ‖ ≤ 1 and that P (Lp(µ)) = span{1Ai
} = F (note that the algebra generated by the

indicators is exactly the linear span since 1Ai

k = 1Ai
).

Now applying our result, we know that since SPT :X→ lp
N, the ideal property tells us that

πr(SPT )≤Cπp(SPT )≤Cπp(T )

This means that plugging in UTxi, and noting that P (UTxi)=UTxi since UTxi ∈F , we have that

(

∑

‖UTxi‖r
)1/r

=
(

∑

‖SPUTxi‖r
)1/r

≤C(1+ ε)πp(T ) sup
x∗

(

∑

|x∗(xi)|r
)1/r

and using the fact that ‖Txi‖≤ 1

1− ε
‖UTxi‖, we conclude that

(

∑

‖Txi‖r
)1/r

≤ C

1− ε
πp(T ) sup

x∗

(

∑

|x∗(xi)|r
)1/r

so that πr(T )≤ C

1− ε
πp(T ). �

Proof. (of Maurey Extrapolation, Theorem 53) By assumption, there exists C such that for all
measures µ, and for all T : X → Lp(µ), we have that πr(T ) ≤ Cπp(T ). Denote K = BX∗ with weak*
topology, and denote P (K) to be the set of all regular Borel probability measures on K.

Let J : X → C(K) be the duality mapping J(x)(x∗) = x∗(x) as in the interpretation of Pietsch, let Iµ be
the identity map from C(K)→Lp(K, µ) and let Jµ = IµJ :X→Lp(K, µ), defined for each µ∈P (K). Note
that πp(Jµ) ≤ 1 by the ideal property since πp(Iµ) ≤ 1 and ‖J ‖ ≤ 1. By assumption, we have πr(Jµ) ≤ C.
Now by Pietsch, there exists µ̂ ∈P (K) such that for all x∈X,

‖Jµx‖Lp(µ)≤C ‖Jµ̂x‖Lr(µ̂)

Now take T :X→ Y with πp(T )<∞. We want to show that T is 1-summing. By Pietsch there exists µ0∈
P (K) such that for all x∈X

‖Tx‖≤πp(T )‖Jµ0(x)‖Lp(µ0)

We claim that there exists λ∈P (K) such that for all x∈X

‖Jµ0x‖Lp(µ0)≤C ′ ‖Jλx‖L1(λ)

which shows that π1(T )≤C ′πp(T ), since in this case for x1,	 , xn∈X,

∑

i=1

n

‖Txi‖≤ πp(T )C ′
∑

i=1

n ∫

|x∗(xi)|dλ(x∗)≤C ′πp(T ) sup
x∗∈BX∗

∑

i=1

n

|x∗(xi)|

Now define µn+1 = µn from Pietsch, i.e.

‖Jµn
x‖Lp(µ)≤C ‖Jµn+1x‖Lr(µn+1)

(as above) and set λ =
∑

n=0
∞ 2−n−1 µn. Then we show that λ works. Let

1

r
=

θ

1
+

1− θ

p
, so θ ∈ (0, 1). By

Hölder,

‖Jµn
x‖Lp(µn)≤‖Jµn

x‖L1(µn)
θ ‖Jµn

x‖Lp(µn)
1−θ
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Then

∑

n≥0

2−n−1‖Jµn
x‖Lp(µn) ≤ C

∑

n≥0

2−n−1 ‖Jµn+1
x‖Lr(µn+1)

≤ C
∑

n≥0

2−n−1 ‖Jµn+1 x‖L1(µn+1)
θ ‖Jµn+1x‖Lp(µn+1)

1−θ

≤ C

(

∑

n≥0

2−n−1 ‖Jµn+1
x‖L1(µn+1)

)θ(
∑

n≥0

2−n−1 ‖Jµn+1
x‖Lp(µn+1)

)1−θ

≤ C
(

2‖Jλx‖L1(λ)

)θ

(

∑

n≥0

2−n−1 ‖Jµn+1x‖Lp(µn+1)

)1−θ

This implies that

(

1

2
‖Jµ0x‖Lp(µ0)

)θ

≤
(

∑

n≥0

2−n−1 ‖Jµn+1 x‖Lp(µn+1)

)θ

≤ 2c(‖Jλx‖L1(λ))
θ

(c=Cθ) and

‖Jµ0
x‖Lp(µ0)≤ 2(2c)1/θ ‖Jλ x‖L1(λ)

as desired.

�

This proof is particularly tricky, having to iterate applications of Pietch domination. It would be inter-
esting if there were a more direct proof that could give more insight into the structure of the problem.

Week 8 (10/26/2010)

Grothendieck’s Inequality

Theorem 54. (Grothendieck) Every bounded operator from l1→ l2 is 1-summing.

Proof. First we gather some helpful facts. Let {gi}i=1
∞ be i.i.d standard Gaussian defined on a proba-

bility space (Ω, µ), Define Gp: l2→Lp(µ) by

Gp((ai)i=1
∞ )=

∑

i=1

∞
ai gi ∼(d) ‖a‖l2 g, g standard Gaussian

For a∈ l2, we have

‖Gp a‖p =
(

E|‖a‖2 g |p
)1/p

=Cp ‖a‖2

(we computed Cp = (E|g |p)1/p in Lemma 31). Examining G1: l2 → L1(Ω) we note that G1 is one to one

from the equality above (‖Gpa‖p = 0 implies ‖a‖2 = 0), and this implies that the adjoint G1
∗:L∞(Ω)→ l2 is

onto.

Reminder: For any a ∈ l2
∗, can find y∗ ∈ (L1

∗) with G1
∗(y∗)(x) = y∗(G1(x)) = a(x) for all x ∈ l2. G1 being one to

one means that we can define such a y∗ on G1(l2), and then we extend with Hahn Banach while preserving the
norm.
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Then by the open mapping theorem,

G1
∗(BL∞(Ω))⊃ cBl2

for some c, and in fact we can show that c ≤ C1 =
2

π

√

. Suppose the inclusion does not hold, then there

exists x∈ l2 with ‖x‖2≤ c and x � G1
∗(BL∞(Ω)). By separation theorem, there exists y ∈ l2\{0} such that

〈x, y〉> sup
‖f ‖∞≤1

〈y,G∗(f)〉

Then

c‖y‖2≥‖x‖2 ‖y‖2≥〈x, y〉> sup
‖f‖∞≤1

〈y,G∗(f)〉= ‖Gy‖1 =C1 ‖y‖2

So if the inclusion does not hold, then c > C1, and thus if c ≤ C1, then the inclusion holds, and we have
shown

Fact 1. G1
∗(BL∞(Ω))⊃ cBl2 with c=C1 =

2

π

√

Now let e1, e2, 	 be the standard basis of l1. Noting that c
Tei

‖Tei‖2
∈ cBl2 ⊂ G1

∗(BL∞(Ω)), from Fact 1 we

know that there exists xi ∈L∞(µ) such that G1
∗(xi)=Tei and ‖xi‖∞≤ 1

c
‖Tei‖2.

Define S: l1→ l∞(Ω) by Sei = xi, then for a= (ai)i=1
∞ ∈ l1 we have

‖Sa‖∞=

∥

∥

∥

∥

∥

∑

i=1

∞
aiSei

∥

∥

∥

∥

∥

L∞

≤
∑

i=1

∞
|ai|‖xi‖∞≤ 1

c
‖T ‖‖a‖l1

so that ‖S‖≤ ‖T ‖
c
, and we have shown

Fact 2. There exists S: l1→L∞(Ω) such that ‖S‖≤ ‖T ‖
c

and T =G1
∗S.

Recall that the identity map J : L∞(Ω) → Lr(Ω) satisfies πr(J) ≤ 1 (Proposition 48). Observe that G1
∗ =

Gr∗
∗ J since G1 =J∗Gr∗, and then by the ideal property

πr(G1
∗)≤‖Gr∗

∗ ‖πr(J)≤Cr∗

In any case, we have shown the final fact that we need:

Fact 3. For 1<r ≤ 2, we have πr(G1
∗)<∞.

Combining the facts, we have shown that

πr(T )= πr(G1
∗S)≤ πr(G1

∗S)≤ πr(G1
∗)‖T ‖
c

<∞

for 1<r ≤ 2. Then

Πr(l1, l2)⊆Π2(l1, l2)⊆L(l1, l2)⊆Πr(l1 l2)

using the inclusion of p-summing spaces Lemma 45, the fact that all p-summing operators are bounded
‖T ‖≤ πp(T ), and what we have just shown: πr(T )<∞. Thus we have that Πr(l1, l2) = Π2(l1, l2) =L(l1, l2)
and by Maurey Extrapolation Theorem (Theorem 53) we conclude that

Π1(l1, l2)= Π2(l1, l2)=L(l1, l2)
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�

Theorem 55. (Extension property of 2-summing) Let X, Y , Z be Banach spaces, X ⊆ Z, dim X <

∞ and T :X→ Y is 2-summing. Then for all ε> 0, there exists an extension T̃ :Z→Y with

π2(T̃ )≤ (1 + ε)π2(T )

Remark: The statement holds without the restriction that dim X < ∞ and without ε, but the proof
needs more work.

Proof. Let N be an ε-net in the sphere of X∗, |N |<∞. Define a norm | · |N on X by

|x|N = max
x∗∈N

|x∗(x)|

Also, we note that

‖x‖= sup
‖x∗‖=1

|x∗(x)| ≤ sup
y∗∈N

|y∗(x)|+ ε‖x‖= |x|N + ε‖x‖

and

‖x‖= sup
‖x∗‖=1

|x∗(x)| ≥ sup
y∗∈N

|y∗(x)|= |x|N

so that |x|N ≤ ‖x‖ ≤ 1

1− ε
|x|N . By the ideal property, it is enough to prove the theorem when ‖x‖= |x|N

(Id: (X, ‖ · ‖) → (X, | · |N) will give 1 + ε factor). In other words, N is a norming set of X . By Pietch we
have a probability measure µ on N so that the following diagram commutes. Note that X is finite dimen-
sional so that J(X)=C(N )= l∞(N ), and in fact Jx= (x∗(x))x∗∈N .

l∞(N ) �
I

L2(µ)

J̃ր J" # S
Z ⊇ X �T Y

Here ‖S‖ ≤ π2(T ) and π2(I) ≤ 1. By Hahn-Banach, there exists x̃∗ ∈ Z∗ such that x̃∗|
X

= x∗ and ‖x̃∗‖ =

‖x∗‖. Define J̃ (z) = (x̃∗(z))x∗∈N , and by construction ‖J̃ ‖ = ‖J ‖ = 1. Now taking T̃ = SI J̃ , we note that

T̃ |X = T by construction, and ideal property tells us that π2(T̃ ) ≤ π2(T ), which gives the result (recall we
lost a factor of 1 + ε in replacing (X, ‖ · ‖) by (X, | · |N)).

�

We can use the previous result to prove a theorem about projections to finite dimensional subspaces.

Theorem 56. (Kadets-Snobar) X ⊆ Z Banach spaces, dimX = n. For all ε > 0, there exists a projec-
tion P :Z→X with

‖P ‖≤ n
√

(1+ ε)

Remark: ‖P ‖ ≤ n
√

works also. This is not sharp either, as a result by Konig-Tomczak-Jaegerman can

find ‖P ‖≤ n
√ − c

n
√ .
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Proof. We apply the previous 2-sum extension result Theorem 55 to the identity map IX:X→X , which
gives some operator P : Z → X with P |X = IX and π2(P ) ≤ (1 + ε)π2(IX). We know that π2(IX) = n

√
(Theorem 51). We conclude that

‖P ‖≤π2(P )≤ (1+ ε) n
√

�

(Later, after we finish p-summing results, combined with Dvoretsky we can show a theorem by Linden-
strauss-Tzafriri: If Z is a Banach space such that for all closed X ⊆ Z there exists a projection P : Z→X

with ‖P ‖ < ∞ then Z is essentially a Hilbert space: there exists a scalar product 〈 · , · 〉 on Z such that

〈x, x〉
√

≤‖x‖≤K 〈x, x〉
√

)

Theorem 57. (Grothendieck’s Inequality) There exists K such that for any n×n real matrix (aij),

max
x1	 ,xn,

y1,	 , yn∈l2
unit vectors

∑

i,j=1

n

aij〈xi, xj〉≤K max
ε1,	 ,εn,

δ1,	 ,δn∈{±1}

∑

i,j=1

n

aij εi δj

The best K in this inequality is denoted KG, Grothendieck’s constant.

Remark: Note that

max
εi,δj=±1

∑

i,j=1

n

aij εi δj = max
(α,β)∈Rn×Rn

|αi|, |βj |≤1

∑

i,j=1

n

aijαiβj

Can optimize coordinate wise to see that the maximizer is achieved at the endpoints (LHS).

Proof. Denote

Γ = max
‖xi‖2≤1
‖yj‖2≤1

∑

i,j=1

n

aij〈xi, yj〉

∆ = max
εi,δj=±1

∑

i,j=1

n

aij εi δj

Goal is to show that Γ = O(∆). Let {gi}i=1
∞ be i.i.d standard Gaussians defined on the same probaiblity

space (Ω, µ).

H6 G2(l1)6 {

∑

i=1

∞
ai gi : (ai)∈ l2

}

H is a Hilbert space with the scalar product 〈X,Y 〉=E[XY ].

Fix ε> 0. Let X1	 , Xn, Y1,	 , Yn∈H be such that E[Xi
2],E[Yi

2]≤ 1 and

∑

i,j=1

n

aij E[Xi Yj]≥Γ− ε

We will be moving between l2, H , L2(µ), equivalent Hilbert spaces.
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For M > 0 to be determined, and any X ∈L2(µ), define

XM =







X if |X | ≤M

M if X >M

−M if X <−M
so that |XM | ≤M . then

Γ− ε≤
∑

i,j=1

n

aij E[XiYj] =
∑

i,j=1

n

aij E[Xi
MYj

M] +
∑

i,j=1

n

aij E[(Xi −Xi
M)Yj] +

∑

i,j=1

n

aij E[Xi
M(Yj −Yj

M)]

Bounding each piece on the RHS, we have that

∑

i,j=1

n

aij E[Xi
M Yj

M] =M2E

[

∑

i,j=1

n

aij
Xi

M

M

Yj
M

M

]

≤M2 max
‖α‖∞,‖β‖∞≤1

∑

i,j=1

n

aijαiβj ≤M2 ∆

(using the remark). For the second part,

∑

i,j=1

n

aij E[(Xi −Xi
M)Yj] = max

i
‖Xi −Xi

M‖L2(µ)

∑

i,j=1

n

aij E

[

(Xi −Xi
M)

maxi ‖Xi −Xi
M‖L2(µ)

Yj

]

≤ max
i

‖Xi −Xi
M‖L2(µ)Γ

where for the inequality we are using the equivalence of H and l2 as Hilbert spaces. Now since Xi =
∑

aj gj,
∑

aj
2 =E[Xi

2] = 1 so Xi∼‖a‖2g∼N(0, 1), and therefore

E[(Xi −Xi
M)2]

√

=

∫

0

∞
tPr(|Xi −Xi

M |> t) dt
√

= 2

∫

M

∞
(t−M)Pr(Xi>t) dt

√

≤ Ce−M2/4

using the standard Gaussian tail estimate. Thus both the second and third terms above are bounded by

Ce−M2/4 Γ, and

Γ− ε≤M2 ∆+Ce−M2/4Γ

so that

Γ(1−Ce−M2/4)≤M2∆

and now we just choose M sufficiently large so that Γ≤C ′(M)∆.

�

Theorem 58. (Grothendieck) Any bounded operator T : l∞→ l1 is 2-summing and

π2(T )≤KG ‖T ‖

where KG is Grothendieck’s constant.

Also any bounded operator from l1→ l2 satisfies π1(T )≤KG ‖T ‖.

Remark: Can replace l∞ and l1 with L∞(µ) and L1(µ) as in the statement of Maurey Extrapolation
(Theorem 53)
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Proof. It is enough to prove this for T : l∞
n → l1

n, as the 2-summing property involves finite sums. Write
Tei =

∑

j=1
n

aijej, and take x1,	 , xm∈ l∞n , xk =
∑

i=1
n

αi
kei such that

sup
‖x∗‖l1

≤1

∑

i=1

n

|x∗(xi)|2
√

= 1

We need to show that
∑

i=1
m ‖Txk‖2

√

≤KG‖T ‖. Note that

max
i=1,	 ,n

∑

k=1

n

(αi
k)2≤ sup

‖x∗‖l1≤1

∑

i=1

n

|x∗(xi)|2
√

= 1

taking x∗ to be standard basis elements. Now

∑

i=1

m

‖Txk‖1
2

√

=





∑

k=1

m
(

∑

j=1

n
∣

∣

∣

∣

∣

∑

i=1

n

αi
k aij

∣

∣

∣

∣

∣

)2




1/2

(Minkowski) ≤
∑

j=1

n




∑

k=1

m
∣

∣

∣

∣

∣

∑

i=1

n

αi
k aij

∣

∣

∣

∣

∣

2




1/2

= :A

By duality, there exists y1,	 , yn∈ l2m, yj = (βj
k)k=1

m , with ‖yj‖l2≤ 1 and

A =
∑

j=1

n
∑

k=1

m

βj
k
∑

i=1

n

αi
kaij

=
∑

i,j=1

n
(

∑

k=1

m

αi
kβj

k

)

aij

=
∑

i,j=1

n

〈α, β〉 aij

(Grothendieck) ≤ KG max
|αi|≤1,|βj|≤1

∑

i,j=1

n

aijαi βj

= KG max
‖α‖∞,‖β‖∞≤1

〈Tα, β〉
= KG ‖T ‖∞→1

which is the result we want (slight abuse of notation above, at the application of Grothendieck we have
reused the variable α, β).

(Next time to prove for T : l1→ l2) �

Week 9 (11/2/2010)

We now prove the next part, that any bounded operator from l1→ l2 is 1-summing.

Proof. As before, it is enough to prove this for T : l1
n→ l2

n. We need that for any x1,	 , xm∈ l1,

∑

i=1

m

‖Txi‖2≤KG‖T ‖ sup
|αi|≤1

∑

|α(xi)|
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We will use that sup|αi|≤1

∑ |α(xi)| = sup|αi|≤1 ‖
∑

αixi‖l1
n (Proposition 46). Let xi = (xi1, 	 , xin), and

e1	 , en be the standard basis of l1
n. Then

∑

i=1

∞
‖Txi‖2 =

∑

i=1

m
∥

∥

∥

∥

∥

∑

j=1

n

xijTej

∥

∥

∥

∥

∥

=
∑

i=1

m
〈

zi,
∑

j=1

n

xijTej

〉

for some ‖zi‖=1

= ‖T ‖
∑

i=1

m
∑

j=1

n 〈

zi,
Tej

‖T ‖

〉

xij

(Grothendieck) ≤ ‖T ‖KG sup
|αi| ,|bj |≤1

∑

i

∑

j

αiβjxij

= ‖T ‖KG sup
|αi| ,|bj |≤1

∑

j

βj

∑

i

αixij

= ‖T ‖KG sup
|αi|≤1

∥

∥

∥

∥

∑

i

α(xi)

∥

∥

∥

∥

which completes the proof. �

We can also transfer the result from L∞(µ) to C(K) where K is compact Hausdorff, but it requires a bit
of thought. For the next results K will denote a compact Hausdorff space.

Theorem 59. If E ⊆ C(K) is a finite dimensional subspace then there exists another finite dimensional
subspace F ⊆C(K) such that

1. E ⊆F

2. F is (1+ ε)-isomorphic to l∞
dimF

We then say that C(K) is a L∞,1+ε space. (Notation in literature)

This will use the following Lemma:

Lemma 60. Let E ⊆ C(K) be a finite dimensional subspace, ε > 0. Then there exists a projection P :
C(K)→C(K) such that

1. P has finite rank

2. ‖Px− x‖∞≤ ε for all x∈BE

3. P (X) is isometric to l∞
n , where n= dimP (X).

Proof. This is a partition of unity argument. Let f1, 	 , fn be an ε/4 net in BE. Note that fi are uni-
formly continuous. There exists a finite cover of K by open sets Ω1,	 ,ΩN such that

|fi(x)− fi(y)|< ε

2
for all x, y ∈Ωj and for all i

This covers K into pieces where on each piece all the fi oscillate by at most ε. Without loss of generality,

Ωi\
⋃

j� i
Ωj � 0, otherwise we can toss Ωi out of the cover. Fix a ωi from each Ωi\

⋃

j� i
Ωj. Let {ϕj}j=1

N

be a partition of unity subordinate to the open cover {Ωi}. This means that

1. ϕj ∈C(K)
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2. 0≤ ϕj ≤ 1

3. ϕj vanishes outside Ωi

4.
∑

ϕi(ω)=1 for all ω ∈K

Define P :C(K)→C(K) by

Pf(ω) =
∑

i

f(ωi)ϕi(ω)

Note this is a projection, ωi ∈ Ωi\
⋃

j� i
Ωj means that ϕi(ωj) = δij and Pf(wi) = f(ωi), so that P 2 = P .

Also, we have that

|Pf(ω)| ≤
∑

i

|f(ωi)|ϕi(ω)≤‖f ‖∞
∑

i

ϕi(ω) = ‖f ‖∞

so that ‖P ‖ ≤ 1. We see that P has finite rank, since P (C(K)) = span{ϕ1, 	 , ϕN}, and for all ω ∈K we
have that

|Pf(ω)− f(ω)| =

∣

∣

∣

∣

∣

∑

j

(f(ωj)− f(ω))ϕj(ω)

∣

∣

∣

∣

∣

≤
∑

j

(

|f(ωj)− fi(ωj)|�
≤ε/4

+ |fi(ωj)− fi(ω)|+ |f(ω)− fi(ωj)|�
≤ε/4

)

ϕj(ω)

≤ ε

2
+

∑

j,ω∈Ωj

|fi(ωj)− fi(ω)|�
≤ε/2

|ϕj(ω)|

≤ ε

so that ‖Pf − f ‖ ≤ ε for f ∈ BE. In the second line above, note that
∑

ϕj = 1 and fi is an ε/4 net. In
the third line above, we use that ϕj(ω) is zero outside Ωj and fi does not oscillate by more than ε/2 on

Ωj. Finally, to show that P (C(K)) is isomorphic to l∞
N , we just map (ai)i=1

N to
∑

aiϕi, and since ϕi is a
partition of unity the sup norm is exactly the same:

∣

∣

∣

∑

aiϕi

∣

∣

∣
≤‖a‖∞ =

∣

∣

∣

∣

∑

i

aiϕ(wimax
)

∣

∣

∣

∣

=
∥

∥

∥

∑

aiϕi

∥

∥

∥

∞

�

Now we prove the Theorem:

Proof. (of Theorem 59) Denote X =C(K). We are given E ⊆X, dimE = k. By Kadetz-Snobar (The-

orem 56) there exists a projection Q: C(K) → E with ‖Q‖ ≤ 2 k
√

. By the previous lemma, there exists a
projection P :X→X with ‖Px− x‖ ≤ ε for all x ∈BE and P (X) is isometrically isomorphic to l∞

n . Let I:
X→X be the identity map, and define T = I +PQ−Q. Then

‖I −T ‖ ≤ ‖(P − I)Q‖
≤ sup

f∈BX ω∈K

∣

∣

∣

∣

P
Qf(ω)

‖Q‖ − Qf(ω)

‖Q‖

∣

∣

∣

∣

· ‖Q‖

≤ ε2 k
√

so if ε <
1

2 k
√ , then T is invertible, T−1 =

∑

j≥0 (I − T )j (Neumann series), ‖T−1‖ ≤ ∑
j≥0 (2ε k

√
)j =

1

1− 2ε k
√ . Also, we note ‖T ‖≤ 1 + ε2 k

√
.
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We use T−1PT , which is a finite rank projection from X→X. Denote the range by F . Then F ⊇E since
if x∈E, then

Tx= x+PQx−Qx=Px

so that x=T−1PTx and x∈F . Let T0 be the restriction of T to F . Then note that

T0(F ) =T0(T−1PTX)=P (TX)=PX

(T is invertible so TX =X , and T0 = T on the range of PTX), and so we have that T0:F→PX , and PX
is isomorphic to l∞

n . Note

‖T0‖‖T0
−1‖≤ 1 + 2ε k

√

1− 2ε k
√ ∼ 1+ ε′

ε′ is arbitrarily small. Thus F is 1 + ε′ isomorphic to l∞
n .

�

From this we can then prove the following in the same manner as in remarks following Theorem 53
(Maurey Extrapolation)

Proposition 61. Let K be compact Hausdorff, then any bounded operator T : C(K) → L1(µ) is two sum-
ming with π2(T )≤KG ‖T ‖

Proof. Let x1, 	 , xn ∈ C(K). Take E = span{x1, 	 , xn}. There exists F ⊇ E, F ⊂ C(K) which is 1 + ε

isomorphic to l∞
N , i.e. U : F → l∞

N is invertible with ‖U ‖ , ‖U−1‖ ≤ 1 + ε. If we consider the map T̃ = TU−1

mapping l∞
N →L1, we know from Grothendieck (Theorem 58) that π2(T̃ )≤KG ‖T̃ ‖, so that

∑

i

‖Txi‖1 =
∑

i

‖T̃ (Uxi)‖1≤KG ‖T̃ ‖ sup
‖x∗‖l1

≤1

∑

i

|x∗(Uxi)| ≤KG(1+ ε)‖T ‖ sup
y∗∈BC(K)∗

∑

i

|y∗(xi)|

which shows π2(T )≤KG(1+ ε)‖T ‖, which is slightly off.

�

We can use this theorem to prove a result about Fourier multipliers. Below we will state the result using
the Fourier transform of abelian groups. Can think of just the Fourier series on S1 with the dual Z

(Fourier coefficients index)

Theorem 62. (Orlicz-Paley-Sidon) Let G be a compact abelian group, and Γ be the dual. Let M be a

Fourier multiplier M :C(G)→CΓ with

Mf = (m(χ) f̂ (χ))χ∈Γ

for some choice {m(χ)}χ∈Γ⊂C. Then M(C(G))⊆ l1(Γ) if and only if
∑

χ∈Γ |m(χ)|2<∞.

Proof. First assume that
∑

χ∈Γ |m(χ)|2<∞. Then

∑

χ∈Γ

|m(χ)| |f̂ (χ)| ≤
∑

χ∈Γ

|m(χ)|2
√

∑

χ∈Γ

|f̂ (χ)|2
√

=
∑

χ∈Γ

|m(χ)|2
√

‖f ‖L2(µ)<∞
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where µ is the Haar measure on G. This shows that M(C(G))⊆ l1(Γ).

The converse is true, and the proof uses Grothendieck’s results. Assume that M(C(G)) ⊆ l1(Γ). Check
that (f , Mf) is a closed graph, which will then imply that ‖M ‖C(G)→l1(Γ) < ∞. By Grothendieck (The-

orem 58), this implies that M is 2-summing with π2(M) ≤ KG ‖M ‖. By Pietch domination, this implies
that there exists a Borel probability measure ν on G such that

∑

χ∈Γ

|m(χ)| |f̂ (χ)| ≤KG ‖M ‖
( ∫

G

|f(χ)|2 dν(χ)

)1/2

Let h∈G and f ∈C(G). Define fh(g) = f(hg). We have that

fĥ(χ) =

∫

G

f(hx)χ(x)dµ(x)

=

∫

G

f(y)χ(h−1y)dµ(y)

= χ(h−1) f̂ (y)

Above we used the invariance of the Haar measure under group multiplication and the fact that χ is a

character (homomorphism from G→C). Now |fĥ(χ)|= |f̂ (χ)| for all χ∈Γ, and

(

∑

χ∈Γ

|m(χ)| |f̂ (χ)|
)2

≤ KG
2 ‖M ‖2

∫

G

∫

G

|f(hx)|2 dν(x)dµ(h)

= KG
2 ‖M ‖2

∫

G

( ∫

G

|f(hx)|2 dµ(h)

)

dν(x)

= KG
2 ‖M ‖2 ‖f ‖L2(µ)

2

(Parseval) = KG
2 ‖M ‖2

∑

χ∈Γ

|f̂ (χ)|2

For all finite Γ0⊆Γ, we have f0 =
∑

χ∈Γ0
m(χ) · χ∈C(K). Then

(

∑

χ∈Γ0

|m(χ)|2
)2

≤ KG
2 ‖M ‖2

∑

χ∈Γ0

|m(χ)|2

∑

χ∈Γ0

|m(χ)|2 ≤ KG
2 ‖M ‖2<∞

using the fact that χ̂= δχ so that f̂0(χ)=m(χ).

�

We finish this section with another theorem of Grothendieck.

Theorem 63. (Grothendieck) Let X be a closed linear subspace of L1. Assume that X∗ is K-isomor-
phic to a subspace of L1. Then X is KGK-isomorphic to a Hilbert space.

An example of a subspace of L1 which is isomorphic to a Hilbert space is the space of random variables
{
∑

ai gi,
∑ |ai|2<∞

}

where gi are i.i.d N(0, 1) gaussian and ‖∑ ai gi‖L1 =
∑ |ai|2

√

E |g |. Note it is a

Hilbert space with inner product 〈f , g〉 = E[fg]. (We used this in the proof of Grothendieck’s inequality,
Theorem 57)
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Proof. For the convenience of proof, we will use L1 =L1([0, 1]). Denote I:X→ L1 by the identity, noting
the adjoint I∗: L∞ → X∗. There exists T : X∗ → L1 with ‖T ‖ ≤ 1, ‖T−1‖ ≤ K by assumption. Then TI∗:
L∞→L1, so using Theorem 58 (Bounded operators from L∞→L1 are 2-summing),

π2(TI
∗)≤KG ‖TI∗‖≤KG

By Pietch Domination, we can express TI∗ as a composition of maps through a Hilbert space H :

H

րB Aց
L∞ �I∗

X∗ �T L1

with ‖B‖ ≤ 1 and ‖A‖ ≤ π2(TI
∗) ≤KG. We know that TX∗ ⊂ L1. Denote A−1(TX∗) by H0 ⊂H . Let P :

H→H0 be the orthogonal projection. The diagram becomes

H �P H0

րB ↓A

L∞ �I∗

X∗ �T TX∗ ⊆L1

and defining B̃ =PB:L∞→H0 and Ã=T−1A:H0→X∗ we have

H0
B̃ր ցÃ

L∞ �I∗

X∗

with ‖B̃ ‖≤ 1 and ‖Ã‖≤KGK. Now we “dualize”...

H0
B̃

∗

ւ տÃ
∗

L∞
∗ �I∗∗

X∗∗

Note X ⊂X∗∗ and I∗∗|
X

= I . We restrict everything to X:

H0
V ւ տU

L1 �I
X

where U = Ã
∗
∣

∣

∣

X
and V = B̃

∗∣
∣

∣

UX
. Restrictions of operators have the same operator norm, and we have

that

‖x‖= ‖Ix‖= ‖VUx‖≤ ‖Ux‖≤KGK ‖x‖

or

‖x‖≤ ‖Ux‖≤KGK ‖x‖

which shows that X is KGK isomorphic to UX ⊆H0, a Hilbert space. �

This kind of argument can go on for many semesters. Now we change to another topic.
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Lindenstrauss-Tzafriri Theorem

The last part of the course will be leading towards a theorem of Lindenstrauss and Tzafriri: Let X be a
Banach space such that any closed subspace of X has a bounded projection P onto Y (if this is the case
we say that Y is complemented). Then X is K-isomorphic to a Hilbert space for some K <∞.

This is actually a theorem about finite dimensions, though not immediately obvious. The proof involves a
clever use of Dvoretsky’s theorem. We need some preparation first.

Theorem 64. Assume that all closed subspaces of X are complemented. Then there exists λ < ∞ such
that any finite subspace of X is complemented via a projection of norm ≤λ.

The proof involves the following Lemma:

Lemma 65. Let ε > 0, X Banach space, E ⊆ X finite dimensional subspace. Then there exists a finite
codimensional subspace X0⊆X such that ‖e+ x‖≥ (1− ε)‖e‖ for e∈E, x∈X0.

The conclusion states that we can find a projection from E + X0 → E with norm bounded by
1

1− ε
. By

replacing X0 with some closed complement of X0 ∩ E in X0 (for any finite dimensional space there exists
a closed complement), we can arrange it so that E ∩X0 = {0} so that E+X0 =E ⊕X0.

Proof. Let x1,	 , xn be an ε-net in the unit sphere of E. For all i, let xi
∗ ∈X∗ be such that ‖xi

∗‖ ≤ 1 and
xi
∗(xi) = 1 (Hahn-Banach). Then we use X0 =

⋂

i=1
n ker(xi

∗). X0 has finite codimension, being the finite

intersection of codimension-1 subspaces. For ‖e‖= 1, e ∈E, there exists i such that ‖xi − e‖ ≤ ε. Take x∈
X0, so that xi

∗(x)= 0. Then

‖e+x‖≥‖xi + x‖− ‖e− xi‖≥xi
∗(xi + x)− ε= 1− ε

�

Notation: For finite dimensional subspaces E ⊆X let λ(E) be the smallest norm of a projection P :X→
E, which exists by a compactness argument (exercise: set of projections from X→ E form a compact set,
and the norm P � ‖P ‖ is continuous).

Then the conclusion of the theorem states that

sup {λ(E):E ⊆X, dimE <∞}<∞

In the proof of the theorem we will be assuming the opposite and find a contradiction. First we show the
following reduction:

Lemma 66. Assume that

sup {λ(E):E ⊆X, dimE <∞}=∞

Then for all finite codimensional X0⊆X,

sup {λ(E):E ⊆X0, dimE <∞}=∞

Proof. Suppose that for some finite codimensional X0,

sup {λ(E):E ⊆X0, dimE <∞}=M <∞
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Let k= codimX0. Take an arbitrary finite dimensional subspace E ⊆X. E0 =E ∩X0. Let P0:X→E0 be
a projection ‖P0‖≤M . Define F = {x∈E:P0x= 0}, i.e. E =E0⊕ F . Then since the codimension of X0≤
k, dim F ≤ k. Kadets-Snobar (Theorem 56) gives some projection P1:X→ F with ‖P1‖ ≤ 2 k

√
. Now look

at P = P0 + P1 −P1P0: X→E. First, P is a projection on E. For x ∈E, we can decompose x= a+ b with
a∈E0 and b∈F . Then

Px=Pa+Pb= a+ b

and

‖P ‖≤M + 2 k
√

+M 2 k
√

which shows that

sup {λ(E):E ⊆X, dimE <∞}≤M +2 k
√

+M2 k
√

contradicting the initial assumption. �

Now we have all the ingredients to prove the theorem:

Proof. (of Theorem 64)

(Adapted from Theorem 1 of Davis, Dean, Singer. Complemented Subspaces and Λ Systems in Banach
Spaces .)

Assume towards a contradiction that sup {λ(E): E ⊆ X, dim E < ∞} = ∞. The goal is to construct a
closed subspace of X which is not complemented.

First, choose E1 ⊂ X with λ(E1) ≥ 1. By Lemma 65, we can find a finite co-dimensional subspace X1 for
which the natural projection from E1⊕X1→E1 has norm bounded by 2.

Since X1 is finite co-dimensional, we apply Lemma 66 which tells us that sup {λ(E): E ⊆ X0, dim E <

∞} = ∞ also, and thus we can find a finite dimensional subspace E2 ⊂X1 for which λ(E2) ≥ 2. Using the
same argument as for E1 above, there exists a finite co-dimensional subspace X2 ⊂ X1 for which the nat-
ural projection from E1⊕E2⊕X2→E1⊕E2 has norm bounded by 2.

Continuing in this way, we have a sequence of spaces En and Xn for which λ(En)≥ n, Xn+1⊂Xn and the
natural projections of E1⊕	 ⊕En ⊕Xn onto E1⊕	 ⊕En have norm bounded by 2.

Define

F =
∑

n=1

∞
En6 {

∑

en s.t. en∈En and
∑

en converges in X
}

F is a closed subspace of X (exercise). Let Pn be the natural projection of F onto E1⊕	 ⊕En. Suppose
P is a projection of X onto F . Then PnP − Pn−1PnP is a projection of X onto En with norm bounded
by ‖Pn‖‖P ‖+ ‖Pn−1‖‖Pn‖‖P ‖≤ 6‖P ‖, so that λ(En)≤ 6‖P ‖. This contradicts λ(En)≥n for sufficiently
large n, and thus there does not exist a bounded projection from X onto F (F is not complemented).

�

Week 10 (11/9/2010)

Notation: Let dX denote the distance from X to a Hilbert space:

dX = inf {K, exists T :X→H s.t. ‖x‖≤ ‖Tx‖≤K ‖x‖}
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The Lindenstrauss-Tzafriri Theorem then says that if X is a Banach space such that for all closed linear
subspaces are complemented, then dX <∞.

John’s Theorem: If dimX =n<∞, then dX ≤ n
√

.

Last time we proved the first ingredient of the Lindenstrauss-Tzafriri theorem in Theorem 64. Here is
another ingredient we will need:

Lemma 67. Let C > 0, and X be a separable Banach space such that for all finite dimensional subspaces
E ⊂X we have that dE ≤C. Then dX ≤C.

Remark: The statement holds for non-separable as well, and the proof can be carried out the same way
replacing sequences with nets.

Proof. Let E1 ⊆ E2 ⊆ 	 be finite dimensional subspaces such that E =
⋃

i=1
∞

Ei is dense in X. For all n,

there exists a Hilbertian norm ‖ · ‖n on En such that for all n∈N and x∈En, we have

‖x‖≤ ‖x‖n ≤C ‖x‖

There exists a subsequence nk such that for all x ∈E, {‖x‖nk
}k=1
∞ converges. This is done using the usual

diagonalization argument, first for a countable dense subset, and extending to the rest of E by density,
‖x‖∞6 limk→∞ ‖x‖nk

, x ∈E. Then to show that the limiting norm is Hilbertian we show that it satisfies
the parallelogram identity

‖x+ y‖∞2 + ‖x− y‖∞2 =2‖x‖∞2 +2‖x‖∞2

�

Theorem 68. Let X is an infinite dimensional Banach space. Let E ⊆ X be a finite dimensional sub-
space. Then for all n∈N, and for all ε∈ (0, 1), there exists a norm ‖ · ‖Y on E ⊕ l2

m such that

1. There exists a linear map R:Y →X such that ‖Rx‖= ‖x‖Y for all x∈ Y

2. ‖(x, 0)‖Y = ‖x‖ for all x∈E

3. (1− ε)‖z‖≤ ‖(0, z)‖Y ≤ ‖z‖ for all z ∈ l2m.

4. (1− ε)‖(x,−z)‖Y ≤‖(x, z)‖Y ≤ (1+ ε)‖(x,−z)‖Y

The first three properties essentially is the statement of Dvoretsky’s Theorem, finding a subspace that is
1 + ε isomorphic to a Hilbert space. But we can do this in such a way that we get an additional sym-
metry.

Proof. Fix δ ∈ (0, 1), n > m, so that l2
m ⊂ l2

n. Let {xj}j=1
N be a δ-net in BE, and let {zj}j=1

M be an ε-net
in Sn−1. By Dvoretsky’s Theorem, there exists a linear S: l2

n→X such that for all z ∈ l2n,

(1− δ)‖z‖≤ ‖Sz‖≤ ‖z‖

For i≤ j ≤N , 1≤ k ≤ 1

δ
define fj,k:S

n→R by

fj,k(z)6 ‖kδSz+ xj‖
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which is 1-Lipschitz (kδ < 1 and S is 1-Lipschitz). Denote aj,k =
∫

Sn−1 fj,k dµ where µ is the normalized

Haar measure on Sn−1. Then by concentration of measure results, we have that

µ
(

z ∈Sn−1: |fj,k(z)− aj,k| ≥ δ
)

≤Ke−Cnδ2

Let ν be the Haar measure on O(n), and consider the event A⊆O(n) defined by

A=

{

U ∈O(n): |fj,k(Uzi)− aj,k| ≥ δ for some 1≤ i≤M, 1≤ j ≤N, 1≤ k≤ 1

δ

}

Then

ν(A) =
∑

i=1

M

ν

(

U ∈O(n): |fj,k(Uzi)− aj,k| ≥ δ for some j ≤N, k ≤ 1

δ

)

=
∑

i=1

M

µ

(

z ∈Sn−1 : |fj,k(z)− aj,k| ≥ δ for somej ≤N, k ≤ 1

δ

)

≤ 1

δ
MNke−cnδ2

which for n large enough is less than 1.

This means that there exists U ∈ O(n) such that if we define T 6 SU : l2
n →X , then for all i ≤M, j ≤N

and k ≤ 1

δ
we have that

|‖kδTzi + xj‖− aj,k| ≤ δ

so that |‖kδTzi + xj‖− ‖−kδTzi + xj‖|≤ 2δ.

For z ∈Sn−1, we have that using nets and the 1-Lipschitz property of fj,k,

| ‖xj + kδTz‖− ‖xj − kδTz‖|≤ 4δ

Now take ‖z‖≤ 1. Since the above holds for k≤ 1

δ
, we’ll use k for which |‖z‖− kδ | ≤ δ. Then

∣

∣

∣

∣

∥

∥

∥

∥

xj + kδT

(

z

‖z‖

)∥

∥

∥

∥

−
∥

∥

∥

∥

xj − kδT

(

z

‖z‖

)∥

∥

∥

∥

∣

∣

∣

∣

≤ 4δ

and

| ‖xj +Tz‖− ‖xj −Tz‖ |≤ 6δ

Finally using the δ-net, we have that for all x∈BE and for all z ∈Bl2
n,

| ‖x+Tz‖− ‖x−Tz‖ |≤ 8δ

Define F = Tl2
n ⊆ X. We know that for all e ∈ E, f ∈ F , that |‖e + f ‖ − ‖e − f ‖| ≤ 8δ max {‖e‖, ‖f ‖}.

(The previous statement with homogeneity). By triangle inequality, we know that

max {‖e‖, ‖f ‖}≤ ‖e+ f ‖+ ‖e− f ‖
2

thus ‖e+ f ‖− ‖e− f ‖≤ 4δ(‖e+ f ‖+ ‖e− f ‖) and

‖e+ f ‖≤ 1 +4δ

1− 4δ
‖e− f ‖
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for all e∈E, f ∈F . Note E+F ⊆X .

Now for Y = E ⊕ l2
n, define ‖(x, z)‖Y = ‖x + Tz‖. Triangle inequality and homogeneity follow easily. To

show that if the norm is 0 that both x, z are 0, we note that

‖x+Tz‖ =
1

2
(‖x+Tz‖+ ‖x+Tz‖)

≥ 1− 4δ

2(1+ 4δ)
(‖x+Tz‖+ ‖x−Tz‖)

≥ 1− 4δ

1+ 4δ
max (‖x‖, ‖Tz‖)

so that if ‖x+Tz‖= 0, both ‖x‖ and ‖Tz‖=0.

Now we set R: Y → X with R(x, z) = x + Tz and we see that all the properties are satisfied. The main
headache was the last property, which we used a concentration of measure argument to obtain. �

Theorem 69. Let X be an infinite dimensional Banach space, and λ > 1, such that for all finite dimen-
sional subspaces E ⊆ X, there exists a projection P : X → E (onto) with ‖P ‖ ≤ λ. Then for all finite
dimensional subspaces F ⊆X, dF ≤ 4λ2.

Note that starting from the statement of Lindenstrauss-Tzafriri, knowing that all closed subspaces are
complemented, Theorem 64 shows us that all finite dimensional subspaces are complemented with a pro-
jection with a norm ≤ λ for some λ, satisfying the conditions of this theorem. The conclusion of this the-
orem combined with Lemma 67 proves the theorem.

Proof. Fix E ⊆ X and dim E = n. By previous theorem (68) there exists a norm ‖ · ‖Y on E ⊕ l2
n such

that

1. (E ⊕ l2
n, ‖ · ‖Y ) is isometric to a subspace of X.

2. ‖(x, 0)‖Y = ‖x‖

3. (1− ε)‖z‖≤ ‖(0, z)‖≤ ‖z‖

4. (1− ε)‖(x,−z)‖Y ≤‖(x, z)‖Y ≤ (1+ ε)‖(x,−z)‖Y

Note ‖(x, z)‖Y ≥ (1− 2ε)max {‖x‖, ‖z‖} since

‖(x, z)‖Y ≥ 1− ε

2
(‖(x, z)‖Y + ‖(x,−z)‖Y )

≥ (1− ε)‖(x, 0)‖Y

= (1− ε)‖x‖

and

‖(x, z)‖Y ≥ 1− ε

2
(‖(x, z)‖Y + ‖(−x, z)‖Y )

≥ (1− ε)‖(0, z)‖Y

≥ (1− ε)2‖z‖

We will be using this often below.

Define θ= dE

√
. There exists a linear S:E→ l2

n with
1

θ
‖x‖≤ ‖Sx‖≤ θ‖x‖. Consider the subspace

Z = {(x, Sx):x∈E}⊆Y
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There exists a projection P : Y → Z (onto) with ‖P ‖ ≤ λ by assumption. Define T : E→ l2
n by the second

coordinate of the projection, i.e. if P (x, z) = (a, Sa), then Tx= Sa. In other words, if we define Q: Y → l2
n

by Q(x, z)6 z, then T =QP . Note P (x, 0)= (S−1Tx, Tx).

We know that

‖P (x, 0)‖≤λ ‖(x, 0)‖=λ ‖x‖

and

‖P (x, 0)‖= ‖(S−1Tx, Tx)‖≥ (1− 2ε)‖Tx‖

This implies that ‖T ‖≤ λ

1− 2ε
.

Let V :E→ l2
2n = l2

n⊕ l2
n defined by Vx= (λSx, θTx). Then

‖Vx‖2 = λ2‖Sx‖2 + θ2‖Tx‖2

≤ λ2 θ2 ‖x‖2 +
θ2λ2

(1− 2ε)2
‖x‖2

≤ λ2θ2(1 + 10ε)2‖x‖2

and thus ‖V ‖≤ θλ(1 + 10ε).

To bound the norm of the inverse, note

P (0, Sx) = P (x, Sx)−P (x, 0)

= (x, Sx)− (S−1Tx, Tx)

= (x−S−1Tx, Sx−Tx)

so that

‖P (0, Sx)‖≥ (1− 2ε)‖x−S−1Tx‖

‖P (0, Sx)‖≤λ ‖(0, Sx)‖≤λ ‖Sx‖

which shows that

‖x−S−1Tx‖≤ λ

1− 2ε
‖Sx‖

Then

‖x‖ ≤ ‖S−1Tx‖+ ‖x−S−1Tx‖
≤ θ ‖Tx‖+

λ

1− 2ε
‖Sx‖

≤ 2
√

1− 2ε

(

θ2‖Tx‖2 +
λ2

(1− 2ε)2
‖Sx‖2

)1/2

=
2

√

1− 2ε
‖Vx‖

which shows that ‖V −1‖≤ 2
√

1− 2ε
, and

θ2 = dE ≤‖V ‖‖V −1‖≤ (1 + 10ε) 2
√

θλ
2

√

1− 2ε
≤ (1 + 100ε)2θλ

and since θ= dE

√
, this shows that dE ≤ 4λ2. (ε arbitrary)

�
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Week 11 (11/16/2010)

Nonlinear Dvoretsky

Let (X, dX), (Y , dY ) be metric spaces. We use the notation X�D Y to say that there exists f :X→Y and
λ> 0 such that

λdX(x, y)≤ dY (f(x), f(y))≤DλdX(x, y)

If Y is a Banach space, we can assume that λ=1 by replacing f by λf .

Then a funny way to state Dvorestky’s Theorem: For all k ∈N, for all D> 1, there exists n=n(k,D) such

that any n dimensional Banach space X has a linear subspace Y ⊆ X with dim Y ≥ k and Y�D l2. Our
version of Dvoretsky’s Theorem is the same but the notation � was used only for linear maps. The
Radamacher differentiation theorem can be used to show that these two are equivalent.

Theorem 70. (Nonlinear Dvoretsky) For all ε ∈ (0, 1), any n-point metric space (X, dX) has Y ⊆X

such that

1. |Y | ≥n1−ε

2. Y �O(1/ε)
l2

This theorem is sharp, meaning that for all n, there exists an n-point metric space Xn such that for all
Y ⊆Xn, if |Y | ≥n1−ε then it has distortion ≥C/ε in any embedding into l2.

Bourgain’s Embedding Theorem: |X |=n, X �100 logn
l2. This is also sharp.

Notation: (X, d) metric space, then B(x, r) = {y ∈X : d(x, y) ≤ r}. Let A ⊆X , diam A= supx,y∈A d(x,
y). If P is a partition of X , then

1. For x∈X, let P (x) denote the unique set in P to which x belongs.

2. P is called ∆-bounded if diamP (x)≤D for all x∈X

Definitions: A sequence of partitions of X {Pk}k=0
∞ is called a partition tree if

1. P0 = {x}

2. Pk is a 8−k diam(X)-bounded

3. Pk+1 is a refinement of Pk, i.e. Pk+1(x)⊆Pk(x)

A distribution over partition trees {Pk}k=0
∞ is called completely β-padded with exponent γ if for all

x∈X ,

Pr
[

∀k, B(x, β8−k)⊆P (x)]≥ 1

nγ

where n= |X |.

Lemma 71. If X admits a random partition tree completely β-padded with exponent γ then there exists
Y ⊆X such that

1. |Y | ≥n1−γ
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2. Y�8/β
l2

Proof. Let {Pk}k=0
∞ be the random partition tree. Define a random subset:

Y =
{

x∈X, ∀kB(x, β8−k)⊆Pk(x)
}

Then

E |Y |=E

[

∑

x∈X

1{x∈Y }

]

=
∑

x∈X

Pr(x∈Y )≥
∑

x∈X

1

nγ =n1−γ

Thus there exists Y with |Y | ≥n1−γ. We will show that by construction, Y is isometric to l2.

For all x, y distinct, let K(x, y) be the largest k ∈N such that Pk(x) =Pk(y). Define ρ(x, y)6 8−K(x,y).

Observation: ρ is a (random) ultrametric on X (i.e. ρ(x, y) ≤ max {ρ(x, z), ρ(y, z)}). We can illustrate
this with a diagram: Look at the moment when x, y stop being in the same component. Below the dotted
line represents the separation between Pk+1(x) and Pk+1(y), and the region around is Pk(x)=Pk(y).

x
y

Suppose z � Pk(x). Then ρ(x, z) = ρ(y, z) (whenever z separates from x is exactly when z separates from
y), and furthermore K(x, y) ≥K(x, z) and thus ρ(x, y) ≤ ρ(x, z). Suppose z ∈ Pk+1(x). Then K(x, y) =
K(z, y), and K(x, z)≥K(y, z) so that max {ρ(x, z), ρ(y, z)}= ρ(y, z) = ρ(x, y). Swapping x, y shows the
result for when z ∈Pk+1(y). Finally, if z ∈Pk(x) but not in Pk+1(x) or Pk+1(y), then K(x, z) =K(y, z) =
k+ 1, and K(x, y) = k, so that ρ(x, y)= k ≤ k+ 1 =max {ρ(x, z)= ρ(y, z)}. This shows the observation.

Suppose x, y ∈Y .

We note for k≤K(x, y), x, y ∈Pk(x)=Pk(y) so that d(x, y)≤ diam(Pk(x))≤ 8−k and thus

d(x, y)≤ 8−K(x,y) = ρ(x, y)

Since PK+1(x)� PK+1(y), and x, y ∈Y , B(x, β8−K−1)∩B(y, β8−K−1) = ∅ so that

d(x, y)≥ β8−K(x,y)−1 =
β

8
ρ(x, y)

Thus, for all x, y ∈ Y , we have

β

8
ρ(x, y)≤ d(x, y)≤ ρ(x, y)

We have shown that (Y , dX)�8/β
(Y , ρ), where ρ is an ultrametric. It turns out that every finite ultra-

metric is isometric to a subset of a Hilbert space, and this shows the result. We will prove this in the fol-
lowing lemma. �
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Lemma 72. Every finite ultrametric is isometric to a subset of a Hilbert space.

Proof. (By induction on n = |X |). We will prove that there exists a function f : X → H Hilbert space
such that

1. ρ(x, y)= ‖f(x)− f(y)‖ for all x, y ∈X

2. ‖f(x)‖=
diam(X)

2
√ for all x∈X

We say that x ∼ y if ρ(x, y) < diam(X). This is an equivalence relation because ρ is an ultrametric:
Clearly x∼ x and x∼ y� y∼ x. Suppose x∼ y and y∼ z. Then since ρ(x, z)≤max {ρ(x, y), ρ(y, z)} ≤
diam(X), we have x∼ z, so we have transitivity of ∼ .

Let A1	 , Ak be the equivalence classes. |Ai|< |X |=n. By induction, there exists fi:Ai→Hi such that

1. ρ(x, y)= ‖fi(x)− fi(y)‖ for all x, y ∈Ai

2. ‖fi(x)‖=
diam(Ai)

2
√ for all x∈X.

Define f :X→
(

⊕

i=1
k

Hi

)

⊕ l2
k. For x∈X, we have that x∈Ai for some i, and we set

f(x) =
diam(X)2− diam(Ai)2

2

√

ei + fi(x)

so that

‖f(x)‖=
diam(X)2−diam(Ai)2

2
+

diam(Ai)2

2

√

=
diam(X)

2

If x, y ∈Ai, then

‖f(x)− f(y)‖= ‖fi(x)− fi(y)‖= ρ(x, y)

If x∈Ai and y ∈Aj for i� j, we have

‖f(x)− f(y)‖= ‖f(x)‖2 + ‖f(y)‖2
√

=
diam(Xi)2

2
+

diam(Xi)2

2

√

= diam(X)= ρ(x, y)

�

Now we just need a way to generate a suitable distribution over random partition trees.

Lemma 73. Let X be an n-point metric space, ∆ > 0. Then there exists a distribution over random ∆-

bounded partitions P such that for all 0< t<
∆

8
and for all x∈X

Pr(B(x, t)⊆P (x))≥
(

|B(x,∆/8)|
|B(x,∆)|

)8t/∆

Proof. Let X = {x1, 	 , xn}. We will be constructing the partition randomly out of metric balls of diam-
eter R, which will also be randomly chosen. The method we will use will depend highly on the order that
we process the elements of X . Thus, take a random ordering, i.e. take π ∈Sn to be a random permutation
chosen uniformly amongst the n! permutations. Also, let R be uniformly distributed over [∆/4,∆/2].
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Take C1 = B(Xπ(1), R), and inductively given C1, 	 , Cj−1, take B(Xπ(j))\
⋃

i=1
j−1

Ci. Sample partition of
six points:

x1

x2

x3

x4

x5

x6

(Should imagine this for more points, but note x1, x4 are in the same partition. Also note that this is
highly dependent on the order of the points; for instance, it would be an unlucky situation of all points
were within R of the first point xπ(1) that we choose)

The rest is an exercise in probability.

Claim: For all R∈ [∆/4,∆/2], and for all x∈X, and t <∆/8,

Pr[B(x, t)⊆P (x):R= r]≥ |B(x, r− t)|
|B(x, r+ t)|

Note the diagram below:

x

doesn’t matter

good point

bad point

r− t

r+ t

t

The “good points”, i.e. points inside B(x, r − t), are points y such that B(x, t) ⊂ B(y, r) (triangle
inequality). On the other hand, “bad points”, i.e. points inside B(x, r + t) but not in B(x, r − t), are
points z such that B(x, t) ∩B(z, r) � ∅. If in the random ordering a bad point is processed before a good
point, then part of B(x, t) will be in B(z, r), so that B(x, t) will not be contained in P (x) of the resulting
partition. Points outside B(x, r+ t) do not matter since for such w � B(x, r+ t), B(w, r)∩B(x, t) = ∅.

Thus, the probability that for a particular x, that B(x, t) ⊆ P (x) is the probability that the first point in
the random order that lies in B(x, r + t) also happens to be in B(x, r − t), and this occurs with proba-

bility
|B(x, r − t)|
|B(x, r + t)| . This shows the claim.
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We are conditioning on R= r, so we can then compute the full probability:

Pr(B(x, t)⊆P (x)) =
1

∆/4

∫

∆/4

∆/2

Pr(B(x, t)⊆P (x)|R= r)dr

(By the claim) ≥ 1

∆/4

∫

∆/4

∆/2 |B(x, r− t)|
|B(x, r+ t)| dr

Let h(r)= log |B(x, r)|. Then

=
1

∆/4

∫

∆/4

∆/2

eh(r−t)+h(r+t) dr

(Jensen) ≥ exp

{

1

∆/4

∫

∆/4

∆/2

h(r− t) +h(r+ t)dr

}

= exp

{

1

∆/4

[

∫

∆/4−t

∆/2−t

h(r)−
∫

∆/4+t

∆/2+t

h(r)dr

]}

monotonicity of h(r) ≥ exp

{

2t

∆/4
[h(∆/4− t)−h(∆/2+ t)]

}

(t<∆/8) ≥ exp

{

8t

∆
(h(∆/8)− h(∆))

}

=

(

|B(x,∆/8)|
|B(x,∆)|

)8t/∆

�

Now we can complete the proof of the nonlinear Dvoretsky theorem:

Proof. (of Theorem 70) Without loss of generality, diam(X) = 1. P0 = {X}. For all k ≥ 1, let Pk be a

random partition applying the previous lemma with ∆ = 8−k, with {Pk} independent of one another. This
is not yet a partition tree because the refinement property is not satisfied. Let Qk be the common refine-
ment of P1	 , Pk, so that Qk+1(x)=Qk(x)∩Pk+1(x).

Note by the common refinment property,

{∀k,B(x, β8−k)⊆Pk(x)}⊆ {∀k,B(x, β8−k)⊆Qk(x)}

This is because B(x, β8−k)⊆Pl(x) for all l≤ k.

Now we have

Pr(∀kB(x, β8−k)⊆Qk(x)) ≥ Pr(∀kB(x, β8−k)⊆Pk(x))

=
∏

k=0

∞
Pr(B(x, β8−k)⊆Pk(x))

≥
∏

k=0

∞ (

|B(x, 8−k−1)|
|B(x, 8−k)|

)8β

(telescoping) =
1

n8β

Above we used the lemma with t = β8−k ≤ ∆

8
=

8−k

8
, i.e. β ≤ 1

8
. Thus, for all β ≤ 1

8
, X admits a random

partition tree β-padded with exponent 8β, and thus by Lemma 71 there exists Y ⊆ X with |Y | ≥ n1−8β

and Y�8/β
l2 �
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Sharpness of Nonlinear Dvoretsky

For the sharpness, recall we are finding an n-point metric space for which large subsets |Y | ≥ n1−ε will
have distortion ≥ C/ε in any embedding into l2. We will be holding ε fixed, though a stronger result
allows us to prove the result with ε that depends on n. The proof will be by a counting argument to show
the existence of a random n-point metric space.

Some terminology: G= (V , E) is an n-vertex graph. The girth of G is the length of the shortest cycle in
G. For A ⊆ V , let EA be the set of edges involving just vertices A, denote eA6 |EA| and the density of
A is defined to be

eA
(

|A|
2

) .

Let X be a Banach space, D > 1. Denote RX(D, n) be the largest integer k such that any n-point metric

space Xn has Y ⊆Xn with |Y | ≥ k, Y�D X. We will look at Rl2(D,n).

Lemma 74. Assume that there exists an n-vertex graph G= (V , E) of girth g such that every subset of V
of size ≥ s has density ≥ q. Then for all h-dimensional Banach spaces X, for all 1≤D≤ g− 1,

RX(D,n)≤max

{

s,
2

q

(

h log2

(

14Dg

g−D− 1

)

+ log2

(

n

s

)

)}

Lemma 75. For all integers g ≥ 4, there exists an arbitrarily large n-vertex graph with girth ≥ g and

every subset ⊆V of size n
1− 1

8g has density ≥n
−1+

1

2g.

These two lemmas imply sharpness (i.e. Rl2(C/ε, n) . n1−ε). Let D > 1 and k = Rl2(D, n). By Johnson-
Lindenstrauss, every n-point metric space has a subset of size k that embeds with distortion ≤ 2D into l2

h

where h ≤C log k. Take g = ⌈D+ 2⌉, then the two lemmas apply with s= n
1− 1

8g and q = n
−1+

1

2g and h=
C log k.

Then noting g=O(d),

k ≤Cmax

{

n
1− c

D, n
1− c

D

(

log k logD+
logn

D

)}

so that k . Cn
1− c

D log n log D. Plugging in D = C/ε we have that Rl2(C/ε, n) . n1−ε (other terms are
lower order terms)

Proof. (Lemma 74) For all H ⊆E define a metric ρH on V

ρ(u, v)=min {g − 1, dH(u, v)}

where dH is the shortest path metric in (V , H). Let k = RX(D, n) and we may assume that k ≥ s, other-

wise the lemma holds already. For all H ⊆ E, there exists AH ⊆ V , |AH | = k and (AH , ρH)�D X by defi-

nition of RX(D, n) = k. There are 2|E | such H and only
(

n

k

)

possible AH, so by pigeonhole, there exists a

family H of subsets of E and a k-point subset A⊆V such that

∀H ∈H, AH =A, |H|≥ 2|E |
(

n

k

)

Let H1, H2 ∈H. Say that H1 ∼H2 if H1 ∩ EA =H2 ∩ EA. The number of equivalent H1 is bounded above

by 2|E |−eA, which means that by pigeonhole there exists at least
|H|

2|E|−eA
≥ 2eA

(

n

k

) inequivalent elements in H.
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Summarizing above: There exists A⊆V with |A|= k and H1,	 , Hm ⊆E such that

1. M ≥ 2eA

(

n

k

)

2. Hi∩EA� Hj ∩EA for all i� j

3. (A, ρHi
)�D X

If H ⊆E is one of the Hi, there exists fH:A→X such that

1

D
ρH(u, v)≤‖fH(u)− fH(v)‖≤ ρH(u, v) for all u, v ∈A

Since ρH takes values in {0,	 , g − 1}, by translation without loss of generality fH(A)⊆B(0, g). Let N be
a δ-net in B(0, g). For all u ∈A, define φH(u) ∈ N to be some element of X at distance ≤ δ from fH(u).
So φH:A→N .

Key observation: If i� j, then φHi
� φHj

.

To show this, if i � j, since Hi and Hj are not equivalent, there exists u, v ∈ A with u � v such that the edge
{u, v} is in Hi but not Hj. Then we note ρHi

(u, v)= 1 (since {u, v} is an edge in Hi)

ρHj
(u, v)=min {g − 1, dHj

(u, v)}= g − 1

noting dHj
(u, v)≥ g − 1 or else a shorter cycle exists ({u, v} ∈Hi and the path from u→ v in Hj), contradicting

the girth of G being g.

Now assume towards a contradiction that φHi
(u)= φHj

(u) and φHi
(v) = φHj

(v).

Using the fH above, we have that

g − 1

D
=

ρHj(u, v)

D
≤ ‖fHj

(u)− fHj
(v)‖

≤ 2δ + ‖φHj
(u)− φHj

(v)‖
= 2δ + ‖φHi

(u)− φHi
(v)‖

≤ 4δ + ‖fHi
(u)− fHi

(v)‖
≤ 4δ + ρHi

(u, v)

= 4δ + 1

Thus
g − 1

D
≤ 4δ+1, which is a contradiction if δ=

(

g − 1

D
− 1
)

1

5
.

Note that the number of mappings φ: A→ N is |N |k ≤
(

2g

δ

)kh

(bound on size of δ-net of B(0, g) con-

tained in a h-dimensional space), and so

2
q
(

k

2

)

(

n

k

) ≤ 2eA

(

n

k

)≤M ≤ |N |k ≤
(

2g

δ

)kh

Above we used the desnity
eA
(

k

2

) ≥ q where A is k-dimensional, with k ≥ s by assumption. Now using
(

n

k

)≤
( en

k

)k
and plugging in δ=

(

g − 1

D
− 1
)

1

5
, we have (using k≥ s when k is in the denominator)

2qk(k+1)/2≤
(

10gD

(g − 1−D)

)kh(
en

s

)k
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Taking log of both sides,

q
k2

2
≤ kh log2

(

10Dg

g−D− 1

)

+ k log2

(

en

s

)

or

k ≤ 2

q

(

h log2

(

10Dg

g−D− 1

)

+ log2

(

en

s

)

)

�

To finish everything, we show the proof of the second Lemma:

Proof. (of Lemma 75) To finish. �

Week 12 (11/30/2010)

Embeddings in l∞ and l2 (Alon, Milman, Talagrand)

Student Presentation: Lukas Koehler, Evan Chou

We look at a result by Alon, Milman, with an easier proof by Talagrand.

Consider x1, 	 , xn normalized vectors in a Banach space X , let εi be i.i.d random variables distributed
uniformly on {± 1}, and set

Mn =Eεi=±1

[∥

∥

∥

∥

∥

∑

i=1

n

εi xi

∥

∥

∥

∥

∥

]

=E

[

sup
x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

εi x
∗(xi)

∣

∣

∣

∣

∣

]

ωn = sup

{

∑

i=1

n

|x∗(xi)|, x∗∈BX∗

}

Note immediately that Mn ≤ωn (take absolute value inside the sum).

We can also obtain a reverse inequality: For any x∗∈BX∗,

Mn ≥E

[∣

∣

∣

∣

∣

∑

i=1

n

εix
∗(xi)

∣

∣

∣

∣

∣

]

Kintchine’s inequality:

Ap‖a‖2≤
(

Eε∈{±1}

∣

∣

∣

∣

∣

∑

i=1

n

εiai

∣

∣

∣

∣

∣

p)1/p

≤Bp‖a‖2

For the lower bound with p=1 we can use A1 =
1

2
√ . Thus

2
√

Mn ≥
(

∑

i=1

n

|x∗(xi)|2
)1/2
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and by Cauchy Schwarz,

ωn ≤ 2n
√

Mn

Then we have the following result:

Theorem 76. There exists a subset A of {1, 	 , n} of cardinality k at least
n

64ωn
such that (xi)i∈A is

8Mn isomorphic to the natural basis of l∞
k , i.e. there exist two constants C1, C2 such that

C1‖a‖∞≤
∥

∥

∥

∥

∥

∑

i∈A

aixi

∥

∥

∥

∥

∥

≤C2‖a‖∞ for all a∈ l∞(A)

with
C2

C1
=8Mn.

The proof by Alon-Milman has k ≥ n
√

27 Mn
and 16Mn isomorphic. Note that we have a smaller isomor-

phism constant here and
n

64ωn
≥ n

64 2n
√

Mn

=
n

√

26.5Mn
, and the proof will be simpler.

The Upper Bound:

We will be generating random subsets that achieve an upper bound. Note

∥

∥

∥

∥

∥

∑

i∈A

aixi

∥

∥

∥

∥

∥

= sup
x∗∈BX∗

∑

i∈A

aix
∗(xi)≤‖a‖∞ sup

x∗∈BX∗

∑

i∈A

|x∗(xi)|

If we use A = {1, 	 , n}, then the bound becomes ωn ‖a‖∞. The main point is that we can find a subset
which reduces the bound to 4Mn ‖a‖∞.

To generate subsets, we will use indicators δi which are i.i.d random variables uniform on {0, 1}.

Proposition 77. Consider δ = Mn/ωn, and independent r.v. δi such that P (δi = 1) = δ and P (δi = 0) =
1− δ. Then

E sup
x∗∈BX∗

∑

i=1

n

δi|x∗(xi)| ≤ 3Mn

There are two main ingredients: Note Mn has no absolute value sign with x∗(xi), we first look to put an
absolute value there, where it turns out we only lose a factor of 2:

Lemma 78.

E sup
x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

εi |x∗(xi)|
∣

∣

∣

∣

∣

≤ 2E sup
x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

εix
∗(xi)

∣

∣

∣

∣

∣

= 2Mn

The second ingredient is that if we start removing indices, we still have the bound:

Lemma 79. If we remove the j-th index, then

E sup
x∗∈BX∗

∣

∣

∣

∣

∣

∑

i� j

εi |x∗(xi)|
∣

∣

∣

∣

∣

≤ 2M̃n
(j)≤ 2Mn
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where M̃n
(j) =E supx∗∈BX∗

∣

∣

∣

∑

i� j
εi |x∗(xi)|

∣

∣

∣
. (The first inequality is just Lemma 3)

For the first Lemma, we note that we can replace BX∗ by an ε-net N ε, only affecting the inequality by an
addition of ε, which is arbitrarily small (usual approximation argument). Thus we may assume that the
supremum is over a finite set (so that the supremum is achieved)

Secondly, we note x∗(xi)i=1
n is just a finite sequence, so the result reduces to proving:

Lemma 80. (Talagrand) Let T be a finite subset of Rn, and write t = (t1, 	 , tn) ∈ T. Let εk be i.i.d
unif{± 1}. Then

E

[

sup
t∈T

∣

∣

∣

∣

∣

∑

k=1

n

εk |tk|
∣

∣

∣

∣

∣

]

≤ 2E

[

sup
t∈T

∣

∣

∣

∣

∣

∑

k=1

n

εk tk

∣

∣

∣

∣

∣

]

(T = {|x∗(xi)| i=1
n , x∗∈N ε)

Proof. We will show that

E



 sup
t∈T

(

∑

k=1

n

εk |tk|
)+


≤E



 sup
t∈T

(

∑

k=1

n

εk tk

)+




where x+ =max {0, x}, and the result follows from noting that since |x|= x+ +x− where x−=min {0, x},

sup
t∈T

∣

∣

∣

∣

∣

∑

k=1

n

εk |tk|
∣

∣

∣

∣

∣

≤ sup
t∈T

(

∑

k=1

n

εk |tk|
)+

+ sup
t∈T

(

∑

k=1

n

εk |tk|
)−

and noting that supt∈T (
∑

εk |tk|)− has the same distribution as supt∈T (
∑

εk |tk|)+ (flip all signs), we
have that

E

[

sup
t∈T

∣

∣

∣

∣

∣

∑

k=1

n

εk |tk|
∣

∣

∣

∣

∣

]

≤ 2E



sup
t∈T

(

∑

k=1

n

εk |tk|
)+


≤ 2E



sup
t∈T

(

∑

k=1

n

εk tk

)+


≤ 2E

[

sup
t∈T

∣

∣

∣

∣

∣

∑

k=1

n

εk tk

∣

∣

∣

∣

∣

]

We will show the result by iteration, that replacing t1 by |t1| decreases the expectation. If we condition on

ε2,	 , εn, then we can group
(

t1,
∑

k=2
N

εktk

)

∈ T , and we are reduced to showing that

E

[

sup
t∈T

(ε1|t1|+ t2)
+
]

≤E

[

sup
t∈T

(ε1t1 + t2)
+
]

or

1

2
sup

t

(|t1|+ t2)
+ +

1

2
sup

t

(−|t1|+ t2)
+≤ 1

2
sup

t

(t1 + t2)
+ +

1

2
sup

t

(−t1 + t2)
+

Let r maximize |t1|+ t2 (ε1 = 1), and for ε1 =−1, let s maximize −|s1|+ s2 (ε1 =−1), so that the left hand
side becomes

1

2
(|r1|+ r2)

+ +
1

2
(−|s1|+ s2)

+
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Now we look at different cases:

• r1> 0, s1> 0

1

2
(|r1|+ r2)

+ +
1

2
(−|s1|+ s2)

+ =
1

2
(r1 + r2)

+ +
1

2
(−s1 + s2)

+

≤ 1

2
sup

t

(t1 + t2)
+ +

1

2
sup

t

(−t1 + t2)
+

• r1< 0, s1< 0. Here r and s swap roles.

1

2
(|r1|+ r2)

+ +
1

2
(−|s1|+ s2)

+ =
1

2
(−r1 + r2)

+ +
1

2
(s1 + s2)

+

≤ 1

2
sup

t

(−t1 + t2)
+ +

1

2
sup

t

(t1 + t2)
+

• r1< 0, s1> 0 . We get improvement by flipping the sign associated with the negative number r1.

1

2
(|r1|+ r2)+ +

1

2
(−|s1|+ s2)+ =

1

2
(−r1 + r2)+ +

1

2
(−s1 + s2)+

≤ 1

2
(r1 + r2)

+ +
1

2
(−s1 + s2)

+

≤ 1

2
sup

t

(t1 + t2)
+ +

1

2
sup

t

(−t1 + t2)
+

• r1> 0, s1< 0. Again r, s swap roles:

1

2
(|r1|+ r2)+ +

1

2
(−|s1|+ s2)+ =

1

2
(r1 + r2)+ +

1

2
(s1 + s2)+

≤ 1

2
(r1 + r2)

+ +
1

2
(−s1 + s2)

+

≤ 1

2
sup

t

(t1 + t2)+ +
1

2
sup

t

(−t1 + t2)+

�

For the second ingredient (This is actually a special case of the contraction principle (Lemma 13):

Proof. (of second Lemma) Without loss of generality l= 1. Then we use triangle inequality:

M̃n =
1

2n−1

∑

ε2,	 ,εn

∥

∥

∥

∥

∥

∑

i=2

n

εixi

∥

∥

∥

∥

∥

≤ 1

2n−1

∑

ε2,	 ,εn

1

2

∥

∥

∥

∥

∥

ε1x1 +
∑

i=2

n

εixi

∥

∥

∥

∥

∥

+
1

2

∥

∥

∥

∥

∥

−ε1x1 +
∑

i=2

n

εixi

∥

∥

∥

∥

∥

= Mn

�

Continuing on,

Proof. (of Proposition)
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The main idea is to use triangle inequality:

∑

i=1

n

δi|x∗(xi)| ≤ δ
∑

i=1

n

|x∗(xi)|+
∣

∣

∣

∣

∣

∑

i=1

n

(δi − δ)|x∗(xi)|
∣

∣

∣

∣

∣

≤ δωn +

∣

∣

∣

∣

∣

∑

i=1

n

(δi − δ)|x∗(xi)|
∣

∣

∣

∣

∣

Take supremum over x∗ and then expectation over δi and we have

Eδi
sup

x∗∈BX∗

∑

i=1

n

δi|x∗(xi)| ≤ δωn +Eδi
sup

x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

(δi − δ)|x∗(xi)|
∣

∣

∣

∣

∣

Note δ =
Mn

ωn
so δωn = Mn, and we just need to bound the second term. The approach is to introduce

another set of indicators δi
′ distributed the same as δi but are chosen so that εi, δi, δi

′ are mutually inde-
pendent.

Then note

Eδi
sup

x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

(δi − δ)|x∗(xi)|
∣

∣

∣

∣

∣

= Eδi
sup

x∗∈BX∗

∣

∣

∣

∣

∣

Eδi
′

∑

i=1

n

(δi − δi
′)|x∗(xi)|

∣

∣

∣

∣

∣

(Jensen) ≤ Eδi,δi
′ sup
x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

(δi − δi
′)|x∗(xi)|

∣

∣

∣

∣

∣

where we note that the mapping δi
′� supx∗∈BX∗

∣

∣

∑

i=1
n

(δi − δi
′)|x∗(xi)|

∣

∣ is convex in δi
′ (follows from con-

vexity of | · | and the subadditivity of supremums:

sup
x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

(δi −λδi
′− (1−λ)δi

′′) |x∗(xi)|
∣

∣

∣

∣

∣

= sup
x∗∈BX∗

∣

∣

∣

∣

∣

λ
∑

i=1

n

(δi − δi
′)|x∗(xi)|+(1−λ)

∑

i=1

n

(δi − δi
′)|x∗(xi)|

∣

∣

∣

∣

∣

≤ λ sup
x∗∈BX∗

|	 |+ (1−λ) sup
x∗∈BX∗

|	 |

Since εi(δi − δi
′) =

(d)
(δi − δi

′), we have that

Eδi,δi
′ sup
x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

(δi − δi
′)|x∗(xi)|

∣

∣

∣

∣

∣

=Eεi,δi,δi
′ sup
x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

εi(δi − δi
′)|x∗(xi)|

∣

∣

∣

∣

∣

Now note that conditioning on δi, δi
′, since (δi − δi

′) ∈ {0, 1, −1}, we have that by our second ingredient
above (iterate it for as many xi that become zero from δi − δi

′, and note that the εi below makes it so that
the sign distribution is still uniform on {± 1} for nonzero δi − δi

′),

Eεi
sup

x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

εi(δi − δi
′)|x∗(xi)|

∣

∣

∣

∣

∣

≤ 2Mn

and thus averaging over δi, δi
′ gives

Eεi,δi,δi
′ sup
x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

εi(δi − δi
′)|x∗(xi)|

∣

∣

∣

∣

∣

≤ 2Mn
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Combining all the results, we have that

Eδi
sup

x∗∈BX∗

∣

∣

∣

∣

∣

∑

i=1

n

(δi − δ)|x∗(xi)|
∣

∣

∣

∣

∣

≤ 2Mn

so that

Eδi
sup

x∗∈BX∗

∑

i=1

n

δi|x∗(xi)| ≤ δωn + 2Mn = 3Mn

�

Corollary 81. If nMn > 16ωn (i.e. nδ > 16), we can find a subset B of {1, 	 , n} such that |B | ≥ nMn

2ωn

and

∑

i∈B

|x∗(xi)| ≤ 4Mn for all x∗∈BX∗

Proof. We know there exists a choice of δi ∈ {0, 1} which gives the upper bound, but we want one with
as many 1’s as possible. We will look at bounds for the probability that the upper bound holds as well as
bounds for the probability that the cardinality exceeds a certain value, and we will look for a set where
both happen simultaneously.

Markov’s inequality with the previous Proposition shows

Prδ

{

sup
x∗∈BX∗

∑

i=1

n

δi|x∗(xi)| ≥ 4Mn

}

≤ 3Mn

4Mn
=

3

4

and thus

Prδ

{

sup
x∗∈BX∗

∑

i=1

n

δi|x∗(xi)| ≤ 4Mn

}

≥ 1

4

Note the number of nonzero δ is precisely
∑

δi. Note that E(
∑

δi)=nδ, and

E

(

∣

∣

∣

∑

δi −nδ
∣

∣

∣

2
)

=Var(
∑

δi)=
∑

Var(δi)=nδ(1− δ)≤nδ

(independence of δi)

Chebyshev’s inequality tells us that

Prδ

{

∣

∣

∣

∑

δi −nδ
∣

∣

∣
≥ nδ

2

}

≤ nδ

(nδ/2)2
=

4

nδ

and in particular,

Prδ

{

∑

δi>
nδ

2

}

≥Prδ

{

∣

∣

∣

∑

δi −nδ
∣

∣

∣
≤ nδ

2

}

≥ 1− 4

nδ

If nδ > 16, we have that the probabilities of the two events sum to > 1 and thus there must be some

overlap, i.e. a choice of δi for which
∑

δi>
nδ

2
and

∑

i=1
n

δi |x∗(xi)| ≤ 4Mn for all x∗∈BX∗. We take B to

be the index set {i: δi =1}, and |B | ≥ nδ

2
=

nMn

2ωn

�
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The Lower Bound

Now we look for a further subset that gives a lower bound in terms of the upper bound we obtained:

Proposition 82. Suppose sup
{
∑

i=1
m |x∗(xi)| , x∗ ∈ BX∗

}

≤ Z. There is a subset A of {1, 	 , m} such
that |A| ≥ m

8Z
and

∥

∥

∥

∥

∥

∑

i∈A

aixi

∥

∥

∥

∥

∥

≥ 1

2
sup
i∈A

|ai| for all (ai)i∈A

Proof. For each i consider a vector xi
∗ in BX∗ such that xi

∗(xi)= 1.

First, suppose A is an arbitrary subset, and let (ai)i∈A be real. We note that for the index l where |al| =
supi∈A |ai|, we have

∥

∥

∥

∥

∥

∑

i∈A

aixi

∥

∥

∥

∥

∥

≥

∣

∣

∣

∣

∣

∣

xl
∗
(

∑

i∈A

aixi

)

∣

∣

∣

∣

∣

∣

≥ |al| |xl
∗(xl)−

∑

j∈A,j� l

|aj | |xl
∗(xj)|

=

(

sup
i∈A

|ai|
)

(

1−
∑

j∈A,j� l

|xl
∗(xj)|

)

Thus, if we can find a subset A for which
∑

j∈A,j� l
|xl

∗(xj)| ≤ 1

2
for all l∈A we would have the result.

Set δ=
1

4Z
and consider an independent sequence δi, i≤m with P (δi = 0) = 1− δ and P (δi = 1) = δ. Then

we note that

∑

j≤m

|xi
∗(xj)| ≤Z for all i

and

E
∑

i,j≤m,i� j

δi δj |xi
∗(xj)|= δ2

∑

i,j≤m,i� j

|xi
∗(xj)| ≤ δ2mZ =

mδ

4

Thus by linearity of expectation,

E





∑

i=1

m

δi − 2
∑

i,j≤m,i� j

δi δj |xi
∗(xj)|



≥ mδ

2

This means there is a choice of δi for which

∑

i=1

m

δi − 2
∑

i,j≤m,i� j

δi δj |xi
∗(xj)| ≥ mδ

2

and hence the subset I = {i, δi = 1} where

|I | − 2
∑

i,j∈I ,i� j

|xi
∗(xj)| ≥ mδ

2
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or

∑

i∈I

(

1− 2
∑

j∈I , j� i

|xi
∗(xj)|

)

≥ mδ

2

Since each term on the left is bounded above by 1 (subtracting a positive number), we note that at least
mδ/2 terms are ≥ 0, and we call these indices A:

A=

{

i∈ I ,
∑

j∈I , j� i

|xi
∗(xj)| ≤ 1

2

}

We have |A| ≥ mδ

2
=

m

8Z
and using this A in the beginning of the proof, we have that

∥

∥

∥

∥

∥

∑

i∈A

aixi

∥

∥

∥

∥

∥

≥ 1

2
sup
i∈A

|ai| for all (ai)i∈A

�

Now we just combine everything we’ve done:

Theorem 83. Consider unit vectors (xi)i≤n in a Banach space, with n
Mn

ωn
> 16. Then we can find a

subset A∈{1,	 , n} with |A| ≥ n

64ωn
such that for any real numbers (ai)i≤n we have

1

2
sup
i∈A

|ai| ≤
∥

∥

∥

∥

∥

∑

i∈A

aixi

∥

∥

∥

∥

∥

≤ 4Mn sup
i∈A

|ai|

Proof. If
nMn

ωn
> 16, for instance if

nMn

ωn
≥ n

2

√

> 16 or n > 512 (see beginning), then Corollary 81 applies,

which gives a subset of size m≥ nMn

2ωn
with the upper bound Z = 4Mn. Then Proposition 82 gives a further

subset |A| where the lower bound also holds, and |A| ≥ m

8Z
≥ n

64ωn
�

Boostrapping the upper bound

We can actually use the upper bound above to find further subsets that improve the upper bound by a
square root.

Suppose for x1,	 , xn∈X (linearly independent) with ‖xi‖= 1,

∥

∥

∥

∥

∥

∑

i=1

n

aixi

∥

∥

∥

∥

∥

≤‖a‖∞C

for all a∈ l∞n . Then there exists y1,	 , ym∈X , m= ⌊ n
√ ⌋ linearly independent vectors with ‖yi‖=1 and

∥

∥

∥

∥

∥

∑

i=1

m

ai yi

∥

∥

∥

∥

∥

≤‖a‖∞ C
√

for all a∈ l∞m.
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This can be proved by contradiction. Suppose for all unit y1,	 , ym, we can find ‖a‖∞≤ 1 with

∥

∥

∥

∥

∥

∑

i=1

m

ai yi

∥

∥

∥

∥

∥

> C
√

Then blocking x1, 	 , xm2 into m groups of m vectors each, for each block xkm+1,	 ,(k+1)m we can find
akm+1,(k+1)m for which

∥

∥

∥

∥

∥

∑

i=km+1

(k+1)m

ai xi

∥

∥

∥

∥

∥

> C
√

Let yk =
∑

i=km+1
(k+1)m

ai xi for k = 1, 	 , m, so that ‖yk‖> C
√

. Note yk is still linearly independent, and we

can find b1,	 , bm such that ‖b‖∞≤ 1 and
∥

∥

∥

∥

∥

∑

k=1

m

bk
yk

‖yk‖

∥

∥

∥

∥

∥

> C
√

Then we expand out, we note

C
√

<

∥

∥

∥

∥

∥

∑

k=1

m

bk
yk

‖yk‖

∥

∥

∥

∥

∥

=
1

C
√

∥

∥

∥

∥

∥

∑

k=1

m
∑

i=km+1

(k+1)m
C

√

‖yk‖
(bkai)xi

∥

∥

∥

∥

∥

≤ 1

C
√

∥

∥

∥

∥

∥

∥

∑

i=1

m2

ci xi

∥

∥

∥

∥

∥

∥

where ci =
C

√

‖yk‖bk ai for km + 1 ≤ i ≤ (k + 1)m. We note ‖c‖∞ ≤ 1. This implies that
∥

∥

∥

∑

i=1
m2

ci xi

∥

∥

∥
> C

which contradicts the initial assumption.

Supposing n
Mn

ωn
> 16, we had x1,	 , xm with

∥

∥

∑

i=1
m

ai xi

∥

∥≤ ‖a‖∞ 4Mm and m≥ n
Mn

2ωn
≥ n

√

2 2
√ By repeat-

edly iterating the procedure above, we can find k unit vectors y1,	 , yk ∈X that satisfy

∥

∥

∥

∥

∥

∑

i=1

k

ai yi

∥

∥

∥

∥

∥

≤‖a‖∞(1+ ε/3)

where k ∼m1/2r ∼ n1/2r+1

where r satisfies (4Mn)1/2
r ≤ 1 + ε/3 or

1

2r ln(4Mn) ≤ ln(1 + ε/3). This means
that k ≥C1n

C2 ln(1+ε)/ln(Mn).

By the triangle inequality, we can obtain the lower bound: if l is the max index where |al|= ‖a‖∞, then

2 |al| ≤
∥

∥

∥

∥

∥

alyl +
∑

i� l

ai yi

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

alyl −
∑

i� l

ai yi

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

∑

i=1

k

ai yi

∥

∥

∥

∥

∥

+ |al|(1 + ε/3)

so that
∥

∥

∥

∑

i=1
k

ai yi

∥

∥

∥
≥‖a‖∞(1− ε/3). Then we have shown that y1,	 , yk is (1 + ε/3)(1− ε/3)≤ 1 + ε iso-

morphic to l∞
k , with k ≥C1n

C2 ln(1+ε)/ln(Mn)

Note that this says that there exists a constant C(ε) such that if ln lnMn ≤ δ ln ln n for some 0 < δ < 1,
then

ln ln k ≥ (1− δ) ln lnn−C(ε)
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This is because

ln k ≥ lnC1 +C2
ln(1 + ε)

lnMn
lnn

and

ln ln k≥ ln lnn− ln lnMn + ln(C2 ln(1 + ε))≥ (1− δ) ln lnn−C(ε)

This shows

Theorem 84. For x1,	 , xn ∈X unit vectors, there exists a constant C(ε) such that if ln lnMn ≤ δ ln ln n
for some 0<δ < 1, then X contains a (1+ ε)-isomorphic copy of l∞

k for some k satisfying

ln ln k ≥ (1− δ) ln lnn−C(ε)

Corollary 85. There exists a constant C(ε) such that for every n-dimensional Banach space X, either X
contains an (1 + ε)-isomorphic copy of l2

m for some m satisfying ln lnm ≥ 1

2
ln ln n or X contains a (1 +

ε)-isomorphic copy of l∞
k for some k satisfying ln ln k≥ 1

2
ln lnn−C(ε).

Proof. Take the ellipsoid of maximal volume in BX and assume without loss of generality it is B2
n so that

L = 1 in Dvoretsky criteria. Then Dvoretsky criteria gives a (1 + ε)-isomorphic copy of l2
m for m ≥

B(ε)nM2 where M =
∫

Sn−1 ‖x‖dµ. Note that this result is better for Banach spaces with large M .

For small M , we can show that Mn is also small, and this will give us a sizable copy of l∞
k .

By Dvoretsky-Rogers, we can find an orthonormal basis x1,	 , xn/4 where ‖xi‖≥ 1/2. Then we note that

M =

∫

Sn−1

∥

∥

∥

∑

ai xi

∥

∥

∥
dµ(a) &

∫

Sn−1

∥

∥

∥

∥

∥

∑

i=1

n/4

ai
xi

‖xi‖

∥

∥

∥

∥

∥

dµ(a)

= Eε

∫

Sn−1

∥

∥

∥

∥

∥

∑

i=1

n/4

εiai
xi

‖xi‖

∥

∥

∥

∥

∥

dµ(a)

≥ Eε

∥

∥

∥

∥

∥

∑

i=1

n/4

εi

( ∫

Sn−1

ai dµ(a)

)

xi

‖xi‖

∥

∥

∥

∥

∥

∼ Eε

∥

∥

∥

∥

∥

∑

i=1

n/4

εi
xi

‖xi‖

∥

∥

∥

∥

∥

=Mn/4

If B(ε)nMr
2≥ e lnn

√
, say, then we get the copy of l2

m with ln lnm≥ 1

2
ln lnn. Otherwise, we have

Mn/4 .
1

nB(ε)
e lnn
√

so that ln lnMn/4 ≤ 1

2
ln ln n for which the previous theorem applies, and we get a (1 + ε)-isomorphic copy

of l∞
k with ln ln k ≥ 1

2
ln lnn−C(ε). �
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