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Abstract

A long-standing conjecture in combinatorics, made by Erdős and Simonovits, is that
the maximum number of edges in an n-vertex graph without a hexagon is asymptotically
1
2n4/3 as n→∞. This conjecture corresponds to the asymptotic optimality of constructions
of generalized quadrangles as a source of dense hexagon-free graphs. In this paper, we
construct a counterexample to this conjecture. For infinitely many n, we construct an
n-vertex hexagon-free graph of size

3(
√

5−2)

(
√

5−1)4/3 n4/3 + O(n) ≈ 0.534n4/3.

On the positive side, we obtain the best known upper bound for the maximum number
of edges in an n-vertex hexagon free graph: such a graph has size at most

λn4/3 + O(n7/6) ≈ 0.627n4/3

where λ is the real root of 16λ3 − 4λ2 + λ − 3 = 0. The same methods are applied
to give an upper bound for the maximum number of edges in a hexagon-free m by n

bipartite graph, and the bound is asymptotically tight when 2m = n or 2n = m.

1 Introduction

The forbidden subgraph problem, commonly known as a Turán-type problem, involves the
determination of the maximum number of edges that an n-vertex graph may have if it contains
no isomorphic copy of a fixed graph H. This number is called the Turán number for H,
and denoted ex(n, H). Apart from its intrinsic interest, this type of problem has drawn
considerable attention, since many graphs arising from natural algebraic constructions (for
example, Cayley graphs and incidence graphs of projective geometries) are known not to
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contain certain subgraphs. The case of the complete graph Kr was studied by Turán in [33],
where it was shown that:

ex(n,Kr) =
∑

1≤i<j≤r−1

⌊
n + i− 1

r − 1

⌋
·
⌊

n + j − 1
r − 1

⌋

Here, and in what follows, the notation an ∼ bn is used as shorthand for the statement
an/bn → 1 as n tends to infinity. We also write V (G) and E(G) for the sets of vertices and
edges of a graph G, and the size of G is the number of edges in G, denoted |G|.

For detailed surveys of Turán-type problems, we refer the reader to Füredi [18]. When the
forbidden subgraph H is not bipartite, the Turán problem is well understood. The Erdős-
Simonovits-Stone Theorem [13] asserts that as long as H is not bipartite,

ex(n,H) ∼
(

1− 1
χ− 1

)(
n

2

)
,

where χ is the chromatic number of H. Simonovits [30] further showed that if the chromatic
number of H decreases under deletion of any edge of H, and n is sufficiently large, then
ex(n, H) = ex(n,Kχ). In particular, for any odd cycle C, this shows ex(n,C) = bn4/4c when
n is large enough, and a complete bipartite graph with parts of sizes bn/2c and dn/2e is the
unique extremal graph.

When the forbidden subgraph H is bipartite, much less is known. Kövari, Sós and Turán [21]
showed that for the complete bipartite graph Kr,s with r ≤ s, ex(n, Kr,s) = O(n2−1/r), which
is known to be best possible for s > (r − 1)!, by the construction of norm graphs due to
Kollár, Rónyai and Szabó [20]. It follows that for each bipartite graph H, there is a constant
c > 0 such that ex(n,H) = O(n2−c). Erdős [10] conjectured that for every bipartite graph H

there are positive constants a, α such that ex(n,H) ∼ an1+α. In particular, it a major open
problem in combinatorics to determine the maximum size of a graph on n vertices containing
no cycle of length 2k, or 2k-gon. Such a cycle is denoted by C2k.

The Turán Problem for Even Cycles. The problem of determining the extremal number
for 2k-gons is related to questions in projective geometry. Indeed, all the densest known con-
structions of dense graphs without short even cycles arise from certain rank two geometries,
known as generalized polygons. These beautiful objects were first introduced and studied
by Tits [32]. A d-regular generalized r-gon is a rank two geometry whose bipartite incidence
graph is a d-regular graph of diameter r and girth 2r. Following Tits’ analysis, Feit and
Higman [15] proved an important theorem stating that for each d ≥ 3, d-regular generalized
r-gons exist only for r ∈ {3, 4, 6} (this theorem was, in part, motivated by the problem of
the classification of finite simple groups). It is therefore of interest to evaluate ex(n,C2k)
for k ∈ {2, 3, 5}. Erdős and Simonovits [14] conjectured that ex(n,C2k) ∼ 1

2n1+1/k for each
k ≥ 2. As we shall see, this corresponds to the asymptotic optimality of generalized polygons
as a source of constructions of graphs without 2k-gons.
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For infinitely many values of q, Benson [3] gave constructions of (q + 1)-regular bipartite
graphs with qk + qk−1 + . . . + q + 1 vertices in each part, and cycles of length at most 2k
when k ∈ {2, 3, 5}. A simple construction of graphs without cycles of length exactly 2k,
for k ∈ {2, 3, 5}, without use of algebraic geometry, is found in Wenger [35]. The simplest
case is the case k = 2. In this case, generalized triangles are precisely projective planes.
The bipartite incidence graph of a projective plane is a bipartite graphs with q2 + q + 1
vertices in each part and 1

2q(q + 1)2 edges. Furthermore, as shown in Alon and Spencer [2],
every quadrilateral-free bipartite graph of maximum size must have this form. Using the
existence of polarities for these projective planes, Erdős and Rényi [12] constructed a graph
on q2 + q + 1 vertices with 1

2q(q + 1)2 edges and no quadrilaterals. It was proved by Reiman
[28] that ex(n, C4) ≤ n

4 (1 +
√

4n− 3) for all n, and Füredi [16] showed that for any prime
power q > 13,

ex(q2 + q + 1, C4) = 1
2q(q + 1)2.

According to Füredi [17], the unique quadrilateral-free graph on q2 + q + 1 vertices are
polarity graphs of projective planes (Erdős-Renyi-type constructions), provided q is a prime
larger than thirteen. Lazebnik, Ustimenko and Woldar [25] generalized the Erdős-Rényi
construction, obtaining constructions, for k ∈ {3, 5}, of 2k-cycle-free graphs on qk + . . .+q+1
vertices of size

1
2 [(q + 1)(qk + . . . + q + 1)− qb

k+1
2
c − 1].

Thus Erdős and Simonovits conjectured (op. cit.) that these constructions are asymptotically
optimal (they certainly are for k = 2). Their conjecture was disproved in [24] for k = 5, via
a construction of a C10-free graph with roughly 4

56/5 n6/5 edges.

The Turán Number for the Hexagon. The only remaining unsettled case of the Erdős-
Simonovits conjecture in the range allowed by the Feit-Higman theorem is k = 3, i.e. the
case of hexagons. In this paper, we refute the conjecture in this remaining case, and also
obtain the best known bounds for ex(n,C6):

Theorem 1.1 For infinitely many n, there are n-vertex hexagon free graphs of size at least

3(
√

5−2)

(
√

5−1)4/3 n4/3 + 2(
√

5−2)

(
√

5−1)
n−O(n2/3) ≈ 0.534n4/3.

On the other hand, any hexagon free graph has at most λn4/3+O(n7/6) edges, where λ ≈ 0.627
satisfies 16λ3 − 4λ2 + λ− 3 = 0.

The techniques used to prove this theorem may be appropriately modified to obtain an
optimal upper bound for the maximum number of edges in an m by n hexagon-free bipartite
graph, which improves upon the previous bounds established by Györi [19] and de Caen and
Székely [9]. This maximum is denoted ex(m, n,C6), and has its roots in a paper of Erdős, in
which the analogous problem was analyzed for quadrilaterals, and applied to a problem in
combinatorial number theory.
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Theorem 1.2 For any pair of positive integers m and n,

ex(m,n, C6) ≤ 21/3(mn)2/3 + O(m2/9n8/9 + n2/9m8/9 + m + n).

Furthermore, there are arbitrarily large integers n for which

ex(m,n, C6) > 21/3(mn)2/3 + 2
9(m + n)−O(n2/3 + m2/3)

when 2m = n or 2n = m.

Asymptotic Analysis. The densest known constructions of graphs without 2k-gons are
due to Lazebnik, Ustimenko and Woldar [25] and Lubotsky, Phillips and Sarnak [23]. For all
k, the constructions show that

ex(n,C2k) ≥ n1+2/(3k).

The best known upper bounds for ex(n,C2k), proved in [34], are

ex(n,C2k) ≤ 8(k − 1)n1+1/k.

The theoretical upper bound for graphs of girth at least 2k + 1 is a classical combinatorial
result known as the Moore bound (see [4] page 180) in the case of regular graphs and, more
recently, due to Alon, Hoory and Linial [1] in general. It follows from this bound that the
maximum number ex(n,C3, C4, . . . , C2k) of edges in an n-vertex graph of girth at least 2k+1
satisfies

ex(n,C3, C4, . . . , C2k) ≤ 1
2
n1+1/k + o(n1+1/k).

It may be more natural to conjecture that there exist graphs of girth at least 2k+1 achieving
this theoretical upper bound, as it is true for k ∈ {2, 3, 5}, however we lack constructions,
especially for k = 4, of dense graphs without 2k-cycles. In fact, it is not even known in
general whether the order of magnitude of ex(n,C2k) is n1+1/k.

For convenience, let f(n, k) = ex(n,C2k) and g(n, k) = ex(n,C3, C4, . . . , C2k). It is of partic-
ular interest to study the asymptotic behaviour, for each k, of f(n, k)/g(n, k) as n tends to
infinity. An open problem of Erdős is to determine whether lim sup f(n, 2)/g(n, 2) > 1. An-
other way of stating this, in words, is whether graphs of girth five are always asymptotically
sparser than the bipartite incidence graph of a projective plane of order n. One may ask the
same question for k ≥ 3. In these cases, we are able to prove the following:

Theorem 1.3 Let k ≥ 3, and suppose that for some real number β > 0:

lim
n→∞

g(n, k)
n1+β

exists.

Then

lim inf
n→∞

f(n, k)
g(n, k)

≥ 2k(
√

k + 2− 2)
(k − 2)(

√
k + 2− 1)1+1/k

→ 2.
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Prior to Theorem 1.3, it was unknown whether f(n, k)/g(n, k) might tend to one for some
k ≥ 3. Bondy (personal communication) posed the following question: is it true that

f(n, k)
g(n, k)

→∞ as k →∞.

In fact, for k 6∈ {2, 3, 5}, it is not known whether the limit superior of the above ratio is finite.
We therefore make the following conjecture, which gives evidence for this finiteness:

Conjecture Let k ≥ 3, and let G be a 2k-cycle-free graph. Then some positive proportion of
the edges of G span a graph containing no cycles of length at most k + 1.

It may even be true that we can replace k +1 with 2k +1 in this conjecture. Partial evidence
for the conjecture was given by Kühn and Osthus [22], who showed that the above conjecture
is true when k + 1 replaced by a logarithmic function of k. In Section 3, we will prove that
the conjecture is true when k = 3 i.e. in the case of hexagon-free graphs.

Theorem 1.4 Let G = (V, E) be a hexagon-free graph. Then there is a subgraph of G of
girth five, containing at least 1

2 |E| edges. Equality holds if and only if G is a graph consisting
of an edge-disjoint union of complete graphs of order four or five.

This generalizes results of Györi [19] and Kühn and Osthus [22], and furthermore gives the
unique family of graphs for which there is no subgraph of girth five with more than 1

2 |E|
edges. It would be interesting to see how many edges must be deleted from a hexagon-free
graph to obtain a graph of girth at least seven or eight.

Pseudorandomness. Let us say that an n-vertex graph with p
(
n
2

)
edges is pseudorandom

if the second largest eigenvalue λ of its adjacency matrix is o(pn). A natural question is
whether the extremal graphs for a 2k-cycle are pseudorandom. It is fairly straightforward
to prove that the graphs constructed by Lazebnik, Ustimenko and Woldar [25] are indeed
pseudorandom. In particular, for the hexagon-free graph on n = q3 + q2 + q + 1 vertices with
1
2 [(q + 1)(q3 + q2 + q + 1) − q2 − 1] edges, λ = o(q) = o(n1/3). This follows essentially from
the fact that the number of paths of length three in in this graph is (1− o(1))

(
n
2

)
(see Chung

and Graham [8] for details). Our construction in Section 2 will start with such a graph, but
eventually we produce a family of denser graphs which are not pseudorandom. In fact, we
will produce a large number of non-isomorphic denser graphs, each with roughly the same
number of edges. The constructions as well as our upper bounds for ex(n,C6) indicate that
it may be difficult to determine limn→∞ ex(n,C6)n−4/3, if the limit exists.
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2 Constructions

Our construction of dense hexagon-free graphs starts with a known construction and modifies
it. Although the modifications may appear somewhat mysterious at first sight, the reader
will discover from the proof of our upper bound for ex(n,C6) that these modifications cannot
be avoided. We attempt to present a self-contained description of our construction, and
therefore begin by outlining the construction of the known (base) graph.

In what follows, the number of edges in a graph G is denoted by |G|, and uv ∈ G means that
the pair {u, v} is an edge of G.

2.1 Generalized Quadrangles and Polarities

We start with a purely combinatorial description of the base graph, and then give a brief
motivation for this construction from projective geometry. The base graph is a graph G on
F3

q , where q = 22t+1 and t is any positive integer. Two distinct vertices (a, b, c) ∈ F3
q and

(d, e, f) ∈ F3
q are adjacent in G if

{
ad2t

= f2t − b

ae = e2t+1 − (df)2
t − c.

It is shown in [25] that this graph has 1
2q4 − 1

2q2 edges and no cycles of length six. This may
be checked technically, however, it is more instructive to turn to the geometric background
of this construction. For this, the notion of a polarity is required.

The base graph G which we defined above is defined from an automorphism of a certain
bipartite graph, known as a generalized quadrangle. This automorphism is known as a
polarity. For an n by n bipartite graph H, with parts L and R, a polarity π on H is an
involutary automorphism of H: π2 = Id, π(L) = R, π(R) = L, and uv ∈ H if and only if
π(v)π(u) ∈ H. A polarity π of a rank two geometry (i.e. a set of points and lines and an
incidence relation on them) is precisely a polarity of the incidence graph of the geometry,
and one requires that π sends points to lines, lines to points and incidence is preserved. The
polarity graph of H with respect to π is the graph Hπ defined on L by Hπ = {uv : uπ(v) ∈ H}.
Let nπ denote the number of fixed points of π. The base graph G is precisely the polarity
graph of some bipartite graph H. We will make this explicit in the next subsection, where
we describe H and use it to deduce certain useful facts about G = Hπ. To do this, we require
some basic facts on polarity graphs in general: these propeties are straightforward to verify
(see [25]). For any polarity π of a bipartite graph H:

(1) Hπ has |R| vertices and |Hπ| = 1
2 |H| − nπ.

(2) If Hπ contains a (2k + 1)-gon, then H contains a (4k + 2)-gon.

(3) If Hπ contains a 2k-gon, then H contains a 2k-gon.

In what follows, we refer to the base graph as the polarity graph of a generalized quadrangle
or, simply, the polarity graph.
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2.2 Properties of the Polarity Graph

The bipartite graph H of which G is the polarity graph is the bipartite incidence graph of a
rank two geometry, known as the affine part of a generalized quadrangle. The graph H has
parts L = R = F3

q , in which the vertex (a, b, c) ∈ L is joined to (d, e, f) ∈ R if ad = e− b and
ae = f − c. The simplest analysis showing that this graph has no cycles of length four or
six is presented in Wenger [35], where only elementary linear algebra is used. It is also easily
verified that H has q4 edges and q3 vertices in each part. The polarity π on H which gives
G = Hπ, used in [25], is defined by

π(a, b, c) = (a2t+1
, (ab)2

t
+ c2t

, b2t+1
) for (a, b, c) ∈ L

π(d, e, f) = (d2t+1
, f2t

, e2t+1
+ (df)2

t+1
) for (d, e, f) ∈ R.

The fact that π is a polarity on H was proved in Peykre [27]. As H has girth eight, (1) and
(3) imply that G = Hπ has 1

2q4− 1
2q2 edges. By (2) and (3), G has no triangles, quadrilaterals

or hexagons.

2.3 Construction of Dense Hexagon-Free Graphs

We begin with a construction showing that Theorem 1.2 is optimal. To do so, let H be the
incidence graph of a generalized quadrangle, with parts L and R, as defined above. Then H

has girth eight. Now add a new set of vertices L′ to H, and let φ : L′ ↔ L be a bijection.
Define a bipartite graph H ′ with parts R and L ∪ L′ as follows:

H ′ = {uv : u ∈ L ∪ L′, v ∈ R, uv ∈ H or φ(u)v ∈ H}.

This is a q3 by 2q3 bipartite graph with 2q4 = 21/3(2q · q)2/3 edges. To see that H ′ contains
no hexagons, suppose for a contradiction that C = (v1, v

′
2, v3, v

′
4, v5, v

′
6, v1) is a hexagon in

H ′. By symmetry, we may assume C contains at least four edges of H. Form the closed walk
(v1, v2, v3, v4, v5, v6, v1) in H where vi = v′i if v′i ∈ L and vi = φ(v′i) if v′i ∈ L′. Since H contains
no cycles of length at most six, this closed walk of length six must traverse each edge of a tree
in H twice. Note that each edge of the cycle corresponds to a step in the walk. However, the
tree has at least four edges, since C contains at least four edges of H. This implies the walk
has length at least eight, a contradiction. Therefore H ′ contains no hexagons. A slightly
better construction is provided if we begin with a generalized quadrangle with q3 + q2 + q +1
points and in which each line contains q +1 points. In this case, the construction above gives
a bipartite graph with 2(q + 1)(q3 + q2 + q + 1) edges, and if n = 2(q3 + q2 + q + 1) and
m = q3 + q2 + q + 1, this is asymptotic to

21/3(mn)2/3 + 2
9(m + n) + O(m2/3 + n2/3).

We now give a construction for the lower bound in Theorem 1.1. Start with the base graph
G = Hπ on the vertex set V , which has size n = q3. Let (A, B) be a partition of V into two
sets A and B, let G[A] be the subgraph of G induced by A, and suppose that each edge in
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G[A] is given an orientation. Write u → v if the edge uv ∈ G[A] is oriented from u to v. We
create from the pair (G,A) a new graph GA. Let W be a set of vertices disjoint from V with
|W | = |A|, let φ be a bijection W ↔ A and let GA be the graph on V ∪W defined as follows:

|GA| = {uv : u, v ∈ V, uv ∈ G} ∪ {uv : uφ(v) ∈ G, u ∈ B, v ∈ W}
∪ {uv : u ∈ A, v ∈ W,φ(v) → u}.

We claim that GA contains no hexagons. To see this, suppose for a contradiction that C =
(v1, v2, v3, v4, v5, v6, v1) is a hexagon in GA. Form the closed walk (u1, u2, u3, u4, u5, u6, u1) in
G where ui = vi if vi ∈ V and ui = φ(vi) if vi ∈ W . This closed walk must occur on a tree
T ⊂ G, since G has no cycles of length three, four or six. Therefore T has at most three
edges. On the other hand, if C contains at most one vertex of W , then there are at least four
edges of C in G, so T has at least four edges, a contradiction. Therefore C contains at least
two vertices of W . However, we claim that this also implies T has at least four edges. In this
case, note that there are two vertices u, v ∈ W of C, each incident with two edges of GA,
since no vertices of W are adjacent. The four edges of C incident with u and v correspond
to two subpaths of T of length two whose center vertices are φ(u) and φ(v), by construction.
If these subpaths share an edge, then the edge is φ(u)φ(v). However, then u is adjacent to
φ(v) and v is adjacent to φ(u), which contradicts the fact that u and v are only adjacent to
out-neighbours of φ(u) and φ(v), respectively. Therefore the two subpaths do not share an
edge, and T has at least four edges. This contradiction shows that GA has no hexagons.

We now choose A so as to maximize the number of edges in GA. Fix a positive integer K < n

and let A ⊂ V be a subset of size K, chosen uniformly at random among all such subsets.
Observe that in expectation, the number of edges incident with A is at least K

n

(
2− K−1

n−1

)
|G|.

Therefore we can choose such an A for which the number of edges in GA is at least

|G|+ K
n

(
2− K−1

n−1

)
|G|.

The number of vertices in GA is N = n + K. Choosing K = b(√5− 2)nc it follows that

|GA| ≥ 3(
√

5−2)

(
√

5−1)4/3 N4/3 −O(N1/3).

This construction almost gives the expression claimed in Theorem 1.1. To obtain a slightly
better construction, and the expression in Theorem 1.1, one begins with H as the bipartite
incidence graph of a generalized quadrangle with q3 + q2 + q + 1 points, in which each line
contains q + 1 points. In this way, the polarity graph G = Hπ (which is described in [25])
has q3 + q2 + q + 1 vertices and size

1
2
[(q + 1)(q3 + q2 + q + 1)− q2 − 1] =

1
2
q(q3 + 2q2 + q + 2).

Writing n = q3 + q2 + q + 1, the number of edges in G is 1
2n4/3 + 1

3n − O(n2/3), so our
construction GA applied to the denser graph G has size at least
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3(
√

5−2)

(
√

5−1)4/3 N4/3 + 2(
√

5−2)

(
√

5−1)
N −O(N2/3).

This completes the construction for the lower bound in Theorem 1.

Finally, we remark that the constructions give a family of graphs with roughly the same
number of edges. Indeed, the base graph G is pseudorandom, and it is known that in such
graphs, the number of edges between between disjoint sets A and B in G and induced by A

in G is roughly the same as in a random graph with the same density. Therefore we may
choose any subset A of the appropriate size and any orientation of the edges within A, and
the construction will have asymptotically the same density. Now the orientation of edges
in A produces the non-isomorphism: in fact the outdegree sequence of the vertices in A is
exactly the degree sequence of the K new vertices added to produce GA.

2.4 Constructions for Longer Even Cycles

Here we give a generalization of the construction for hexagons to graphs without cycles of
length 2k, starting with a fixed graph of girth at least 2k. This constitutes the proof of
Theorem 1.3. We proceed similarly to the construction for hexagons. Fix k ≥ 2, and let G

be an extremal graph containing no cycles of length at most 2k. Let A be a subset of the
vertex set V of G of size K as before, i.e. the number of edges incident with A is at least

K

n

(
2− K − 1

n− 1

)
|G|.

Take an arbitrary orientation of the edges inside A. Let ` be a positive integer less than k−1.
Define a new graph GA

` by taking disjoint sets {Av : v ∈ A} of size ` and

GA
` = G ∪

⋃

v∈A

{xy : x ∈ Av, y ∈ V \A, vy ∈ G} ∪ {xy : x ∈ Av, y ∈ V \A, v → y}.

We prove that GA
` contains no cycles of lengths 2` + 3, 2` + 4, . . . , 2k. First, let us show

that the vertex set of every cycle in GA
` of length m ≤ 2k is contained in Av ∪ V for some

v ∈ A. We proceed by induction on m. For m = 4, if a quadrilateral in GA
` contains a

vertex of Av and a vertex of Aw, then v and w have a pair of common neighbours in G,
which implies v = w since G does not contain a quadrilateral. Now suppose that we have
proved the statement for cycles of length less than m, and suppose GA

` contains a cycle C of
length m, where m > 4. If C contains two vertices of some Av, then these vertices have the
same neighbourhood in GA

` , so we find a cycle C ′ of length strictly less than m in GA
` . By

induction, all vertices of C ′ not in G are contained in Av, which implies the same for C, as
required. We may therefore assume |V (C) ∩ Av| ≤ 1 for all v ∈ A. Now C corresponds to a
closed walk of length m on a tree T with at most bm/2c edges in G. Let x be the number of
vertices of C not in G. Then T has at least 2x + 1 vertices. Hence 2x + 1 ≤ bm/2c+ 1. On
the other hand, T has at least m− x vertices, implying m− x ≤ bm/2c+ 1. It follows that
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m = 4, which we have dealt with above. This completes the induction. Now we show that
GA

` contains no cycles of length at least 2`+4 and at most 2k. Suppose C is such a cycle. By
what we have proved, V (C) ⊂ Av ∪V for some v ∈ A. Now some subpath of C disjoint from
v joins two neighbours of vertices in Av, since C contains at most 2` edges incident with Av,
and therefore at least three edges of G, not all incident with v. This gives a cycle in G, of
length at most |C|, a contradiction. Therefore GA

` contains no cycles of length at least 2`+3
and at most 2k.

We consider the graph GA = GA
k−2 for our construction. Suppose that for some β, γ > 0,

lim
n→∞

g(n, k)
n1+β

= γ.

Recall that g(n, k) is the maximum number of edges in an n-vertex graph of girth at least
2k+1. For convenience, let N = n+(k−2)K, the number of vertices in GA. Then, denoting
α = K/n, the number of edges in GA satisfies:

lim
n→∞

|GA|
g(n, k)

= ck(α) =
(k − 2)α2 + 2(k − 2)α(1− α) + 1

(1 + α)1+β
.

We note that β ≤ 1
k , by the Moore bound [1]. Therefore

ck(α) ≥ (k − 2)α2 + 2(k − 2)α(1− α) + 1
(1 + α)1+1/k

.

Maximizing over all choices of α ∈ (0, 1), we find ck(α) achieves a maximum at α =
√

k+2−2
k−2

in which case, for k ≥ 3,

ck = max
α∈(0,1)

ck(α) =
2k(

√
k + 2− 2)

(k − 2)(
√

k + 2− 1)1+1/k
.

Then c3 ≈ 1.068, c4 ≈ 1.130, c5 ≈ 1.184. Also,

ck ∼ 2− 2√
k
−O

( log k

k

)

as k tends to infinity. In particular, by starting with the the polarity graph of a generalized
hexagon, this gives a denser construction of a graph without cycles of length ten than that
presented in [25], namely

ex(n,C10) ≥ 10(
√

7−2)

3(
√

7−1)
N6/5 + 2

5N −O(N4/5) ≈ 0.592N6/5.
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3 The Structure of Hexagon-Free Graphs

A priori, it may seem plausible that an extremal hexagon-free graph on n vertices “resembles”
a regular graph of girth seven. However this is not at all the case. The constructions of the
last section are not regular, and have a very large number of triangles, quadrilaterals and
pentagons. We will see in the next few sections that an extremal hexagon-free graph must
indeed contain many quadrilaterals. In the present section, we analyse how quadrilaterals
may appear in a hexagon-free graph.

3.1 Block Subgraphs

Let G be a hexagon-free graph. A complete bipartite graph K ⊂ G is called maximal if it
contains a cycle and is not properly contained in any other complete bipartite graph in G.
If K has at least six edges, then K consists of a unique pair of vertices of degree at least
three, denoted base(K), together with the set of all their common neighbours. An intersecting
family of maximal complete bipartite subgraphs is a non-empty family K of maximal complete
bipartite subgraphs such that

E(K) ∩ E(K ′) 6= ∅ for all K, K ′ ∈ K.

An intersecting family K is a maximal intersecting family if K ∪ {K} is not an intersecting
family for all maximal complete bipartite subgraphs K ⊂ G with K 6∈ K. A block subgraph of
a hexagon-free graph is any subgraph comprising the union of a maximal intersecting family.
The main structural result of this section is as follows:

Theorem 3.1 Let F be the subgraph of a hexagon-free graph G consisting of all edges of G

which are not in any quadrilateral. Then G = F∪H1∪H2∪. . .∪Hr where Hi are edge-disjoint
block subgraphs of G which are edge-disjoint from F .

This theorem will be used heavily throughout the rest of the paper. In order to prove the
theorem, we will show that block subgraphs fall into four different classes of subgraphs. We
now describe these types of subgraphs.

Let us say that a maximal complete bipartite subgraph is isolated if it does not share an edge
with any other maximal complete bipartite subgraph. A subgraph has type (1) if it is an
isolated maximal complete bipartite subgraph. A subgraph is of type (2) if its vertex set is
of the form {u, v, w} ∪ A ∪ B where {u, v, w} induces a triangle, A is the set of all common
neighbours of {u, v} excluding w, B is the set of all common neighbours of {u, w} excluding
v, A and B are non-empty, and A ∩ B = ∅. A subgraph is of type (3) if its vertex set is of
the form A∪ {u, v, w, x} where {u, v, w, x} induces a complete graph on four vertices, and A

is the set of all common neighbours of {u, v}, excluding w and x. Finally, a subgraph is of
type (4) if it has five vertices and minimum degree at least three. Examples of these types
of subgraphs are illustrated below:

11



Type (4)Type (2) Type (3)

The following theorem is the next main structural result of this section: it is a classification
of the block subgraphs of a hexagon-free graph. Its proof involves a somewhat technical case
analysis, which is deferred to Appendix 8. Let us say that a subgraph H of a given graph
G is strongly induced if any path of length at most four in G with endpoints in H is entirely
contained in H.

Theorem 3.2 Let H be a block subgraph of a hexagon-free graph. Then H has type (1), or
H is a strongly induced subgraph of type (2), (3) or (4).

Assuming the validity of Theorem 3.2, it is a short step to deduce Theorem 3.1:

Proof of Theorem 3.1 Let H1,H2, . . . ,Hr be the block subgraphs of G. Then F is edge-
disjoint from H1 ∪ H2 ∪ . . . ∪ Hr, since every edge of H1 ∪ H2 . . . ∪ Hr is in at least one
quadrilateral in G, and no edge of F is in a quadrilateral in G. Furthermore,

E(G)\E(F ) ⊂ E(H1) ∪ E(H2) ∪ . . . ∪ E(Hr),

since an edge in a quadrilateral is contained in some maximal complete bipartite subgraph
of G, which is contained in some block subgraph of G, by definition of block subgraphs. It
remains to show that the block subgraphs H1,H2, . . . , Hr are edge-disjoint. By Theorem 3.2,
there are four types of block subgraphs. A block subgraph of type (1) is clearly edge-disjoint
from all other block subgraphs, by definition. We now require the following two facts:

Fact 1. Let H and H ′ be block subgraphs of types (2), (3) or (4), and suppose that
H and H ′ have the same vertex set. Then H = H ′.

Fact 2. Let u, v, w be three vertices in a block subgraph H of type (2), (3) or (4).
Then there is a path of length at most four containing w and with endpoints u and v.

These facts follow from Theorem 3.2. Now suppose H and H ′ are block subgraphs of type
(2), (3) or (4), sharing an edge {u, v}. It is sufficient to prove H = H ′. If not, then Fact 1
shows that V (H) 6= V (H ′). Let w ∈ V (H ′)\V (H). By Fact 2, there is a path P ⊂ H ′ joining
u to v and containing w, of length at most four. This contradicts Theorem 3.2.

12



3.1.1 Quadrilateral-Free Subgraphs

The results of this section will not be required for any of the subsequent material. A nat-
ural question is, given an hexagon-free graph, what is the maximum number of edges in a
quadrilateral-free subgraph or a subgraph of girth at least five? Györi [19] proved that every
hexagon-free bipartite graph G = (V,E) contains a subgraph with at least 1

2 |E|+1 edges and
no quadrilateral. In the next theorem, we extend this result to hexagon-free graphs which
are not necessarily bipartite. In fact, Györi’s theorem follows at once from the fact that all
block subgraphs of a bipartite graph are isolated, and the proof which we give below. This
contains the proof of Theorem 1.4.

Theorem 3.3 Some set of at least 1
2 |E| edges of any hexagon-free graph G = (V, E) form

a subgraph containing no cycle of length four (respectively, no cycle of length at most four).
Equality holds if and only if G is a union of edge-disjoint complete graphs of order five
(respectively, complete graphs of order four or five).

Proof. By Theorem 3.1, G admits a decomposition into block subgraphs and a subgraph
F no edge of which is in a quadrilateral. We may delete less than half the edges of F to
obtain a bipartite subgraph F ′ of F of girth at least eight (for example, the expected size of a
random cut of F into two equal size parts is 1

2 |F |, so there is a cut of the required size). For
each block subgraph H, by Theorem 3.2, we observe that H contains a spanning subgraph
containing no quadrilaterals and with at least 1

2 |E(H)| edges. Equality holds only if H is a
complete graph on five vertices. So, we may delete 1

2 |E(H)| edges of H to obtain a subgraph
H ′ of H containing no quadrilaterals. Now F ′ together with all subgraphs H ′ is a subgraph
of G containing no quadrilaterals. Equality holds if and only if F = ∅ and H = K5 for every
block subgraph H.

To prove Theorem 1.4, i.e. the statements in brackets, observe that every block subgraph
contains a spanning subgraph with half its edges and of girth five. Equality holds only if the
block subgraph is a complete graph of order four or five. Repeating the above proof with an
application of Theorem 3.1, we obtain the required subgraph of girth at least five.

It would be interesting to see if similar arguments work to find, say, a subgraph of girth eight
containing a positive proportion of the edges. Also, we remark that for hexagon-free bipartite
graphs G, we obtain a subgraph of girth at least eight with at least 1

2 |E|+ k edges, where k

is the number isolated block subgraphs in G. Note that all blocks H of G are isolated, and
a spanning tree in each such H has 1

2 |H|+ 1 edges.
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4 Paths of Length Three

If π is a pair of vertices of V , then |π| denotes the number of paths of length three in G

with both endpoints in π. Throughout this section, G(π) is the subgraph of G consisting
of the union of all paths of length three with endpoints in π. For a pair π with |π| ≥ 2,
we say that G(π) is degenerate if the distance between the vertices of π in G(π) is two, and
non-degenerate otherwise. The aim of this section is to find an upper bound for the number
of paths of length three in any hexagon-free graph. The number of such paths is precisely∑

π∈(V
2)
|π|. The range of summation will be partitioned into sets and the sums over each

of these sets will be estimated. One of the main results (Lemma 4.3) is that the sum over
non-degenerate pairs π with |π| ≥ 3 and over degenerate pairs π with |π| ≥ 2 is less than
27∆|E|, which we consider to be small. This already gives the upper bound

∑

π∈(V
2)
|π| < 2

(
n

2

)
+ 83∆|E|.

However, we will improve this bound by showing that Σ = {π : |π| = 1} is large. In particular,
we will show (in Lemma 4.6) that in a hexagon-free graph with close to the extremal number
of edges, a positive proportion of all pairs of vertices are joined by a unique path of length
three.

4.1 Subgraphs Spanned by Paths

To find the maximum possible number of paths of length three in a hexagon-free graph, we
first require an analysis of the graphs G(π). We begin with the non-degenerate case:

Lemma 4.1 Suppose G(π) is non-degenerate. Then for some quadrilateral Q(π) or some
maximal complete bipartite subgraph K(π), and some pendant edge e(π),

G(π) =
{

Q(π) ∪ {e(π)} if |π| = 2
K(π) ∪ {e(π)} if |π| > 2.

Furthermore, Q(π) and K(π) contain exactly one vertex x ∈ π; the unique vertex of e(π) in
Q(π) or K(π) is not adjacent to x; e(π) contains the other vertex y ∈ π; and base(K) 6∈ G.
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Proof. Let E(π) be the set of edges of G(π) which are not incident with π. Since G contains
no hexagon, E(π) is an intersecting family. Therefore E(π) spans a star or a triangle. If E(π)
spans a triangle, then |π| ≥ 3 and G(π) has five vertices. Also, each path of length three
with endpoints in π contains one edge of the triangle, and two edges incident with π. This
implies that some vertex of triangle has degree four in G(π), so G(π) is degenerate, which
is a contradiction. Therefore E(π) spans a star, S(π). Now every endvertex of the star is
adjacent to exactly one vertex of π, since G(π) is non-degenerate. Suppose that π = {u, v}
and that a leaf x of S(π) is adjacent to u and a leaf y of S(π) is adjacent to v. Let w be
the centre of the star S(π). By definition of G(π), the edges uw and vw must be present in
G(π). However this implies G(π) is degenerate. So every leaf of S(π) is adjacent to u and
not v, or every leaf of S(π) is adjacent to v and not u. The vertex w is adjacent to v in the
first case, and to u in the second. Thus G(π) has the required structure.

The neighbourhood of a vertex v in G is denoted Γ(v). The closed neighbourhood is Γ[v] =
Γ(v) ∪ {v}. Any subgraph H of G is central if V (H) ⊂ Γ[v] for some v ∈ V (H), and we say
that v is central for H.

Lemma 4.2 Suppose G(π) is degenerate. Then G(π) is central.

Proof. In the proof of Lemma 4.1, we argued that if E(π) spans a triangle, then some vertex
v of the triangle has degree four in G(π). So v is central for G(π). In case E(π) spans a star
centered at a vertex w, it is not hard to verify that w is adjacent to both vertices in π, and
therefore central for G(π).

4.2 Pairs Joined by Many Paths

Define Π1 = {π ∈ (
V
2

)
: |π| ≥ 2 and G(π) is degenerate} and Π2 = {π ∈ (

V
2

)
: |π| >

2 and G(π) is non-degenerate}, and Π = Π1 ∪Π2. Then Π contains all pairs π with |π| ≥ 3.

Lemma 4.3
∑

π∈Π

|π| < 27∆|E|.

Proof. We will show that the sums over Π1 and Π2 are less than 25∆|E| and 2∆|E| respec-
tively. We begin with Π1. By Lemma 4.2, for each π ∈ Π1, G(π) is central. Therefore we
may write ∑

π∈Π1

|π| ≤
∑

v∈V

|P [v]|

where P [v] is the set of paths of length three consisting entirely of vertices of Γ[v]. If E[v] is
the set of edges in Γ[v] and E(v) is the set of edges of E[v] not incident with v, then

|P [v]| < 4
(|E[v]|

2

)
< 2|E[v]|2.
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Now, since G is hexagon free, no path of length four consists entirely of edges of E(v). It
follows, from well known extremal results for paths [11], that |E(v)| ≤ 3

2 |Γ(v)| and therefore
|E[v]| ≤ 5

2 |Γ(v)|. Therefore

∑

π∈Π1

|π| <
∑

v∈V

25
2 |Γ(v)|2

< 25
2 ∆

∑
v∈V |Γ(v)| = 25∆|E|.

The next task is to deal with Π2. By Lemma 4.1,
∑

π∈Π2

|π| =
∑

K⊂G

∑

K(π)=K

|π|

where the second sum above is the sum over pairs π for which K = K(π) where K is a
maximal complete bipartite graph of G with |K| ≥ 6 and base(K) 6∈ E. The number of
π ∈ (

V
2

)
for which K = K(π) is at most 2∆, since the choice of a pendant edge on K specifies

π, by Lemma 4.1. By Theorem 3.2, and since base(K) 6∈ G, each K is contained in a block
subgraph H of type (1) or (4). By Theorem 3.1, block subgraphs are edge-disjoint so H is
uniquely determined by K. In turn, if K = K(π), then |π| = 1

2 |K| ≤ 1
2 |H|. Finally, the

number of choices of K ⊂ H is at most two, since H has type (1) or (4) and base(K) 6∈ G.
Therefore

∑

π∈Π2

|π| <
∑

H⊂G

∑

K⊂H

∆|H|

<
∑

H⊂G

2∆|H|

< 2∆
∑

H⊂G

|H| ≤ 2∆|E|.

In the penultimate line, we used Theorem 3.1: the block subgraphs of G are edge-disjoint.

4.3 Directed Paths

A maximum directed cut in an oriented graph G is a partition of the vertex set into two sets
X and Y such that the number of directed edges from X to Y is as large as possible. This
maximum is denoted mdc(G).

Proposition 4.4 Let G be an oriented graph on n vertices with e edges, and suppose that
mdc(G) ≤ γe. Then the number of directed paths of length two in G is at least (1− γ)2 e2

n .

The proof of Proposition 4.4 is based on the following numerical inequality:
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Lemma 4.5 For n ≥ 1 let V be an n-point set and f, g : V → [0,∞) be two functions such
that

∑
v∈V f(v) =

∑
v∈V g(v). Then

∑

v∈V

f(v)g(v) ≥ 1
n

( ∑

v∈V

min{2f(v)− g(v), f(v)}
)2

Proof. The proof is by induction on n. The inequality is clearly valid for n = 1. Now
suppose n > 1, and denote h(v) = g(v)− f(v), I = {v ∈ V : h(v) > 0}. For convenience, we
let

∑
v∈I h(v) = a and

∑
v∈V f(v) = b. Then the required inequality becomes:

∑

v∈V

f(v)[f(v) + h(v)] ≥ 1
n(b− a)2. (1)

Since f and g have the same sum over V , we observe that
∑

v∈V h(v) = 0. Also, we may
assume that a < b, since otherwise the required result holds trivially.

Let f and h be functions which minimize the sum in (1) subject to the constraints f ≥ 0 and
f + h ≥ 0, and the three constraints

∑

v∈I

h(v) = a
∑

v∈V

h(v) = 0
∑

v∈V

f(v) = b.

Set A = {v ∈ V : f(v) = 0} and B = {v ∈ V : f(v) + h(v) = 0}. We may assume that A

and B are disjoint sets, since if v ∈ A ∩ B then we may apply the induction hypothesis to
V \ {v}. We may also assume that X = V \(A ∪B) is non-empty, since otherwise

b =
∑

v∈B

f(v) = −
∑

v∈B

h(v)) ≤ a,

contradictory to our assumption that a < b. Setting S =
∑

v∈B h(v), we find that the
restriction of f to X is the global minimizer, among all functions f̃ on X, of

∑

v∈X

f̃(v)[f̃(v) + h(v)],

subject to the constraints f̃ ≥ 0 and f̃ + h ≥ 0, and
∑

v∈X f̃(v) = b + S. Moreover, by
construction, the minimizer f |X is in the interior of the polytope defined by these constraints.
Hence, there is a Lagrange multiplier λ ∈ R such that for all v ∈ X,

2f(v) + h(v) = λ. (2)

Using that
∑

v∈V h(v) = 0, we find
∑

v∈X

h(v) =
∑

v∈V

h(v)− S − T = −S − T,

where T =
∑

v∈A h(v). Let m = |X| = n− |A ∪B|. Summing (2) over v ∈ X, we obtain

f(v) =
2b + S − T

2m
− h(v)

2
.
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Now f(v) and h(v) + f(v) are both non-negative, so this gives

|h(v)| ≤ 2b + S − T

m

for all v ∈ X. Hence

∑

v∈V

f(v)[f(v) + h(v)] =
∑

v∈X

f(v)[f(v) + h(v)] = m

(
2b + S − T

2m

)2

− 1
4

∑

v∈X

h(v)2. (3)

We have observed that |h(v)| ≤ (2b+S−T )/m, and note also that
∑

v∈X |h(v)| = 2a+S−T ,
by the definition of A and B. Therefore,

∑

v∈X

h(v)2 ≤ m(2a + S − T )
2b + S − T

(
2b + S − T

m

)2

=
(2b + S − T )(2a + S − T )

m
.

Substitution into (3) gives

∑

v∈V

f(v)[f(v) + h(v)] ≥ m

(
2b + S − T

2m

)2

− (2b + S − T )(2a + S − T )
4m

≥ (b− a)(2b + S − T )
2m

≥ (b− a)(2b− 2a)
2n

≥ 1
n

(b− a)2.

Here we have used the fact that m ≤ n and S − T ≥ −2a.

Proof of Proposition 4.4. We assume the vertex set of G is V . The number of directed
paths of length two is

∑

v∈V

d in(v)d out(v)

where d in(v) and d out(v) denote the in and out degree of vertex v. Let f(v) = d in(v) and
g(v) = d out(v). The assumption on the size of the maximum directed cut implies

∑

v∈I

[g(v)− f(v)] = a

for some a ≤ γe, where I = {i : g(v) > f(v)}. Also
∑

v∈V f(v) = e =
∑

v∈V g(v). By
Lemma 4.5, ∑

v∈V

f(v)g(v) ≥ 1
n

(e− a)2 ≥ 1
n

(1− γ)2e2.
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4.4 Pairs Joined by a Unique Path

We are now prepared to establish a lower bound for the number of pairs of vertices in a
hexagon-free graph which are joined by exactly one path of length three. Let Σ be this set of
pairs. Let us define an extension in an oriented graph to be any path of length three which
contains a directed path of length two from one of its endpoints. The set of pairs of endpoints
of such paths will be denoted by ~Σ.

Lemma 4.6 Let G be a hexagon-free graph with no cut of size more than γ|E|. Then there
exists an orientation of G such that |~Σ\Σ| < 31∆|E|. In particular, if the number of vertices
of degree less than d in G is at most D, then

|Σ| > (1− γ)2
d|E|2

n
− 31∆|E| − d2D∆.

Proof. The second claim follows from the first as follows. The number of directed paths
of length two which cannot be extended to a path of length three in at least d − 2 ways is
at most dD∆, since there are D choices for the end vertex of the directed path, at most d

choices for the edge adjacent to the end vertex and at most ∆ choices for the remaining edge.
Proposition 4.4 provides at least (1− γ)2 |E|

2

n − dD∆ directed paths of length two in G which
can be extended in at least d− 2 ways. Hence

|Σ| ≥
(

(1− γ)2
|E|2
n

− dD∆
)

(d− 2)− |~Σ \ Σ| > (1− γ)2
d|E|2

n
− 31∆|E| − d2D∆.

Now the orientation of G is described as follows: by Theorem 3.1, G admits a decomposition
into block subgraphs and a quadrilateral-free graph F . The edges of F and of every isolated
quadrilateral are oriented arbitrarily. The edges in every non-quadrilateral block subgraph
H are oriented so that every vertex of degree two has indegree two. These orientations for
type (2) and (3) block subgraphs are shown below:

By Lemma 4.3, |Π| < 27∆|E|. Let

Σ′ = {π ∈ ~Σ : |π| = 2 and G(π) is non-degenerate}.

Let π ∈ Σ′. By Lemma 4.1, G(π) = Q(π)∪{e(π)}. Let π = {u, v} and V (Q(π)) = {u, x, w, y},
and e(π) = {w, v}. By Theorem 3.1, Q(π) is contained a unique block subgraph H(π).

19



Furthermore u and w have degree two in H and {u, v} 6∈ H, otherwise by inspection of the
four types of block subgraphs, G(π) would be degenerate or |π| ≥ 3. We conclude that Q(π)
has the orientation

y → w ← x → u ← y.

Now suppose H(π) 6= Q(π). Then since π is the pair of endpoints of an extension, there is a
directed path of length two in G(π) from u or from v. It follows that

u → x → w or v → w → x.

This contradicts the orientation of Q(π). So H(π) = Q(π) for each π ∈ Σ′ – i.e. H is
an isolated quadrilateral. Since G contains at most |E|/4 isolated quadrilaterals, and each
contributes less than 4∆ pairs to |Σ′|, we have |Σ′| < ∆|E|. Finally,

|~Σ\Σ| < |Π|+ |Σ′| < 28∆.

This completes the proof.

5 A Hölder-Type Matrix Inequality

In this section, we give a lower bound for the number of paths of length three in any graph
G of maximum degree ∆, and in any m by n bipartite graph of maximum degree ∆. If A is
the adjacency matrix of G, and v is the constant vector (1, 1, . . . , 1), then 1

2

〈
A3v, v

〉
is the

number of walks of length three in G. Blakley and Roy [5] proved the following Hölder-type
inequality for non-negative symmetric matrices S:

〈Sw, w〉k ≥ 〈Sw, w〉k

for any non-negative unit vector w and any positive integer k. Applying this with w = v/
√

n

and S = A, we deduce that the number of walks of length three in G is at least 4|E|3/n2. It
is not hard to show that at most 4∆|E| + |E| walks of length three are not paths of length
three. Therefore we have the following theorem:

Theorem 5.1 Let G be a graph of maximum degree ∆. Then the number of paths of length
three in G is at least 4|E|3/n2 − 4∆|E| − |E|.
More recently, Alon, Hoory and Linial [1] showed (using different techniques) that the number
of non-returning walks of length k in any graph G is at least 1

2(d−1)kn where d is the average
degree of G. This gives a similar bound to the one in Theorem 5.1.

Sidorenko [31] proved a bipartite version of the Blakley-Roy inequality: if A is an m by
n matrix, A∗ denotes the transpose of A, and ‖A‖1 is the sum of the entries of A, then
‖AA∗A‖1 ≥ ‖A‖3

1/(mn). Applying this with A the incidence matrix of an m by n bipartite
graph, we obtain:

Theorem 5.2 Let G be an m by n bipartite graph of maximum degree ∆. Then the number
of paths of length three in G is at least |E|3/(mn)− 4∆|E| − |E|.
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6 A Regularization Lemma

In all the results so far, there is an explicit dependence on ∆, the maximum degree of our
graph. In this section, we will show that extremal hexagon-free graphs cannot be too far
from regular:

Lemma 6.1 Let G = (V, E) be an n-vertex C2k-free graph. Then there is an absolute con-
stant c < (32)2k/(k−1) such that for every integer ∆ > 1 and k > 2, there is a subgraph
G̃ = (V, Ẽ) of G of maximum degree at most ∆ with:

|Ẽ| ≥ |E| − c

(
n

k+1
k−1

∆
k+1
k−1

)
− cn for k odd.

|Ẽ| ≥ |E| − c

(
n

k
k−2

∆
k+2
k−2

)
− cn for k even.

For k = 2, there is a spanning subgraph G̃ of G, of maximum degree c
√

n and of size at least
|G| − cn.

In addition, a bipartite version of this lemma is required. The proof of this bipartite version
is omitted, as is along the same lines as the proof of Lemma 6.1.

Lemma 6.2 Let G = (L,R, E) be an m × n C2k-free bipartite graph. Then there is an
absolute constant c < (32)2k/(k−1) such that, for every two integers ∆L, ∆R > 4k, G contains
a spanning subgraph G̃ = (V, Ẽ) such that the degree in G̃ of every vertex in L is at most
∆L, the degree in G̃ of every vertex in R is at most ∆R,

|Ẽ| ≥ |E| − c


m

k+1
k−1

∆
k+1
k−1

R

+
n

k+1
k−1

∆
k+1
k−1

L


− c(m + n),

for odd k and, for even k > 2:

|Ẽ| ≥ |G| − (32k)
2k

k−1


m

k
k−2

∆
k+2
k−2

R

+
n

k
k−2

∆
k+2
k−2

L


− c(m + n).

The proofs of Lemmas 6.1 and 6.2 use the following result from [26] and [34]:

Proposition 6.3 For every n, k ≥ 2, ex(n,C2k) < 8(k − 1)n1+ 1
k . Moreover, for every

m,n, k ≥ 2,

ex(m,n, C2k) <

{
8(k − 1)(mn)

1
2
+ 1

2k + 4(k − 1)(m + n) for k odd.
8(k − 1)m

1
2
+ 1

k
√

n + 4(k − 1)(m + n) for k even.

To prove Lemma 6.1, the following preliminary lemma is required.
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Lemma 6.4 Let St ⊂ V denote the set of vertices of degree at least t in G. Then

|St| ≤ (32k)
2k

k−1 max

{
n

k+1
k−1

t
2k

k−1

,
n

t

}
.

Proof. Throughout the proof we write e(A,B) for the number of edges in G with one end
in A and one end in B, and e(A) for the number of edges induced by A. Let m = |St|.
When t < 16km1/k, the above inequality reduces to the trivial inequality m < 22kk − 1n. So
we assume that t ≥ 16km1/k. By Proposition 6.3, e(St, St) < 8km1+ 1

k . It follows that the
number of edges between S and V \ S in G is at least

mt− 2e(St, St) > mt− 8km1+ 1
k >

mt

2
.

On the other hand, another application of Proposition 6.3 implies that

e(St, V \St) < 8k(mn)
1
2
+ 1

2k + 8kn.

Hence:
mt

2
< 8k(mn)

1
2
+ 1

2k + 4kn =⇒ mt < 2k max
{

16(mn)
1
2
+ 1

2k , 16n
}

,

which implies the required result.

Proof of Lemma 6.1. Suppose first that k is odd. It is enough to prove the lemma with
c = (32)2k/(k−1). Let d be the integer part of n2/(k+1). It is enough to prove the result for
∆ ≤ d, since we could then apply the case ∆ = d for larger ∆. We write e(A) for the number
of edges induced by a set A and e(A,B) for the number of edges with one end in A and one
end in B. Set S = Sd+1 and m = |S|. By Lemma 6.4, m < cn(k−1)/(k+1). By Proposition
6.3, it follows that the number of edges in G which contain a vertex in S satisfies:

e(S) + e(S, V \ S) < 8km1+1/k + 8k(mn)1/2+1/2k − 8k(m + n) < cn.

We now greedily delete edges from G. First delete edges incident with a least one vertex of
S. Then start with the set of vertices of G of degree d. In general, having reached a subgraph
of G of maximum degree t < d, delete one edge per vertex with degree t. Continuing this
procedure d−∆ times, we obtain a spanning subgraph G̃ = (V, Ẽ) of G, of maximum degree
at most ∆. The size of G̃ can be bounded from below as follows:

|Ẽ| > |E| −
d∑

t=∆+1

|St| − cn

> |E| − c

[ ∞∑

t=∆+1

n
k+1
k−1

t
2k

k−1

]
− cn

> |E| − cn
k+1
k−1

∫ ∞

∆

1

t
2k

k−1

dt− cn

> |E| − c

(
n

k+1
k−1

∆
k+1
k−1

)
− cn.

This completes the proof for k odd. The proof for even k is exactly the same.
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7 Proof of Theorems 1.1 and 1.2

Throughout this section, c = (96)3 is the constant in Lemma 6.1 with k = 3.

Proof of Theorem 1.2 We proceed by contradiction. Suppose G = (L,R,E) is a hexagon-
free bipartite graph with |L| = m, |R| = n and

|E| > 21/3(mn)2/3 + (c + 100)(m8/9n2/9 + m2/9n8/9 + m + n).

We begin by applying Lemma 6.2, with

∆L =
⌈ n5/9

m1/9

⌉
and ∆R =

⌈m5/9

n1/9

⌉

to obtain a graph G̃ = (L,R, Ẽ) with

|Ẽ| > 21/3(mn)2/3 + 100(m8/9n2/9 + m2/9n8/9 + m + n).

Let ∆ be the maximum of ∆R and ∆L. By Theorem 5.2 and Lemma 4.3,

|Ẽ|3
mn

− 4∆|Ẽ| − |Ẽ| <
∑

π 6∈Π

|π|+
∑

π∈Π

|π| < 2mn + 27∆|Ẽ|.

This cubic inequality in |Ẽ| gives

|Ẽ| < 21/3(mn)2/3 + 100∆(mn)1/3

< 21/3(mn)2/3 + 100(m8/9n2/9 + m2/9n8/9 + m + n).

This contradiction completes the proof.

Proof of Theorem 1.1 To prove Theorem 1.1, we will proceed somewhat indirectly by
showing first that if G = (V, E) is an n-vertex of maximum degree at most ∆ = n4/9, and
with

|E| > λn4/3 + 4cn7/6 + cn,

then G contains a hexagon. Let us see that this is sufficient to prove Theorem 1.1. Assume
we have proved this statement. Take any hexagon-free graph G = (V, E) on n vertices, with
|E| > λn4/3 + 5cn7/6 + cn. Then there is a subgraph G̃ = (V, Ẽ) of G of maximum degree at
most ∆ (by Lemma 6.1), and such that

|Ẽ| > |E| − cn7/6 − cn > λn4/3 + 4cn7/6.

It follows, from the assumption, that G̃ contains a hexagon, as required.

Now suppose G = (V, E) is any n-vertex graph of maximum degree at most n4/9, with
|E| > λn4/3 + 4cn7/6, and that any graph on m < n vertices of maximum degree at most
m4/9 with more than λm4/3 + 4cm7/6 edges contains a hexagon. We can assume |E| =
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bλn4/3 + 4cn7/6 + 1c, by deleting some edges from G. If G contains at least D = bn1/2c
vertices of degree less than d = 4

3λn1/3 − cn1/6, then we delete D vertices of degree less than
d from G to obtain an m-vertex graph G′ = (V ′, E′) with

|E′| > λm4/3 + 4cn7/6 + cn2/3.

The number of vertices of degree more than m4/9 in G′ is at most cn2/3, by Lemma 6.4.
Deleting at most one edge on each of these vertices, we arrive at a graph G′′ = (V ′, E′′) on
m vertices with

|E′′| > λm4/3 + 4cm7/6.

Furthermore, the maximum degree in G′′ is at most m4/9, since n4/9 ≤ m4/9+1. By induction,
G′′ contains a hexagon, which is a contradiction. So, we may assume that at most D vertices
of G have degree less than d.

By Theorem 1.2, the maximum cut in G has size at most

max
0≤k≤n

21/3[k(n− k)]2/3 + 4cn10/9 <
1
2λ
|E|.

By Lemma 4.6, applied with γ = 1
2λ , D = bn1/2c, d = 4

3λn1/3 − cn1/6 and ∆ = n4/9, we
obtain

|Σ| > (1− γ)2
d|E|2

n
− 87∆|E| − d2D∆

> (1− γ)2
4|E|3
3n

− 6cn1/6|E|2
n

− 33∆|E|.

Therefore, by Theorem 5.1 and Lemma 4.3,

4|E|3
n2

− 4∆|E| − |E| <
∑

|π|=1

|π|+
∑

|π|=2

|π|+
∑

|π|>2

|π|

< n2 − |Σ|+ 27∆|E|

< n2 − (1− γ)2
4|E|3
3n2

+
6cn1/6|E|2

n
+ 60∆|E|.

This gives the cubic inequality

1
3λ3

(16λ3 − 4λ2 + λ− 3)|E|3 + λ−3|E|3 − n4 − 5cn7/6|E|2 − 65∆|E|n2 < 0.

Since n4 ≥ λ−3(|E| − 4cn7/6 − 1)3, we obtain

1
3λ3

(16λ3 − 4λ2 + λ− 3)|E|3 + cn7/6|E|2 − 65∆|E|n2 < 0.

Since 16λ3 − 4λ2 + λ − 3 = 0, the first term above is zero, and as c = (96)3, the rest of the
expression is positive, which is a contradiction.
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8 Appendix: Classification of Block Subgraphs

The theorem we wish to prove is the following:

Theorem 3.2. Let H be a block subgraph of a hexagon-free graph. Then H has type (1), or
H is a strongly induced subgraph of type (2), (3) or (4).

To prove this theorem, we will first show that type (2), (3) and (4) subgraphs are strongly
induced subgraphs. It then remains to show that if a block subgraph H does not have type
(1), then it has type (2), (3) or (4). We begin with the first task.

Lemma 8.1 Let H be a block subgraph of type (2), (3) or (4). Then H is a strongly induced
subgraph of G.

Proof. We are required to show that if P is a path with both endpoints in H and |E(P )| ≤ 4,
then P ⊂ H. We deal first with the case 2 ≤ |E(P )| ≤ 4. Suppose, for a contradiction, that
P 6⊂ H. We may assume E(P ) ∩ E(H) = ∅ and let V (P ) ∩ V (H) = {u, v}. By inspection
of subgraphs of types (2), (3) and (4), there is a path P ′ ⊂ H, of length 6 − |E(P )|, with
endpoints {u, v}, unless |E(P )| = 2, and {u, v} is the neighbourhood of a vertex of degree
two in H, and H has type (2) or (3). But if H has type (2) or (3), then H ∪ P contains
an additional neighbour of {u, v}, namely the midpoint of P . This contradicts the fact that
H contains all common neighbours of {u, v}. Thus we have produced a path P ′ ⊂ H with
|E(P )∪E(P ′)| = 6, contradicting that G is hexagon-free. Therefore P ⊂ H if 2 ≤ |E(P )| ≤ 4,
as required. If |E(P )| = 1 and H is a block subgraph with P 6⊂ H, then there is an edge
e of G joining two vertices of H, and H ∪ {e} contains a quadrilateral Q, which contains e.
By definition, Q is contained in some maximal complete bipartite subgraph K ⊂ G, which,
by inspection, intersects every maximal complete bipartite subgraph of H, since H has type
(2), (3) or (4). This contradiction completes the proof.

Proof of Theorem 3.2 Let H be a non-isolated block subgraph i.e. a block subgraph
which is not of type (1). By definition, H is the union of a maximal intersecting family
K = {K1,K2, . . . ,Kr}, where r ≥ 2. We consider first the case that all Ki are quadrilaterals.
In this case, Ki and Kj always have at least three vertices in common, since otherwise G

contains a hexagon. If |V (Ki) ∩ V (Kj)| = 4 for all i and j, then V (Ki) = V (Kj) for all
i and j, implying H = K4 which is of type (3). Otherwise, without loss of generality, we
may assume |V (K1) ∩ V (K2)| = 3. This implies K1 ∪K2 has five vertices and is a type (2)
subgraph of G, due to the maximality of K1 and K2. Now, for any i ≥ 3, E(Ki)∩E(K1) 6= ∅.
Suppose {u, v} ∈ E(Ki) ∩ E(K1). By Lemma 8.1, all paths of length two, three or four in
Ki joining u and v are contained in K1 ∪K2. It follows that Ki ⊂ K1 ∪K2, implying that
H ⊂ K1 ∪ K2. Let x and y be vertices of degree exactly two in K1 ∪ K2. If u and v are
adjacent in some Ki, then H has type (4). Otherwise H has type (2) or (3). This completes
the proof for the case that all of the Ki are quadrilaterals.

Assume K1 is not a quadrilateral, and let Q2 ⊂ K2 be a quadrilateral intersecting a quadri-
lateral Q1 ⊂ K1 in at least one edge. If V (Q2) = V (Q1) for some quadrilateral Q1 ⊂ K1,
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then K1 ∪Q2 is a type (3) subgraph, due to the maximality of K1. By Lemma 8.1, applied
as in the first part of the proof, Ki ⊂ K1 ∪Q2 for all i ≥ 2. If H = K1 ∪Q2, then H has type
(3) as required (and K = {K1,K2,K3}). Otherwise let e be an edge in H but not in K1∪Q2.
Then, by inspection, |V (K1)| = 5, since otherwise G contains a hexagon in K1 ∪ Q2 ∪ {e}.
It follows that H is of type (4). The remaining case is |V (Q2) ∩ V (Q1)| = 3 for any pair of
intersecting quadrilaterals Q1 ⊂ K1 and Q2 ⊂ K2. In this case, K1 ∪K2 has type (2). As
before, using Lemma 8.1, we deduce that V (H) ⊂ V (K1) ∪ V (K2). If H = K1 ∪K2, then H

has type (2) and we are done. Otherwise let e be an edge of H not in K1 ∪K2. If K2 is not
a quadrilateral, then K1 ∪K2 ∪ {e} contains a hexagon, on inspection of type (2) subgraphs.
So K2 must be a quadrilateral. In that case, K1 ∪K2 ∪ {e} has type (3) and (as above) H

has type (3).
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[13] Erdős, P. Simonovits, M. A limit theorem in graph theory. Studia Sci. Hungar. 1, 51-57
(1966).
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