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Algebra I: Section 3. Group Theory

3.1 Groups.

A group is a set G equipped with a binary operation mapping G ×G → G. Such a “product
operation” carries each ordered pair (x, y) in the Cartesian product set G×G to a group element
which we write as x · y, or simply xy. The product operation is required to have the following
properties.

G.1 Associativity: (xy)z = x(yz) for all x, y, z ∈ G.

This insures that we can make sense of a product x1 · · ·xn involving several group elements
without inserting parentheses to indicate how elements are to be combined two at a time.
However, the order in which elements appear in a product is crucial! While it is true that
x(yz) = xyz = (xy)z, the product xyz can differ from xzy.

G.2 Unit element: There exists an element e ∈ G such that ex = x = xe for all
x ∈ G.

G.3 Inverses exist: For each x ∈ G there exists an element y ∈ G such that
xy = e = yx.

The inverse element y = y(x) in G.3 is called the multiplicative inverse of x, and is generally
denoted by x−1. The group G is said to be commutative or abelian if the additional axiom

G.4 Commutativity: xy = yx for all x, y ∈ G

is satisfied
Our first task is to show that the identity element and multiplicative inverses are uniquely

defined, as our notation suggests.

3.1.1 Lemma. In a group (G, · ) the unit e is unique, and so is x−1 for each x.

Proof: Suppose there is another element e′ ∈ G such that e′x = x = xe′ for all x ∈ G. Taking
x = e we get e′ = e′e = e as claimed. Next, let x ∈ G and suppose y, y′ are elements such that
xy′ = e = y′x, xy = e = yx. Then look at the product y′xy and apply G.1+G.2 to get

y′ = y′e = y′(xy) = (y′x)y = ey = y

Therefore y′ = y, and hence every x has a unique inverse, which we hereafter label x−1. �

3.1.2 Some examples of groups. We write |G| for the number of elements in G, which could
be ∞.

1. G = {e}. This is the trivial group with just one element e such that e·e = e.
Here e−1 = e and |G| = 1. This is not a very interesting group. �

2. G = (Z,+). This is an infinite abelian group; integer addition (+) is the
group operation. The unit is e = 0, and the inverse of any element x ∈ Z is
its negative −x. �

3. G = (Zn,+), the integers (mod n) for some n ∈ N, with addition as the
group operation. This is a finite abelian group with |G| = n. The identity
element is [0]; the inverse of [k] ∈ Zn is the congruence class [−k] = [n− k].
�

4. G = (Un, · ), the set of multiplicative units in Zn. Here we take multiplication

[k] · [ℓ] = [kℓ] as the group operation. Recall that Un can also be described
as

Un = { [k] : 0 < k < n and gcd(k, n) = 1 }
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as explained in 2.5.15. You should also recall the discussion of Section 2.5,
where (Zn,+, · ) was defined, to see why the group axioms are satisfied. The
proofs are pretty obvious once you observe that the product of two units in Zn

is again a unit. The identity element in Un is e = [1]; finding multiplicative
inverses [k]−1 requires some computation. The group Un is abelian and finite,
but its size φ(n) = |Un| varies erratically as n increases. This cardinality can
be computed by hand in each case, but there is no simple formula for it.

The function φ(n) is keyed to the distribution of primes in N, and is so
important in number theory it has a special name: the Euler phi function.
�

We will resume our catalog of groups in a moment, but first some exercises you should think
about right now.

3.1.3 Exercise. In any group, verify directly from the axioms that

(a) (x−1)−1 = x for all x

(b) (xy)−1 = y−1x−1 for all x, y ∈ G. (Note the reversal here.) �

3.1.4 Exercise. Determine the units in Z12 and compute their inverses.
Hint: First check that in Zn the multiplicative inverse of [−1] = [n − 1] is itself; then observe
that [−k] = [−1] · [k]. �

3.1.5 Exercise. If p > 1 is a prime, explain why |Up| = p− 1.
Note: This is one of the few cases in which there is an easy calculation for φ(n) = |Un|. �

3.1.6 Exercise. Decide which of the following systems are groups.

(a) G = (Z, · ), the integers with multiplication as the binary operation.

(b) G = (N, · ), the natural numbers in Z with multiplication as the binary oper-
ation.

(c) G = (N,+), the natural numbers in Z with addition as the binary operation.

(d) G = (R, · ), the real numbers with multiplication as the binary operation.

(e) G = (R×

+, · ), the positive real numbers x > 0 with multiplication as the
binary operation.

(f) G = (C×, · ), the nonzero complex numbers z 6= 0 with multiplication as the
binary operation.

(g) G = (R2,+), the Cartesian plane with vector addition

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

as the binary operation.

(h) G = (Z×

9 , · ), the nonzero integers (mod 9) with multiplication [k] · [ℓ] = [kℓ]
as the binary operation.

(i) How about G = (Z×

7 , · )? What might account for the difference between Z×

9

and Z×

7 ?

In each case, if G is not a group which group axiom(s) fail to hold? �

3.1.2 Examples of groups (continued).

5. Let G be any vector space V , equipped with vector addition as the binary
operation. The identity element for this group is the zero vector 0, and the
inverse of any element x ∈ V is its negative −x = (−1) · x �
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6. G = (Rn,+) is a group, being a vector space, but so is the subsetG′ = (Zn,+)
of vectors in Rn with integer coordinates: x = (x1, . . . , xn) such that xi ∈ Z

for 1 ≤ i ≤ n. �

7. The set G = (C,+) of all complex numbers, equipped with complex addition
as the product operation, is a completely different abelian group. �

8. The set G = (C×, · ) of nonzero complex numbers C× = {z ∈ C : z 6= 0+ i0},
equipped with multiplication as the product operation, is an abelian group.

9. The circle group G = (S1, · ) is the set of complex numbers that lie on the
unit circle, so |z| = 1. This is an abelian group when S1 is equipped with
complex multiplication as the product operation.

The next few examples are so important they deserve extensive discussion, so we consider
them separately.

Matrix groups. We write M(n,F) for the set of all n×n matrices with entries in some field of
scalars F = Q,R,C. This is a vector space, and hence a group, under the usual (+) operation
for matrices. The identity element is the zero matrix, all of whose entries are 0.

However, M(n,F) is not a group under the usual product operation on matrices

(A · B)ij =

n
∑

k=1

AikBkj

As explained in linear algebra, this operation is associative, so that A(BC) = (AB)C. There is
an identity element such that IA = A = AI, namely the n× n identity matrix, with 1’s on the
diagonal and zeros elsewhere. The problem is that not every matrix A has an inverse such that
A−1A = I = AA−1. Nevertheless, certain subsets of M(n,F) are groups of great importance in
geometry. To define them we must recall two facts from linear algebra.

Theorem. An n × n matrix A has an inverse if and only if its determinant is
nonzero: detA 6= 0. Moreover, there is an explicit algorithm for computing A−1

once we know detA.

Theorem. Determinants are multiplicative: det(AB) = det(A) · det(B).

3.1.7 Example (Matrix groups). The set GL(n,F) of n×n matrices with nonzero determi-
nant is a group when equipped with matrix multiplication. The identity element is the n × n
identity matrix I, and the group inverse of any A is just its matrix inverse A−1. This group
is infinite, and is not commutative except in the special case when n = 1. GL(n,F) is usually
referred to as the n-dimensional general linear group.

Many other classical matrix groups are subgroups of GL(n,F). To mention just a few:

1. G = SL(n,F) is the special linear group consisting of all n×n matrices A
such that det(A) = 1.

2. G = SO(n,F) is the special orthogonal group consisting of all n × n
matrices A such that

A−1 = At and detA = 1 ,

where At is the transpose matrix, defined by (At)ij = Aji. Clearly a matrix
A with determinant 1 is in SO(n,F) ⇔ AtA = I = AAt.

3. The upper triangular group consists of all n× n matrices of the form

A =











a11 a12 . . . ann

0 a22 . . . a2n

...
...

0 . . . 0 ann











such that

{

detA = a11 · · ·ann 6= 0
aij = 0 for below-diagonal entries
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4. The three-dimensional Heisenberg group of quantum mechanics consists
of all real 3 × 3 matrices of the form

(1) A =





1 x z
0 1 y
0 0 1



 such that x, y, z ∈ R.

There are many other matrix groups, which will be mentioned later. �

3.1.8 Exercise. In the last two examples above, verify that the set of matrices is actually a
group by checking that:

(a) The product of two such matrices has the same form.

(b) The inverse A−1 of any such matrix has the proper form.

Hint: Start with the Heisenberg group, which is easier. Recall Cramer’s formula for computing
A−1 in terms of subdeterminants. �

3.1.9 Exercise. Show that SL(2,R) is not commutative by producing two matrices such that
AB 6= BA. �

3.1.10 Exercise. Suppose H is a nonempty subset of GL(n,F) such that

(a) I ∈ H (b) A,B ∈ H ⇒ AB ∈ H (c) A ∈ H ⇒ A−1 ∈ H

Prove that H is a group when equipped with matrix multiply as its product operation.
Note: Condition (a) is superfluous, being a consequence of (b) + (c). �

The next example is geometric, and is the first of a whole series of examples extending to higher
dimensions. It exploits a useful general fact about mappings f : X → X of a space into itself,
namely

Associativity of composition of maps: The operation (◦) of composition of maps
f, g : X → X , given by

f ◦ g(x) = f(g(x)) for all x ∈ X ,

is automatically associative, so that f ◦ (g ◦ h) = (f ◦ g) ◦ h.

In fact, for any x we have

f ◦ (g ◦ h)(x) = f((g ◦ h)(x)) = f(g(h(x))) = . . . = (f ◦ g) ◦ h(x)

Thus if the elements of some proposed group G are mappings of a space X , with composition (◦)
as the group operation, associativity of the operation is guaranteed and need not be checked.
This is important. For an abstract group – say one presented as a “multiplication table” –
checking associativity is by far the most tedious computational task. Furthermore, if each
mapping f ∈ G is a bijection, then there is a “set-theoretic inverse map” f−1 such that

f ◦ f−1 = f−1 ◦ f = id
X

(the identity map of X to itself)

That means the identity map id
X

is the identity element for G, and the group-theoretic inverse
of any f ∈ G is precisely the inverse map f−1.

3.1.11 Example (The 2-dimensional Rotation Group). A rotation Rθ in the plane is the
mapping Rθ : R2 → R2 that rotates every vector counterclockwise about the origin O = (0, 0)
by θ radians. We interpret

R0 = I, the identity map of the plane

R−θ = rotation clockwise by θ radians, the inverse of the map Rθ.
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It should be geometrically obvious that

(2) R−θ = R−1
θ and Rθ1+θ2

= Rθ1
◦Rθ2

for all θ1, θ2 ∈ R

according to our interpretation of R−θ. It follows that the set G of all rotations is a group,
and that this infinite group is abelian (a property not shared by the rotation groups in higher
dimensions n ≥ 3).

Notice that Rθ = Rθ+2π = Rθ+2πk for any integer k, so the symbols Rθ and Rθ+2πk all

represent the same group operation. In other words, the symbol Rθ is somewhat ambiguous;
only the value of θ (mod 2π) matters in determining the geometric operation.

Every rotation is a linear operator Rθ : R2 → R2 and hence is represented by a 2× 2 matrix
with real entries. If vectors x = (x1, x2) are regarded as 2 × 1 column matrices, then we have

(3) Rθ

[

x1

x2

]

=

[

cos θ − sin θ
sin θ cos θ

]

·

[

x1

x2

]

for all x ∈ R2

It can be shown that the matrices in (3) are precisely the special orthogonal matrices with
entries in R

SO(2) = SO(2,R) = {A ∈ M(2,R) : det(A) = 1 and AtA = I = AAt}

When we identify operators Rθ with matrices Aθ there is just one matrix A ∈ SO(2) for each
distinct rotation operator, and composition of operators corresponds to the usual multiplication
of matrices. Thus the geometric group of rotations G is in every respect equivalent to the group
of real 2× 2 matrices SO(2) – i.e. the groups are isomorphic, in a sense we will make precise in
Section 3.2. It will be quite useful to have two different ways of looking at the same group. �

3.1.12 Exercise. For a real 2 × 2 matrix A show that the following conditions are equivalent

(a) A ∈ SO(2), so that AtA = I.

(b) There exist a, b ∈ R such that

A =

[

a b
−b a

]

with a2 + b2 = 1

(c) There exists a real θ ∈ R (not necessarily unique) such that

A =

[

cos θ − sin θ
sin θ cos θ

]

(d) The operator LA : R2 → R2 such that LA(x) = Ax (product of 2× 2 by 2× 1
matrix) is a rotation Rθ for some angle θ. �

3.1.13 Exercise (Euler’s Theorem). If A 6= I in SO(3), prove that λ = 1 is an eigenvalue
with multiplicity 1. Then prove that the linear operator LA : R3 → R3 given by LA(x) = Ax
(matrix multiply) is a rotation by some angle θ about the axis ℓ = Re where e is a nonzero
eigenvector for the eigenvalue λ = 1. �

3.1.14 Example (Ωn = nth Roots of Unity). Recall that every complex number z 6= 0 can
be written in polar form z = reiθ = (r cos θ)+i(r sin θ) as shown in Figure 3.1. Here r = |z| and
θ is the angle variable (angle from positive x-axis to the ray from the origin to z), in radians.
An nth root of unity is any z such that zn = 1. Since |zw| = |z| · |w| that forces z to lie on the
unit circle |z| = 1, and hence have the form z = eiθ. Then zn = einθ equals 1 ⇔ nθ is a whole
multiple of 2π radians. Thus the distinct nth roots of unity are {e2πik/n : 0 ≤ k < n−1}, which
are precisely the powers 1, ω, ω2, . . . , ωn−1 of the primitive nth root ω = e2πi/n.
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Figure 3.1. Geometric meaning of the polar form z = re
iθ of a complex number.

In (b) we show the locations of the complex n
th roots of unity, which are the

powers 1, ω, ω
2
, . . . , ω

n−1 of the primitive n
th root ω = e

2πi/n.

The set Ωn of nth roots forms a group under complex multiplication. In fact, 1 ∈ Ωn and
z, w ∈ Ωn ⇒ zn = 1, wn = 1 ⇒ (zw)n = znwn = 1, so Ωn contains the multiplicative identity
and is closed under formation of products. As for inverses, we have

zn = 1 ⇒

(

1

z

)n

=
1

zn
= 1

so Ωn is closed under inversion and (Ωn, · ) is a group, a subgroup of (C×, · ). Later on we will
see that (Ωn, · ) is isomorphic to the familiar group (Zn,+). �

Next we introduce the permutation groups Sn, fundamental to all discussions of group theory.
For the moment we provide a brief introduction; all of Chapter 5 will be devoted to further
discussion of these groups.

3.1.15 Example (Permutation groups: Part I). The permutation group Sn is the
collection of all bijective maps σ : X → X of the interval X = {1, 2, . . . , n}, with composition
of maps (◦) as the group operation. Our previous comments about composition show that
(Sn, ◦) is a group. The identity element is the identity map on X, e = id

X
, and the inverse of

any σ is the set-theoretic inverse map σ−1 that undoes the action of σ. It is easily seen that Sn

is finite, with |Sn| = n! = (n)(n− 1) · · · (3)(2)(1). It is non-commutative except when n = 2.
One (cumbersome) way to describe elements σ ∈ Sn employs a data array to show where

each k ∈ X ends up:

σ =

(

1 2 . . . k . . . n
i1 i2 . . . ik . . . in

)

where (i1, i2, . . . , in) is some ordered listing of the integers 1 ≤ k ≤ n. In this notation the
identity element is

e =

(

1 2 . . . k . . . n
1 2 . . . k . . . n

)

More efficient notation is afforded by the fact that every σ can be uniquely written as a product
of “elementary permutations” called cycles. We describe the notation for cycles here, so you
will be able to handle meaningful examples; later on in Chapter 5 we will deal with the cycle
decomposition of arbitrary permutations.

3.1.16 Definition. For k > 1, a k-cycle is a permutation σ = (i1, . . . , ik) that acts on X in

the following way

(4) σ maps

{

i1 → i2 → . . .→ in → i1 (a cyclic shift of list entries)
j → j for all j not in the list {i1, . . . , ik}
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The action of σ depends on the particular order of the list entries i1, . . . , in.

For example,

The cycle σ = (123) in S5 maps 1 → 2 → 3 → 1 ; 4 → 4 ; 5 → 5

The cycle σ = (12) in S5 maps 1 → 2 → 1 ; 3 → 3 ; 4 → 4 ; 5 → 5

One-cycles (k) are redundant; every one-cycle corresponds to the identity map id
X

. We seldom
write one-cycles explicitly, though it is permissible and sometimes useful. For instance the cycle
(123) in S5 could also be written as the product of cycles (123)(4)(5) because (4) = (5) = id

X
.

The symbol σ = (i1, . . . , ik) denoting a cycle is ambiguous. If we make a cyclic shift of list
entries we get other symbols

(i1, . . . , ik) = (i2, . . . , ik, i1) = (i3, . . . , ik, i1, i2) = . . . = (ik, i1, . . . , ik−1)

that describe the same mapping of X . For instance (123) = (231) = (312) all specify the same
operation 1 → 2 → 3 → 1 in X . If we mess up this order we do not get the same element in
Sn. Thus

(123) 6= (132) because no cyclic shift of entries can make these symbols match

Indeed, as operators on X we have (123) 6= (132) because the first operator sends 1 → 2 while
the second sends 1 → 3. The notational ambiguity regarding cycles can be somewhat confusing,
but the cycle concept is so useful that you will simply have to live with it.

Next you must understand how to evaluate the product στ = σ ◦ τ of two cycles. Since
the product is composition of maps, the action of the product on an element k ∈ X can be
evaluated by feeding k into the product from the right, as shown below, taking σ = (12) and
τ = (123) in S5.

στ : k
(123)
−→ (123) · k

(12)
−→ (12)((123) · k) = (12)(123) · k

(Warning: Not all authors adhere to this standard convention!) To determine the net effect of
στ , start by examining the fate of k = 1, then look at what happens to the image of 1, etc.

Action Net Effect

1
(123)
−→ 2

(12)
−→ 1 1 → 1

2
(123)
−→ 3

(12)
−→ 3 2 → 3

3
(123)
−→ 1

(12)
−→ 2 3 → 2

4
(123)
−→ 4

(12)
−→ 4 4 → 4

5
(123)
−→ 5

(12)
−→ 5 5 → 5

Examining the right hand column we see that the net effect of στ is to switch 2 ↔ 3, leaving
all other k where they were. Thus

(12)(123) = (1)(23)(4)(5) = (23) in S5

By a similar tracing of outcomes you can verify that

(123)(14) = (1423)(5) = (1423) in S5

and so on. We exit our discussion of Sn with some exercises along these lines. �

3.1.17 Exercise. Evaluate the net action of the following products of cycles

(a) (12)(13) in S3 (c) (12)(12345) in S5 (e) (12)2 in S5

(b) (12)(13) in S5 (d) (12345)(12) in S5 (f) (123)2 in S5 �
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3.1.18 Exercise. Given two cycles σ = (i1, . . . , ik), τ = (j1, . . . , js) in Sn, explain why

(a) σk = id
X

and τs = id
X

(b) στ = τσ (the operators commute) if their entries are disjoint in the sense
that {i1, . . . , ik} ∩ {j1, . . . , js} = ∅.

Note: Disjoint cycles always commute! However, if entries overlap the cycles may fail to
commute, as in the previous examples. �

3.1.19 Exercise. Determine the inverses σ−1 of the following elements in S5

(a) (12) (c) Any 2-cycle (i1, i2) with i1 6= i2
(b) (123) (d) Any k-cycle (i1, . . . , ik) with distinct ij �

A Notational Interlude: Usually the operation in a group is written in multiplicative form
as x · y, but when G is commutative it is often preferrable to use additive notation, writing the
group operation as x + y. It is permissible to use multiplicative notation with commutative
groups, but that would be really awkward in some cases. How would you like to discuss the
group of integers (Z,+) if we insisted on using some sort of multiplicative notation m∗n for the
group operation instead of m+n? When we do employ additive notation, various combinations
of group elements must be rewritten accordingly. For instance in additive notation the identity
element is always written as “0” rather than “e” and the inverse of an element is written −x
instead of x−1, so the characteristic property defining the inverse of an element in G takes the
form

x+ (−x) = 0 instead of x · x−1 = e

The notation for the kth power of an element x becomes

k · x = x+ . . .+ x (k times) instead of xk = x · . . . · x (k times)

and so on. Below we give a handy glossary for translating between multiplicative and additive
notation

Glossary

Identity Inverse Product Powers

Multiplicative Notation (G, · ) e x−1 x · y xk = x · . . . · x

Additive Notation (G,+) 0 −x x+ y k · x = x+ . . .+ x

This dual notation may seem confusing at first, but it is so widely used that you simply must get
used to it. It is worth noting that in the particular additive group (Zn,+) all of the following
expressions

k · [ℓ] = [ℓ] + . . .+ [ℓ] (k times) = [ℓ+ . . .+ ℓ] (k times) = [kℓ] = [k] · [ℓ]

stand for the “kthpower” of a typical element [ℓ] ∈ Zn.

Subgroups of a group G. We now examine some structural features of an abstract group. A
nonempty subset H in a group G is a subgroup if it has the properties

(5)

(i) H is closed under formation of products: H ·H ⊆ H , or equivalently
x, y ∈ H ⇒ xy ∈ H

(ii) The identity element e lies in H .

(iii) H is closed under inverses: h ∈ H ⇒ h−1 ∈ H .
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Then the product operation G×G→ G restricts to give a product operation H×H → H . One
easily verifies that (H, · ) satisfies all the group axioms G.1 – G.3. For instance, associativity of
the induced operation in H follows immediately from associativity in the larger set G.

Subgroups always exist. For instance there are the trivial subgroups H = (e) and H = G;
all other subgroups, if any, are referred to as proper subgroups. The suggestive notation
H ≤ G is often used to indicate that a subset H ⊆ G is actually a subgroup. The pattern of
subgroups is an important structural feature of any group, so it is useful to understand how
subgroups get “generated” by various nonempty subsets S ⊆ G. This idea, that every subset
S generates a subgroup H = 〈S〉, is based on the following easy theorem.

3.1.20 Exercise. Given any family {Hα : α ∈ I} of subgroups in a group G, their intersection

H =
⋂

α∈I

Hα

is also a subgroup, even if there are infinitely many Hα. �.

Given a nonempty subset S ⊆ G there is always some subgroup that contains S – for example
H = G itself. The intersection of all subgroups that contain S is again a subgroup, by 3.1.17,
and is evidently the smallest possible subgroup that contains S.

3.1.21 Definition. Let S be a nonempty subset of a group G. The intersection

(6) 〈S〉 =
⋂

{H : H is a subgroup and H ⊇ S }

is a subgroup. It is called the subgroup generated by S, and the elements of S are referred

to as “generators” of this group.

Notice that different subsets might generate the same subgroup.
The foregoing “top-down” definition is rather transcendental and abstract, making it hard

to wrap your mind around the concept of “generated subgroup.” Fortunately, there is an
alternative “bottom-up” description of 〈S〉 which tells you how to build it up from the elements
in S. Starting from S, first form the set S ∪ S−1, which consists of elements of S and their
inverses. It is not hard to see that both sets generates the same subgroup in G.

3.1.22 Exercise. Suppose S and S′ are nonempty subsets in a group G. Prove that

(a) S′ ⊆ S ⇒ 〈S′〉 ⊆ 〈S〉 .

(b) If S is already a subgroup, then 〈S〉 = S. To put it another way, doing 〈 · 〉
twice yields nothing new: 〈〈S〉〉 = 〈S〉.

(c) The sets S, S−1 = {s−1 : s ∈ S}, and S∪S−1 all generate the same subgroup
in G. �

So, passing from S to S ∪ S−1 we procede to form the set of all words of finite length whose
entries are either an element of S or the inverse of such an element:

(7)
The set of finite length words WS built from entries in S is defined to be the
set of all products a1 · · ·ar such that r <∞ and ai ∈ S ∪ S−1

It is crucial to realize that this set of “words” is precisely the subgroup generated by S. We
leave the verification to the reader.

3.1.23 Exercise. Verify that WS is indeed a subgroup of G, and that

(8) 〈S〉 = WS = { a1 · · ·ar : r <∞ and ai ∈ S ∪ S−1 }

for any nonempty set S ⊆ G.
Hint: Why is the identity e in the set WS? If x ∈WS why is x−1 in WS? �
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3.1.24 Exercise. Do we get a subgroup if we form the set

ES = { a1 · · ·ar : r <∞ and ai ∈ S } (no negative powers)?

Prove or give a counterexample.
Hint: Try some subsets of G = (Z,+). �

3.1.25 Exercise. In G = (Z,+) consider the subsets

(i) S1 = N (ii) S2 = {2} (iii) S3 = {2, 3} (iv) S4 = {3, 21} (v) S5 = {3, 23}

Determine the subgroups they generate. �

3.1.26 Exercise. In G = (Z12,+), determine the subgroups generated by

(a) The single element x = [2]

(b) The single element y = [3]

(c) The two elements x = [2] and y = [3] �

3.1.27 Exercise. Show that every subgroup of (Z,+) has the form H = mZ = {km : k ∈ Z}
for some m ≥ 0.
Hint: The trivial subgroup 0 · Z = {0} is obtained if we take m = 0; setting aside this special
case we may assume H 6= {0}. Then H∩N is nonempty (why?), and there is a smallest element
m0 = min{H ∩ N} by the Minimum Principle. �

Given a subset S in G, determining the generated subgroup can be a vexing task. However, a
complete analysis is possible in one very important case: when S consists of a single point a
and the generated subgroup is H = 〈a〉. Subgroups generated by a single element are called
cyclic subgroups. A cyclic subgroup can have different generators, so that H = 〈a〉 = 〈b〉
with a 6= b. The case when a = e is of no interest since 〈e〉 is the trivial subgroup.

Our analysis of cyclic subgroups requires some basic facts about powers ak of a group
element. Proof from the axioms is quite straightforward, but involves an annoying number of
cases, so we simply state the result and leave the proof to you.

3.1.28 Theorem (The Exponent Laws). Let G be a group. For any element a ∈ G and

any k ∈ N define

ak = a · . . . · a (k times)

a0 = e (the identity element)

a−k = (a−1) · . . . · (a−1) (k times)

Then the following exponent laws are valid for all m,n ∈ Z.

(a) am · an = am+n

(b) (am)−1 = (a−1)m

(c) (am)n = amn

(d) If G is abelian then (ab)n = an · bn.

The case m,n > 0 involves straightforward counting. For the rest use the fact that, by defini-
tion, a−k = (a−1)k when k > 0.

3.1.29. Suppose the group law is written in additive form (G,+). Rewrite the Exponent Laws
3.1.28 in additive notation.
Note: You will find that the Exponent Laws written in this form recapitulate several of the
axioms in AxiomSetI in the definition of Z. �

It is a simple matter to verify that the subgroup generated by a single element a ∈ G is precisely
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the set H = {ak : k ∈ Z} of all positive and negative powers of a. It is important to notice that
the list . . . a−2, a−1, a0 = e, a1 = a, a2, a3, . . . whose elements make up the set H may include

repeats – i.e. we might have ai = aj with i 6= j in Z. Although there are infinitely many possible
powers ak, one for each integer, the set H of distinct powers could be (and often is) finite ,
if the list has repeats. You must distinguish between the infinite list of powers and the set of
distinct items in that list.

3.1.30 Exercise. If G is a group and a ∈ G, prove from the definition of “generated subgroup”
that 〈a〉 coincides with the set of powers H = {ak : k ∈ Z}.
Note: This is true whether or not there are repeats among the powers ak. �

To determine H more precisely we examine the behavior of the sequence of non-negative
powers S′ = {e, a, a2, a3, . . .}, where e = a0 and a = a1. There are two cases to consider.

Case 1: There are no repeats in S′. Then the larger sequence {ak : k ∈ Z} consisting of all

powers contains no repeats. In fact, if a repeat occurred there would be integers ℓ < k in Z

such that ak = aℓ. By the exponent laws we would have ak = ak−ℓ · aℓ = aℓ. Multiplying both
sides by a−ℓ we get ak−ℓ = e, which is impossible since k − ℓ > 0, contrary to our definition of
k and ℓ.

Thus in Case 1 all the ak are distinct and the subgroup H is an infinite group, which must
be abelian since ak · aℓ = ak+ℓ = aℓ · ak by the exponent laws. Furthermore there is a natural
bijection φ : k 7→ ak between (Z,+) and (H, · ) which has the interesting property that it
intertwines the group operations

φ(k + ℓ) = φ(k) · φ(ℓ) (because ak+ℓ = ak · aℓ)

Intuitively, that means H is simply a copy of (Z,+) embedded within the abstract group G.
(More on this later.)

Case 2: There is a repeat in the set S′. A trivial possibility is that a0 = a1; then a = e and
H = 〈a〉 reduces to the trivial subgroup H = (e). Otherwise, a repeat will occur because there
are integers 0 ≤ ℓ < k such that aℓ = ak.

We claim that

(9)
Let k be the smallest index k > 0 for which a repeat occurs. Then ak = e –

i.e. the first repeat cannot occur because ak is equal to some intermediate

power aℓ.

If the repeat involved an intermediate power we would have aℓ = ak for some 0 < ℓ < k. Then
aℓ = ak = ak−ℓ ·aℓ, and we may cancel aℓ to get ak−ℓ = e. That is impossible because k− ℓ > 0
is smaller than the minimal exponent k.

In Case 2 the generated subgroup is H = {e, a, a2, . . . , ak−1}, with ak = e. The entries in
this list are distinct, the subgroup is finite with |H | = k, andH is abelian (combine the exponent
laws with the fact that ak = e). In this situation we have a well-defined map φ : Zk → H given
by φ([j]) = aj for each congruence class [j] in Zn; this makes sense because ak = e, which
implies that aj+nk = aj for all n. Thus the value of aj depends only on the (mod k) congruence
class of k in Z and not on k itself. In view of the following exercise, H = 〈a〉 is just a copy of
the finite group (Zk,+) embedded in G.

3.1.31 Exercise. Prove that the map φ : Zk → H defined above is actually a bijection, and
has the intertwining property

φ([m] + [n]) = φ([m]) · φ([n]) for all [m], [n] ∈ Zk.

Hint: Exponent laws. �

These observations can be summarized as follows.
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3.1.32 Definition. Let G be a group and let a ∈ G. The order o(a) of a group element is the

smallest positive exponent k > 0 such that ak = e. If no such exponent exists the group element

is said to have infinite order, which we indicate by writing o(a) = ∞.

For example, every element a 6= 0 in (Z,+) has infinite order; on the other hand, if G is a
finite group it is clear that every element a ∈ G has finite order since o(a) ≤ |G|. By definition
o(a) ≥ 1, and we have o(a) = 1 ⇔ a = e.

The preceeding discussion is summarized in the following theorem.

3.1.33 Theorem (Structure of Cyclic Subgroups). Let G be a group. A cyclic subgroup

has the form H = 〈a〉 = {ak : k ∈ Z} for some a ∈ G. There are two possibilities, which depend

on the order o(a) of the generator.

(a) o(a) = ∞. Then all powers ak, k ∈ Z, are distinct and H is a copy of the

infinite abelian group (Z,+) embedded in the abstract group G.

(b) o(a) = k <∞. Then H consists of the distinct elements {e, a, a2, . . . , ak−1},
with ak = e. In this case H is a copy of the finite abelian group (Zk,+)
embedded in the abstract group G.

3.1.34 Exercise. Let G = (Z12,+). The element [1] is a cyclic generator of the whole group.

(a) Which other elements a = [j] are cyclic generators of G?

(b) Determine the order of each element a ∈ G and describe the corresponding
cyclic subgroups H = 〈a〉. �

3.1.35 Exercise. Repeat the previous exercise taking G = (Z7,+). �

No discussion of cyclic groups would be complete without mention of the following result, whose
proof depends solely on properties of the system of integers

3.1.36 Proposition. Any subgroup of a cyclic group is also cyclic.

Proof: Let G = 〈a〉 be a cyclic group whose generator has order o(a) = n, and let H be any
subgroup. There is nothing to prove if H = (e) or H = G, so we may assume H is a proper

subgroup of G. Let m be the smallest positive exponent such that b = am lies in H ; obviously
1 < m < n if H is proper. (Why?)

We claim that H is equal to H0 = 〈b〉. Obviously b ∈ H , so bi ∈ H for all i ∈ Z, and
H0 = 〈b〉 ⊆ H . On the other hand if y ∈ H then y = aℓ for some ℓ ∈ Z. Adding a suitable
multiple of m to ℓ we get ℓ′ = ℓ + km such that 0 ≤ ℓ′ < m (Euclidean Division Algorithm).
But aℓ′ = aℓ · (am)k = y · (b)k lies in H because y ∈ H , and the exponent ℓ′ is smaller than the
minimal nonzero exponent m. Therefore ℓ′ = 0 and y = b−k ∈ H0, proving that H ⊆ H0. �

3.1.37 Exercise. Let n > 1. For each divisor d|n, 1 ≤ d ≤ n, construct an example of a
(cyclic) subgroup Hd ⊆ Zn such that |Hd| = d by finding an element of order d in Zn.
Hints: The cases d = 1, d = n are trivial. You might want to try it first for, say, n = 12. �

Later, at the end of Section 3.4, we will go further and prove that there is a unique subgroup
Hd ⊆ Zn for each divisor d|n, and that these are the only subgroups in Zn.

3.1.38 Exercise. Suppose a group element x ∈ G satisfies xm = e for some integer m 6= 0, so
in particular x has finite order o(x). Prove that any such exponent m must be a multiple of
o(x).
Hint: Letting s = o(x), write m = qs+ r with 0 ≤ r < s. �

3.1.39 Exercise. Let G be a group of order |G| = 3.

(a) Show that we cannot have o(x) = 2 for any element in G.

(b) Prove that G is abelian (so xy = yx for all x and y).
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Hint: If H = 〈a〉 for some element a ∈ G of order 2, then H = {e, a} and we may write
G = {e, a, b} with b 6= e, a. Where does ab lie in G? �

3.1.40 Exercise. If G is a group of order |G| = 4, prove that G is abelian.
Hint: Look at the largest order o(x) = n for an element of G and examine the cases n = 1, 2, 3, 4
(some of which cannot occur). �

Obviously [1] is a cyclic generator of the additive group (Zn,+) since k · [1] = [1]+ . . .+[1] = [k],
but there may be other cyclic generators (for instance [3] in Z4 – try it!). So it is interesting
to ask whether the elements [k] that generate Zn under the (+) operation can be identified
explicitly. In fact they can, if you know a little about greatest common divisors (Chapter 2).
The answer reveals a curious connection with the group of multiplicative units (Un, · ) in Zn,
which we introduced in Section 2.5. It begins to reveal the strong links that exist between
group theory and number theory.

3.1.41 Theorem. For n > 1, a nonzero element x = [k] in Zn is a cyclic generator under the

(+) operation ⇔ gcd(k, n) = 1 – i.e. if and only if [k] is a multiplicative unit in Un.

Note: The element [0] can never generate (Zn,+) if n > 1. (What if n = 1?) Furthermore,
in Theorem 2.5.16 we showed that if [k] 6= [0] then we have [k] ∈ Un ⇔ gcd(k, n) = 1. As
we noted there, gcd(k′, n) = gcd(k, n) if k′ ≡ k (mod n), so the property gcd(k, n) = 1 is an
attribute of the entire congruence class [k], independent of any choice of class representative k.

Proof: For (⇒) suppose Zn = 〈[k]〉 = {m · [k] : m ∈ Z} Since [1] ∈ Zn there must exist some
m such that m · [k] = [k] + . . .+ [k] (m times) = [mk] is equal to [1], which means that mk ≡ 1
(mod n). Hence there is some ℓ ∈ Z such that mk = 1 + ℓn, or 1 = mk − ℓn. But in 2.2.12
we saw that the greatest common divisor c = gcd(k, n) is the smallest positive element in the
lattice Λ = Zk + Zn. The preceeding remarks show that 1 ∈ Λ, and you can’t get smaller than
that; therefore gcd(k, n) must equal 1 and k is relatively prime to the base n.

For (⇐) suppose gcd(k, n) = 1. Since gcd ∈ Λ there must exist integers r, s such that
1 = gcd(k, n) = rk + sn. Modul n that means rk ≡ 1 (mod n), or equivalently r · [k] = [rk] =
[r][k] = [1] in Zn. Hence [k] is a multiplicative unit (and [r] is its multiplicative inverse, which
is also in Un). �

The last paragraph of the proof reveals the connection between finding

(a) Cyclic generators [k] of the additive group (Zn,+)

(b) Units [k] ∈ Un and their multiplicative inverses in Zn

(c) The greatest common divisor gcd(k, n), the smallest positive element in the
lattice Λ = Zk + Zn = {rk + sn : r, s ∈ Z}.

of two integers 0 < k < n. The smallest element in Λ∩N can often be determined by hand. For
instance, to determine gcd(4, 27) this way, a little experimentation, calculator in hand, shows
that 7 · 4 + (−1) · 27 = 1 so that gcd(4, 27) = 1. Even when k, n are quite large, the GCD
Algorithm is extremely efficient at finding the greatest common divisor gcd(k, n) without any

need to determine the prime factorizations of k and n, which could take a long time. Variants
of this algorithm allow us to quickly find coefficients r, s ∈ Z such that ra+ sb = gcd(a, b).

3.1.42 Theorem. The preceeding remarks show that [10] is a unit in Z63. Given a represen-
tation of the greatest common divisor 1 = gcd(10, 63) in the form r · 10+ s · 63 explain how you
could quickly determine [10]−1. Then find an explicit representation for the gcd and for [10]−1.
�

There are other ways in which a nonempty subset can determine a subgroup in G. We
mention here just two possibilities, which reveal important stuctural features of any group – i.e.
group theorists really want to calculate these objects in order to understand the group. Other
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structural features will be introduced later on.

3.1.43 Definition. The center Z(G) of a group G is the set of elements that commute with

everyone in G
Z(G) = {x ∈ G : gx = xg for all g ∈ G}

These elements form a subgroup that is one of the most important structural features of any

group.

More generally, given a nonempty subset S ⊆ G we may define

(a) The centralizer of S is ZG(S) = {x ∈ G : xs = sx for all s ∈ S}

Notice that x is in the centralizer if and only if xsx−1 = s for each s ∈ S. That is a stronger

requirement than the condition xSx−1 = S mentioned next.

(b) The normalizer of S is NG(S) = {x ∈ G : xSx−1 = S }

Both ZG(S) and NG(S) are subgroups of G.

An element x ∈ G is in the center Z(G) if and only if it commutes with everybody in G, which
is the same as saying xgx−1 = g for all g. Obviously G is abelian ⇔ Z(G) = G.

3.1.44 Exercise. If x, g ∈ G prove that g commutes with x⇔ g−1 commutes with x. Use this
to prove that the center Z(G) is actually a subgroup in G �

3.1.45 Exercise. Prove that

(a) The centralizer ZG(S) of a nonempty set S actually is a subgroup.

(b) S′ ⊆ S ⇒ ZG(S′) ⊇ ZG(S). Note the reversal here.

(c) If S generates the subgroup H then S and H have the same centralizer.

(d) ZG(S) ⊆ NG(S) �

Hint: Recall our “bottom up” description 3.1.20 of the group generated by a set S ⊆ G. �

3.1.46 Exercise. Let S be a nonempty subset in a group G. Prove that x is in the center of
G⇔ x commutes with each generator – i.e. xs = sx for all s ∈ S.
Hint: Recall the first step of 3.1.44.
Note: This greatly simplifies the task of deciding whether a group element lies in the center,
since it is easier to decide if an element g commutes with a small set of generators than to
decide whether it commutes with all elements in G. �

We close this section with a curious result regarding finite subgroups. In defining “subgroup”
we required that a subset have several properties in addition to H ·H ⊆ H , which in general
does not suffice to make H a subgroup; just consider H = N in G = (Z,+). It is therefore
surprising that this is all we need if the group is finite, or even if |G| = ∞ and the subset H is
finite.

3.1.47 Theorem. Let H be a nonempty finite subset of a group G, such that H ·H = {h1h2 :
h1, h2 ∈ H} is equal to H. Then the identity element e automatically lies in H and H is a

subgroup of G.

Proof: Fix an element a ∈ H and form the powers a, a2, a3, . . .. These all lie in H . Since
|H | <∞ there must exist a first index k ≥ 2 for which this list contains a repeat, say ak = aℓ,
with 1 ≤ ℓ < k. Multiply on the right by a−ℓ to get e = ak−ℓ. Since k − ℓ > 0, the identity
element e ∈ G appears in H .

To see why a−1 (inverse in G) also lies in H , there are two possibilities to consider. Case 1:

k − ℓ = 1. Then aℓ = ak ⇒ ak−ℓ = a1 = e. In this case, a−1 = a = e is in H . Case 2: Again
we have

e = ak−ℓ = a · ak−ℓ−1
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but now a−1 = ak−ℓ−1 lies in H because k − ℓ− 1 ≥ 1. Thus H has all properties required of
a subgroup. �

3.2. Isomorphisms and Homomorphisms of Groups.
A homomorphism between two groups (G, · ) and (G′, ∗) is any map φ : G→ G′ that inter-
twines the group operations, in the sense that

(10) φ(x · y) = φ(x) ∗ φ(y) for all x, y ∈ G

The map is an isomorphism if it satisfies (10) and is also a bijection. Then the inverse map
φ−1 : G′ → G exists and it too intertwines the group operations, in the reverse direction. In
fact, if u, v ∈ G′ there exist unique elements x, y ∈ G such that φ(x) = u, φ(y) = v. Then by
definition of φ−1 we have φ−1(u) = x, φ−1(v) = y, and we get

φ−1(u ∗ v) = φ−1(φ(x) ∗ φ(y))

= φ−1(φ(x · y)) (since φ is a homomorphism)

= x · y (since φ−1 ◦ φ = idG′)

= φ−1(u) · φ−1(v)

Both φ and φ−1 are isomorphisms.
Certain terminology is standard in discussing homomorphisms φ : G→ G′ of groups

(11)

1. The kernel of φ is the set of elements that get “killed” by φ: ker(φ) =
{x ∈ G : φ(x) = e′}, where e′ is the identity element in G′. The kernel is a
subgroup of the initial group G.

2. The range range(φ) is the forward image of the initial group G

range(φ) = φ(G) = {φ(x) : x ∈ G}

The range is always a subgroup of the final group G′.

Some basic properties of homomorphisms can now be read out of equation (10).

(12) If φ : G → G′ is a homomorphism and e ∈ G, e′ ∈ G′ are the respective
identity elements, then φ(e) = e′.

In fact, in any group the only solution of the “idempotent equation” x2 = x is the identity
element; to see this simply multiply both sides by x−1. But φ(e)2 = φ(e)∗φ(e) = φ(e ·e) = φ(e)
satisfies this equation in G′, so φ(e) = e′.

(13) If φ : G → G′ is a homomorphism and x ∈ G then φ(x−1) is equal to the
inverse (φ(x))−1 in G′.

This follows from (12). Since x · x−1 = e in G, we get φ(x) ∗ φ(x−1) = φ(e) = e′ in G′; then
our claim follows by definition of group inverse in G′.

3.2.1 Examples. The trivial homomorphism φ0 : G → G′ squashes all elements of the initial
group to the identity element in G′, so that φ0(x) = e′ for all x ∈ G. The identity map

id : G → G of any group onto itself is another example of a homomorphism. Here are some
more subtle examples.

(a) G = G′ = (Z,+) with φ(x) = −x, the inversion map. This map is clearly a
bijection, and hence is a nontrivial isomorphism from (Z,+) to itself.

Actually, in any abelian G the inversion map J(x) = x−1 is an isomorphism J : G → G. This
is not true if G is noncommutative because J(xy) = (xy)−1 = y−1x−1 need not equal x−1y−1.
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(b) G = G′ = (Zn,+) with

φ([j]) = −[j] = [−1] · [j] = [n− j]

This is the inversion map on the group Zn. It is clearly a bijection, and hence
is a nontrivial isomorphism from (Zn,+) to itself.

(c) G = (Z,+) and G′ = (Zn,+) with φ(j) = [j]. The map φ : Z → Zn is
well-defined because [j + k] = [j] + [k] according to our definition of the (+)
operation in Zn, cf equation (15) of Section 2. This map is surjective from
Z to Zn but its kernel is nontrivial, with ker(φ) = nZ = {nk : k ∈ Z}, so φ
is not one-to-one and is not an isomorphism.
Note: The map φ : Z → Zn is the same as the quotient map for the relation
x ∼

R
y ⇔ x ≡ y (mod n) on Z.

(d) G = (R,+) and G′ = (R×, · ), the nonzero real numbers R× equipped with
multiplication as its group operation. The usual exponential map φ(x) = ex is
a group homomorphism from R to R×. Its kernel is trivial because ex = 1 ⇔
x = 0, so φ is one-to-one. But the map is not surjective, because φ(x) > 0
for all x while R× includes all negative numbers y < 0.

(e) Let G be any abelian group and k ∈ Z any integer. The map φk : G → G
given by φk(x) = xk is always a homomorphism. Beware: This trick does
not work for nonabelian groups! (Why?) �

Notation: The last example (e) will be particularly important in our work with the additive
group (Zn,+). In this situation the definition of φk should be rewritten in additive notation

φk([ℓ]) = k · [ℓ] = [ℓ] + . . .+ [ℓ] = [kℓ] = [k] · [ℓ]

for all [ℓ] ∈ Zn and k ∈ Z. Since the right-hand expression involves only the (mod n) congruence
class of the “exponent” k, we see immediately that φk′ = φk as maps on Zn if k′ ≡ k (mod
n). In fact φk′ = φk if and only if k′ is congruent to k. To prove (⇒), apply both maps to the
element [1]; since the maps agree at every element in Zn, we get

[k′] = k′ · [1] = φk′ ([1]) = φk([1]) = k · [1] = [k]

as required. It follows that there are only finitely many distinct maps among the φk, namely

φ0 = the trivial homomorphism that maps every [ℓ] to [0]

φ1 = the identity map idZn
since φ1([ℓ]) = [ℓ]

φ2([ℓ]) = 2 · [ℓ] = [2] · [ℓ]

...

φn−1([ℓ]) = (n− 1) · [ℓ] = [n− 1] · [ℓ] = [−1] · [ℓ] = −[ℓ] (the inversion map)

3.2.2 Exercise. In (Zn,+) let φ : Zn → Zn be the homomorphism φ([ℓ]) = 3 · [ℓ] = [3ℓ]. (In
multiplicative notation this is the map φ3(a) = a3, as in 3.2.1(e) above.) Compute kerφ and
range(φ) in the particular cases: (i) n = 5 and (ii) n = 6. �

3.2.3 Definition. Given any subgroup H ⊆ G, its left cosets are the subsets of the form

xH = {xh : h ∈ H} with x ∈ G. These are of interest because the whole group splits into a

disjoint union of its distinct cosets xH. One can also define right cosets as sets of the form

Hx, x ∈ G.

For simplicity we will focus on left cosets xH , but everything we say applies equally well to
right cosets. To see that G is a disjoint union of its left cosets, first note that the cosets fill G
because

x ∈ G⇒ x ∈ xH ⊆
⋃

g∈G

gH
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To see that distinct cosets are disjoint, consider what happens if they are not. If xH ∩ yH 6= ∅
then there exist h1, h2 ∈ H such that xh1 = yh2. Multiplying on the right by h−1

1 , we see that
y = xh′ where h′ = h2h

−1
1 ∈ H , which in turn implies that

yH = (xh′)H = x(h′H) = xH (h′H = H because H is a subgroup)

Thus cosets are identical if they overlap at all, and the distinct cosets partition G as claimed
in 3.2.3.

3.2.4 Exercise. If G is a group, H a subgroup, and h0 ∈ H , prove that the following sets are
all equal to H .

(a) H ·H = {xy : x ∈ H, y ∈ H} (product of two sets in G)

(b) h0H = {h0y : y ∈ H}

(c) Hh0 = {xh0 : x ∈ H} �

Now consider cosets of the kernel

K = ker(φ) = {x ∈ G : φ(x) = e′}

for some group homomorphism φ : G→ G′. This kernel and its cosets xK determine the overall
behavior of the mapping φ, very much as the behavior of a linear operator T : V → V ′ between
vector spaces is determined by the nature of its kernel ker(T ) = {v ∈ V : Tv = 0}.

3.2.5 Proposition. If φ : G→ G′ is a homomorphism of groups and K = ker(φ) is its kernel,

then

(a) Under φ all points in a coset xK map to the single point φ(x) in G′.

(b) Distinct cosets xK 6= yK in G map to distinct points in G′.

as shown in Figure 3.2. In particular φ is one-to-one (and hence an isomorphism from G to

the subgroup range(φ) in G′ ) if and only if the kernel is trivial: ker(φ) = (e).

Proof: To prove (a) consider points x ∈ G, k ∈ K. Since φ(k) = e′ by definition of K, we get
φ(xk) = φ(x)φ(k) = φ(x). Thus all points in the coset xK map to the same point φ(x) in G′.

For (b), recall that φ maps x−1 (inverse in G) to φ(x)−1 (inverse in G′), as shown in (13).
Thus if x, y ∈ G we have

φ(x) = φ(y) ⇔ e′ = φ(y)−1φ(x) = φ(y−1x)

⇔ y−1x ∈ K = ker(φ)

⇔ x ∈ yK = ker(φ)

⇔ there exists some k ∈ K such that x = yk

⇒ xK = ykK = y(kK) = yK (by 3.2.4)

so the cosets are identical, as required in (b).
Finally, suppose φ is one-to-one. Then ker(φ) = (e) because all points in K map to the

same point e′ in G′. Conversely, if K = (e) the cosets xK reduce to single points in G, and
then (b) says φ is one-to-one. �

We will have a lot more to say about homomorphisms of groups later on, but for now we
comment on the meaning of isomorphism. If two groups are isomorphic, which we indicate by
writing G ∼= G′, there is a bijection φ : G → G′ that intertwines the group operations, so we
have φ(x·y) = φ(x)∗φ(y). That means the groups have exactly the same properties as algebraic
structures, and differ only superficially in the way we label objects in the group or in the symbol
we use to indicate the group operation. To an algebraist they are the same group in different
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Figure 3.2. Mapping properties of a homomorphism φ : G → G′ are largely
determined by its kernel K = ker(φ) = {x ∈ G : φ(x) = e′}. Cosets xK

collapse to single points in range(φ) ⊆ G′, and distinct cosets xK 6= yK map
to different points in the range.

disguises. In contrast, existence of a homomorphism φ : G→ G′ means that some, but not all,
properties of the groups are closely related. The concepts of isomorphism and homomorphism
play the same roles in algebra that congruence and similarity play in geometry.

The following concrete examples show how various familiar groups arise as homomorphic
images of the particular groups (R,+) and (Z,+).

3.2.6 Example. Let (S1, · ) be the circle group, the complex numbers of absolute value 1
equipped with complex multiplication as the group operation. The exponential map

φ : R → S1 given by φ(θ) = e2πiθ

is a group homomorphism since φ(0) = 1 + i0 and

φ(θ1 + θ2) = e2πi(θ1+θ2) = e2πiθ1 · e2πiθ2 = φ(θ1) · φ(θ2)

by the Exponent Laws. Obviously range(φ) is all of S1. A real number θ is in the kernel
K = ker(φ) if and only if

1 = φ(θ) = e2πiθ ⇔ 2πiθ is a whole multiple of 2π radians ⇔ θ ∈ Z

so that ker(φ) = Z in R. By 3.2.5 it follows that θ1 and θ2 have the same image under φ⇔ θ2
and θ1 differ by an integer. �

3.2.7 Example. Similarly, there is a natural surjective homomorphism from (R,+) to the
group G = {Rθ : θ ∈ R} of rotations about the origin in the Cartesian plane R2. As we showed
in 3.1.11, Rθ1+θ2

= Rθ1
◦Rθ2

so G is a group under composition (◦) of operators, and ρ(θ) = Rθ

is a surjective homomorphism ρ : R → G. Obviously Rθ+2πk = Rθ for any integer k. Thus

θ ∈ ker(φ) ⇔ Rθ = I ⇔ θ is a whole multiple of 2π radians

Thus ker(φ) = 2πZ = {2πk : k ∈ Z} and φ(θ1) = φ(θ2) ⇔ θ1 and θ2 differ by an integer
multiple of 2π.
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The strong similarity between Examples 3.2.6 - 7 will be explained when we take up the
“First Isomorphism Theorem” later in this section. �

3.2.8 Example. There is a natural surjective homomorphism ψn from (Z,+) to the multi-
plicative group (Ωn, · ) of nth roots of unity defined in 3.1.14. The appropriate map is

ψn(k) = ωk = e2πik/n for all k ∈ Z

where ω is the primitive nth root of unity ω = e2πi/n. It is immediate from the Exponent Laws
that ψn : Z → Ωn is a homomorphism, and it is obviously surjective. To determine the kernel
we observe that

k ∈ ker(ψn) ⇔ 1 = ωk = e2πik/n ⇔ 2π
k

n
is a multiple of 2π

⇔
k

n
∈ Z ⇔ k is divisible by n ⇔ k ≡ 0 (mod n)

Thus ker(ψn) = nZ = {nk : k ∈ Z}, and by 3.2.5 we have ψn(k) = ψn(ℓ) ⇔ k and ℓ differ by
a multiple of n. That is the same as saying k ≡ ℓ (mod n), so the (mod n) congruence classes
in Z collapse to single points in Ωn under our homomorphism ψn and different classes go to
different roots of unity. �

Later we will show that (Ωn, · ) ∼= (Zn,+) as a consequence of the last result.

3.2.9 Exercise. Below we give the multiplication tables for two groups (G, · ) and (G′, ∗) of
order 4.

(a) In each case, which is the identity element?

(b) Are both groups abelian?

(c) Are there any elements a 6= e such that a2 = e – i.e with o(a) = 2?

(d) Is G ∼= G′? (Prove or disprove.) �

a b c d

a a b c d
b b a d c
c c d a b
d d c b a

Product x · y in G

a′ b′ c′ d′

a′ d′ c′ b′ a′

b′ c′ d′ a′ b′

c′ b′ a′ d′ c′

d′ a′ b′ c′ d′

Product x ∗ y in G′

Figure 3.3. Multiplication tables for two groups of order 4.

3.2.10 Exercise. Prove that the permutation group on two elements S2 is isomorphic to
(Z2,+). Prove that any group with |G| = 2 is isomorphic to (Z2,+). �

3.2.11 Exercise. Prove that any group such that |G| = 3 is isomorphic to (Z3,+).
Hint: Look at an element with the largest possible order o(a). Produce a contradiction if this
order is equal to 1 or 2. �

3.2.12 Exercise. Prove that the permutation group on three elements S3 is not isomorphic to
(Z6,+), even though |G| = 6 in each case. �

3.2.13 Exercise. If G is any group and a ∈ G any element of infinite order, prove that H = 〈a〉
is isomorphic to (Z,+). �

3.2.14 Exercise. If G is any group and a ∈ G any element of finite order o(a) = n, prove that
H = 〈a〉 is isomorphic to (Zn,+). �

3.2.15 Exercise. If G is a finite cyclic group, say with G = 〈x〉 and |G| = o(x) = n, prove
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that G is isomorphic to the additive group (Zn,+). Thus all cyclic groups of the same size are
isomorphic. �

3.2.16 Exercise. Prove that the exponential map φ(t) = et is an isomorphism from G = (R,+)
to the groupG′ = {x ∈ R : x > 0} of strictly positive real numbers, equipped with multiplication

as the group operation. �

3.2.17 Exercise. If a group G is generated by a subset S, prove that any homomorphism
φ : G→ G′ is completely determined by what it does to the generators, in the following sense:

If φ1, φ2 : G → G′ are homomorphisms such that φ1(s) = φ2(s) for all s ∈ S, then
φ1 = φ2 everywhere on G.

This can be quite useful in constructing homomorphisms of G, especially when the group has
a single generator.
Note: There is a similar result for vector spaces. Any linear operator T : V → V ′ is completely
determined by what it does to a set of basis vectors in the initial space V . �

3.2.18 Exercise. For each integer k ∈ Z let φk : Zn → Zn be the homomorphism

φk([ℓ]) = [k] · [ℓ] = [kℓ] for all [ℓ] ∈ Zn

as in the discussion of 3.2.1(e), where we remarked that

φk′ = φk as maps on Zn ⇔ k′ ≡ k (mod n)

For each of the following moduli n > 1

(a) n = 7 (b) n = 8 (c) n = 12

determine all values of 0 ≤ k < n such that φk : Zn → Zn is a bijection.
Hint: Since Zn is finite, a homomorphism φk will be a bijection ⇔ ker(φk) is trivial.
Note: For these k the map φk is an isomorphism of G with itself. These “self-isomorphisms,”
or “internal symmetries,” of a group are referred to as automorphisms of G and will be of
considerable interest as we go along. �.

3.3 Coset spaces and quotient groups.
Let H be a subgroup in G. As in Section 3.2, the left cosets are the subsets having the form
xH = {xh : h ∈ H} for some x ∈ G, and the collection of all such cosets is denoted by G/H .
Similarly we could define the space H\G of right cosets, which have the form Hx. We will
mostly deal with G/H .

In the following discussion we are going to regard G/H as a “quotient space” of the group
G, so you might want to review Section 2.4, especially the definition of “equivalence relations.”
We start by determining when two group elements x, y give the same coset: xH = yH .

3.3.1 Lemma. Let H be a subgroup in G and let x, y be points in G. Then

(a) We have xH = yH ⇔ there is some h ∈ H such that y = xh. In particular,

xH = H ⇔ x ∈ H.

(b) Two cosets xH and yH are either identical sets in G or are disjoint.

(c) The relation x ∼
R
y ⇔ xH = yH is reflexive, symmetric and transitive, and

the equivalence classes for this relation are precisely the cosets in G/H: for

any x we have {g ∈ G : g ∼
R
x} = xH.

Proof: The first statement is a simple calculation: since y = ye ∈ yH we have xH = yH ⇒
there exists an h ∈ H such that xh = y, and conversely if such an h exists we get yH = xhH =
xH because hH = H (recall 3.2.4).
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If two cosets xH, yH intersect nontrivially there is some z ∈ xH ∩ yH . Then we can find
h′, h′′ ∈ H such that z = xh′ = yh′′, which ⇒ y = xh′(h′′)−1. Thus y = xh for some h ∈ H ,
and as in (a) we get xH = yH . That proves (b).

We leave the reader to check that ∼
R

is in fact an rst relation. The equivalence class
[x] = {xh : h ∈ H} is precisely the coset xH . �

Now consider the space of cosets G/H , which is just the quotient space of equivalence
classes under the rst relation ∼

R
Note carefully:

Points in the quotient space G/H are subsets in the original group G.

The quotient map π : G→ G/H for this relation is given by

(14) π(x) = xH (since xH is the equivalence class for x)

This map has the following general properties:

• Under π, each coset xH ⊆ G collapses to a single point in the quotient space
G/H .

• Distinct (disjoint) cosets xH 6= yH in G are mapped by π to distinct points
in the quotient space G/H .

Here are some important examples of coset spaces.

3.3.2 Example. If G = (Z,+) and n ≥ 2 then the set H = nZ = {nk : k ∈ Z} is a subgroup
in Z. Since G is abelian there is no distinction between left and right cosets; since the group
operation is being written as (+), the cosets are of the form

x+H = {x+ nk : k ∈ Z}

= {y ∈ Z : y − x is a whole multiple of n}

= {y ∈ Z : y − x is divisible by n}

= {y ∈ Z : y − x ≡ 0 (mod n)}

= {y ∈ Z : y ≡ x (mod n)}

Obviously, the cosets are precisely the (mod n) congruence classes in Z, and the space of cosets
G/H is what we have been calling Zn. What’s new is that we see Zn as a quotient space
associated with G = Z. The quotient map π : Z → Zn assigns to each k ∈ Z its (mod n)
congruence class [k] = k + nZ. �

Incidentally, in this particular example the quotient space G/H has a natural group structure
of its own, and the quotient map is easily seen to be a homomorphism from Z to Zn. (This is
immediate from the definition of the group operation [k] + [ℓ] = [k + ℓ] on congruence classes.)
For more general groups G and subgroups H it is not always possible to put a natural group
structure on the quotient space G/H ; it worked in the last example largely because the group
was abelian.

3.3.3 Example. Let G = (R,+) and H = Z. The group is abelian, so left and right cosets
coincide and have the form

x+H = x+ Z = {y ∈ R : ∃ k ∈ Z such that y = x+ k} = {y ∈ R : y ≡ x (mod 1)}

Obviously a coset x+Z is a periodic subset of R with spacing 1 between successive points. Note
too that every coset can be written (uniquely) in the form x+ Z with representative 0 ≤ x < 1,
so the cosets in R/Z are labeled by the points in the interval [0, 1).

As in the last example, the quotient G/H = R/Z inherits a group structure fromG, obtained
by imitating the definition of addition in Zn. We define

(15) (x+ Z) + (y + Z) = (x+ y) + Z for x, y ∈ R,
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and leave the reader to carry out the routine verification that

(i) The operation (+) is independent of the particular coset representatives x
and y that appear in the definition (15).

(ii) Under the (+) operation R/Z becomes an abelian group.

(iii) The identity element is the class [0] = 0 + Z, the additive inverse is given
by −(x + Z) = (−x) + Z, so that in terms of equivalence classes we have
−[x] = [−x].

(iv) The quotient map π : R → R/Z is a surjective homomorphism of groups.

But what is the mysterious group R/Z? We now show it is isomorphic to something quite
concrete and familiar, the “circle group”

S1 = {z ∈ C : |z| = 1} equipped with complex multiplication as the group law.

The proof involves a construction that will become very important before long.
In Example 3.2.6 we showed that the exponential map φ(θ) = e2πiθ = cos(2πθ)+ i sin(2πθ),

is a surjective homomorphism from (R,+) to the circle group (S1, · ). This map is, however, not
one-to-one because its kernel ker(φ) = Z, which we computed in 3.2.6, is nontrivial. (Recall
3.2.5.) We now show how φ can be used to create a bijection φ̃ between the quotient space
R/Z and S1; this turns out to be a group isomorphism. The idea is to define φ̃ using coset
representatives, letting

(16) φ̃(x+ Z) = φ(x) = e2πix for all x ∈ R

The first thing to do is check that φ̃ makes sense inde-
pendent of the coset representative, but that is clear since
x′ + Z = x + Z ⇒ x′ = x + k for some integer k, which
means that φ(x′) = φ(x), as desired. Notice that our def-
inition of φ̃ makes the diagram in Figure 3.4 “commute,”
in the sense that φ̃ ◦ π = φ.

R
φ

−→ S1

π ↓ ր

R/Z φ̃

Figure 3.4. φ̃(x+ Z) = φ(x).
Next, φ̃ is injective because, as noted earlier, we have

φ̃(x+ Z) = φ̃(y + Z) ⇔ φ(x) = φ(y) ⇔ y = x+ k ⇔ x+ Z = y + Z .

The map is also onto, hence a bijection, because every point p ∈ S1 can be expressed as
e2πix = φ(x) = φ̃(x+ Z) for some real x. Finally, φ̃ is a group homomorphism because

φ̃((x + Z) + (y + Z)) = φ̃((x+ y) + Z) = φ(x+ y) = φ(x) · φ(y) = φ̃(x + Z) · φ̃(y + Z) .

We conclude that R/Z ∼= (S1, · ). �

We will soon have more to say about the construction in 3.3.3, but first we consider a special
class of subgroups H , the normal subgroups. For most groups, and most choices of H , there
is no way to define a group operation in the space of cosets G/H ; we managed this miracle in
Examples 3.3.2-3.3.3 only because the group G was abelian. One might naively try to imitate
what we did in defining the (+) operations in Zn or R/Z, by defining an operation ⊗ from
G/H ×G/H → G/H in the following way.

(xH) ⊗ (yH) = xyH for arbitrary cosets xH, yH ∈ G/H

Unfortunately, the outcome xyH is defined in terms of representatives x, y of the initial cosets,
and if no restrictions are placed on H there are examples in which the coset xyH depends on
the particular choice of representatives – i.e. there might exist x′, y′ such that

x′H = xH and y′H = yH, but x′y′H 6= xyH

22



That means the outcome cannot be consistently determined from the cosets we start with,
independent of representatives, and hence the “operation” ⊗ is not well-defined. It turns out
that a simple condition on H tells us when this construction works.

3.3.4 Definition. We say that a subgroupN in G is a normal subgroup if it has the property

(17) xN = Nx for all x ∈ G ,

which means there is no difference between left- and right-cosets for this subgroup. Notice that
all subgroups are normal if G is abelian.
Notation: Normality of a subgroup is indicated by writing N ⊳G. �

It is easily seen that each of the following properties of a subgroup N is equivalent to normality,
which gives us considerable flexibility in deciding when a subgroup is normal.

3.3.5 Lemma. If N is a subgroup of G, each condition below implies the others.

(a) The subgroup N is normal: xN = Nx for all x ∈ G.

(b) xNx−1 = N for all x ∈ G.

(c) xNx−1 ⊆ N for all x ∈ G.

(d) xnx−1 ∈ N for all x ∈ G,n ∈ N .

Proof: Implications (d) ⇔ (c) ⇐ (b) ⇔ (a) are obvious. To get (c) ⇒ (b) we note that
condition (c) says

xNx−1 ⊆ N for all x ∈ G

N ⊆ x−1Nx for all x ∈ G

But x−1 runs through all of G as x runs through G, so in the last line we may replace x−1 by
x (owing to the presence of the “for all” quantifier). Thus we get

N ⊆ xNx−1 for all x ∈ G

Since we already know that the reverse inclusion xNx−1 ⊆ N holds, N must be equal to xNx−1

for all x, as required in (b). �

3.3.6 Lemma. If H is a subgroup in G and N a normal subgroup, prove that the product set
HN is again a subgroup. If both H and N are normal subgroups, then HN is also normal in
G. �

Now we come to the definition of a product operation in the coset space G/N . When N is
a normal subgroup we can make sense of our earlier definition

(18) (xN) · (yN) = xyN for x, y ∈ G .

We must first show that the outcome is independent of the coset representatives x, y, and then
must show that the operation satisfies the group axioms. Neither is true in general; normal

subgroups are what make it happen.
Note: If N is a normal subgroup the product set (xN) · (yN) formed from two cosets can be
rewritten as

(xN) · (yN) = xyN

because (xN)(yN) = x(Ny)N = x(yN)N = (xy)NN = xyN (recall 3.2.4). In this situation the
outcome of the operation (xN)⊗ (yN) introduced earlier is simply the product set (xN) · (yN),
and we shall write it that way from now on.
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3.3.7 Theorem (Quotient Groups). Let N be a normal subgroup in a group G. Then

the operation (18) is well defined: the outcome does not depend on the particular coset repre-

sentatives x and y. This product satisfies all the group axioms, making the coset space G/N
into a group in its own right. Finally, the quotient map π : G → G/N becomes a surjective

homomorphism of groups.

Proof: To see the product is well defined, suppose we take other representatives such that
x′N = xN, y′N = yN . Then there exist elements n1, n2 ∈ N such that x′ = xn1, y

′ = yn2 and
we get

x′y′ = xn1yn2 = x(yy−1)n1yn2 = xy(y−1n1y)n2

By Lemma 3.3.5(c) the element y−1n1y is inN , hence the product to the right of xy is an element
of N and we may write x′y′ = xyn′′ for some n′′ ∈ N . Thus we get x′y′N = xyn′′N = xyN ;
the product operation (18) is independent of coset representatives.

Associativity of the operation in G/N follows from associativity of the product operation
in the original group because

(xN)((yN) · (zN)) = (xN)(yzN) = x(Nyz)N = x(yzN)N = xyzN = . . . = ((xN) · (yN))zN

It is also clear that the identity coset eN = N acts as an identity element in G/N , and that
x−1N serves as the inverse to the coset xN . Thus (G/N, · ) is a group. Then π is a homomor-
phism of groups because π(xy) = xyN = (xN) · (yN) = π(x) · π(y). That completes the proof.
�

3.3.8 Exercise. If G is an abelian group and N is any normal subgroup, prove that the quo-
tient group G/N is abelian. �

We have already seen some examples of quotient groups, namely Zn = Z/(nZ) and R/Z. The
latter example can be generalized considerably by taking G = (Rn,+) and N to be the lattice
subgroup of integer points Zn in n-dimensional space. The group law is (x + Zn) + (y + Zn) =
(x + y) + Zn, but in this algebraic picture the physical nature of the quotient group is elusive.
It turns out that Rn/Zn can be viewed as an n-dimensional torus, which acquires a group law
when we make this identification. For instance when n = 2, forming the quotient space R2/Z2

amounts to identifying points on opposite edges of the unit square [0, 1]× [0, 1] in R2, which in
a certain sense is equivalent to making a donut-shaped torus. We omit these details.

It is not always easy to tell when two groups are isomorphic, especially when one of them is
something as abstract as a quotient group. The next examples illustrates the sort of cunning
that might be required to produce the necessary isomorphism map. We start with an easy one.

3.3.9 Exercise. In Example 3.2.8 we defined a surjective homomorphism ψ : Z → Ωn

ψ(k) = ωk = e2πik/n where ω = e2πi/n (the primitive nth root of unity)

Its kernel was the subgroup H = nZ = {nj : j ∈ Z} in Z. Now consider the quotient group
Z/H = Z/(nZ). The group operation (18) in Z/H takes the form (x + H) + (y + H) =
(x + y) + H . The quotient homomorphism π : Z → Z/(nZ) obviously has the same kernel
ker(π) = H = nZ as ψ. Following the ideas laid out in Example 3.3.3, construct an explicit
isomorphism ψ̃ : Z/H → Ωn. It follows that Z/H = Z/(nZ) = Zn is isomorphic to the group
(Ωn, · ) of nth roots of unity in C. �

3.3.10 Example. Let G be the set C× = {z ∈ C : z 6= 0} of nonzero complex numbers,
equipped with multiplication as the group operation. Within this abelian group we have the
two-element normal subgroup N = {+1,−1}, which is obviously isomorphic to (Z2,+). Since
a coset has the form zN = {z,−z}, the quotient G/N is obtained by lumping together each
pair of points +z,−z in C× to get a single point in the quotient group.

What is the nature of the quotient group? In particular,
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Is G/N isomorphic to the original group C×, or have we created something new?

It turns out that G/N is isomorphic to (C×, · ); proving it is the challenge. The first step in
mimicing the construction in 3.3.3 is to notice that there is a natural 2:1 homomorphism on C×

whose kernel is also N = {±1}, namely the “squaring map” φ : C× → C× given by φ(z) = z2.
This map is a homomorphism, as we saw in 3.2.1(e); furthermore, it is surjective and is exactly
two-to-one because every nonzero complex number w has precisely two square roots, which
lie in C×. The kernel is N = kerφ = {±1}. Notice what happens when we regard a coset
zN = {±z} as a subset of C× and take the forward image φ(zN): the coset collapses to a single
point z2.

This suggests the following ad-hoc construction of a natural map Φ : G/N → C×. Guided
by 3.3.3 (taking the squaring map in place of the exponential map used there), we define

Φ(zN) = φ(z) = z2

This makes sense independent of the choice of coset representative z, because the only other
representative is −z, and (−z)2 = z2; furthermore Φ is surjective, by our remark regarding
square roots. And, Φ is also one-to-one, hence a bijection, because Φ(zN) = Φ(wN) ⇔ z2 =
w2 ⇔ w = ±z ⇔ zN = wN . To show G/N ∼= C× it remains only to check whether Φ is a
homomorphism. That is a routine calculation:

Φ(zN · wN) = Φ(zwN) = (zw)2 = z2w2 = Φ(zN) · Φ(wN) �

In all these examples G was abelian. We now prove a much more comprehensive result, valid

for nonabelian G.

Isomorphism theorems for quotient groups. The isomorphisms in the last examples were
all constructed “by hand.” We now develop some basic machinery for deciding when quotient
groups are isomorphic, so we won’t have to re-invent the wheel every time we come to a new
example. We start by clarifying the connection between homomorphisms φ : G → G′ and
normal subgroups in G.

3.3.11 Lemma. A subgroup N in a group G is normal if and only if N is the kernel

kerφ = {x ∈ G : φ(x) = e′} for some homomorphism φ : G→ G′.

Proof: Given φ, its kernelN is normal because φ(xnx−1) = φ(x)φ(n)φ(x−1) = φ(x)e′φ(x)−1 =
e′ for any x ∈ G,n ∈ N . Conversely, if N is a normal subgroup the quotient map π : G→ G/N
is a homomorphism whose kernel is N . �

The mapping properties of any homomorphism are determined by the nature of its kernel,
as mentioned in our initial discussion of homomorphisms. The basic properties are:

(19)

If φ : G→ G′ is a homomorphism, with kernel K = kerφ = {x ∈ G : φ(x) = e′},
then

(a) Each coset xK gets mapped to a single point in G′ under φ.

(b) Distinct cosets xK 6= x′K get mapped to different points φ(x) 6= φ(x′)
in G′

A homomorphism φ is one-to-one, and hence an isomorphism from G to the
subgroup φ(G) = range(φ) in G′, if and only if its kernel is trivial: kerφ = (e).

(recall Figure 3.2). It is also important to note that any homomorphism φ : G → G′ is com-
pletely determined by its behavior on a set of generators of G, as explained in 3.2.17.
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We now come to what is called the First Isomorphism The-

orem for quotient groups (there are two more). Suppose
φ : G → G′ is a homomorphism and let K = kerφ. Ob-
viously we could regard φ as a surjective homomorphism
from G to the subgroup R = range(φ) ⊆ G′. Now con-
sider the quotient map π : G → G/K (see Figure 3.6 at
right). By definition of π we have kerφ = kerπ = K. We
claim that there is a natural isomorphism φ̃ from G/K to
R = range(φ) that makes this diagram commutative, in
the sense that φ̃ ◦π = φ. This is often expressed by saying
that the original homomorphism φ “factors through” the
quotient homomorphism π to give an “induced map” φ̃.

G
φ

−→ R ⊆ G′

π ↓ ր

G/K φ̃

Figure 3.5. Here we have

R = range(φ), K = ker(φ).

3.3.12 Theorem (First Isomorphism Theorem). Let φ : G→ G′ be a homomorphism, let

K = ker(φ), and let π : G→ G/K be the quotient homomorphism. Then there is a unique map

φ̃ : G/K → R = range(φ) that makes the diagram in Figure 3.5 commute: φ̃ ◦π = φ. This map

is a group homomorphism and is bijective, so that R = range(φ) is isomorphic to the quotient

group G/K. In particular, when φ is surjective we have G′ ∼= G/K.

Proof: We know that K is normal in G, so G/K is a group, etc. Following the ideas laid down
in Example 3.3.3, we try defining the missing map as

(20) φ̃(xK) = φ(x) for all x ∈ G .

This map is well defined because xK = yK ⇒ ∃ k ∈ K such that y = xk ⇒ φ(y) = φ(xk) =
φ(x)φ(k) = φ(x)e′ = φ(x); since φ(y) = φ(x), the outcome in (21) is independent of the coset
representative.

Once we know φ̃ is well defined, it is a homomorphism because

φ̃(xK · yK) = φ̃(xyK) = φ(xy) = φ(x) · φ(y) = φ̃(xK) · φ̃(yK)

Commutativity of the diagram is automatic from our definition (21).
Now, φ̃ is one-to-one because, by definition of K = kerφ,

φ̃(xK) = φ̃(yK) ⇒ φ(x) = φ(y) ⇒ φ(y−1x) = φ(y)−1φ(x) = e′ ⇒ y−1x ∈ K ⇒ xK = yK

Furthermore, φ̃ maps G/K onto the range R, which makes it an isomorphism between these
groups as claimed. In fact, if r ∈ R then r = φ(x) for some x ∈ G, and then π(x) = xK gives
φ̃(xK) = φ(x) = r, so φ̃ is surjective. �

In 3.3.12 a homomorphism φ : G → G′ was given and K was its kernel; if φ is surjective we
proved that G/K ∼= G′. In applying the First Isomorphism Theorem we often take a different
point of view, in which some normal subgroup K is given and we want to identify the abstract
quotient group G/K with some known group G′. Using 3.3.12 we can conclude that G/K ∼= G′

provided we can find some surjective homomorphism φ : G → G′ whose kernel is

the same as K : ker(φ) = K.

The problem now is to find a suitable homorphism φ once K has been specified. This is what
we did in Example 3.3.10 where G = C× and the specified normal subgroup was N = {±1}. For
any integer k = 1, 2, 3, . . . the “kth power map” φk : x 7→ xk is a homomorphism φk : C× → C×

because (C×, · ) is abelian; φk even maps C× onto C× because every nonzero complex number w
has at least one kth root z = w1/k, for which φk(z) = zk = w. Now ask yourself: do any of these
homomorphisms have ker(φk) = {±1}? If so, we can immediately conclude that G/N ∼= C×.
The answer to our question is obviously affirmative: just take k = 2, which gives the “squaring
map” employed in 3.3.10.
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3.3.13 Example. Let G be the matrix group GL(n,C) of all n× n matrices A with complex
entries and det(A) 6= 0. This is a group under matrix multiplication, and so is the subgroup
N = SL(n,C) of matrices with determinant +1. We claim that N is normal in G, and that
the quotient group G/N is isomorphic to the group (C×, · ) of nonzero complex numbers under
multiplication.

Discussion: Normality of N follows because the determinant has the properties

det I = 1 det(AB) = det(A) · det(B) det(A−1) =
1

det(A)

If A ∈ G,B ∈ N we get det(ABA−1) = det(A)det(B)det(A)−1 = det(B) = 1, which shows
that ANA−1 ⊆ N for all A. Thus N is normal.

There is a natural homomorphism φ : GL(n,C) → C×, namely the determinant map φ(A) =
detA. This is obviously a group homomorphism since the determinant is multiplicative, and it
is surjective because if λ 6= 0 in C the diagonal matrix D = diag(λ1/n, . . . , λ1/n) has detD = λ.
(Here λ1/n is any complex nth root of λ; for instance if λ has polar form λ = reiθ we can take
λ1/n = r1/neiθ/n where r1/n is the usual nth root of a non-negative real number.)

The kernel of φ is precisely N = SL(n,C), by definition of SL(n,C). The conditions of the
First Isomorphism Theorem are fulfilled. We conclude that GL(n,C)/SL(n,C) ∼= (C×, · ) as
claimed. �

3.3.14 Exercise (Second Isomorphism Theorem). Let A be any subgroup in G and let
N be a normal subgroup. Show that

(a) The product set AN is a subgroup in G, with N ⊳AN .

(b) A ∩N is a normal subgroup in A.

(c) AN/N ∼= A/(A ∩N)

Hint: Consider the map ψ(a(A∩N)) = aN for a ∈ A. Start be showing this map is well-defined:
if a(A ∩N) = a′(A ∩N) then aN = a′N �

3.3.15 Exercise (Third Isomorphism Theorem). Let G ⊇ A ⊇ B be groups such that A
and B are both normal subgroups in G. Prove that (G/B)/(A/B) ∼= G/A.
Note: This is the group-theoretic analog of the arithmetic relation (a/c)/(b/c) = a/b. �

3.3.16 Exercise. Let N = Ωn be the group of nth roots of unity in G = (C×,+). Use 3.3.12
to prove that G/N = C×/Ωn is isomorphic to (C×, · ) for all n = 1, 2, . . . . �

3.3.17 Exercise. If G is a cyclic group (finite or not) and N is any normal subgroup, prove
that the quotient group G/N is cyclic.
Note: We have shown that any subgroup of cyclic group is cyclic; the present result is the
analogous result for quotients. �

3.3.18 Exercise. If G = (Zn,+) and d is a divisor of n, we have shown that there is a subgroup
Hd ⊆ Zn such that |Hd| = d, and we will soon prove that there is exactly one such subgroup
for each divisor. Prove that the quotient group (Zn/Hd,+) is isomorphic to (Zn/d,+).
Hint: By 3.3.17, the quotient is cyclic. What do you know about its cardinality?
Note: Since Hd

∼= Zd, this result might be paraphrased as saying that (Zn)/(Zd) ∼= Zn/d. �

3.3.19 Exercise. Use 3.3.12 to prove the following useful variant of the First Isomorphismn
Theorem

Proposition. If G,G1, G2 are groups and φi : G → Gi are surjective homomor-

phisms with the same kernel K = ker(φ1) = ker(φ2), then G1
∼= G2.

Hint: Prove G1
∼= G/K ∼= G2. �
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3.3.20 Exercise. In GL(n,C) and SL(n,C) define the subgroups of scalar matrices

C×I = {λI : λ 6= 0 in C}

ΩnI = {λI : λ ∈ Ωn}

where Ωn are the complex nth roots of unity.

(a) Prove that C×I and ΩnI are normal in GL(n,C) and SL(n,C) respectively.

(b) Prove that GL(n,C)/C×I ∼= SL(n,C)/ΩnI

Hint: Use the Second Isomorphism Theorem. Note that if N = C×I then N · SL(n,C) =
GL(n,C). �

The quotient group PSL(n,C) = SL(n,C)/ΩnI is the “projective special linear group” (hence
the symbol “PSL”), a group that plays a crucial role in projective geometry. One can prove that
this quotient is not isomorphic to SL(n,C) for n ≥ 2. For one thing, we will eventually see that
the center of SL(n,C) is precisely the set of scalar matrices Ωn · I, and is nontrivial; PSL(n,C)
has trivial center, hence cannot be isomorphic to any group with nontrivial center. A deeper
result asserts that PSL(n,C) is not isomorphic to any group of matrices G ⊆ GL(m,C), m ∈ N,
even though it is a quotient of a matrix group.

3.4 Basic counting principles in group theory.
We now turn our attention to some basic counting principles in group theory. The following
principle is fundamental. It places severe constraints on the possible pattern of subgroups in a
group of finite order |G| = n, in terms of the divisors of n.

3.4.1 Theorem (Lagrange). If G is a group of finite order |G| = n and H is a subgroup,

then |H | must divide |G|. In fact, we have

(21) |G| = |G/H | · |H |

so the number of cosets in G/H also divides |G|.

Proof: Any left translation τx : G → G, with τx(g) = xg, is easily seen to be a bijection; for
one thing, the operator τx−1 is its inverse. That means all H-cosets have the same cardinality
because |xH | = |τx(H)| = |H |. Since the H-cosets form a disjoint partition of G we get

|G| = #(H-cosets) · (size of each coset) = |G/H | · |H |

as claimed. �

3.4.2 Corollary. If G is a finite group and a ∈ G then the order o(a) of this element must

divide |G|.

Proof: If o(a) = k that means {e, a, a2, . . . , ak−1} are distinct and ak = e. The cyclic group
H = 〈a〉 has order k, which must divide |G|. �

3.4.3 Corollary. If a group G has finite order |G| = n then an = e for all elements a ∈ G.

Proof: We know that the order k = o(a) of a group element divides the order of the group.
Thus n = km and

an = (ak)m = em = e

as claimed. �

As an example of what can be done with this theorem, consider the cyclic group G = Z/(7Z) =
Z7 of (mod 7) congruence classes, with (+) as the group operation. The order of this group is
a prime p = 7; consequently, G cannot contain any proper subgroups – subgroups other than
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H = {e} and H = G. By the same reasoning, applied to any prime p > 1, we obtain our first
general structure theorem for finite groups

3.4.4 Corollary. If G is a finite group whose order is a prime |G| = p > 1, then G = 〈a〉
for every element a 6= e and G ∼= (Zp,+). In particular, every finite group of prime order is

abelian.

3.4.5 Corollary. If an element x in a group satisfies xm = e for some integer m ∈ N, prove
that m must be a multiple of the order o(x) of that element. �

3.4.6 Exercise. By Lagrange, the cyclic abelian group G = (Z12,+) could have subgroups
of order |H | = 1, 2, 3, 4, 6, 12. By 3.1.30 we know that all subgroups of a cyclic group are
themselves cyclic, so there is a subgroup with one of these orders if and only if there exist
elements in G of order o(a) = 1, 2, 3, 4, 6, 12.

(a) What is the size of the cyclic subgroup generated by a = [2]?

(b) Which of the possible orders actually occur in this group?

(c) We know that a = [1] is a cyclic generator of the whole group (under the +
operation). Identify all other elements a such that G = 〈a〉. �

Note the contrast: when |G| was a prime, as with Z7, every element a 6= e was a cyclic generator;
this is no longer true in Zn if n has proper divisors.

3.4.7 Exercise. If (Zn,+, · ) the group of units Un is the set of elements [k] ∈ Zn that have a
multiplicative inverse: there exists an [ℓ] such that [k][ℓ] = [1].

(a) Explain why the set of units (Un, · ), equipped with multiplication [j] · [k] =
[jk] as its operation, is always a group.

Now consider the particular group (Z12,+).

(b) Identify the set of units U12.

(c) What is the order of the multiplicative group (U12, · )? Is this abelian group
cyclic?

(d) Can you list all the subgroups of (U12, · )?

Is there anything more to say about the stucture of U12 ? �

Earlier we showed that the additive group (Zn,+), up to isomorphism the exemplar of all cyclic
groups of order |G| = n, must have subgroups Hd of order d for every divisor d|n, 1 ≤ d ≤ n.
By 3.1.36 all subgroups of Zn are cyclic. Using Lagrange we now prove the definitive result
regarding subgroups of Zn (or any finite cyclic group).

3.4.8 Theorem. In (Zn,+), for every divisor d|n, 1 ≤ d ≤ n there is a unique (cyclic)
subgroup Hd such that |Hd| = d

Proof: For existence we may take Hd = 〈[n/d]〉. This makes sense because n/d is an integer,
and the element x = [n/d] has order d because the elements

0 <
n

d
< 2 ·

n

d
< . . . < (d− 1) ·

n

d
< n

are distinct (with d · [n/d] = [0]). Thus |Hd| = d.
For uniqueness, suppose there are two subgroups A,B of order d. It is easy to see that the

“product set” (written in additive notation) A+B = {x+y : x ∈ A, y ∈ B} is a subgroup in Zn.
All subgroups of Zn are cyclic, so there is a y such that A+B = 〈y〉 and o(y) = |A+B| ≥ |A| = d.
On the other hand we must have y = a+ b and then d · y = (d · a) + (d · b) = 0 + 0 = 0, which
forces o(y) ≤ d. Thus o(y) = d, |A + B| = |A| = d, and we must have A = B = A + B, as
required to prove uniqueness. �
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We now turn to a more sophisticated counting principle for groups. If A,B are subsets of G,
the product set AB is {ab : a ∈ A, b ∈ B}. Unless G is abelian, we might not have AB = BA;
in any case we have a crude estimate for the size of this set, namely |AB| ≤ |A| · |B|. (Why?)
Unfortunately, that’s not good enough – there could be many pairs for which ab = a′b′, so |AB|
could be a lot smaller than this upper bound.

Suppose A and B are subgroups. The product set AB need not be a subgroup, though it
often is. The next result tells us when this happens, and also tells us how to calculate |AB|.

3.4.9 Theorem (A Counting Principle). Let G be a group and A,B subgroups. Then

(a) The product set AB is a subgroup ⇔ AB = BA.

(b) Whether or not AB is a subgroup, we always have

(22) |AB| =
|A| · |B|

|A ∩B|

Proof: Write A−1 = {a−1 : a ∈ A} for any subset A ⊆ G; obviously A−1 = A if A is a
subgroup. To prove part (⇒) in (a): if AB is a subgroup we have

AB = (AB)−1 = {(ab)−1 = b−1a−1 : a ∈ A, b ∈ B} = B−1A−1 = BA

because A and B are subgroups. To prove (⇐), let a, a1 ∈ A and b, b1 ∈ B, and assume
AB = BA. Then we may rewrite ba1 = a′b′, and hence may rewrite the product of two
elements ab, a1b1 in the product set AB as follows

(ab)(a1b1) = a(ba1)b1 = a(a′b′)b1 = (aa′)(b′b1) ∈ AB

Thus the set AB is closed under formation of products. Obviously the identity element e = ee
is in AB, and if ab ∈ AB then its inverse is also in AB because (ab)−1 = b−1a−1 ∈ BA = AB.
Thus AB is a subgroup.

As for the counting formula, one might get an idea how to procede by starting with the
special case A ∩ B = (e). In general, we look at the map ρ : A × B → AB ⊆ G defined by
setting ρ(a, b) = ab, and ask:

Question: For how many pairs (a, b) in the Cartesian product set A × B do the
group elements ρ(a, b) = ab take on the same value?

Consider a1, a2 ∈ A and b1, b2 ∈ B; clearly a1b1 = a2b2 ⇔ a−1
2 a1 = b2b

−1
1 . But then the

common value x = a−1
2 a1 = b2b

−1
1 is an element of A ∩B, and we have

(23) a2 = a1x
−1 and b2 = xb1 for some element x ∈ A ∩B .

This is a necessary condition in order that a1b1 = a2b2. It is also sufficient, because if (25)
holds we then have

a2 = a1x
−1 ∈ A and b2 = xb1 ∈ B for any x ∈ A ∩B

a2b2 = a1x
−1xb1 = a1b1

We conclude that for any point g ∈ AB the number of pairs such that ρ(a, b) = g is equal to
the number of points x ∈ A ∩ B; furthermore, this is true no matter which point g in the set
AB we look at. Put another way, given one pair (a0, b0) such that ρ(a0, b0) = g, the other pairs
with the same image are {(a0x

−1, xb0) : x ∈ A∩B}, and there are precisely |A∩B| such pairs.
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Thus the Cartesian product set A×B, which has size |A| · |B|, gets partitioned into equiva-
lence classes which correspond one-to-one with the distinct image points in the product set AB
under ρ. Since

|A×B| = #(equivalence classes) · #(points per class)

= #(image points in AB) · |A ∩B|

= |AB| · |A ∩B|

we arrive at |A| · |B| = |A×B| = |AB| · |A ∩B|. �

3.5. Automorphisms and Inner Automorphisms.
An automorphism of a group is an isomorphism from G to itself. These maps may be regarded
as the “self-symmetries” of the group, and are important in understanding the structure of G.
The set Aut(G) of all automorphisms become a group if we take composition of operators
(◦) as the product operation; the verification is routine. Aut(G) always includes the trivial
automorphism id

G
; it also includes a special set of automorphisms – the inner automorphisms

of G – which are obtained by letting G act on itself by conjugation. Just as in linear algebra,
we say that one element y is conjugate to another element x if there is some g ∈ G such that
y = gxg−1. Focusing on the conjugation operators αg(x) = gxg−1 we note the following easily
verified facts.

3.5.1 Exercise. Let G be any group and let Int(G) be the set of conjugation operations
αg(x) = gxg−1 on G. Prove that

(a) αe = id
G
, the identity map on G.

(b) αxy = αx ◦ αy for all x, y ∈ G.

(c) αx−1 = (αx)−1 (set-theoretic inverse map)

It follows that (Int(G), ◦) is a group under composition of operators, and hence a subgroup of
Aut(G).

(d) Prove that Int(G) is normal in Aut(G). �.

We call Int(G) the group of inner automorphisms of G. Notice that Int(G) is trivial if
G is abelian, and so is the conjugation process: in an abelian group y is conjugate to x if and
only if y = x. But in such groups there might be plenty of “outer” automorphisms. Finding
them is an interesting problem. Here are a few examples.

3.5.2 Example. Let G = (Z,+). To determine Aut(G) we note that automorphisms are
homomorphisms, and are determined by what they do to a set of generators. But Z is cyclic,
with generator x = 1 under the (+) operation. So, suppose φ is a homomorphism that sends
1 to k. Writing (+) for the group operation we must that have φ(m) = φ(1 + 1 + . . . + 1) =
φ(1) + φ(1) + . . . + φ(1) = km, at least for m ≥ 0; but this is easily seen to be true for all
m ∈ Z, and φ = φk is completely determined. We have determined all possible homomorphisms
φ : Z → Z; they are just the “kth power maps φk(m) = k ·m for k ∈ Z. Any automorphisms of
Z must appear within this list {φk : k ∈ Z}.

Which of the φk are bijections? Clearly φ1 = id
G

and φ−1 = −id
G

(the inversion map) are
automorphisms. If k = 0, φ0 is the zero map and is not one-to-one; we leave the reader to verify
that φk fails to be surjective if k 6= −1, 1. Thus we have computed Aut(Z,+) = {id

G
,−id

G
}.

Since there are only two elements, this group is abelian and is isomorphic to (Z2,+). Obviously
Int(Z) = {id

G
}. �

3.5.3 Theorem. Let G = (Zn,+), the group of (mod n) congruence classes in Z. Then

(24) Aut(Zn,+) ∼= (Un, · )
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where Un = {[k] ∈ Zn : 1 ≤ k ≤ n− 1 and gcd(k, n) = 1} is the group of units in (Zn,+, · ), the

elements with multiplicative inverses. The group law in Un is multiplication, not addition.

Proof: The group G = Zn is cyclic, with [1] as a generator under the (+) operation. Following
the lines of Example 3.5.2, we note that a homomorphism φ : G→ G is determined by what it
does to this generator, and we can try all the possible assignments φk([1]) = [k], 0 ≤ k ≤ n− 1.
If we assign [1] → [k] then [2] → [2k], etc and we find that φk([m]) = [km] = [k][m] for all
[m] ∈ Zn. These maps are just the homomorphisms φ0, . . . , φn−1 discussed in 3.2.1(e); they are
the only homomorphisms from Zn to Zn. As mentioned earlier, φk depends only on the (mod
n) conjugacy class [k] of k; furthermore, φk = φm ⇔ k ≡ m (mod n) because φk([1]) = [k] and
[1] generates (Zn,+). (Recall 3.2.17.)

To be an automorphism φk must be bijective, but since Zn is a finite set that will happen
⇔ φk is one-to-one ⇔ φk is onto. We claim that φk is onto precisely when gcd(k, n) = 1. In
fact, if φk is surjective, then there is some [ℓ] such that [k][ℓ] = [1], which means [k] ∈ Un and
hence that k is relatively prime to n. Conversely, if [k] ∈ Un and if [m] is any element in Zn, we
may write [m] = [k] · [k]−1[m] = φk([k]−1[m]), and so φk is surjective. That proves our claim.

We have shown that the elements in Aut(Zn,+) correspond one-to-one with the classes in
Un under the correspondence Φ : Un → Aut(Zn,+) that maps [k] to Φ([k]) = φk. The map Φ
is a bijection. It is also a homomorphism, essentially as a consequence of the exponent laws for
groups, which in an additive abelian group take the form:

(i) (ℓ+m) · a = ℓ · a+m · a and (ii) (ℓm) · a = ℓ · (m · a) for all ℓ,m ∈ Z and a ∈ Zn

The second of these laws law says that

Φ([ℓ][m]) = φ[ℓ][m] = φ[ℓm] = φ[ℓ] ◦ φ[m] = Φ([ℓ]) ◦ Φ([m])

for all [ℓ], [m] ∈ Zn, which means that Φ is a homomorphism, and hence an isomorphism, from
Un equipped with the (·) operation to Aut(G) equipped with (◦). �

Since every cyclic group of finite order |G| = n is isomorphic to (Zn,+) we have determined
the automorphisms of all cyclic groups. Writing the group law as multiplication rather than
(+), the homomorphisms of G take the form φk(a) = ak for 0 ≤ k ≤ n− 1; the automorphisms
are obtained by requiring that gcd(k, n) = 1.

We close this section with an example illustrating the interplay between automorphisms and
quotient groups.

3.5.4 Definition. The center of a group G is the set of elements a ∈ G that commute with
everbody in G:

(25) Z(G) = {a ∈ G : ga = ag, ∀ g ∈ G} = {a ∈ G : gag−1 = a, ∀ g ∈ G} �

The center is a subgroup. It is also normal. In fact, if a ∈ Z(G) and b ∈ G, then

g(bab−1)g−1 = (gb)a(gb)−1 = a for all b, g ∈ G

and hence bab−1 is again in Z(G). Thus bZ(G)b−1 ⊆ Z(G) for all b ∈ G and Z(G) ⊳ G. For
abelian groups the center is all of G.

The center becomes relevant in understanding automorphisms because a conjugation oper-
ation αa(x) = axa−1 is trivial (with αa = id

G
) if and only if axa−1 = x for all x, which means

precisely that a ∈ Z(G).
Now consider Φ : G→ Int(G) ⊆ Aut(G) given by Φ(g) = the inner automorphism αg. This

map is a homomorphism because

Φ(e) = id
G

and Φ(xy) = αxy = αx ◦ αy = Φ(x) ◦ Φ(y)
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Its range is the subgroup Int(G), by definition of inner automorphisms. The kernel is just the
center Z(G):

kerΦ = {g : αg = id
G
} = {g : gxg−1 = x, ∀x ∈ G} = Z(G)

Applying the First Isomorphism Theorem 3.3.12 we ob-
tain the commutative diagram shown in Figure 3.6. The
induced diagonal map Φ̃ is a bijective map to range(Φ) =
Int(G), and is a homomorphism; hence we have an isomor-
phism of groups Int(G) ∼= G/Z(G).

We summarize this as follows:

G
Φ

−→ Int(G) ⊆ Aut(G)
π ↓ ր

G/Z(G) Φ̃

Figure 3.6.

3.5.5 Theorem. For any group G we have Int(G) ∼= G/Z(G) where Z(G) is the center of G.

3.5.6 Exercise. Verify the properties (i) αe = id
G
, (ii) αxy = αx ◦αy, and (iii) αx−1 = (αx)−1

for all x, y ∈ G. �

3.5.7 Exercise. If G is a group and N a normal subgroup, we may restrict any inner au-
tomorphism αx : G → G to N . Since N is invariant under inner automorphisms, we get an
automorphism αx|N ∈ Aut(N) by taking (αx|N)(n) = αx(n) = xnx−1 for all n ∈ N . Now
consider the restriction map R : (Int(G), ◦) → (Aut(N), ◦) which takes an inner automorphism
αx of to its restriction R(αx) = αx|N . Prove that the restriction map is a homomorphism
R : Int(G) → Aut(N).
Note: Arbitrary automorphisms β ∈ Aut(G) need not leave a normal subgroup invariant, so we
cannot expect the restriction β|N to be a well defined automorphism of N . Furthermore, the
restriction αx|N of an inner automorphism αx on G need not be an inner automorphism of N
– i.e. there might not be any y ∈ N such that αx(n) = yny−1 for all n ∈ N .

3.5.8 Exercise. Show that the group Int(G) of inner automorphisms is a normal subgroup in
Aut(G). �
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