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Abstract. It is shown that if (X, ‖ · ‖X) is a Banach space with Rademacher type p > 1
then for every n ∈ N there exists an even integer m . n2−1/p log n such that for every
f : Zn

m → X,

Ex,ε

[∥∥∥f (x +
m

2
ε
)
− f(x)

∥∥∥p
X

]
.X mp

n∑
j=1

Ex

[
‖f(x + ej)− f(x)‖pX

]
,

where the expectation is with respect to uniformly chosen x ∈ Zn
m and ε ∈ {−1, 1}n. This

improves a bounds of m . n3−2/p that was obtained in [7]. The proof is based on an
augmentation of the “smoothing and approximation” scheme, which was implicit in [7].

1. Introduction

A Banach space (X, ‖ · ‖X) is said to have Rademacher type p > 1 if there is a constant
T <∞ such that for every n ∈ N and for every x1, x2, . . . , xn ∈ X,

Eε

[∥∥∥ n∑
j=1

εjxj

∥∥∥p
X

]
6 T p

n∑
j=1

‖xj‖pX , (1)

where the expectation in (1) is taken with respect to the uniform probability measure on
{−1, 1}n. By considering the case of the real line, we necessarily have p 6 2. The smallest
possible T for which (1) holds is denoted by Tp(X). The notion of Rademacher type is clearly
a linear notion, as inequality (1) involves random linear combinations of vectors in X.

A Banach space (X, ‖ · ‖X) is said to be finitely representable in a Banach space (Y, ‖ · ‖Y )
if there exists a constant D < ∞ such that for every finite dimensional subspace E of X
there exists a subspace F of Y and a map T : E → F with ‖T‖ · ‖T−1‖ 6 D. A classical
theorem of Ribe (see [11] and also [2]) states that if two Banach spaces X and Y are uniformly
homeomorphic, then X is finitely representable in Y and vice versa. This theorem motivated
what is now known as the “Ribe program”: finding concrete metric characterizations of local
properties of Banach spaces (a property is said to be local if it depends only on finitely many
vectors).

In particular, Ribe’s theorem suggests that the notion of Rademacher type has a purely
metric characterization. Finding a concrete metric characterization of Rademacher type is a
long standing problem that goes back to the work of Enflo. Following Enflo, we say that a
metric space (M, dM) has Enflo type p > 0 if there exists a constant T < ∞ such that for

2010 Mathematics Subject Classification. 46B07,46B20,51F99.
O. G. was partially supported by NSF grant CCF-0635078. A. N. was supported in part by NSF grants

CCF-0635078 and CCF-0832795, BSF grant 2006009, and the Packard Foundation.

1



every n ∈ N and every f : {−1, 1}n →M,

Eε
[
dM(f(ε), f(−ε))p

]
6 T p

n∑
j=1

Eε
[
dM(f(ε1, . . . , εj−1, εj, εj+1 . . . , εn), f(ε1, . . . , εj−1,−εj, εj+1, . . . , εn))p

]
. (2)

In [4], Enflo asked whether for the class of Banach spaces, Enflo type is equivalent to
Rademacher type. Clearly, Enflo type p implies Rademacher p: simply apply inequality (2)
to the function f(ε) =

∑n
j=1 εjxj, and inequality (1) is obtained. In the other direction,

Pisier proved (see [10, Ch. 7]) that if a Banach space has Rademacher type p then it has
Enflo type p′ for every p′ < p. The question of whether Rademacher type p implies Enflo type
p remains an interesting open problem. Naor and Schechtman showed [9] that the answer is
positive for the class of UMD Banach spaces. We refer to the work of Gromov [6, Sec. 9.1]
and Bourgain, Milman and Wolfson [3] for earlier results related to the notion of non-linear
type, and to the work of Ball [1] for an important variant of (2) known as Markov type.

Motivated by their work on metric cotype [8], Mendel and Naor defined in [7] the notion
of scaled Enflo type. A metric space (M, dM) is said to have scaled Enflo type p > 0 with
constant θ <∞ if for every n ∈ N there exists an m ∈ 2N such that for every f : Znm →M,

Ex,ε

[
dM

(
f
(
x+

m

2
ε
)
, f(x)

)p ]
6 θpmp

n∑
j=1

Ex
[
dM (f(x+ ej), f(x))p

]
. (3)

In (3) and in what follows, {ej}nj=1 denotes the standard basis of Znm. In [7] the following
theorem was proved:

Theorem 1.1. A Banach space X has Rademacher type p ∈ [1, 2] if and only if it has scaled
Enflo type p.

The notion of scaled Enflo type thus gives a purely metric characterization of Rademacher
type. While the value of m is implicit in Theorem 1.1, it does play a crucial role. Note
that by choosing m = 2 in (3), the original Enflo type inequality (2) is obtained. Therefore,
finding the smallest m for which inequality (3) holds is a question of great interest. In [7] it
was shown that if a Banach space has Rademacher type p ∈ [1, 2] then it has scaled Enflo
type p with m . n3−2/p. Motivated by the recent progress in [5], we obtain the following
improved bound on m:

Theorem 1.2. Assume that a Banach space has Rademacher type p ∈ [1, 2]. Then for every
n ∈ N, there exists m ∈ 4N with m . n2−1/p log n such that for every f : Znm → X,

Ex,ε

[∥∥∥f (x+
m

2
ε
)
− f(x)

∥∥∥p
X

]
.X mp

n∑
j=1

Ex
[
‖f(x+ ej)− f(x)‖pX

]
. (4)

The outline of the proof of Theorem 1.2 is as follows: we begin by describing a general
“smoothing and approximation” scheme. This scheme allows us to replace f in inequality (3)
by a “smoothed” version of f and then use inequality (1). This is discussed in detail in Sec-
tion 2. Once we have the smoothing and approximation scheme, the proof of Theorem 1.2 is
straightforward. This is done in Section 3. Nevertheless, the smoothing and approximation
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scheme relies on two technical lemmas. These lemmas are proved in Section 4. The loga-
rithmic factor in Theorem 1.2 appears due to an additional complication that does not arise
in [5] (where there is no such logarithmic term); this is overcome here via an application of
Pisier’s inequality [10].

Notation. We use .,& to indicate that an inequality holds true with an implied absolute
constant. Also, we use .X ,&X to indicate that the implied constant depends on p and Tp(X)
and .p,&p if the constant depends on p only. Also, µ will denote the uniform probability
measure on Znm and τ will denote the uniform probability measure on {−1, 1}n. Finally, [n]
will denote the set {1, 2, . . . , n}.

2. The smoothing and approximation scheme for the case of type

Following [5], we investigate the approach which is implicit in [7]. Given f : Znm → X and
a probability measure ν on Znm, let

f ∗ ν(x) =

∫
Zn
m

f(x− y)dν(y).

For a Banach space X with Rademacher type p, suppose that we are given a probability
measure ν that satisfies the following two properties:

(A) Approximation property:∫
Zn
m

‖f ∗ ν(x)− f(x)‖pX dµ(x) .X Ap
n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x). (5)

(S) Smoothing property:∫
Zn
m

∫
{−1,1}n

‖f ∗ ν(x+ ε)− f ∗ ν(x− ε)‖pX dτ(ε)dµ(x)

.X Sp
n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x). (6)

The goal is to deduce inequality (3) from inequality (1). It is known that (3) holds for
’linear’ functions x 7→

∑n
j=1 xjvj (this statement is not completely accurate but is sufficient

to give an intuition). So, the idea is to first replace f by a smoothed version of it which
locally linear on average. The way to measure the smoothness of the function is given by
the smoothing property (6). On the other hand, the smoothed version of f has to be close
enough to f itself, since the final goal is to prove inequality (3) for f . This is measured by
the approximation property (5).

To obtain inequality (3) from (5) and (6), choose m ∈ 4N and note that by the triangle
inequality and convexity,∥∥∥f (x+

m

2
ε
)
− f(x)

∥∥∥p
X
6 3p−1

∥∥∥f ∗ ν (x+
m

2
ε
)
− f ∗ ν(x)

∥∥∥p
X

+ 3p−1
∥∥∥f ∗ ν (x+

m

2
ε
)
− f

(
x+

m

2
ε
)∥∥∥p

X
+ 3p−1 ‖f ∗ ν(x)− f(x)‖pX . (7)
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Also, by the triangle inequality and Hölder’s inequality (remembering that m is divisible by
4),

∥∥∥f ∗ ν (x+
m

2
ε
)
− f ∗ ν(x)

∥∥∥p
X
6

m/4∑
t=1

‖f ∗ ν(x+ 2tε)− f ∗ ν(x+ 2(t− 1)ε)‖X

p

6
(m

4

)p−1 m/4∑
t=1

‖f ∗ ν(x+ 2tε)− f ∗ ν(x+ 2(t− 1)ε)‖pX . (8)

Integrating (7) over Znm while using (8) and the translation invariance of µ,∫
Zn
m

∥∥∥f (x+
m

2
ε
)
− f(x)

∥∥∥p
X
dµ(x) . 3p

∫
Zn
m

‖f ∗ ν(x)− f(x)‖pXdµ(x)

+mp

∫
Zn
m

‖f ∗ ν(x+ ε)− f ∗ ν(x− ε)‖pXdµ(x). (9)

Using the approximation property (5) and the smoothing property (6), we get∫
Zn
m

∥∥∥f (x+
m

2
ε
)
− f(x)

∥∥∥p
X
dµ(x)

.X (Ap +mpSp)
n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x). (10)

If we could find a smoothing and approximation scheme for which S . 1 and A . m,
then (10) would imply∫

Zn
m

∥∥∥f (x+
m

2
ε
)
− f(x)

∥∥∥p
X
dµ(x) .X mpSp

n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x), (11)

which is precisely the desired scaled Enflo type inequality (3). Thus, the goal is to come up
with a smoothing and approximation scheme with S . 1 and A as small as possible. In [7]
it was shown that one can choose and A . n3−2/p. Here we show that we can in fact choose
A . n2−1/p log n.

Remark 2.1. In the context of metric cotype, it was shown in [5] that the scheme of
smoothing and approximation necessarily has limitations. Specifically, it was shown that
using such a scheme implies that m is bigger than some function of n. However, in the
context of type, this is no longer the case. If we assume that the notions of Rademacher
type and Enflo type are in fact the same for the class of Banach spaces, then the smoothing
property (6) should hold for f itself in which case the approximation property (5) becomes
trivial.

3. Proof of Theorem 1.2

Let f : Znm → X, and fix an odd integer 0 < k < m/2. We follow the notations in [5] and
define the following family of averaging operators. For f : Znm → X, k < m/2 an odd integer
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and B ⊆ [n], let

∆Bf(x)
def
=

1

µ(LB)

∫
Zn
m

f(x+ y)dµ(y), (12)

where

LB
def
= {y ∈ Znm : ∀i /∈ B, yi = 0;∀i ∈ [n] yi is even; dZn

m
(0, y) < k}.

As we mentioned in Section 2, the proof of inequality (3) will follow once we have the
smoothing and approximation properties. The approximation property is given by the fol-
lowing lemma, which was already proved in [7].

Lemma 3.1 (Lemma 2.2 in [7]). For every Banach space X and for every f : Znm → X,∫
Zn
m

∥∥∆[n]f(x)− f(x)
∥∥p
X
dµ(x) 6 (k − 1)pnp−1

n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x).

The smoothing property is the new ingredient in this note.

Lemma 3.2. Assume that X is a Banach space with Rademacher type p. Then for every
k & n log n we have for every f : Znm → X,∫

Zn
m

∫
{−1,1}n

∥∥∆[n]f(x+ ε)−∆[n]f(x− ε)
∥∥p
X
dτ(ε)dµ(x)

.X

n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x).

The proof of Theorem 1.2 now follows immediately.

Proof of Theorem 1.2. As we saw in Section 2, we must have S . 1 and A . m. By
Lemma 3.1 and Lemma 3.2 the smoothing and approximation properties hold with A =
(k − 1)n1−1/p and S = 1, assuming that k & n log n. This implies A & n2−1/p log n and
therefore m & n2−1/p log n. �

4. Proof of Lemma 3.1 and Lemma 3.2

Lemma 3.1 was already proved in [7]. However, we repeat its proof for the sake of com-
pleteness in Subsection 4.2. The proof of Lemma 3.2 is presented in Subsection 4.1.

4.1. Proof of Lemma 3.2. We recall some notation from [5]: for ε ∈ {−1, 1}n and B ⊆
[n], let εB be the restriction of ε to the coordinates of B. Also, for ε, ε′ ∈ {−1, 1}n, let
〈ε, ε′〉 =

∑n
j=1 εjε

′
j. Fix x ∈ Znm and ε ∈ {−1, 1}n. Let

Ri,lf(x, ε)
def
=
∑
S⊆[n]
|S|=i

∑
δ∈{−1,1}S
〈δS ,εS〉=i−2l

[
∆[n]\Sf(x+ δSk + ε[n]\S)−∆[n]\Sf(x+ δSk − ε[n]\S)

]
. (13)

Also, recall from [8] the following averaging operators:

Ejf(x)
def
=

1

µ(S(j, k))

∫
Zn
m

f(x+ y)dµ(y), (14)
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where

S(j, k)
def
= {y ∈ Znm : yj is even; ∀l ∈ [n]− {j}, yl is odd; dZn

m
(0, y) 6 k}.

The following identity follows immediately from Lemma 3.8 in [5]:

n∑
j=1

εj [Ejf(x+ ej)− Ejf(x− ej)] =
n∑
i=0

i∑
l=0

hi,l
kn−i−1

(k + 1)n−1
Ri,lf(x, ε), (15)

where {hi,l}l6i are scalars satisfying

h0,0 = 1, (16)

|hi,l| .
(i− l)!l!

2i
. (17)

Note that the first term on the right hand side of (15) equals(
k

k + 1

)n−1
R0,0f(x, ε) =

(
k

k + 1

)n−1 [
∆[n]f(x+ ε)−∆[n]f(x− ε)

]
.

Using identity (15), the triangle inequality and the fact that
(
k+1
k

)n−1
. 1,∥∥∆[n]f(x+ ε)−∆[n]f(x− ε)

∥∥
X

.

∥∥∥∥∥
n∑
j=1

εj [Ejf(x+ ej)− Ejf(x− ej)]

∥∥∥∥∥
X

+

∥∥∥∥∥
n∑
i=1

i∑
l=0

hi,l
ki
Ri,lf(x, ε)

∥∥∥∥∥
X

. (18)

The triangle inequality implies∥∥∥∥∥
n∑
i=1

i∑
l=0

hi,l
ki
Ri,lf(x, ε)

∥∥∥∥∥
p

X

6

(
n∑
i=1

i∑
l=0

|hi,l|
ki
‖Ri,lf(x, ε)‖X

)p

. (19)

Convexity of the function t 7→ tp and Hölder’s inequality imply(
n∑
i=1

i∑
l=0

|hi,l|
ki
‖Ri,lf(x, ε)‖X

)p

=

(
n∑
i=1

2−(i+1)

i∑
l=0

2i+1 |hi,l|
ki
‖Ri,lf(x, ε)‖X

)p

6
n∑
i=1

2−(i+1)

(
i∑
l=0

2i+1 |hi,l|
ki
‖Ri,lf(x, ε)‖X

)p

6
n∑
i=1

i∑
l=0

2(i+1)(p−1)(i+ 1)p−1
|hi,l|p

kip
‖Ri,lf(x, ε)‖pX . (20)

Therefore, combining (18) and (20), we get∥∥∆[n]f(x+ ε)−∆[n]f(x− ε)
∥∥p
X
.

∥∥∥∥∥
n∑
j=1

εj [Ejf(x+ ej)− Ejf(x− ej)]

∥∥∥∥∥
p

X

+
n∑
i=1

i∑
l=0

2(i+1)(p−1)(i+ 1)p−1
|hi,l|p

kip
‖Ri,lf(x, ε)‖pX . (21)

The next goal is to estimate the average of ‖Ri,lf(x, ε)‖pX over x ∈ Znm and ε ∈ {−1, 1}n.
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Lemma 4.1. Assume that X is a Banach space with Rademacher type p. Then for all
0 6 l 6 i 6 n,

∫
Zn
m

∫
{−1,1}n

‖Ri,lf(x, ε)‖pX dτ(ε)dµ(x)

.X (log n)p
(
n

i

)p(
i

l

)p
·

n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x). (22)

Proof. First, note that on the right hand side of (13) there are
(
i
l

)
terms for which 〈δS, εS〉 =

i− 2l and there are
(
n
i

)
sets S of size i. Therefore, applying the triangle inequality and then

Hölder’s inequality,

‖Ri,lf(x, ε)‖pX 6
(
n

i

)p−1(
i

l

)p−1
·
∑
S⊆[n]
|S|=i

∑
δ∈{−1,1}S
〈δS ,εS〉=i−2l

‖∆[n]\Sf(x+ δSk + ε[n]\S)−∆[n]\Sf(x+ δSk − ε[n]\S)‖pX . (23)

We would like to integrate inequality (23) over x ∈ Znm and ε ∈ {−1, 1}n. First, note that
by the invariance of µ we have

∫
Zn
m

∥∥∆[n]\Sf(x+ δSk + ε[n]\S)−∆[n]\Sf(x+ δSk − ε[n]\S)
∥∥p
X
dµ(x)

=

∫
Zn
m

∥∥∆[n]\Sf(x+ ε[n]\S)−∆[n]\Sf(x− ε[n]\S)
∥∥p
X
dµ(x). (24)

Since ∆[n]\S is a convolution with a probability measure we also have

∫
Zn
m

∥∥∆[n]\Sf(x+ ε[n]\S)−∆[n]\Sf(x− ε[n]\S)
∥∥p
X
dµ(x)

6
∫
Zn
m

∥∥f(x+ ε[n]\S)− f(x− ε[n]\S)
∥∥p
X
dµ(x). (25)

Thus, integrating (23) over x ∈ Znm while using (24) and (25),

∫
Zn
m

‖Ri,lf(x, ε)‖pX dµ(x)

6 2p
(
n

i

)p−1(
i

l

)p ∑
S⊆[n]
|S|=i

∫
Zn
m

‖f(x+ ε[n]\S)− f(x− ε[n]\S)‖pXdµ(x). (26)
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Recall Pisier’s inequality (see [10, Ch. 7]): for every g : {−1, 1}n → X,∫
{−1,1}n

∥∥∥∥g(ε)−
∫
{−1,1}n

gdτ

∥∥∥∥p
X

dτ(ε)

6 (e log n)p
∫
{−1,1}n×{−1,1}n

∥∥∥∥∥
n∑
j=1

ε′j
[
g
(
ε(j)
)
− g(ε)

]∥∥∥∥∥
p

X

dτ(ε′)dτ(ε),

where ε(j)
def
= (ε1, . . . , εj−1,−εj, εj+1, . . . , εn). For a fixed x ∈ Znm and S ⊆ [n], define

gx : {−1, 1}n → X to be gx(ε)
def
= f(x + ε[n]\S) − f(x − ε[n]\S). Clearly,

∫
{−1,1}n gdτ = 0.

Applying Pisier’s inequality to gx thus implies,∫
{−1,1}n

‖gx(ε)‖pX dτ(ε)

6 (e log n)p
∫
{−1,1}n×{−1,1}n

∥∥∥∥∥
n∑
j=1

ε′j
[
gx
(
ε(j)
)
− gx(ε)

]∥∥∥∥∥
p

X

dτ(ε′)dτ(ε). (27)

Applying the Rademacher type property of X, we get∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

ε′j
[
gx
(
ε(j)
)
− gx(ε)

]∥∥∥∥∥
p

X

dτ(ε′) .X

n∑
j=1

∥∥gx (ε(j))− gx(ε)∥∥pX . (28)

Now, by the definition of gx it follows immediately that

gx(ε)− gx
(
ε(j)
)

=
[
f(x+ ε[n]\S)− f

(
x+ ε

(j)
[n]\S

)]
+
[
f(x− ε[n]\S)− f

(
x− ε(j)[n]\S

)]
(in the case j ∈ S we let ε

(j)
[n]\S = ε[n]\S, in which case the difference is zero). Thus, using

convexity and the translation invariance of µ,∫
Zn
m

∥∥gx(ε(j))− gx(ε)∥∥pX dµ(x) 6 2p
∫
Zn
m

‖f(x+ ej)− f(x− ej)‖pX dµ(x)

6 4p
∫
Zn
m

‖f(x+ ej)− f(x)‖pX dµ(x). (29)

Integrating (27) over x ∈ Znm and using (28) and (29), we get∫
Zn
m

∫
{−1,1}n

∥∥f(x+ ε[n]\S)− f(x− ε[n]\S)
∥∥p
X
dτ(ε)dµ(x)

.X (log n)p
n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pX dµ(x). (30)

Plugging (30) into (26), we get∫
Zn
m

∫
{−1,1}n

‖Ri,lf(x, ε)‖pX dτ(ε)dµ(x)

.X (log n)p
(
n

i

)p(
i

l

)p n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x).
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The proof of Lemma 4.1 is therefore complete. �

We are now in a position to prove Lemma 3.2.

Proof of Lemma 3.2. Integrating inequality (21) over x ∈ Znm and ε ∈ {−1, 1}n, we get∫
Zn
m

∫
{−1,1}n

∥∥∆[n]f(x+ ε)−∆[n]f(x− ε)
∥∥p
X
dτ(ε)dµ(x)

.
∫
Zn
m

∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

εj [Ejf(x+ ej)− Ejf(x− ej)]

∥∥∥∥∥
p

X

dτ(ε)dµ(x)

+
n∑
i=1

i∑
l=0

2(i+1)(p−1)(i+ 1)p−1
|hi,l|p

kip

∫
Zn
m

∫
{−1,1}n

‖Ri,lf(x, ε)‖pX dτ(ε)dµ(x). (31)

Applying the Rademacher type inequality to the vectors {Ejf(x+ ej)− Ejf(x− ej)}nj=1,∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

εj [Ejf(x+ ej)− Ejf(x− ej)]

∥∥∥∥∥
p

X

dτ(ε)

.X

n∑
j=1

‖Ejf(x+ ej)− Ejf(x− ej)‖pX . (32)

Integrating (32) over x ∈ Znm and using convexity and the fact the Ej is a convolution with
a probability measure implies∫

Zn
m

∫
{−1,1}n

∥∥∥∥∥
n∑
j=1

εj [Ejf(x+ ej)− Ejf(x− ej)]

∥∥∥∥∥
p

X

dτ(ε)dµ(x)

.X

n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x). (33)

It remains to bound the second term in (31). For that, fix 1 6 i 6 n and 0 6 l 6 i. Using
Lemma 4.1 and the estimate (17), each term in the sum on the right hand side of (31) can
be bounded as follows:

2(i+1)(p−1)(i+ 1)p−1
|hi,l|p

kip

∫
Zn
m

∫
{−1,1}n

‖Ri,lf(x, ε)‖pX dτ(ε)dµ(x)

.X 2i(p−1)(i+ 1)p−1
(

(i− l)!l!
2iki

)p(
n

i

)p(
i

l

)p
(log n)p ·

n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x).

(34)

Now,

2i(p−1)(i+ 1)p−1
(

(i− l)!l!
2iki

)p(
n

i

)p(
i

l

)p
(log n)p =

(i+ 1)p−1

2i

(
n!

(n− i)!ki

)p
(log n)p

.p
(i+ 1)p−1

2i

(n
k

)ip
(log n)p.
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Thus, (34) becomes

2(i+1)(p−1)(i+ 1)p−1
|hi,l|p

kip

∫
Zn
m

∫
{−1,1}n

‖Ri,lf(x, ε)‖pX dτ(ε)dµ(x)

.X
(i+ 1)p−1

2i

(n
k

)ip
(log n)p ·

n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x). (35)

Plugging (35) and (33) into (31) implies∫
Zn
m

∫
{−1,1}n

∥∥∆[n]f(x+ ε)−∆[n]f(x− ε)
∥∥p
X
dτ(ε)dµ(x)

.X

[
1 +

n∑
i=1

(i+ 1)p

2i

(n
k

)ip
(log n)p

]
n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x). (36)

We always have (i+1)p

2i
.p 1. Thus, if we choose k & n log n, Lemma 3.2 follows from (36). �

4.2. Proof of Lemma 3.1. Given z ∈ Znmlet ‖z‖ def
=
∑n

j=1 |zj|, where |zj|
def
= min{zj,m−zj}.

For zj 6= 0, we let sgn(zj) = 1 if zj = |zj| and sgn(zj) = −1 otherwise. By the triangle
inequality, for every x, z ∈ Znm we have

‖f(x+ z)− f(x)‖X 6
n∑
j=1

|zj |∑
`=1

∥∥∥∥∥f
(
x+

j−1∑
t=1

ztet + ` · sgn(zj) · ej

)

−f

(
x+

j−1∑
t=1

ztet + (`− 1) · sgn(zj) · ej

)∥∥∥∥∥
X

. (37)

On the right hand side of (37) we have at most ‖z‖ non-zero elements and therefore Hölder’s
inequality implies

‖f(x+ z)− f(x)‖pX 6 ‖z‖
p−1

n∑
j=1

|zj |∑
`=1

∥∥∥∥∥f
(
x+

j−1∑
t=1

ztet + ` · sgn(zj) · ej

)

−f

(
x+

j−1∑
t=1

ztet + (`− 1) · sgn(zj) · ej

)∥∥∥∥∥
p

X

. (38)

Integrating (38) over x ∈ Znm and using the translation invariance of µ, we get∫
Zn
m

‖f(x+ z)− f(x)‖pXdµ(x) 6 ‖z‖p−1
n∑
j=1

|zj |∑
`=1

∫
Zn
m

‖f(x+ sgn(zj)ej)− f(x)‖pXdµ(x)

= ‖z‖p−1
n∑
j=1

|zj|
∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x). (39)
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Since k is odd, we have |(−k, k)n ∩ (2Z)n| = kn, and thus we get by (12)

∆[n]f(x) =
1

kn

∑
y∈(−k,k)n∩(2Z)n

f(x+ y). (40)

Using (40) and convexity implies∫
Zn
m

∥∥∆[n]f(x)− f(x)
∥∥p
X
dµ(x) 6

1

kn

∑
z∈(−k,k)n∩(2Z)n

∫
Zn
m

‖f(x+ z)− f(x)‖pXdµ(x). (41)

Combining (39) and (41) we get∫
Zn
m

∥∥∆[n]f(x)− f(x)
∥∥p
X
dµ(x)

6
1

kn

∑
z∈(−k,k)n∩(2Z)n

n∑
j=1

‖z‖p−1|zj|
∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x)

6 (k − 1)pnp−1
n∑
j=1

∫
Zn
m

‖f(x+ ej)− f(x)‖pXdµ(x).

The proof is therefore complete. �
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