Proof of the uniform convexity lemma

February 26, 2004

Fix $1<p<2$. Our goal is to prove that for every $a, b \in L_{p}$,

$$
\begin{equation*}
\|a+b\|_{p}^{2}+(p-1)\|a-b\|_{p}^{2} \leq 2\left(\|a\|_{p}^{2}+\|b\|_{p}^{2}\right) . \tag{1}
\end{equation*}
$$

We require the following numerical lemma:
Lemma 0.1. For $0 \leq r \leq 1$ define

$$
\alpha(r)=(1+r)^{p-1}+(1-r)^{p-1} \quad \text { and } \quad \beta(r)=\frac{(1+r)^{p-1}-(1-r)^{p-1}}{r^{p-1}}
$$

Then for every $A, B \in \mathbb{R}$,

$$
\alpha(r)|A|^{p}+\beta(r)|B|^{p} \leq|A+B|^{p}+|A-B|^{p} .
$$

Proof. We may clearly assume that $A, B>0$. Observe first of all that $\beta(r) \leq \alpha(r)$ for all $r \in[0,1]$. Indeed, setting $h(r)=\alpha(r)-\beta(r)$ we have $h(1)=0$ and

$$
h^{\prime}(r)=-(p-1)\left(\frac{1}{r^{p}}+1\right)\left[\frac{1}{(1-r)^{2-p}}-\frac{1}{(1+r)^{2-p}}\right] \leq 0 .
$$

It follows that if $0<A<B$ then $\alpha(r) A^{p}+\beta(r) B^{p} \leq \alpha(r) B^{p}+\beta(r) A^{p}$, which implies that it enough to prove that for $0<B<A, \alpha(r) A^{p}+\beta(r) B^{p} \leq(A+B)^{p}+(A-B)^{p}$. Dividing by A^{p}, it suffices to show that for $0 \leq R \leq 1$, the function $F(r)=\alpha(r)+R^{p} \beta(r)$ achieves its global maximum at $r=R$. But

$$
F^{\prime}(r)=(p-1)\left[(1+r)^{p-2}-(1-r)^{p-2}\right]\left[1-\left(\frac{R}{r}\right)^{p}\right]
$$

Thus, the only point in $(0,1)$ at which F^{\prime} vanishes is $r=R$, and since $1<p<2, F^{\prime}(1)$ is negative. This implies that F is maximal at $r=R$.

Corollary 0.2 (Hanner's inequality for $1 \leq p \leq 2$). For every $f, g \in L_{p}$,

$$
\left|\|f\|_{p}-\|g\|_{p}\right|^{p}+\left(\|f\|_{p}+\|g\|_{p}\right)^{p} \leq\|f+g\|_{p}^{p}+\|f-g\|_{p}^{p} .
$$

Proof. By symmetry we may assume that $r=\|g\|_{p} /\|f\|_{p} \leq 1$. By Lemma 0.1 the following pointwise inequality holds:

$$
\alpha(r)|f|^{p}+\beta(r)|g|^{p} \leq|f+g|^{p}+|f-g|^{p} .
$$

Integrating and simplifying gives the required result.

The following numerical lemma is well known.
Lemma 0.3 (Beckner's two-point inequality). For every $a, b \in \mathbb{R}$,

$$
\left[a^{2}+(p-1) b^{2}\right]^{1 / 2} \leq\left(\frac{|a+b|^{p}+|a-b|^{p}}{2}\right)^{1 / p}
$$

Proof. If $|a|<|b|$ then since $p<2, a^{2}+(p-1) b^{2} \leq b^{2}+(p-1) a^{2}$. We may therefore assume that $|a| \geq|b|>0$. Set $x=b / a$. Our goal is to show that $\left[1+(p-1) x^{2}\right]^{p / 2} \leq \frac{(1+x)^{p}+(1-x)^{p}}{2}$ for every $x \in[-1,1]$. Now, $\frac{(1+x)^{p}+(1-x)^{p}}{2}=\sum_{k=0}^{\infty}\binom{p}{2 k} x^{2 k} \geq 1+\frac{p(p-1)}{2} x^{2}$, where we have used the fact that since $p<2,\binom{p}{2 k} \geq 0$. Finally, the inequality $1+\frac{p(p-1)}{2} x^{2} \geq\left[1+(p-1) x^{2}\right]^{p / 2}$ follows from the elementary fact that $(1+t)^{\alpha} \leq 1+\alpha t$ for every $t, \alpha \in[0,1]$.

Let's complete the proof of (1). Fix $x, y \in L_{p}$. Then

$$
\begin{array}{rlrl}
\left(\frac{\|x+y\|_{p}^{2}+\|x-y\|_{p}^{2}}{2}\right)^{1 / 2} & \geq\left(\frac{\|x+y\|_{p}^{p}+\|x-y\|_{p}^{p}}{2}\right)^{1 / p} & & \text { (since } p \leq 2) \\
& \geq\left[\frac{\left(\|x\|_{p}+\|y\|_{p}\right)^{p}+\left|\|x\|_{p}-\|y\|_{p}\right|^{p}}{2}\right]^{1 / p} & \text { (Hanner's inequality) } \\
& \geq\left[\|x\|_{p}^{2}+(p-1)\|y\|_{p}^{2}\right]^{1 / 2} & \text { (Beckner's inequality), }
\end{array}
$$

and this is equivalent to (1) (setting $a=x+y$ and $b=x-y)$.

