Proof of the uniform convexity lemma

February 26, 2004

Fix $1 . Our goal is to prove that for every <math>a, b \in L_p$,

$$\|a+b\|_p^2 + (p-1)\|a-b\|_p^2 \le 2(\|a\|_p^2 + \|b\|_p^2).$$
(1)

We require the following numerical lemma:

Lemma 0.1. For $0 \le r \le 1$ define

$$\alpha(r) = (1+r)^{p-1} + (1-r)^{p-1}$$
 and $\beta(r) = \frac{(1+r)^{p-1} - (1-r)^{p-1}}{r^{p-1}}$.

Then for every $A, B \in \mathbb{R}$,

$$\alpha(r)|A|^{p} + \beta(r)|B|^{p} \le |A + B|^{p} + |A - B|^{p}.$$

Proof. We may clearly assume that A, B > 0. Observe first of all that $\beta(r) \leq \alpha(r)$ for all $r \in [0, 1]$. Indeed, setting $h(r) = \alpha(r) - \beta(r)$ we have h(1) = 0 and

$$h'(r) = -(p-1)\left(\frac{1}{r^p} + 1\right)\left[\frac{1}{(1-r)^{2-p}} - \frac{1}{(1+r)^{2-p}}\right] \le 0.$$

It follows that if 0 < A < B then $\alpha(r)A^p + \beta(r)B^p \leq \alpha(r)B^p + \beta(r)A^p$, which implies that it enough to prove that for 0 < B < A, $\alpha(r)A^p + \beta(r)B^p \leq (A+B)^p + (A-B)^p$. Dividing by A^p , it suffices to show that for $0 \leq R \leq 1$, the function $F(r) = \alpha(r) + R^p\beta(r)$ achieves its global maximum at r = R. But

$$F'(r) = (p-1)[(1+r)^{p-2} - (1-r)^{p-2}] \left[1 - \left(\frac{R}{r}\right)^p\right],$$

Thus, the only point in (0, 1) at which F' vanishes is r = R, and since 1 , <math>F'(1) is negative. This implies that F is maximal at r = R.

Corollary 0.2 (Hanner's inequality for $1 \le p \le 2$). For every $f, g \in L_p$,

$$\left| \|f\|_{p} - \|g\|_{p} \right|^{p} + (\|f\|_{p} + \|g\|_{p})^{p} \le \|f + g\|_{p}^{p} + \|f - g\|_{p}^{p}$$

Proof. By symmetry we may assume that $r = ||g||_p / ||f||_p \le 1$. By Lemma 0.1 the following pointwise inequality holds:

$$\alpha(r)|f|^p + \beta(r)|g|^p \le |f+g|^p + |f-g|^p$$

Integrating and simplifying gives the required result.

The following numerical lemma is well known.

Lemma 0.3 (Beckner's two-point inequality). For every $a, b \in \mathbb{R}$,

$$[a^{2} + (p-1)b^{2}]^{1/2} \le \left(\frac{|a+b|^{p} + |a-b|^{p}}{2}\right)^{1/p}.$$

Proof. If |a| < |b| then since p < 2, $a^2 + (p-1)b^2 \le b^2 + (p-1)a^2$. We may therefore assume that $|a| \ge |b| > 0$. Set x = b/a. Our goal is to show that $[1 + (p-1)x^2]^{p/2} \le \frac{(1+x)^p + (1-x)^p}{2}$ for every $x \in [-1,1]$. Now, $\frac{(1+x)^p + (1-x)^p}{2} = \sum_{k=0}^{\infty} {p \choose 2k} x^{2k} \ge 1 + \frac{p(p-1)}{2} x^2$, where we have used the fact that since p < 2, ${p \choose 2k} \ge 0$. Finally, the inequality $1 + \frac{p(p-1)}{2}x^2 \ge [1 + (p-1)x^2]^{p/2}$ follows from the elementary fact that $(1+t)^{\alpha} \le 1 + \alpha t$ for every $t, \alpha \in [0,1]$.

Let's complete the proof of (1). Fix $x, y \in L_p$. Then

$$\begin{pmatrix} \frac{\|x+y\|_{p}^{2} + \|x-y\|_{p}^{2}}{2} \end{pmatrix}^{1/2} \geq \left(\frac{\|x+y\|_{p}^{p} + \|x-y\|_{p}^{p}}{2} \right)^{1/p} \quad \text{(since } p \leq 2)$$

$$\geq \left[\frac{(\|x\|_{p} + \|y\|_{p})^{p} + \|\|x\|_{p} - \|y\|_{p}\|^{p}}{2} \right]^{1/p} \quad \text{(Hanner's inequality)}$$

$$\geq \left[\|x\|_{p}^{2} + (p-1)\|y\|_{p}^{2} \right]^{1/2} \quad \text{(Beckner's inequality)}$$

and this is equivalent to (1) (setting a = x + y and b = x - y).