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Abstract
We prove that the integrality gap of the Goemans–Linial semidefi-

nite program for the Sparsest Cut problem (with general capacities

and demands) on inputs of size 𝑛 ⩾ 2 is Θ(
√︁
log𝑛). We achieve

this by establishing the following geometric/structural result. If

(M, 𝑑) is an 𝑛-point metric space of negative type, then for every

𝜏 > 0 there is a random subset Z of M such that for any pair of

points 𝑥,𝑦 ∈ M with 𝑑 (𝑥,𝑦) ⩾ 𝜏 , the probability that both 𝑥 ∈ Z

and 𝑑 (𝑦,Z) ⩾ 𝛽𝜏/
√︁
1 + log( |𝐵(𝑦, 𝜅𝛽𝜏) |/|𝐵(𝑦, 𝛽𝜏) |) is Ω(1), where

0 < 𝛽 < 1 < 𝜅 are universal constants. The proof relies on a

refinement of the Arora–Rao–Vazirani rounding technique.
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projections and metric embeddings; •Mathematics of com-
puting → Functional analysis.
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1 Introduction
Given an integer 𝑛 ⩾ 2, the Sparsest Cut problem (with general

capacities and demands) on 𝑛 vertices takes as input two 𝑛-by-𝑛

symmetric matrices with nonnegative entries C = (𝑐𝑖 𝑗 ),D = (𝑑𝑖 𝑗 ) ∈
M𝑛 ( [0,∞)) and aims to evaluate (or estimate) in polynomial time

the following quantity (where we denote [𝑛] = {1, . . . , 𝑛}):

SparsestCut(C,D) def

= min

∅≠𝑆⊊[𝑛]

∑
𝑖∈𝑆

∑
𝑗∈[𝑛]∖𝑆 𝑐𝑖 𝑗∑

𝑖∈𝑆
∑
𝑗∈[𝑛]∖𝑆 𝑑𝑖 𝑗

. (1)

This is a famous algorithmic task of central importance and in-

terest. It would be needlessly repetitive to recount here the rich

history of work on this extensively studied topic and its deep con-

nections to other areas, as multiple references contain thorough

surveys. In particular, all of the background that is relevant to

the discussion herein can be found in [4, 20, 69]; see also [40],

and the most recent and up-to-date account can be found in [63].
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It suffices to recall at this juncture that in the mid-1990s, Goe-

mans and Linial introduced a semidefinite program (SDP) that

computes in polynomial time a number SDPGL (C,D) ⩾ 0 that sat-

isfies SDPGL (C,D) ⩽ SparsestCut(C,D). Specifically, SDPGL (C,D)
is defined to be the minimum of

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑐𝑖 𝑗 ∥𝑣𝑖 − 𝑣 𝑗 ∥22 over all the

vectors 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛 that satisfy the following constraints:

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑑𝑖 𝑗 ∥𝑣𝑖 − 𝑣 𝑗 ∥22 = 1,

and

∀𝑖, 𝑗, 𝑘 ∈ [𝑛], ∥𝑣𝑖 − 𝑣 𝑗 ∥22 ⩽ ∥𝑣𝑖 − 𝑣𝑘 ∥22 + ∥𝑣𝑘 − 𝑣 𝑗 ∥22 .

(2)

The pertinent question is therefore to understand the growth rate

as 𝑛 → ∞ of the integrality gap of the Goemans–Linial SDP for

Sparsest Cut, which is defined to be the following quantity:

sup

C,D∈M𝑛 ( [0,∞))
C,D symmeric

SparsestCut(C,D)
SDPGL (C,D)

.

The algorithm that outputs SDPGL (C,D) is then guaranteed to

estimate SparsestCut(C,D) within a factor that is at most this inte-

grality gap. Our main algorithmic contribution is:

Theorem 1. The 𝑛-vertex integrality gap of the Goemans–Linial
SDP for Sparsest Cut is Θ(

√︁
log𝑛).

The Ω(
√︁
log𝑛) lower bound of Theorem 1 is from [63]. Thus,

our contribution herein is in terms of algorithm design rather than

proving an impossibility result, i.e., we derive an improved (sharp)

upper bound on the integrality gap of the Goemans–Linial SDP, and

hence we provide the best-known polynomial time approximation

algorithm for Sparsest Cut. The previously best-known upper bound

in Theorem 1 is due to [4], which proved that the stated integrality

gap is 𝑂 (
√︁
log𝑛 log log𝑛). As we will see, obtaining an optimal

upper boundwithout any unbounded lower order factor whatsoever

is more than a technical matter: Our proof of Theorem 1 introduces

conceptual innovations of impact on both rounding of SDPs as

well as on geometric questions (some of which are well-known

and longstanding). The full version [19] will discuss those further

applications, while in the present extended abstract we will focus

only on the Sparsest Cut problem.

Let 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛 be a vector solution of the Goemans–Linial

SDP. If we define𝑑 (𝑖, 𝑗) = ∥𝑣𝑖−𝑣 𝑗 ∥22 for every 𝑖, 𝑗 ∈ [𝑛], then thanks
to the second part of (2) we know that ( [𝑛], 𝑑) is a metric space,

which, by design, has the property that the metric space ( [𝑛],
√
𝑑)

is isometric to a subset of Euclidean space. Such metric spaces

are commonly called metric spaces of negative type; see e.g. the

monograph [24] or the survey [57] for more on this important and

useful notion, including the reason for the nomenclature.

The (bi-Lipschitz) distortion of a finite metric space (M, 𝑑M) in
an infinite metric space (N, 𝑑N), which following [50] is commonly
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denoted c(N,𝑑N ) (M, 𝑑M) or simply cN (M) when the underlying

metrics are clear from the context, is the infimum over those 𝐷 > 0

for which there are 𝑓 : M → N and 𝑠 > 0 such that

∀𝑥,𝑦 ∈ M, 𝑠𝑑M (𝑥,𝑦) ⩽ 𝑑N (𝑓 (𝑥), 𝑓 (𝑦)) ⩽ 𝐷𝑠𝑑M (𝑥,𝑦).
If 𝑝 ⩾ 1, then one commonly uses the following shorter notation

c𝑝 (M) = cℓ𝑝 (M). The parameters c2 (M) and c1 (M) are naturally
called, respectively, the Euclidean distortion ofM and the 𝐿1 dis-

tortion of M.

The classical Fréchet embedding Φ(M,𝑑M ) of M into the set

R2
M∖{∅}

of real-valued functions on the nonempty subsets ofM is

defined by setting for every 𝑥 ∈ M and ∅ ≠ Z ⊆ M,

Φ(M,𝑑M ) (𝑥) (Z) def

= 𝑑M (𝑥,Z) .
Given 𝑝, 𝐷 ⩾ 1, one says that (M, 𝑑M) embeds into 𝐿𝑝 with dis-

tortion 𝐷 via the Fréchet embedding if there exists a probability

measure P on 2
M ∖ {∅} such that for every 𝑥,𝑦 ∈ M we have

𝑑M (𝑥,𝑦) ⩽ 𝐷 ∥Φ(M,𝑑M ) (𝑥) − Φ(M,𝑑M ) (𝑦)∥𝐿𝑝 (P)
def

= 𝐷

(
EP

[
|Φ(M,𝑑M ) (𝑥) − Φ(M,𝑑M ) (𝑦) |𝑝

] ) 1

𝑝

.
(3)

For example, the famous embedding of [16] is of this form. This

terminology is consistent with what we recalled above because (3)

implies that c𝑝 (M) ⩽ 𝐷 . Indeed, observe that as 2M∖{∅} is a finite
set, 𝐿𝑝 (P) is isometric to a subspace of ℓ𝑝 , and then contrast (3) with

the trivial estimate

∥Φ(M,𝑑M ) (𝑥) − Φ(M,𝑑M ) (𝑦)∥𝐿𝑝 (P)
⩽ ∥Φ(M,𝑑M ) (𝑥) − Φ(M,𝑑M ) (𝑦)∥𝐿∞ (P) ⩽ 𝑑M (𝑥,𝑦), (4)

where the first step of (4) holds as P is a probability measure and the

second step of (4) is a straightforward consequence of the triangle

inequality for 𝑑M . However, knowing that (M, 𝑑M) embeds into 𝐿𝑝
with distortion𝐷 via the Fréchet embedding provides more informa-

tion than mere embeddability into 𝐿𝑝 , which is sometimes needed

in applications (e.g. [26, 52]); furthermore, the former embedding

may not be possible when it is known that the latter embedding

does exist (e.g. [11, 55]).

Theorem 2. For every 𝑛 ∈ N, the largest possible Euclidean dis-
tortion of an 𝑛-point metric space of negative type is Θ(

√︁
log𝑛). Fur-

thermore, the𝑂 (
√︁
log𝑛) upper bound here is achieved via the Fréchet

embedding.

Similarly to Theorem 1, our contribution to Theorem 2 is its

sharp upper bound 𝑂 (
√︁
log𝑛); the matching lower bound is due

to [25]. This upper bound confirms a well-known conjecture that to

the best of our knowledge was first posed explicitly in the published

literature in [28, page 158].

The fact that the upper bound in Theorem 2 implies a𝑂 (
√︁
log𝑛)

upper bound on the integrality gap of the Goemans–Linial SDP

for Sparsest Cut (i.e, the new contribution of Theorem 1) is a stan-

dard result (going back at least to [28]); see [57, Lemma 4.5] for its

detailed derivation (based on the duality argument in [54, Propo-

sition 15.5.2], which is attributed there to unpublished work of

Rabinovich).

We focused above on the algorithmic task of efficiently ap-

proximating the number SparsestCut(C,D), but the fact that our
𝑂 (

√︁
log𝑛)-embedding of any 𝑛-point metric space of negative type

is actually (per Theorem 2) into ℓ2 rather than “merely” into ℓ1
implies formally that there is also an algorithm which outputs a

subset ∅ ≠ 𝑆 ⊊ [𝑛] that is a near-minimizer of the right hand side

of (1), up to the aforementioned 𝑂 (
√︁
log𝑛) error tolerance. This

deduction utilizes the observation from the seminal work [50] that

optimal embeddings into a Hilbert space can themselves be found

in polynomial time (unlike embeddings into 𝐿1, see [24, 34]), as

this task itself can be cast as a semidefinite program; the (standard)

deduction of this assertion is worked out in e.g. [4, Section 5].

One can refine the above discussion for each 𝑘 ∈ {2, . . . , 𝑛} to
obtain a𝑂 (

√︁
log𝑘)-factor approximation algorithm if the matrix D

has support of size at most 𝑘 , i.e., |{(𝑖, 𝑗) ∈ [𝑛] × [𝑛] : 𝑑𝑖 𝑗 > 0}| ⩽ 𝑘 .

Also this fact is a formal consequence of Theorem 2, as the stated

distortion guarantee is via the Fréchet embedding. That embedding

can be automatically extended to any super-space while remaining

1-Lipschitz, which is all that is needed in order to obtain the afore-

mentioned 𝑂 (
√︁
log𝑘)-factor approximation guarantee. Again, the

standard deduction of this assertion is worked out in [4], though

note that [4, Section 5] incorporates a step that is irrelevant for our

purposes because the embedding of [4] is not Fréchet, so [4] must

justify why it could be extended.

It is worthwhile to summarize the above discussion as the fol-

lowing separate algorithmic statement:

Theorem 3. There exists a polynomial time algorithm with the
following property. Fix 𝑛 ∈ N and 𝑘 ∈ {2, . . . , 𝑛}. Suppose that
C = (𝑐𝑖 𝑗 ),D = (𝑑𝑖 𝑗 ) ∈ M𝑛 ( [0,∞)) are symmetric matrices such that

|{(𝑖, 𝑗) ∈ [𝑛] × [𝑛] : 𝑑𝑖 𝑗 > 0}| ⩽ 𝑘.

Then, the aforementioned algorithm outputs a subset ∅ ≠ 𝑆 ⊊ [𝑛]
that satisfies:1∑

𝑖∈𝑆
∑
𝑗∈[𝑛]∖𝑆 𝑐𝑖 𝑗∑

𝑖∈𝑆
∑
𝑗∈[𝑛]∖𝑆 𝑑𝑖 𝑗

≲ SparsestCut(C,D)
√︁
log𝑘. (5)

2 Random zero sets with local growth
guarantees

Our main geometric/structural contribution is Theorem 4 below.

It demonstrates that for any given scale 𝜏 > 0, a metric space of

negative type admits a distribution over random subsets that sepa-

rates with constant probability any pair of points whose distance

is at least 𝜏 , where the amount of separation improves if balls of

radius proportional to 𝜏 (centered at one of those two points) grow

slowly. Such “random zero sets with (super-Gaussian) local growth

guarantees” can be viewed as suitable replacements for the random

half spaces that are used ubiquitously in the Euclidean setting.

Theorem 4. There are universal constants 0 < 𝛽, 𝛿 < 1 < 𝜅 < ∞
such that if (M, 𝑑) is a finite metric space of negative type, then for
every 𝜏 > 0 there is a probability distribution P = P𝜏,M over 2M∖{∅}

1
We will use throughout the ensuing text the following (standard) conventions for

asymptotic notation, in addition to the usual𝑂 ( ·), 𝑜 ( ·),Ω ( ·),Θ( ·) notation. Given
𝑎,𝑏 > 0, by writing 𝑎 ≲ 𝑏 or 𝑏 ≳ 𝑎 we mean that 𝑎 ⩽ 𝜅𝑏 for some universal constant

𝜅 > 0, and 𝑎 ≍ 𝑏 stands for (𝑎 ≲ 𝑏 ) ∧ (𝑏 ≲ 𝑎) . When we will need to allow

for dependence on parameters, we will indicate it by subscripts. For example, in the

presence of auxiliary objects 𝑞,𝑈 ,𝜙 , the notations 𝑎 ≲𝑞,𝑈 ,𝜙 𝑏 and 𝑎 = 𝑂𝑞,𝑈 ,𝜙 (𝑏 )
mean that 𝑎 ⩽ 𝜅 (𝑞,𝑈 ,𝜙 )𝑏, where 𝜅 (𝑞,𝑈 ,𝜙 ) > 0 may depend only on 𝑞,𝑈 ,𝜙 , and

similarly for the notations 𝑎 ≳𝑞,𝑈 ,𝜙 𝑏, 𝑎 ≍𝑞,𝑈 ,𝜙 𝑏, 𝑎 = Ω𝑞,𝑈 ,𝜙 (𝑏 ), 𝑎 = Θ𝑞,𝑈 ,𝜙 (𝑏 ) .
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that satisfies the following probabilistic estimate for every 𝑥,𝑦 ∈ M

for which 𝑑 (𝑥,𝑦) ⩾ 𝜏 :

P

[
Z ⊆ M : 𝑑 (𝑦,Z) ⩾ 𝛽𝜏√︃

1 + log
|𝐵 (𝑦,𝜅𝛽𝜏 ) |
|𝐵 (𝑦,𝛽𝜏 ) |

and 𝑥 ∈ Z

]
⩾ 𝛿.

(6)

In the statement of Theorem 4 (and throughout what follows),

balls in a metric space (M, 𝑑) are always closed balls, namely,

𝐵(𝑥, 𝑟 ) = {𝑦 ∈ M : 𝑑 (𝑥,𝑦) ⩽ 𝑟 } for 𝑥 ∈ M and 𝑟 ⩾ 0. The

distance of a point 𝑦 ∈ M from a nonempty subset Z of M is

𝑑 (𝑦,Z) = inf𝑧∈Z 𝑑 (𝑦, 𝑧).
Theorem 4 settles a well-known problem that was considered by

experts ever since the appearance of the Arora–Rao–Vazirani (ARV)

rounding algorithm [6] and the measured descent embedding tech-

nique [42]. The question whether Theorem 4 holds was first posed

in the literature in [2] (specifically, see the paragraph just before

Section 3 there), though [2] expresses implicit doubt that Theorem 4

could be valid. The availability of Theorem 4 is indeed a somewhat

surprising development as it leads to a change of perspective on

(and a sharp improvement of) a major line of work that straddles

algorithm design, metric geometry and functional analysis.

The upper bound in Theorem 1 is a consequence of Theorem 4

thanks to the measured descent embedding technique [43], which

yields the following result:

Theorem 5 (special case of measured descent [43]). Suppose
that 𝑛 ∈ N, 𝛼 ⩾ 𝛽 > 0, and 0 < 𝜀, 𝛿, 𝜃 ⩽ 1. Let (M, 𝑑) be a metric
space of size 𝑛 with the property that for every 𝜏 > 0 there is a
probability measure P𝜏 on the nonempty subsets ofM such that for
every 𝑥,𝑦 ∈ M that satisfy 𝜏 ⩽ 𝑑 (𝑥,𝑦) ⩽ (1 + 𝜃 )𝜏 we have

P𝜏
[
Z ⊆ M : 𝑑 (𝑦,Z) ⩾ 𝜀𝜏√︃

1 + log
|𝐵 (𝑦,𝛼𝜏 ) |
|𝐵 (𝑦,𝛽𝜏 ) |

and 𝑥 ∈ Z

]
⩾ 𝛿.

Then,

c2 (M) =𝑂𝜀,𝛿,𝜃,𝛼,𝛽
(√︁

log𝑛

)
. (7)

Furthermore, the bound (7) on the Euclidean distortion of M is ob-
tained via the Fréchet embedding.

Even though those who are familiar with [43] will immediately

recognize Theorem 5 as a special case of measured descent, Theo-

rem 5 does not appear in [43] as a standalone statement. Instead,

Theorem 5 follows from part of the proof of Lemma 1.8 in [43] (that

lemma derives further facts that are relevant to the setup of [43],

but not for Theorem 5). The full version [19] of the present extended

abstract includes a self-contained proof of Theorem 5 which builds

on the ideas of [43] while incorporating further enhancements so

as to yield both a more general statement and the best dependence

that we currently have of the implicit constant factor in (7) on the

parameters 𝜀, 𝛿, 𝜃, 𝛼, 𝛽 .

3 Overview of the proof of Theorem 4
The precursor to Theorem 4 appeared as [4, Theorem 3.1]. It states

that there is a universal constant 𝑐 > 0 such that for every 𝑛-point

metric space (M, 𝑑) of negative type and any 𝜏 > 0 there exists

a probability measure P = P𝜏,M on 2
M ∖ {∅} such that for all

𝑥,𝑦 ∈ M with 𝑑 (𝑥,𝑦) ⩾ 𝜏 ,

P
[
Z ⊆ M : 𝑑 (𝑦,Z) ⩾ 𝑐𝜏√︁

log𝑛
and 𝑥 ∈ Z

]
= Ω(1) . (8)

The main result of [2, 4] used (8) to prove the Euclidean distortion

bound c2 (M) ≲
√︁
log𝑛 log log𝑛, and [3] showed that the same

bound on the Euclidean distortion of M can be obtained via the

Fréchet embedding.

Evidently, conclusion (6) of Theorem 4 is quantitatively stronger

than (8). However, its main contribution is a qualitative enhance-

ment that allows one to exploit cancelation to derive the upper

bounds of Theorem 1 and Theorem 2 without any unbounded

lower order factors. The previously best-known upper bound [3]

in the context of Theorem 2 had a redundant log log𝑛 factor, and

correspondingly conclusion (5) of Theorem 3 was obtained in [4]

with the factor

√︁
log𝑘 replaced by

√︁
log𝑘 log log𝑘 .

The utility of Theorem 4 for removing altogether any unbounded

lower order factor from [4] is obvious, as it is nothing more than a

direct substitution of (6) into measured descent [43] (Theorem 5

herein). This possibility is discussed in [2], though with skepticism

that the statement of Theorem 4 could be valid due to the nonlocal

nature of the ARV rounding algorithm [7], which is the central input

to (8). In contrast, a key feature of (6) is that the “performance” of

the random zero set at the given scale 𝜏 for each given pair of points

𝑥,𝑦 ∈ M depends only the local “snapshot” 𝐵(𝑦, 𝜅𝛽𝜏) of M near

𝑦 at scale Θ(𝜏), and moreover that it depends only on the extent

to which the size of 𝐵(𝑦, 𝜅𝛽𝜏) increases relative to the size of the

proportionally smaller snapshot 𝐵(𝑦, 𝛽𝜏) ofM.

In absence of such locality, [4] starts out with (8), from which

point it does not make any further appeal to [7] and instead it

proceeds by adapting measured descent in order to obtain the afore-

mentioned distortion bound, i.e., while incurring a lower-order yet

unbounded multiplicative loss. The reasoning that is used in [3] to

show that this can, in fact, be achieved via the Fréchet embedding

also takes (8) as a “black box” without any further appeal to [7] and

proceeds by yet another enhancement of measured descent.

We do not see how to derive the aforementioned sharp embed-

ding results via the above route, which is purely metric/analytic in

contrast to the more structural nature of ARV. Instead, the present

work “flips” the approach of [4] by leaving measured decent un-

touched (it can now be simply quoted as a “black box”), and en-

hancing, as we will next outline, the structural insights that are

provided by the ARV framework.

After the appearance of the ARV algorithm in [6], simplifications,

refinements, extensions, and reformulations of it were developed

in multiple works, including notably its full journal version [7]

and [1, 5, 21, 47, 61, 66]. All of those contributions were valuable to

us in the process of developing the ensuing enhancement of ARV.

Rothvoss’ lecture notes [66] stand out here because they creatively

redo the setup and reasoning in a natural, and, as it turns out,

more flexible way. In particular, we introduce Definition 7 below of

compatibility of a labelled graph with a mapping into R𝑛 , which
arose from our efforts to understand the extent to which the proof

in [66] can be strengthened.
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3.1 Directional Euclidean sparsification of
graphs

The above referenced versions of the ARV algorithm study (explic-

itly or implicitly) a natural way to “sparsify” certain (combinatorial)

graphs, i.e., a procedure that removes in a meaningful way some of

the edges of a given graph. Our proof of Theorem 4 investigates

a more involved version of this procedure, applied to graphs that

encode more geometric information than the proximity graphs that

were used in those works. This section is devoted to explaining

these ideas in suitable generality.

The aforementioned literature considers a finite metric space

(M, 𝑑) of negative type and a scale 𝜏 > 0, and studies the proximity

graph G = (M, 𝐸) whose vertex set isM and {𝑥,𝑦} ∈ 𝐸 if and only

if 𝑑 (𝑥,𝑦) ⩽ Δ, where Δ = 𝑐𝜏/
√︁
log |M | for some universal constant

𝑐 > 0. In the present setting, we are led to consider a certain graph

(specified below) whose vertex set is still M, yet if a pair of points

𝑥,𝑦 ∈ M are joined by an edge, then this will encode information

that combines both their proximity and the local growth rate of

Θ(𝜏)-balls inM centered at 𝑥 and𝑦. The sparsification procedure in

our context will involve a pairwise thresholding criterion (we will

soon explain what this means) that is nonconstant, while previous

works considered a fixed threshold that is independent of the given

pair of points in M.

Because the ensuing discussion needs to consider multiple met-

rics simultaneously, including multiple metrics on the same set

(arising from both the original metric and the shortest-path met-

rics of graphs as above), it will be beneficial to use subscripts

when denoting distances, balls, diameters. Thus, given a metric

space (M, 𝑑M), we will write diamM (𝐴) = sup𝑎,𝑏∈𝐴 𝑑M (𝑎, 𝑏) and
𝑑M (𝑥,𝐴) = inf𝑎∈𝐴 𝑑M (𝑥, 𝑎) for, respectively, the 𝑑M-diameter of

∅ ≠ 𝐴 ⊆ M and the 𝑑M-distance of 𝑥 ∈ M from 𝐴. We will also

write 𝐵M (𝑥, 𝑟 ) = {𝑦 ∈ M : 𝑑M (𝑥,𝑦) ⩽ 𝑟 } for the 𝑑M-ball centered

at 𝑥 of radius 𝑟 ⩾ 0. Thus, given 𝑛 ∈ N, 𝑝 ⩾ 1 and 𝑥 ∈ R𝑛 , we
will use the notation 𝐵ℓ𝑛𝑝 (𝑥, 𝑟 ) = {𝑦 ∈ R𝑛 : ∥𝑥 − 𝑦∥𝑝 ⩽ 𝑟 }, where
∥𝑧∥𝑝 = ( |𝑧1 |𝑝 + . . . + |𝑧𝑛 |𝑝 )1/𝑝 for 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ R𝑛 . The stan-
dard scalar product on R𝑛 will be denoted ⟨·, ·⟩ : R𝑛 × R𝑛 → R, i.e.,
⟨𝑧,𝑤⟩ = 𝑧1𝑤1 + . . . + 𝑧𝑛𝑤𝑛 for 𝑧 = (𝑧1, . . . , 𝑧𝑛),𝑤 = (𝑤1, . . . ,𝑤𝑛) ∈
R𝑛 . The standard Gaussian measure on R𝑛 will be denoted (as

usual) by 𝛾𝑛 , i.e., the density of 𝛾𝑛 at 𝑧 ∈ R𝑛 is proportional to

exp(−∥𝑧∥2
2
/2).

Throughout what follows, all graphs will be tacitly assumed to

be finite and will be allowed to have self-loops. Given a (possibly

disconnected) graph G = (𝑉 , 𝐸), denote the shortest-path/geodesic
(extended) metric that it induces on its vertex set𝑉 by 𝑑G : 𝑉 ×𝑉 →
[0,∞], under the natural convention that 𝑑G (𝑥,𝑦) =∞ if and only

if (𝑥,𝑦) ∈ Γ × Γ′ for distinct connected components Γ, Γ′ ⊆ 𝑉 of

G. For 𝑟 ⩾ 0 and 𝑥 ∈ 𝑉 , the corresponding ball in (𝑉 ,𝑑G) will
be denoted 𝐵G (𝑥, 𝑟 ) = {𝑦 ∈ 𝑉 : 𝑑G (𝑥,𝑦) ⩽ 𝑟 }. In particular,

𝐵G (𝑥, 1) = {𝑥} ∪ {𝑦 ∈ 𝑉 : {𝑥,𝑦} ∈ 𝐸}, which is also denoted

𝑁G (𝑥), is the neighborhood in G of the vertex 𝑥 .

When a graph G = (𝑉 , 𝐸) is accompanied by a mapping 𝑓 : 𝑉 →
R𝑛 , which we think of as a geometric representation of G, and an

edge-labelling 𝜎 : 𝐸 → R, which we think of as a thresholding

criterion for determining which edges will be retained in the en-

suing sparsification, for each vector 𝑣 ∈ R𝑛 we can consider the

sub-graph of G that is obtained by deleting those {𝑥,𝑦} ∈ 𝐸 with

|⟨𝑓 (𝑥) − 𝑓 (𝑦), 𝑣⟩| ⩽ 4𝜎 ({𝑥,𝑦}):

Definition 6 (directional Euclidean sparsification). Let
G = (𝑉 , 𝐸) be a graph. If 𝑛 ∈ N and 𝑓 : 𝑉 → R𝑛 , then for every
𝜎 : 𝐸 → R and 𝑣 ∈ R𝑛 define2

𝐸 (𝑣 ; 𝑓 , 𝜎) def

=
{
{𝑥,𝑦} ∈ 𝐸 : |⟨𝑓 (𝑥) − 𝑓 (𝑦), 𝑣⟩| > 4𝜎 ({𝑥,𝑦})

}
. (9)

We thus obtain the following subgraph3 of G, which we call the Eu-
clidean sparsification ofG in direction 𝑣 corresponding to its Euclidean
representation 𝑓 and the thresholding function 𝜎 :

G(𝑣 ; 𝑓 , 𝜎) def

=

(
𝑉 , 𝐸 (𝑣 ; 𝑓 , 𝜎)

)
. (10)

Understanding typical properties of G(𝑣 ; 𝑓 , 𝜎) when 𝑣 is chosen
randomly according to the Gaussian measure 𝛾𝑛 is interesting in its

own right. Here, we will investigate its matching number, which

is also what [66] studies (as do other ARV-related works, usually

implicitly), in the case when 𝜎 ≡ 1/2 is constant and G = (M, 𝐸)
is the above “vanilla” proximity graph on a finite metric space

(M, 𝑑M) of negative type, i.e., {𝑥,𝑦} ∈ 𝐸 if and only if𝑑M (𝑥,𝑦) ⩽ Δ
for some fixed Δ > 0. Recall that the matching number ν(G) of a
graph G = (𝑉 , 𝐸) is the maximum cardinality of a pairwise-disjoint

collection of its edges. We will need only rudimentary properties

of this basic combinatorial notion (that will be recalled when they

will arise in proofs), which are covered in e.g. [51].

Since both the graphs G = (𝑉 , 𝐸) that we will investigate herein,
and their labelings 𝜎 : 𝐸 → R that we will use as thresholds for

Euclidean sparsification, are more complicated than the aforemen-

tioned special case, it is beneficial to first study the above setting

abstractly. We arrived at the following definition, that will have an

important role below, by examining the elegant proof in [66] with

this goal in mind:

Definition 7 (compatibility of a graph with its Euclidean

realization and edge labeling). Fix 𝑛 ∈ N and 𝐶 > 0. Let
G = (𝑉 , 𝐸) be a graph, 𝑓 : 𝑉 → R𝑛 and 𝜎 : 𝐸 → [0,∞). We say that
G is 𝐶-compatible with 𝑓 and 𝜎 if there exist Δ : 𝑉 → [0,∞) and
𝐾 : 𝑉 → N that have the following three properties:

(1) For every 𝑥 ∈ 𝑉 and 𝑦 ∈ 𝐵G (𝑥, 𝐾 (𝑥) − 1), if 𝑧 ∈ 𝑉 is such that
{𝑦, 𝑧} ∈ 𝐸, then

Δ(𝑥) ⩽ 𝜎 ({𝑦, 𝑧}) . (11)

(2) For every 𝑥 ∈ 𝑉 and every 𝑦 ∈ 𝑁G (𝑥) we have∫
R𝑛

(
max

𝑧∈𝐵G (𝑦,𝐾 (𝑦) )
⟨𝑓 (𝑧) − 𝑓 (𝑦), 𝑣⟩

)
d𝛾𝑛 (𝑣) ⩽ 𝐾 (𝑥)Δ(𝑦). (12)

(3) For every 𝑥 ∈ 𝑉 we have

𝑓

(
𝐵G (𝑥, 𝐾 (𝑥))

)
⊆ 𝐵ℓ𝑛

2

(
𝑓 (𝑥), 1

𝐶
Δ(𝑥)

)
. (13)

2
We decided to insert the factor 4 in the definition (9) of Euclidean sparsification for

convenience only, as this yields a slight simplification of expressions in the ensuing

reasoning. This choice is, of course, nothing more than a superficial normalization

which could be removed if so desired by replacing throughout what follows the

thresholding function 𝜎 by 𝜎/4.
3
Observe that even though graphs are allowed herein to have self-loops, if 𝜎 takes

values in [0,∞) , then the strict inequality in (9) implies that G(𝑣; 𝑓 , 𝜎 ) will never
have self-loops, i.e., {𝑥, 𝑥 } ∉ 𝐸 (𝑣; 𝑓 , 𝜎 ) for every 𝑥 ∈ 𝑉 .
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Definition 7 is scale-invariant in the following sense: if G is

𝐶-compatible with 𝑓 and 𝜎 , then G is also 𝐶-compatible with 𝜆𝑓

and 𝜆𝜎 for every 𝜆 ⩾ 0, as seen by considering 𝜆Δ. The only part

of Definition 7 that involves the parameter 𝐶 is the inclusion (13),

which implies in particular that 𝐶-compatibility becomes a more

stringent property as 𝐶 grows. The precise role of the properties

that Definition 7 requires from 𝐾,Δ will become apparent upon

examining the details of how they are applied in the proofs (which

appear in the full version [19] of the present extended abstract). In

(very) broad strokes, their significance is that 𝐾,Δ take as input a

single vertex, which we think of as a consistent choice of “local

scales” at that vertex (for, respectively, the domain and range of

𝑓 ), yet they control the pairwise interactions 𝜎 through (11), and

the oscillations of 𝑓 through (12); both of these controls occur on

(combinatorial) balls in G whose radius is determined by 𝐾 .

Note the following feature of Definition 7: it stipulates the ex-

istence of Δ, 𝐾 with the stated properties, but these are auxiliary

objects that occur internally to the definition and are not part of the

notion of G being 𝐶-compatible with 𝑓 and 𝜎 . Thus, any statement

about 𝐶-compatibility will not refer to 𝐾,Δ, i.e., they will only be

used as tools within its proof. This is exemplified by the following

theorem, which is central to our proof of Theorem 4. It asserts that

𝐶-compatibility for large 𝐶 > 0 implies that the expected matching

number ν(G(𝑣 ; 𝑓 , 𝜎)) is small when 𝑣 is distributed according to 𝛾𝑛 .

This result is a generalization of the ARV reasoning as it was recast

by Rothvoss, and its proof (which appears in the full version [19]

of the present extended abstract), is an adaptation of the strategy

that he introduced in [66, Section 6.1].

Theorem 8 (expected matching number of Euclidean sparsi-

fication). Fix𝐶 ⩾ 1 and 𝑛 ∈ N. Suppose that G = (𝑉 , 𝐸) is a graph
that is 𝐶-compatible with 𝑓 : 𝑉 → R𝑛 and 𝜎 : 𝐸 → [0,∞). Then,4∫

R𝑛
ν
(
G(𝑣 ; 𝑓 , 𝜎)

)
d𝛾𝑛 (𝑣) < 6𝑒−

1

4
𝐶2 |𝑉 |. (14)

The proof of Theorem 8 is the only part of our proof of The-

orem 4 that elaborates on the central innovation of [7], namely,

what is known today as the “ARV chaining argument” (through

the approach to it that was devised in [66]). We will suitably imple-

ment this argument in the full version [19] of the present extended

abstract to prove Theorem 8. That implementation involves work

that is of a more technical nature, and the conceptually new contri-

bution here is the mere introduction of Definition 7, which makes

Theorem 8 possible.

3.2 From Theorem 8 to Theorem 4
The rest of the proof of Theorem 4 does not relate to ARV chaining.

We will next describe the steps that remain in the derivation of

Theorem 4 from Theorem 8. Proposition 9 below will be used for

that purpose; it is taken from [22] though it is not a standalone

statement there and its justification follows from the reasoning

in [22, Section 3] (a strengthening of Proposition 9 is proved in the

full version [19] of the present extended abstract). Like Theorem 8,

4
Formally, for the integral in (14) to be defined one needs that the function 𝑣 ↦→
ν(G(𝑣; 𝑓 , 𝜎 ) ) from R𝑛

toN∪ {0} is measurable. Similar measurability requirements

are needed inmultiple other steps of the ensuing discussion, but theywill be suppressed

for the purpose of the present extended abstract; its full version [19] addresses such

measurability issues (which are simple to ensure).

Proposition 9 is about abstract combinatorics and probability: it

does not relate to the assumption of Theorem 4 that (M, 𝑑M) is a
metric space, or that it is of negative type; these will occur only in

subsequent stages of the reasoning.

Proposition 9. There is a universal constant 𝜅 > 1 with the
following property. Fix 𝑛 ∈ N and Λ > 0. Let 𝑉 be a finite set,
𝑓 : 𝑉 → R𝑛 , and let 𝜔 be a probability measure on 𝑉 ×𝑉 satisfying

∀𝑥,𝑦 ∈ 𝑉 , 𝜔 (𝑥,𝑦) > 0 =⇒ ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥2 ⩾ Λ. (15)

Then, for every 𝐶 ⩾ 1 and 𝑣 ∈ R𝑛 , there are 𝐴(𝑣) = 𝐴𝜔,𝐶 (𝑣), 𝐵(𝑣) =
𝐵𝜔,𝐶 (𝑣) ⊆ 𝑉 such that

∀𝑣 ∈ R𝑛, ∀(𝑥,𝑦) ∈ 𝐴(𝑣) × 𝐵(𝑣), |⟨𝑣, 𝑓 (𝑥) − 𝑓 (𝑦)⟩| > 𝐶Λ. (16)

Furthermore, the𝛾𝑛-expected𝜔-measure of the product𝐴(𝑣)×𝐵(𝑣) ⊆
𝑉 ×𝑉 satisfies ∫

R𝑛
𝜔

(
𝐴(𝑣) × 𝐵(𝑣)

)
d𝛾𝑛 (𝑣) ≳ 𝑒−𝜅𝐶

2

. (17)

The following proposition is an especially important step in the

proof of Theorem 4:

Proposition 10. There is a universal constant 𝜁 ⩾ 1 with the
following property. Let (M, 𝑑M) be a finite metric space. For 𝜏,𝐶 > 0

define 𝜌 = 𝜌𝑑M,𝐶,𝜏 : M → [1,∞) by

∀𝑥 ∈ M, 𝜌 (𝑥) def

= 1 + 𝜁

𝐶

√︄
log

|𝐵M (𝑥, 19𝜏) |
|𝐵M (𝑥, 𝜏) | . (18)

Then, there exists a mapping 𝑞 = 𝑞𝑑M,𝐶,𝜏 : M → M satisfying
max𝑥∈M 𝑑M (𝑞(𝑥), 𝑥) ⩽ 7𝜏 with the following properties. Let G =

G𝑑M,𝐶,𝜏 be the graph whose vertex set isM and whose edge set 𝐸 =

𝐸𝑑M,𝐶,𝜏 is given by

∀𝑥,𝑦 ∈ M, {𝑥,𝑦} ∈ 𝐸 ⇐⇒ 𝑑M (𝑥,𝑦) ⩽ 𝜏

min{𝜌 (𝑥), 𝜌 (𝑦)} . (19)

Then for any 𝑛 ∈ N and any mapping 𝜑 : M → R𝑛 , the graph
G is 𝐶-compatible with 𝜑 ◦ 𝑞 : M → R𝑛 and 𝜎 : 𝐸 → [0,∞),
where 𝜎 = 𝜎𝑑M,𝐶,𝜑◦𝑞 : 𝐸 → [0,∞) is defined by setting for every
{𝑥,𝑦} ∈ 𝐸,5

𝜎 ({𝑥,𝑦}) def

= 𝐶

(
max

𝑎∈𝐵M (𝑥,2𝜏 )∩𝐵M (𝑦,2𝜏 )
𝑏∈𝐵M (𝑎,2𝜏 )

∥𝜑 ◦ 𝑞(𝑎) − 𝜑 ◦ 𝑞(𝑏)∥2
)
. (20)

Before proceeding to the rest of the steps of the proof of Theo-

rem 4, will next discuss the significance of Proposition 10, whose

proof, which appears in the full version [19], contains a key idea of

the present work.

Proposition 10 is the first time that the assumption that (M, 𝑑M)
is a metric space is used in the proof of Theorem 4, but this propo-

sition works for any metric space and we do not yet need to know

that it is of negative type. Also, Proposition 10 introduces the type

of graphs to which the general combinatorial/probabilistic state-

ments of Theorem 8 and Proposition 9 will be applied: their vertices

are points in M and their edges are given by (19). The relevance of

Proposition 10 to Theorem 8 is evident, as Proposition 10 produces

situations in which the 𝐶-compatibility assumption of Theorem 8

5
This𝜎 is well-defined: because 𝜌 ⩾ 1 by (18), definition (19) implies that if {𝑥, 𝑦} ∈ 𝐸,
then 𝑑M (𝑥, 𝑦) ⩽ 𝜏 , so the maximum in (20) is over a nonempty subset of M (e.g.,

one can take there 𝑎 = 𝑥 and 𝑏 = 𝑦).
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is satisfied. The link to Proposition 9 will be made later, in a subse-

quent step of the proof of Theorem 4.

The crucial geometric contribution of Proposition 10 is construct-

ing the mapping 𝑞 : M → M, which should be viewed as a way

to “compress” a given metric space: its image 𝑞(M) ⊆ M will

typically be much smaller than M, yet it will encode geometric

properties ofM that will be important for the purpose of working

with ratios of sizes of balls as in (18), which is our main goal. In fact,

Proposition 10 states that 𝑞 is a universally compatible compression

scheme in the sense that 𝐶-compatibility arises upon composition

with 𝑞 of any function whatsoever from M to R𝑛 (for a suitable

choice of edge-labelling 𝜎).

Proposition 10 treats the specific function 𝜌 in (18) because this

is what is needed below, and also since this is what arises from the

use of the Gaussian measure in requirement (12) of Definition 7.

Nevertheless, the compression scheme that is presented in the full

version [19] of the present extended abstract works for any edge

set as in (19) when 𝜌 : M → [1,∞) is arbitrary. The construction
in the full version [19] is therefore more general than what is used

for Proposition 10, and hence it could be useful for other purposes

(perhaps in settings to which appropriate non-Gaussian or non-

Euclidean versions of compatibility are pertinent). The idea is to

consider and suitably analyse hierarchically nested (2𝜏)-nets in the

level sets of 𝜌 , arranged in increasing order.

Applying Proposition 10 to metrics of negative type, we obtain

the following:

Proposition 11. For every 𝑟 ⩾ 1 there is 𝛽 = 𝛽 (𝑟 ) > 0 that has
the following properties. Given 𝜏,𝐶 > 0 and a finite metric space
(M, 𝑑M) of negative type, let G𝑑M,𝑟𝐶,𝛽𝜏 = (M, 𝐸) be the graph from
Proposition 10 with with (𝐶, 𝜏) replaced by (𝑟𝐶, 𝛽𝜏), i.e.,

∀𝑥,𝑦 ∈ M, {𝑥,𝑦} ∈ 𝐸 ⇐⇒ 𝑑M (𝑥,𝑦) ⩽ 𝛽𝜏

min{𝜌 (𝑥), 𝜌 (𝑦)} , (21)

where, with 𝜁 ⩾ 1 the universal constant from Proposition 10, we
denote

∀𝑥 ∈ M, 𝜌 (𝑥) def

= 1 + 𝜁

𝑟𝐶

√︄
log

|𝐵M (𝑥, 19𝛽𝜏) |
|𝐵M (𝑥, 𝛽𝜏) | . (22)

Then, there are 𝑓 : M → R |M | , 𝜎 : 𝐸 → [0,∞), and Λ > 0 that have
the following properties:

• G is (𝑟𝐶)-compatible with 𝑓 and 𝜎 ;
• Every 𝑥,𝑦 ∈ M satisfy

𝑑M (𝑥,𝑦) ⩾ 𝜏 =⇒ 𝐶 ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥2 ⩾ Λ,

and

{𝑥,𝑦} ∈ 𝐸 =⇒ 4𝜎 ({𝑥,𝑦}) ⩽ Λ.

(23)

Proof. Define 𝛽,Λ > 0 by

𝛽 = 𝛽 (𝑟 ) def

=
1

256𝑟 2 + 14

and

Λ = Λ(𝑟,𝐶, 𝜏) def

=
16𝑟𝐶

√
𝜏

√
256𝑟 2 + 14

.

(24)

Let 𝑞 : M → M be the function from Proposition 10, applied with

(𝐶, 𝜏) replaced by (𝑟𝐶, 𝛽𝜏). Then,
∀𝑥 ∈ M, 𝑑M (𝑞(𝑥), 𝑥) ⩽ 7𝛽𝜏 . (25)

Fix an isometric embedding 𝜑 : M → R |M |
of (M,

√
𝑑M) into ℓ |M |

2

and let 𝑓
def

= 𝜑 ◦ 𝑞. Thus,

∀𝑥,𝑦 ∈ M, ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥2 =
√︁
𝑑M (𝑞(𝑥), 𝑞(𝑦)) . (26)

Finally, let 𝜎 : 𝐸 → [0,∞) be the edge-labelling that Proposition 10

produces from the above choices, i.e., for all {𝑥,𝑦} ∈ 𝐸,

𝜎 ({𝑥,𝑦})
(20)∧(26)

= 𝑟𝐶

(
max

𝑎∈𝐵M (𝑥,2𝛽𝜏 )∩𝐵M (𝑦,2𝛽𝜏 )
𝑏∈𝐵M (𝑎,2𝛽𝜏 )

√︁
𝑑M (𝑞(𝑎), 𝑞(𝑏))

)
. (27)

Thus, Proposition 10 ensures that G is 𝑟𝐶-compatible with 𝑓 and 𝜎 .

By the triangle inequality, for every 𝑥,𝑦 ∈ M with 𝑑M (𝑥,𝑦) ⩾ 𝜏

we have

𝐶 ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥2
(26)

⩾ 𝐶
√︁
max{𝑑M (𝑥,𝑦) − 𝑑M (𝑞(𝑥), 𝑥) − 𝑑M (𝑞(𝑦), 𝑦), 0}

(25)

⩾ 𝐶
√︁
(1 − 14𝛽)𝜏 (24)

= Λ,

(28)

which proves the first part of (23). The second part of (23) is proved

similarly as follows: we can find 𝑎 ∈ 𝐵M (𝑥, 2𝛽𝜏) ∩ 𝐵M (𝑦, 2𝛽𝜏) and
𝑏 ∈ 𝐵M (𝑎, 2𝛽𝜏) such that

𝜎 ({𝑥,𝑦})
(27)

⩽ 𝑟𝐶
√︁
𝑑M (𝑞(𝑎), 𝑎) + 𝑑M (𝑎, 𝑏) + 𝑑M (𝑞(𝑏), 𝑏)

(25)

⩽ 𝑟𝐶
√︁
16𝛽𝜏

(24)

=
Λ

4

. □

The upshot of Proposition 11 is that it provides the compati-

bility of the graph that we care about with 𝑓 and 𝜎 , which is the

assumption of Theorem 8, but at the same time we see from (23)

that 𝜎 is controlled by a constant Λ that satisfies the assumptions

of Proposition 9. Thus, Proposition 11 will allow us to combine

Theorem 8 and Proposition 9 to obtain the following theorem:

Theorem 12. There are universal constants 0 < 𝛽 ⩽ 1 ⩽ 𝛼 < ∞
with the following properties. Fix a finite metric space (M, 𝑑M) of
negative type. Suppose that 0 < 𝜏 ⩽ diam(M) and that 𝜔 is a
symmetric probability measure onM×M whose support is contained
in the set {(𝑥,𝑦) ∈ M ×M : 𝑑M (𝑥,𝑦) ⩾ 𝜏}. In other words, 𝜔 (M ×
M) = 1, for every 𝑥,𝑦 ∈ Mwe have𝜔 (𝑥,𝑦) = 𝜔 (𝑦, 𝑥), and𝜔 (𝑥,𝑦) >
0 =⇒ 𝑑M (𝑥,𝑦) ⩾ 𝜏 . Then, for every𝐶 ⩾ 1 and 𝑣 ∈ R |M | there exist
nonempty subsets 𝐴∗ (𝑣) = 𝐴∗

𝜔,𝐶
(𝑣), 𝐵∗ (𝑣) = 𝐵∗

𝜔,𝐶
(𝑣) of M such that

∀𝑣 ∈ R |M | , ∀(𝑥,𝑦) ∈ 𝐴∗ (𝑣) × 𝐵∗ (𝑣),

𝑑M (𝑥,𝑦) > 𝛽𝜏

min{𝜌 (𝑥), 𝜌 (𝑦)} ,
(29)

where 𝜌 : M → [1,∞) is defined by

∀𝑥 ∈ M, 𝜌 (𝑥) def

= 1 + 1

𝛼𝐶

√︄
log

|𝐵M (𝑥, 19𝛽𝜏) |
|𝐵M (𝑥, 𝛽𝜏) | , (30)

and furthermore, if 𝜅 > 1 is the universal constant from Proposition 9,
then ∫

R𝑛
𝜔

(
𝐴∗ (𝑣) × 𝐵∗ (𝑣)

)
d𝛾𝑛 (𝑣) ≳ 𝑒−𝜅𝐶

2

. (31)
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The conclusion of Theorem 4 about random zero sets is a simple

formal consequence of the fact that for every fixed probability

measure 𝜔 as in Theorem 12, there exist random pairs of sets as in

Theorem 12 that are separated per (29) and 𝜔-large per (31). The

reason for this is mainly duality (minimax theorem), together with

a simple scale gluing argument; the details of this deduction appear

in the full version [19] of the present extended abstract. The idea

to insert into the ARV reasoning a “weighting” such as 𝜔 on pairs

of points of M is a key insight of [21], where it was introduced

in order to prove that any 𝑛-point metric space of negative type

embeds into ℓ2 with distortion 𝑂 ((log𝑛)3/4); this idea played the

same role in [2], as well as herein.

The proof that Theorem 12 follows from Theorem 8, Proposi-

tion 9, and Proposition 11, which, as we explained above, is all

that remains to complete the proof of Theorem 4, appear in the

full version ][19] of the present extended abstract. We will next

conclude this extended abstract by sketching in broad strokes the

reason why this works.

Write 𝑛 = |M |. Start by applying Proposition 11 with 𝑟 = 𝜁𝛼 ,

where 𝜁 is the universal constant in (22), thus ensuring that (30)

coincides with (22). Henceforth in this sketch, G = (M, 𝐸) will
stand for the graph from this application of Proposition 11, i.e., its

edges are given by (21) where 𝜌 is defined in (22). The first bullet

point in the conclusion of Proposition 11 makes it possible to apply

Theorem 8 to get that∫
R𝑛

ν
(
G(𝑣 ; 𝑓 , 𝜎)

)
d𝛾𝑛 (𝑣) ≲ 𝑒−

𝑟2

4
𝐶2

𝑛 = 𝑒−
𝜁 2𝛼2

4
𝐶2

𝑛. (32)

Think of the expectation estimate (32) as expressing the fol-

lowing structural information about the Euclidean sparsification

G(𝑣 ; 𝑓 , 𝜎) of G in a typical direction 𝑣 ∈ R𝑛 : for such 𝑣 the graph
G(𝑣 ; 𝑓 , 𝜎) is “clustered” in the sense that it cannot have a large col-

lection of disjoint edges, and hence there is a small set of vertices

(i.e., a small subset of M) which is incident to all of the edges in

G(𝑣 ; 𝑓 , 𝜎). Even though this is not quite how we will use Theo-

rem 8 in the full version [19], namely, we will actually use a similar

statement about fractional matchings of G(𝑣 ; 𝑓 , 𝜎) that is a simple

formal consequence of Theorem 8, for the purpose of intuitively

understanding within the present sketch the reason why the de-

duction of Theorem 12 works, it suffices to initially consider the

above combinatorial implication of (32).

As Theorem 12 assumes that 𝜔 (𝑥,𝑦) > 0 =⇒ 𝑑M (𝑥,𝑦) ⩾ 𝜏 for

every 𝑥,𝑦 ∈ M, the conclusion (23) of Proposition 11 implies the

assumption (15) of Proposition 9 with 𝑓 replaced by 𝐶𝑓 . We may

therefore proceed to apply Proposition 9 with 𝑓 replaced by 𝐶𝑓 to

get subsets 𝐴(𝑣), 𝐵(𝑣) ⊆ M for each 𝑣 ∈ R𝑛 such that (17) holds

and, by canceling 𝐶 in (16) with 𝑓 replaced by 𝐶𝑓 ,

∀𝑣 ∈ R𝑛, ∀(𝑥,𝑦) ∈ 𝐴(𝑣) × 𝐵(𝑣),
{𝑥,𝑦} ∈ 𝐸 =⇒ |⟨𝑣, 𝑓 (𝑥) − 𝑓 (𝑦)⟩| > Λ.

(33)

The next observation is crucial. Recalling Definition 6, by the

second part of conclusion (23) of Proposition 11, it follows from (33)

that for every 𝑣 ∈ R𝑛 , if (𝑥,𝑦) ∈ 𝐴(𝑣) × 𝐵(𝑣) and {𝑥,𝑦} ∈ 𝐸,

then {𝑥,𝑦} is also an edge of G(𝑣 ; 𝑓 , 𝜎). Equivalently, if (𝑥,𝑦) ∈
𝐴(𝑣) × 𝐵(𝑣) yet {𝑥,𝑦} is not an edge of G(𝑣 ; 𝑓 , 𝜎), then necessarily

{𝑥,𝑦} ∉ 𝐸, i.e., by the definition (21) of 𝐸 the desired inequality

in (29) holds.

Per the above discussion, for typical 𝑣 ∈ R𝑛 there is a small

subset ofM that is incident to all of the edges in G(𝑣 ; 𝑓 , 𝜎), so by

removing it we get large subsets 𝐴∗ (𝑣) ⊆ 𝐴(𝑣) and 𝐵∗ (𝑣) ⊆ 𝐵∗ (𝑣)
such that (29) holds. The notion of “large” here must be interpreted

as the size of 𝐴∗ (𝑣) ×𝐵∗ (𝑣) with respect to the given measure 𝜔 on

M×M, since the input to this reasoning (supplied by Proposition 9)

is (17); this is why we will actually work with a weighted version

of (32) for fractional matchings, but, as we stated above, it is a

formal consequence of Theorem 8 that is quickly deduced in the

full version [19]. Finally, for the above reasoning to succeed, the

lower bound in (17) needs to dominate the upper bound in (32); this

is why 𝛼 is assumed to be a sufficiently large universal constant in

Theorem 12 (specified in the full version [19]).

Roadmap to the full version
The full version [19] of the present extended abstract, whose title

is “Random zero sets with local growth guarantees,” is publicly

available at https://arxiv.org/pdf/2410.21931. It provides complete

details of the proofs, more general results, multiple additional appli-

cations, formulations of conjectures for further research, and proofs

of impossibility statements. The purpose of the present section is

to provide an extensive guide to the contents of this full version.

A notable aspect of the full version [19] is that it demonstrates

that the conclusions of Theorem 2 and Theorem 4 hold for a class

of metric spaces that is much larger than those that are of negative

type, so the applicability of the results that we obtain is significantly

broader than what we presented herein, which suffices for the

aforementioned implications to the Sparsest Cut problem. This is (a

further generalization of) a realization of [61]. One might think that

the fact that in the second constraint in (2) the power ‘2’ coincides

with the index ‘2’ of the Euclidean norm ∥ · ∥2 is of significance,
but this is far from the truth and, in fact, the Euclidean distances

could be raised there to any power, and furthermore much more

dramatic deformations of the Euclidean metric could be allowed. By

freeing oneself from adhering to the aforementioned coincidence it

becomes easier to understand the geometric mechanism that leads

to the stated results. Note that the use of the negative type condition

(or the weaker requirement that we alluded to above) is confined to

Proposition 11, which is the simplest step of the proof, while most

of the reasoning occurs in a setting that has nothing to do with it.

Given 0 < 𝑠, 𝜀 < 1, we say that a metric space (M, 𝑑M) is (𝑠, 𝜀)-
quasisymmetrically Hilbertian if there exists a one-to-one function

𝑓 from M to a Hilbert space (H, ∥ · ∥H) such that

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥H ⩽ (1 − 𝜀)∥ 𝑓 (𝑥) − 𝑓 (𝑧)∥H (34)

for every 𝑥,𝑦, 𝑧 ∈ M satisfying 𝑑M (𝑥,𝑦) ⩽ 𝑠𝑑M (𝑥, 𝑧). CallM qua-

sisymetrically Hilbertian if there are 0 < 𝑠, 𝜀 < 1 for which it

is (𝑠, 𝜀)-quasisymmetrically Hilbertian. Observe that the require-

ment (34) is satisfied trivially for every metric spaceM when 𝜀 = 0

and any 𝑠 > 0 (by assigning points inM to an orthonormal system).

Thus, we are asking here for an embedding into a Hilbert space

that is better—however slightly—than this trivial embedding, a re-

quirement that holds whenM is quasisymmetrically equivalent to

a subset of a Hilbert space in the sense of Ahlfors–Beurling [13]

and Tukia–Väisälä [70], which is a classical and extensively studied

notion. The class of quasisymmetrically Hilbertian metric spaces

encompasses disparate geometries, though not all metric spaces

https://arxiv.org/pdf/2410.21931
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(e.g., any space that contains arbitrarily large expander graphs is not

quasisymmetrically Hilbertian, and also ℓ𝑝 for 𝑝 > 2 is not quasisym-

metrically Hilbertian [58]). Every metric space of negative type is

(𝑠, 1 −
√
𝑠)-quasisymmetrically Hilbertian for any 0 < 𝑠 < 1. Fur-

theremore, the class of quasisymmetrically Hilbertian metric spaces

encompasses those of finite Assouad–Nagata dimension [44], or

more generally [62] metric spaces that admit a padded stochastic de-

composition (thus, it includes, say, planar graphs [41] and doubling

metric spaces [8, 31]), as well as 𝐿𝑝 (𝜇) spaces for 1 ⩽ 𝑝 ⩽ 2 [18, 71],

and the infinite dimensional Heisenberg group H∞
[48].

One of the main embedding results in the full version [19], which

includes as a special case the upper bound on the Euclidean dis-

tortion that is stated in Theorem 2, is that for every 0 < 𝑠, 𝜀 < 1

and every integer 𝑛 ⩾ 2, if an 𝑛-point metric space (M, 𝑑M) is
(𝑠, 𝜀)-quasisymmetrically Hilbertian, then

c2 (M) ≲𝑠,𝜀
√︁
log𝑛. (35)

In the influential work [36], Johnson and Lindenstrauss asked if

c2 (M) ≲
√︁
log𝑛 for any 𝑛-point metric space (M, 𝑑M). If this were

true, then it would have been a satisfactory analogue of John’s

theorem [35] that c2 (X) ⩽
√
dimX for any finite-dimensional

normed space X, in accordance with the predictions of the Ribe

program [10, 17, 27, 37, 59, 60, 64]. In [16, page 47] Bourgain reit-

erated the aforementioned question of Johnson–Lindentrauss, but

famously answered it negatively (in the same work [16]); an asymp-

totically stronger (sharp) impossibility result was subsequently

obtained (by another method) in [9, 50]. Hence, a positive answer

to the Johnson–Lindenstrauss question would necessitate impos-

ing restrictions on the metric space (M, 𝑑M). The above stated

result (35) from the full version shows that the answer is positive

within the class of quasisymmetrically Hilbertian metric spaces.

The structural result that we stated above as Theorem 4 formetric

spaces of negative type is shown in the full version [19] to hold

whenever the metric space (M, 𝑑M) is (𝑠, 𝜀)-quasisymmetrically

Hilbertian for some 0 < 𝑠, 𝜀 < 1, provided that one allows the

parameter 𝛽 > 0 that appears in the statement of Theorem 4 to

depend on 𝑠, 𝜀. In the full version [19] we derive the following

consequence of this fact to a natural extremal question in the theory

of concentration of measure, which was first broached in [61].

Gromov classically associated [30] a quantity called the ob-

servable diameter to any metric probability space (M, 𝑑M, 𝜇); see
also [12, 46, 68] for an indication of the extensive literature on this

notion. Prior to recalling the precise technical definition, we will

next briefly and informally describe its intuitive meaning. The ob-

servable diameter quantifies the extent to which one could measure

the size of the metric space using sufficiently smooth real-valued

functions as observations, while accounting for possible observa-

tional errors by discarding at most a fixed fraction (with respect to

the given probability measure 𝜇) of the observations. Lévy’s spheri-

cal isoperimetric theorem [49] implies that the ratio between the

observable diameter of the Euclidean 𝑛-sphere to its actual (metric)

diameter is of order 1/
√
𝑛. The full version [19] shows that the Eu-

clidean 𝑛-sphere is extremal in this regard among all nondegenerate

𝑛-dimensional metric probability spaces that are quasisymmetri-

cally Hilbertian (both “nondegenerate” and “𝑛-dimensional” need

to be suitably defined here; see below), namely, up to dimension-

independent positive constant factors, the Euclidean 𝑛-sphere has

the smallest possible observable diameter among all such spaces

(this is new even for arbitrary Borel probability measures on R𝑛).
Formally, for a metric space (M, 𝑑M), a Borel probability mea-

sure 𝜇 on M, and 𝜃 > 0 the 𝜃 -observable diameter

ObsDiam
M
𝜇 (𝜃 )

of the metric measure space (M, 𝑑M, 𝜇) is defined [30] to be the

supremum over all possible 1-Lipschitz functions 𝑓 : M → R of

the infimum of diamR (𝑓 (S)) = sup{|𝑓 (𝑥) − 𝑓 (𝑦) | : 𝑥,𝑦 ∈ S} over
all possible Borel subsets S ⊆ M with 𝜇 (S) ⩾ 1 − 𝜃 .

The Euclidean 𝑛-sphere is denoted 𝑆𝑛−1 = {𝑥 ∈ R𝑛 : ∥𝑥 ∥2 = 1},
and it will always be equipped with the metric that is inherited

from ℓ𝑛
2
and the normalized surface-area (probability) measure 𝜎𝑛−1.

Since ℓ𝑛
2
is 𝐾𝑛-doubling for some 𝐾𝑛 ⩽ 5

𝑛
(e.g. [67, Section 2.2]),

also 𝑆𝑛−1 ⊆ ℓ𝑛
2
is 5

𝑛
-doubling. Here we use the standard terminol-

ogy (e.g. [23, 33, 45]) that the metric space (M, 𝑑M) is 𝐾-doubling
for some 𝐾 ∈ N if for every 𝑥 ∈ M and every 𝑟 > 0 there are

𝑥1, . . . , 𝑥𝐾 ∈ M such that 𝐵M (𝑥, 2𝑟 ) ⊆ 𝐵M (𝑥1, 𝑟 ) ∪ · · · ∪𝐵M (𝑥𝐾 , 𝑟 ),
where 𝐵M (𝑥, 𝜌) = {𝑦 ∈ M : 𝑑M (𝑥,𝑦) ⩽ 𝜌} denotes the closed
𝑑M-ball of radius 𝜌 ⩾ 0 centered at 𝑥 ∈ M. If (M, 𝑑M) is a met-

ric space and 𝜇 is a Borel probability measure onM, then we say

that 𝜇 is normalized if the median of 𝑑 (𝑥,𝑦) is equal to 1 when

(𝑥,𝑦) ∈ M ×M is distributed according to 𝜇 × 𝜇. Note that 𝜎𝑛−1
is not normalized per this terminology, but one could normalize it

by rescaling the metric by a factor that is bounded from above and

from below by positive universal constants.

Using the above terminology, the full version [19] obtains the

following theorem, which is the precise version of the extremal

statement that we previously stated informally:

Theorem 13. For every 0 < 𝑠, 𝜀 < 1 and every 𝑛 ∈ N, if (M, 𝑑M)
is a metric space that is (𝑠, 𝜀)-quasisymmetrically Hilbertian and
5
𝑛-doubling, then every normalized Borel probability measure 𝜇 on
M satisfies

∀0 < 𝜃 ⩽ 𝜃0, ObsDiam
M
𝜇 (𝜃 ) ≳𝑠,𝜀 ObsDiam𝑆𝑛−1

𝜎𝑛−1 (𝜃 ),
where 𝜃0 > 0 is a universal constant.

We defer the discussion of further geometric results surrounding

(the quasisymmetrically Hilbertian version of) Theorem 4 to the

full version [19]. We will end by describing one more algorithmic

application of Theorem 4 (more of its algorithmic ramifications

appear in the full version [19]), which follows from the work of

Makarychev, Makarychev and Vijayaraghavan [53] which beauti-

fully relates the Sparsest Cut problem to perturbation resilience of

the MaxCut problem (in the sense of Bilu–Linial [15]; see also the

MaxCut-specific work [14], and the survey [52]).

The weighted MaxCut problem on 𝑛-vertices takes as its input an

𝑛-by-𝑛 symmetric matrixW = (𝑤𝑖 𝑗 ) ∈ M𝑛 ( [0,∞)) whose entries
are nonnegative, which one should think of as an edge-weighted

graph whose vertex set is [𝑛], and aims to compute (or approximate)

in polynomial time the following quantity:

MaxCut(W) def

= max

∅≠𝑆⊊[𝑛]

∑︁
𝑖∈𝑆

∑︁
𝑗∈[𝑛]∖𝑆

𝑤𝑖 𝑗 . (36)

Given𝛾 ⩾ 1, a matrixW as above is said to be Bilu–Linial𝛾-stable

(𝛾-stable, in short) for MaxCut if there is a unique nontrivial subset

∅ ≠ 𝑆 ⊊ [𝑛] such that MaxCut(W) = ∑
𝑖∈𝑆

∑
𝑗∈[𝑛]∖𝑆 𝑤𝑖 𝑗 , i.e., the
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right hand side of (36) has only one maximizer, and furthermore

we have MaxCut(W′) =
∑
𝑖∈𝑆

∑
𝑗∈[𝑛]∖𝑆 𝑤

′
𝑖 𝑗 for every symmetric

matrix W′ = (𝑤 ′
𝑖 𝑗 ) ∈ M𝑛 ( [0,∞)) that satisfies 𝑤𝑖 𝑗 ⩽ 𝑤 ′

𝑖 𝑗 ⩽ 𝛾𝑤𝑖 𝑗

for every 𝑖, 𝑗 ∈ [𝑛].
Makarychev, Makarychev and Vijayaraghavan studied [53] an

SDP that can be evaluated (with 𝑜 (1) precision) in polynomial time

and outputs a number SDPMMV (W) ⩾ 0 that satisfies

SDPMMV (W) ⩾ MaxCut(W) . (37)

The Makarychev–Makarychev–Vijayaraghavan SDP for MaxCut

coincides with the Goemans–Williamson SDP for MaxCut [29] with

the (by now standard) added squared-ℓ2 triangle inequality con-

straints, except for the “twist” that those constraints are imposed

on the symmetrized version of the vector solution, namely, if the

SDP outputs unit vectors 𝑣1, . . . , 𝑣𝑛 ∈ 𝑆𝑛−1, then they require that

∥𝑢 − 𝑣 ∥2
2
⩽ ∥𝑢 −𝑤 ∥2

2
+ ∥𝑤 − 𝑣 ∥2

2
for every choice of three vectors

𝑢, 𝑣,𝑤 ∈ {𝑣1, . . . , 𝑣𝑛,−𝑣1, . . . ,−𝑣𝑛} (see [1, 38] for earlier incarna-
tions of this idea, along with demonstrations of its utility in other

aspects of combinatorial optimization).

The Makarychev–Makarychev–Vijayaraghavan SDP for MaxCut

is said to be integral on the input W (see [53, Definition 2.3]) if for

every optimal vector solution 𝑣1, . . . , 𝑣𝑛 ∈ 𝑆𝑛−1 of this SDP there

is a unit vector 𝑒 ∈ 𝑆𝑛−1 such that 𝑣𝑖 ∈ {𝑒,−𝑒} for every 𝑖 ∈ [𝑛].
When this occurs, every optimal solution corresponds to a valid

cut, so thanks to (37) we have SDPMMV (W) =MaxCut(W), i.e., the
Makarychev–Makarychev–Vijayaraghavan algorithm outputs an

exact solution forMaxCut on the inputW, in contrast to the fact that

(under standard complexity hypotheses) one cannot hope to always

obtain such an exact solution on general inputs [32, 39, 56, 65].

By substituting Theorem 2 into [53, Theorem 3.1] and [53, Theo-

rem 5.2], we get the following evaluation of the growth rate of

the critical 𝛾 = 𝛾 (𝑛) such that the Makarychev–Makarychev–

Vijayaraghavan SDP for MaxCut is integral on every 𝑛-vertex in-

stance of MaxCut that is 𝛾-stable:

Theorem 14. There are universal constants 𝐶 > 𝑐 > 0 with
the following property for any integer 𝑛 ⩾ 2. If 𝛾 ⩾ 𝐶

√︁
log𝑛, then

the Makarychev–Makarychev–Vijayaraghavan SDP relaxation of
MaxCut is integral on any 𝑛-vertex input that is 𝛾-stable for MaxCut.
If 1 ⩽ 𝛾 ⩽ 𝑐

√︁
log𝑛, then there is an 𝑛-vertex input that is 𝛾-stable

for MaxCut on which the Makarychev–Makarychev–Vijayaraghavan
SDP relaxation of MaxCut is not integral.

The connection between the Sparsest Cut problem and pertur-

bation resilience of the MaxCut problem was discovered in [53],

where Theorem 14 was obtained with the lower bound𝛾 ⩾ 𝐶
√︁
log𝑛

replaced by 𝛾 ⩾ 𝐶
√︁
log𝑛 log log𝑛, as [53] appealed to [4]. Thus, the

impact of Theorem 2 in this context is to obtain the sharp rate of

growth of the threshold for stable integrality.
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