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ABSTRACT. We prove that the L4 norm of the vertical perimeter of any measurable subset
of the 3–dimensional Heisenberg groupH is at most a universal constant multiple of the
(Heisenberg) perimeter of the subset. We show that this isoperimetric-type inequality is
optimal in the sense that there are sets for which it fails to hold with the L4 norm replaced
by the Lq norm for any q < 4. This is in contrast to the 5–dimensional setting, where the
above result holds with the L4 norm replaced by the L2 norm.

The proof of the aforementioned isoperimetric inequality introduces a new structural
methodology for understanding the geometry of surfaces inH. In previous work (2017)
we showed how to obtain a hierarchical decomposition of Ahlfors-regular surfaces into
pieces that are approximately intrinsic Lipschitz graphs. Here we prove that any such
graph admits a foliated corona decomposition, which is a family of nested partitions into
pieces that are close to ruled surfaces.

Apart from the intrinsic geometric and analytic significance of these results, which
settle questions posed by Cheeger–Kleiner–Naor (2009) and Lafforgue–Naor (2012), they
have several noteworthy implications. We deduce that the L1 distortion of a word-ball
of radius n Ê 2 in the discrete 3–dimensional Heisenberg group is bounded above and
below by universal constant multiples of 4

√
logn; this is in contrast to higher dimensional

Heisenberg groups, where our previous work (2017) showed that the distortion of a word-
ball of radius n Ê 2 is of order

√
logn. We also show that for any p > 2 there is a metric

space that embeds into both `1 and `p , yet not into a Hilbert space. This answers the
classical question of whether there is a metric analogue of the Kadec–Pełczyński theorem
(1962), which implies that a normed space that embeds into both Lp and Lq for p < 2 < q
is isomorphic to a Hilbert space. Another consequence is that for any p > 2 there is
a Lipschitz function f : `p → `1 that cannot be factored through a subset of a Hilbert
space using Lipschitz functions, i.e., there are no Lipschitz functions g : `p → `2 and
h : g (`p ) → `1 such that f = h ◦ g ; this answers the question, first broached by Johnson–
Lindenstrauss (1983), whether there is an analogue of Maurey’s theorem (1974) that such
a factorization exists if f is linear. Finally, we obtain conceptually new examples that
demonstrate the failure of the Johnson–Lindenstrauss dimension reduction lemma (1983)
for subsets of `1; these are markedly different from the previously available examples
(Brinkman–Charikar, 2003) which do not embed into any uniformly convex normed
space, while for any p > 2 we obtain subsets of `1 for which the Johnson–Lindenstrauss
lemma fails, yet they embed into `p .
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Added in proof 119

1. INTRODUCTION

Since our main theorem (Theorem 1.1 below) can be stated without the need to recall
any specialized background, we will start by formulating it. After doing so, we will explain
its significance and context, as well as geometric applications that answer longstanding
open questions. We will then describe our main conceptual contribution, called a foliated
corona decomposition, which is a new structural methodology that we introduce in the
proof of this theorem; see Remark 1.2 and mainly Section 1.2 for an overview.

For a smooth function f : R3 →R define X f ,Y f : R3 →R by setting for h = (x, y, z) ∈R3,

X f (h)
def= ∂ f

∂x
(h)+ 1

2
y
∂ f

∂z
(h) and Y f (h)

def= ∂ f

∂y
(h)− 1

2
x
∂ f

∂z
(h). (1)

Also, for t ∈ (0,∞) define D t
v f : R3 →R by setting for h = (x, y, z) ∈R3,

D t
v(h)

def= f (x, y, z + t )− f (h)p
t

. (2)

Theorem 1.1. Every compactly supported smooth function f : R3 →R satisfies1(ˆ ∞

0

(ˆ
R3
|D t

v f (h)|dh

)4 dt

t

) 1
4

.
ˆ
R3

(|X f (h)|+ |Y f (h)|) dh. (3)

Moreover, one cannot replace the L4( dt
t ) norm above by an Lq ( dt

t ) norm for any 0 < q < 4.

The second assertion (sharpness) of Theorem 1.1 resolves negatively the conjecture
of [LN14b] that (3) holds with the L4( dt

t ) norm in the left hand side replaced by the L2( dt
t )

norm. Notwithstanding the optimality of (3), it should be noted that it was previously
unknown whether such a bound holds true merely for some finite exponent, namely that
there exists 0 < p <∞ such that in the setting of Theorem 1.1 we have(ˆ ∞

0

(ˆ
R3
|D t

v f (h)|dh

)p dt

t

) 1
p

.
ˆ
R3

(|X f (h)|+ |Y f (h)|) dh. (4)

It is simple to justify (see [NY18, Remark 4]) that if (4) holds, then the analogous bound
holds for any larger exponent P > p.

Remark 1.2. To briefly indicate what goes into Theorem 1.1, we first note that the func-
tional inequality (3) is equivalent to a certain isoperimetric-type inequality (see (31)) for
sufficiently smooth surfaces in R3. By [NY18], it turns out that it suffices to prove this
isoperimetric-type inequality for a more restricted class of surfaces (intrinsic Lipschitz
graphs; see Section 2.2). Such surfaces can still be very complicated, as one can see in

1We will use throughout the following (standard) asymptotic notation. For a,b ∈ (0,∞), the notations
a . b and b & a mean that a É C b for some universal constant C ∈ (0,∞). The notation a ³ b stands for
(a . b)∧ (b . a). If we need to allow for dependence on parameters, we indicate this by subscripts. For
example, in the presence of an auxiliary parameter q , the notation a .q b means that a É C (q)b, where
C (q) ∈ (0,∞) is allowed to depend only on q , and analogously for the notations a&q b and a ³q b.
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FIGURE 1. An example of an intrinsic Lipschitz graph.

Figure 1. However, notice that the example in Figure 1 has an anisotropic texture, with
features of many different scales that line up along a one-dimensional foliation.

We prove the desired isoperimetric-type inequality by showing that the texture of any
intrinsic Lipschitz graph can be encoded as a foliated corona decomposition, which is
a multi-scale hierarchical partition of the surface. The pieces of this decomposition are
roughly rectangular regions that mimic the dimensions and orientation of the features of
the surface. Crucially, we can control the number and size of these pieces. The desired in-
equality holds locally on each piece up to suitably controlled error, and the full inequality
is obtained by summing the resulting estimates. This process is illustrated in Figure 2 and
Figure 3, and a more detailed overview can be found in Section 1.2.
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In contrast to Theorem 1.1, we have the following theorem, the case p = 2 of which is
due to [ANT13] and the case p ∈ (1,2] of which is due (via a different proof) to [LN14b].

Theorem 1.3. If f : R3 →R is smooth and compactly supported, then for every p ∈ (1,2],(ˆ ∞

0

(ˆ
R3
|D t

v f (h)|p dh

) 2
p dt

t

) 1
2

.
1√

p −1

(ˆ
R3

(|X f (h)|p +|Y f (h)|p)
dh

) 1
p

. (5)

See [LN14b] for a variant of Theorem 1.3 when p > 2. The pertinent point of compari-
son to (3) is as p → 1+, namely there is a jump discontinuity at the endpoint p = 1.

It should be noted that the dependence on p in the right hand side of (5) is not specified
in [LN14b], but one obtains (5) in the form stated above by tracking the dependence on p
in the proof of [LN14b]; we explain how to do so in Appendix A below. We conjecture that
the following bound holds, which is better than (5) only in terms of the dependence on
p; its geometric ramifications will be derived later (see Remark 1.15), at which point it
will become clear why we need to record an explicit (power-type) dependence as p → 1+
in (5) rather than using the implicit.p notation as done in [LN14b].

Conjecture 1.4. In the setting of Theorem 1.3 we have(ˆ ∞

0

(ˆ
R3
|D t

v f (h)|p dh

) 2
p dt

t

) 1
2

.
1

4
√

p −1

(ˆ
R3

(|X f (h)|p +|Y f (h)|p)
dh

) 1
p

. (6)

Another key point of comparison between Theorem 1.1 and the literature is with its
higher-dimensional counterpart due to [NY18]. For a smooth function f : R5 →R, denote
in analogy to (1) and (2) for every h = (x1, y1, x2, y2, z) ∈R5 and t ∈ (0,∞),

X1 f (h)
def= ∂ f

∂x1
(h)− 1

2
y1
∂ f

∂z
(h), X2 f (h)

def= ∂ f

∂x2
(h)− 1

2
y2
∂ f

∂z
(h),

Y1 f (h)
def= ∂ f

∂y1
(h)+ 1

2
x1
∂ f

∂z
(h), Y2 f (h)

def= ∂ f

∂y2
(h)+ 1

2
x2
∂ f

∂z
(h),

and

D t
v(h)

def= f (x1, y1, x2, y2, z + t )− f (h)p
t

.

We then have the following theorem (it holds with R5 replaced mutatis mutandis by R2k+1

for every k Ê 2; we are focusing only on R5 because the crucial qualitative difference that
we establish here is between dimension 3 and all the larger odd dimensions).

Theorem 1.5. If f : R5 →R is smooth and compactly supported, then for every p ∈ [1,2],(ˆ ∞

0

(ˆ
R5
|D t

v f (h)|p dh

) 2
p dt

t

) 1
2

.
(ˆ

R5

(|X1 f (h)|p +|Y1 f (h)|p +|X2 f (h)|q +|Y2 f (h)|p)
dh

) 1
p

.

(7)

The case p = 2 of Theorem 1.5 is from [ANT13] and in the range p ∈ (1,2] the bound (7)
but with. replaced by.p is from [LN14b]. The case p = 1 of Theorem 1.5 is from [NY18].
Inequality (7) as stated above, i.e., with the right hand side multiplied by a universal
constant rather than a constant that depends on p as in [LN14b], follows by interpolating
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between the cases p = 1 and p = 2 of [NY18] and [ANT13], respectively. Indeed, (7) asserts
the boundedness of a linear operator, the L2(Lp ) norms in the left hand side of (7) are an
interpolation family by classical interpolation theory [BL76], and the Sobolev W 1,p norms
in the right hand side of (7) are an interpolation family by [Bad09, Theorem 8.8].

1.1. Geometric implications. Let H be the 3–dimensional Heisenberg group with real
coefficients. As a set,H is identified with R3, and the group structure onH is given by

∀g = (x, y, z),h = (χ,υ,ζ) ∈R3, g h
def=

(
x +χ, y +υ, z +ζ+ 1

2
(xυ− yχ)

)
. (8)

The identity element is 0 = (0,0,0) and the inverse of g = (x, y, z) is g−1 = (−x,−y,−z). The
center ofH is {0}× {0}×R and if we letHZ be the discrete subgroup ofH that is generated
by (1,0,0) and (0,1,0), then we have

HZ =
{(

x, y, z + x y

2

)
: x, y, z ∈Z

}
⊆Z×Z× Z

2
.

Let dW : HZ×HZ→N∪ {0} be the left-invariant word metric onHZ that is induced by
the symmetric set of generators {(−1,0,0), (1,0,0), (0,−1,0), (0,1,0)}. It is well-known (and
elementary to verify) that for every g = (x, y, z),h = (χ,υ,ζ) ∈HZ we have

dW (g ,h) ³ |x −χ|+ |y −υ|+
√

|2z −2ζ−xυ+ yχ| (9)

In fact, an exact formula for dW (g ,h), which directly implies (9), is derived in [Bla03]. For
every n ∈N, denote the word-ball of radius n centered at the identity element by

Bn
def= {

g ∈HZ : dW (g ,0) É n
}

. (10)

1.1.1. Embeddings. Recall that a metric space (M ,dM ) is said to admit a bi-Lipschitz
embedding into a Banach space (X ,‖·‖X ) if there exist D ∈ [1,∞) andφ : M → X such that

∀x, y ∈ M , dM (x, y) É ‖φ(x)−φ(y)‖X É DdM (x, y). (11)

The infimum over those D ∈ [1,∞) for which this holds is called the X –distortion of M
and is denoted cX (M). If no such D exists, then one writes cX (M) =∞.

Theorem 1.6 below is a sharp asymptotic evaluation of c`1 (Bn). It answers a question
posed in [LN06, CK10a, CK10b, CKN09, CKN11, Nao10, Pan13, LN14b]; these references
ask for the asymptotic evaluation of c`1 (Bn), but most of them also conjecture that
c`1 (Bn) ³ √

logn, so Theorem 1.6 constitutes both a resolution of an open problem,
and an unexpected answer. The fact that limn→∞ c`1 (Bn) = ∞ is due to [CK10a], the
previously best known upper bound [Ass83] was c`1 (Bn).

√
logn and the previously

best-known lower bound [CKN11] was c`1 (Bn) Ê (logn)δ for some positive but very small
universal constant δ; thus both the upper and the lower bounds of Theorem 1.6 are new.

Theorem 1.6. c`1 (Bn) ³ 4
√

logn for every integer n Ê 2.

In contrast, the word-ball of radius n Ê 2 in the 5–dimensional Heisenberg group has
`1–distortion of order

√
logn; this was proved in [NY18] using Theorem 1.5.

The statement of Theorem 1.6 has two parts. While the lower bound c`1 (Bn)& 4
√

logn
is framed above as a “negative result” (impossibility of embedding), it encapsulates a
“positive result,” namely the aforementioned new structural information on surfaces
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in H, to which most of this article is devoted. The upper bound c`1 (Bn). 4
√

logn is a
“positive result,” namely a new geometric realization of Bn , but we will soon see that it
has ramifications for counterexamples to natural geometric questions.

The estimate (3) of Theorem 1.1 implies the lower bound c`1 (Bn)& 4
√

logn. In fact,
such vertical-versus-horizontal Poincaré inequalities were originally envisaged as obstruc-
tions to embeddings of Bn into various spaces; see [ANT13, NN12, LN14b, NY17], and
most pertinently Section 3 of [NY18], where we treated such matters in greater general-
ity than what is needed here; in particular, for any p Ê 1, if every compactly supported
smooth function f : R3 →R satisfies the inequality(ˆ ∞

0

(ˆ
R3
|D t

v f (h)|dh

)p dt

t

) 1
p

.
ˆ
R3

(|X f (h)|+ |Y f (h)|) dh, (12)

then by [NY18, § 3] and the reasoning in [NY18, § 1.3] we have c`1 (Bn)& (logn)
1
p .

Thus, c`1 (Bn)& 4
√

logn, since Theorem 1.1 asserts that (12) holds for p = 4. This also
demonstrates that the matching upper bound c`1 (Bn). 4

√
logn of Theorem 1.6 implies

the second assertion of Theorem 1.1, namely the optimality of the L4( dt
t ) norm in the left

hand side of (3). Here we prove the following more refined embedding statement which
we formulate as a separate theorem because it has further noteworthy applications.

Theorem 1.7. For every ϑÊ 1
4 and every integer n Ê 2 there exists φ=φn,ϑ : HZ→ `1 with

respect to which every two points g = (x, y, z),h = (χ,υ,ζ) ∈HZ with dW (g ,h) É 2n satisfy

‖φ(g )−φ(h)‖`1 ³ |x −χ|+ |y −υ|+
√|2z −2ζ−xυ+ yχ|

(logn)ϑ
. (13)

By (9) and the case ϑ= 1
4 of Theorem 1.7, the following weakening of (13) holds.

∀g ,h ∈Bn ,
dW (g ,h)

4
√

logn
. ‖φ(g )−φ(h)‖`1 . dW (g ,h).

So, the upper bound c`1 (Bn). 4
√

logn of Theorem 1.6 follows from Theorem 1.7. How-
ever, Theorem 1.7 is of further use thanks to the following embedding result of [LN14a]. At
present, the fact that both our embedding and that of [LN14a] yield the same expression
(up to universal constant factors) for the metric in the image seems to be a fortunate and
consequential coincidence; it would be valuable, if possible, to explain conceptually why
those formulas coincided (e.g. is this inevitable due to underlying symmetries?).

Theorem 1.8. For any p > 2, any ϑÊ 1
p and any integer n Ê 2 there is ψ=ψn,p,ϑ : HZ→ `p

such that every g = (x, y, z),h = (χ,υ,ζ) ∈HZ with dW (g ,h) É 2n satisfy

‖ψ(g )−ψ(h)‖`p ³ |x −χ|+ |y −υ|+
√|2z −2ζ−xυ+ yχ|

(logn)ϑ
. (14)

Theorem 1.8 is not formulated explicitly in [LN14a], but it is a direct consequence of
Lemma 3.1 in [LN14a] combined with the finite-determinacy theorem of [Ost12], which
together imply that for every ε ∈ (0, 1

2 ] there exists an embedding σ = σε,p : H→ `p for
which every g = (x, y, z),h = (χ,υ,ζ) ∈HZ satisfy

‖σ(g )−σ(h)‖`p ³ |x −χ|1−ε+|y −υ|1−ε+ε 1
p |2z −2ζ−xυ+ yχ| 1−ε

2 . (15)
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(Without reference to [Ost12], Lemma 3.1 in [LN14a] asserts the existence of such an
embedding into Lp rather than into `p .) To derive Theorem 1.8 from (15), let π : H→R be
the map that is given by setting π(x, y, z) = (x, y) for (x, y, z) ∈H and choose

ε= 1

logn
and ψ= σ

(logn)ϑ−
1
p

⊕π : HZ→ `p ⊕R2 ∼= `p . (16)

1.1.2. Aspects of the Ribe program. Inspired by a fundamental rigidity theorem of [Rib76]
and first put forth in [Bou86], the Ribe program is a web of conjectures and analogies
whose goal is to transfer linear phenomena in the geometry of Banach spaces to questions
about metric spaces, where Lipschitz mappings take the role of bounded linear operators;
see e.g. the surveys [Kal08, Nao12, Bal13, Ost13, Nao18]. We will next explain how the
above results answer natural questions in this area.

Theorem 1.9 below follows from Theorem 1.7, Theorem 1.8 and [ANT13, LN14b]. It
answers a longstanding question in metric embedding theory; even though (to the best
of our knowledge) this question never appeared in published2 texts, it was a folklore
open problem. To briefly explain the context, the classical work [KP62] (together with a
differentiation argument of [Man72]) implies that for 1 É p < r < q <∞, if a Banach space
X admits a bi-Lipschitz embedding into both Lp and Lq , then X also admits a bi-Lipschitz
embedding into Lr . The case r = 2 of this statement is that if X embeds into Lp for two
finite values of p that lie on both sides of 2, then X must embed into (hence, by [Enf70],
be linearly isomorphic to) a Hilbert space; a different proof of the latter statement, as a
special case of a much more general phenomenon, follows from [Kwa72]. In light of these
facts about the geometry of Banach spaces, one is naturally led to ask if a metric space
M that embeds bi-Lipschitzly into Lp for two finite values of p that lie on both sides of 2
must admit a bi-Lipschitz embedding into a Hilbert space.

Theorem 1.9. For any 2 < p É 4 there is a metric space M that admits a bi-Lipschitz
embedding into `1 and into `r for all r Ê p, yet M does not admit a bi-Lipschitz embedding
into Lq for any 1 < q < p. More generally, M does not admit a bi-Lipschitz embedding into
a Banach space whose modulus of uniform convexity has power type q for 2 É q < p.

For the statement of Theorem 1.9, recall that a Banach space (X ,‖ · ‖) has modulus
of uniform convexity of power type q if there is C > 0 such that the sharpened triangle
inequality ‖x + y‖ É 2−C‖x − y‖q holds for any unit vectors x, y ∈ X . By [Cla36, Han56],
for 1 < q <∞ any Lq (µ) space has modulus of uniform convexity of power type max{q,2}.

Proof of Theorem 1.9 assuming Theorem 1.7 and Theorem 1.8. For every n ∈N, we define
Mn =φn,ϑ(Bn) ⊆ `1, where φn,ϑ is as in Theorem 1.7 applied with ϑ= 1

p Ê 1
4 .

By considering the union of sufficiently widely-spaced translations in `1 of the finite
sets {Mn}∞n=1, we see that there is M ⊆ `1 such that supn∈N cM (Mn) <∞.

For every r Ê p, consider ψn,r,ϑ(Bn) ⊆ `r , where ψn,r,ϑ is as in Theorem 1.8. The-
orem 1.7 and Theorem 1.8 show that ψn,r,ϑ(Bn) is bi-Lipschitz equivalent with O(1)
distortion to Mn . Hence, by considering a suitable union of translations in `r of the finite

2We have seen it appear in writing only in grant proposals, and it was posed verbally among experts. In
particular, we are indebted to Gideon Schechtman for valuable discussions on this matter over the years.
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sets {ψn,r,ϑ(Bn)}∞n=1, we see that c`r (M) <∞. Let X be a Banach space whose modulus of
uniform convexity has power type q for 2 É q < p. By [LN14b] we have

(logn)
1
q .X cX (Bn). (logn)ϑcX (Mn) = (logn)

1
p cX (Mn),

where the penultimate step holds because, due to (13), Mn and Bn are bi-Lipschitz
equivalent with distortion O((logn)ϑ). Therefore, since q < p,

cX (Mn)&X (logn)
1
q − 1

p −−−−→
n→∞ ∞.

Hence, cX (M) =∞, as required. For future reference we record in passing that we obtained
the following bound when X = Lq and 1 < q < p.

cLq (Mn)&q (logn)
1

max{q,2}− 1
p . (17)

Note that the bound in [ANT13], which is asymptotically weaker than that of [LN14b],
suffices for the qualitative conclusion cX (M) =∞ of Theorem 1.9. The above estimates
seem to be the best that one could achieve using available methods; it would be very
interesting to determine the optimal behavior, e.g. if an n–point metric space W embeds
with O(1) distortion into `1 and also into `p for some p > 2, how large can c`2 (W ) be? �

Remark 1.10. With more care it is possible to ensure that the metric space M of Theo-
rem 1.9 is a left-invariant metric δ= δp onHZ; see Theorem 3.2. Concretely, for p = 4 the
metric δ4 can be taken to satisfy the following bounds for any (a,b,c) ∈HZ with |c| Ê 3.

δ4
(
0, (a,b,c)

)³ |a|+ |b|+
p|c|

4
√

log |c| · (loglog |c|)2
.

By the reasoning in [NP11, Section 9], sinceHZ is amenable, it follows that (HZ,δ) admits a
bi-Lipschitz embedding into L1 and Lr for all r Ê p which is also equivariant (with respect
to an action ofHZ on, respectively, L1 and Lp by affine isometries); we did not investigate
if this holds for equivariant embeddings into the sequence spaces `1 and `r .

The natural question how the embeddability of a group into Lp depends on p was also
studied in the literature; see [CDH10, Czu17], and especially the recent solution of this
question in [MdlS20], where it is proved that the phenomenon of Theorem 1.9 does not
hold for equivariant coarse embeddings (namely, for such embeddings the corresponding
set of p is always an interval). Note that for coarse embeddings that need not be equivari-
ant, the statement of [MdlS20] was previously known as a direct consequence of [MN04,
Remark 5.10] (from here, using [NP11], one gets the full equivariant statement of [MdlS20]
for amenable groups). Theorem 3.2 shows that the situation is markedly different if one
considers bi-Lipschitz embeddings rather than coarse embeddings.

The following question arises naturally from Theorem 1.9 and seems quite difficult.

Question 1.11. For a metric space M, how complicated can the following set be?{
1 É p <∞ : cLp (M) <∞}

.

Theorem 1.9 leaves the possibility that there is better behavior in the reflexive range, i.e.,
that if a metric space M embeds bi-Lipschitzly into `p and `q for 1 < q < 2 < p <∞, then
M embeds bi-Lipschitzly into a Hilbert space. If true, this would be an excellent theorem,
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but due to Theorem 1.9 we speculate that the answer is negative. A substantial new idea
seems to be needed here. Less ambitiously, does the above assumption (even allowing
q = 1) imply that M embeds into a Hilbert space with finite average distortion (see [Nao19]
for the relevant definition)? Does this imply that every n–point subset of M embeds into
a Hilbert space with bi-Lipschitz distortion o(logn), i.e., asymptotically better than the
distortion that is guaranteed by the general embedding theorem of [Bou85]?

The above reasoning also leads to Theorem 1.12 below, which answers another natural
question arising in the Ribe program, on the factorization of Lipschitz functions.

We first briefly make preparatory observations that will be also useful elsewhere. Recall
that for K ∈N a metric space X is said to be K -doubling if for every r > 0, any ball B ⊆ X
of radius r can be covered by K balls of radius r /2. X is doubling if it is K –doubling for
some K ∈N. The metric space M of Theorem 1.9 can be taken to be doubling. Indeed,
fix p > 2 and n ∈N. As in the proof of Theorem 1.9, write ϑ= 1/min{p,4}. It was shown
in [LN14a] that ψn,p,ϑ(HZ) is a O(1)–doubling subset of `p . Let S ⊆ `p be the disjoint
union of translates in `p of the finite sets {ψn,p,ϑ(Bn)}∞n=1 that are sufficiently widely-
spaced so as to ensure that S is a doubling subset of `p , and supn∈N cS(Mn) <∞. As in
the proof of Theorem 1.9, using Theorem 1.7 we get an embedding ϕ : S → `1 satisfying
‖ϕ(x)−ϕ(y)‖`1 ³ ‖x − y‖`p for all x, y ∈ S. Thus ϕ(S) = M is a doubling subset of `1.

Since S is doubling, by [LN05] we can extend ϕ to a Lipschitz function f : `p → `1. If
there were Lipschitz mappings g : `p → `2 and h : g (`p ) → `1 such that f = h ◦ g , then it
would follow that for all x, y ∈ S we have

‖x − y‖`p ³ ‖ϕ(x)−ϕ(y)‖`1 =
∥∥h

(
g (x)

)−h
(
g (y)

)∥∥
`1
. ‖g (x)− g (y)‖`2 . ‖x − y‖`p .

Therefore, g ◦ϕ−1 would be a bi-Lipschitz embedding of M into `2, which we proved
above was impossible. We thus arrive at the following statement.

Theorem 1.12. For any 2 < p <∞ there is a Lipschitz mapping f : `p → `1 that cannot
be factored through a subset of a Hilbert space using Lipschitz mappings. Namely, there
do not exist Lipschitz mappings g : `p → `2 and h : g (`p ) → `1 such that f = h ◦ g . More
generally, f cannot be factored using Lipschitz mappings through a subset of a Banach
space whose modulus of uniform convexity has power type q for 2 É q < min{4, p}.

By [LP68, Theorem 5.2], for p Ê 2 any linear operator from `p to `1 factors through `2

(the factorization is via linear operators, though by [JMS09] this is equivalent to factor-
ization using Lipschitz functions as above). Theorem 1.12 demonstrates that there is no
analogue of this factorization phenomenon for Lipschitz mappings.

Such investigations arose in the Ribe program in the seminal work [JL84] which had a
major influence on the subsequent fruitful efforts by many mathematicians in search of
metric analogues of the extension and factorization paradigm of [Mau74]. This search is
itself intimately intertwined with the search for metric theories of type and cotype.

We refer to the survey [Mau03] for an exposition of the powerful and deep theory
of type and cotype of Banach spaces; it suffices to say here that one can define linear
invariants of Banach spaces that are called type 2 and cotype 2, such that Lp has type
2 if 2 É p < ∞ and cotype 2 if 1 É p É 2, and such that the following extension and
factorization phenomenon [Mau74] holds.
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Suppose that Y is a Banach space of type 2 and that Z is a Banach space of cotype 2.
Let X be a linear subspace of Y and let τ : X → Z be a bounded linear operator. Then
there exist a bounded linear operator T : Y → Z that extends τ, a Hilbert space H and
bounded linear operators A : Y → H , B : A(Y ) → Z with T = B A.

[JL84] raised the question of when the analogous statement holds in the metric setting.
Namely, now Y , Z are metric spaces, X is an arbitrary subset of Y , f : X → Z is a Lipschitz
mapping, and we ask for the same extension and factorization through a Hilbert space H ,
i.e., to establish the existence of Lipschitz mappings F : Y → Z , α : Y → H and β : α(Y ) →
Z , such that the following diagram commutes.

Y
α //

F

!!

α(Y ) �
� ⊆ //

β

��

H

X
?�

⊆
OO

f // Z

(18)

An implicit but central part of this endeavor encompasses the important issue of how to
define useful notions of type 2 and cotype 2 for metric spaces so that, at the very least, `p

has type 2 for 2 É p <∞ and cotype 2 for 1 É p É 2. Clearly (18) has two components. The
first is if f admits the Lipschitz extension F . The second is if F can be factored through a
subset of a Hilbert space. While these questions come hand-in-hand in the linear theory
of [Mau74] (see also [Pis86a]), they are different issues in the metric setting.

The main focus of [JL84] was the Lipschitz extension problem, so it highlighted the
first component above. At the time, the metric version of the extension problem was a
bold and speculative question, but [Bal92] introduced metric notions of type 2 and cotype
2 and obtained a powerful extension result for maps from spaces of Markov type 2 to
spaces of Markov cotype 2. Combined with [NPSS06], this provides a quite satisfactory
understanding of the extension component of (18) when the target space is `p , 1 < p < 2.
However, this understanding is currently confined to the reflexive range, and the question
remains a major open problem when the target space is `1 (see [Kal12, MN13b] for a
partial negative answer, and [MM16] for an intriguing algorithmic reformulation).

In contrast to the achievement of [Bal92], Theorem 1.12 demonstrates that there is no
way to define notions of type 2 and cotype 2 for metric spaces so that any map from a space
of type 2 to a space of cotype 2 factors through Hilbert space and such that `p has type 2
when 2 < p <∞ and cotype 2 when p = 1. Though this resolves the factorization question
when the target is `1, it remains a fascinating open problem to see if a factorization theory
analogous to [Bal92] can be developed when the target is `q for 1 < q < 2.

It is instructive to examine the dual interpretation of Theorem 1.12. Just as the dual
formulation of the linear factorization and extension problems was key to [Mau74], duality
also plays an important role in the nonlinear theory. The duality lemma that was found
in [Bal92] for Lipschitz extension3 does not shed light on Lipschitz factorization, but

3Quoting what [Bal92] says about this crucial duality step: “This lemma is a variant of one used by
Maurey. A related lemma was found earlier by Johnson, Lindenstrauss and Schechtman: their result actually
characterises extensions which factor through subsets of Hilbert space, a problem much closer to Maurey’s
argument. Their lemma provided much of the stimulus for the present work.” Unfortunately, it seems that the
work of Johnson, Lindenstrauss and Schechtman that is mentioned in [Bal92] was never published.
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the factorization issue was broached in [FJ09, CD14]. One can deduce from [CD14]
the following factorization criterion. Given Φ > 0, metric spaces (X ,dX ), (Z ,dZ ) and
f : X → Z , there exists a Hilbert space H and a factorization f =β◦α for some Lipschitz
mappings α : X → H and β : α(X ) → Z with ‖α‖Lip‖β‖Lip ÉΦ if and only if for all n ∈N
and x1, . . . , xn ∈ X , any two symmetric stochastic matrices A = (ai j ),B = (bi j ) ∈Mn(R)
such that A−B is positive semidefinite satisfy the following quadratic inequality.

n∑
i=1

n∑
j=1

ai j dZ
(

f (xi ), f (x j )
)2 ÉΦ2

n∑
i=1

n∑
j=1

bi j dX (xi , x j )2. (19)

Theorem 1.12 yields the first example of a Lipschitz mapping f : `p → `1 for 2 < p <∞
that fails to satisfy (19) for anyΦ> 0, despite the fact that if f were a linear operator, then
by [Mau74] it would automatically satisfy (19) withΦ.p ‖ f ‖Lip.

Remark 1.13. Another counterexample to the nonlinear version of [Mau74] arises from
an embedding of the Laakso graphs into a non-classical Banach space. Let {Λn}∞n=1 be the
Laakso graphs [Laa00, Laa02], indexed so that |Λn | = n; these are series-parallel (hence
planar) graphs that are O(1)–doubling when equipped with their shortest-path metric.

On one hand, the Laakso graphs do not admit a bi-Lipschitz embedding into a Hilbert
space. In fact, by [Laa00, LP01], we have c`2 (Λn)&

√
logn (this is sharp by the general em-

bedding theorem of [Rao99]). Moreover, by [MN08], for every uniformly convex Banach
space X we have limn→∞ cX (Λn) =∞.

On the other hand, by [GNRS04], we have supn∈N c`1 (Λn) <∞, and by [JS09], we have
supn∈N cY (Λn) <∞ when Y is a Banach space that is not reflexive. By considering trans-
lates of the images of the embeddings in `1 that are sufficiently widely spaced, we obtain
a doubling subsetΛ⊆ `1 such that cY (Λ) <∞ for any nonreflexive Banach space Y and
cX (Λ) =∞ for any uniformly convex Banach space X .

By [Jam78], there exists a Banach spaceJ that has type 2, yetJ is not reflexive; a different
construction of such a Banach space was found in [PX87]. So, Λ embeds bi-Lipschitzly
into both the cotype 2 space `1 and the type 2 space J, yet not into a Hilbert space. This
is impossible in the linear setting; by [Kwa72] a Banach space of type 2 and cotype 2 is
isomorphic to a Hilbert space (this is a far reaching generalization of the aforementioned
consequence of [KP62] that motivates Theorem 1.9). This reasoning also produces a
stronger asymptotic estimate than (17), since c`2 (Λn)&

√
logn, but it cannot shed light

on the `p setting of (17) because it relies precisely on the non-reflexivity of J (through the
use of [JS09]) to deduce that supn∈N cJ(Λn) <∞.

The Laakso graphs also lead to a counterexample to the metric version of [Mau74].
Let ϕ : Λ→ J be a bilipschitz embedding. Since Λ is a doubling subset of `1, one can
use [LN05] to construct a Lipschitz map f : `1 → J that extends ϕ. As above, f cannot
factor through a Hilbert space (or even through any uniformly convex Banach space X )
by Lipschitz maps, because such a factorization would produce a bilipschitz embedding
ofΛ into a Hilbert space (respectively, into X ).

This discussion shows that if one is allowed to replace `p in Theorem 1.9 and Theo-
rem 1.12 by non-classical (indeed, “exotic” and hard to come by) Banach spaces such as J,
then it is possible to demonstrate the failure of the metric space version of [Mau74] and
its important precursor [Kwa72] using well-known examples.
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Part of the impetus for the search for definitions of metric space notions of type 2 and
cotype 2 was the hope of obtaining a metric version of the theorem of [Kwa72], but it was
well-known to experts that the metric definitions of type 2 and cotype 2 found over the
past decades are not suitable for this purpose (see e.g. the discussion in [DLP13]). The
above discussion demonstrates conclusively that it is impossible to define metric space
notions of type 2 and cotype 2 that are bi-Lipschitz invariant, pass to subsets, coincide for
Banach spaces with type 2 and cotype 2, and for which [Kwa72] holds for doubling metric
spaces, i.e., any doubling space that has both type 2 and cotype 2 admits a bi-Lipschitz
embedding into a Hilbert space (the corresponding statement withΛ replaced by a metric
space that is not doubling follows by using [Bou86] instead of the Laakso graphs in the
above reasoning; in fact, using the improvement [Bau07] of [Bou86], the infinite binary
tree embeds bilipschitzly into both `1 and J, but not into a Hilbert space). Theorem 1.9
shows that this is so even if one restricts attention to subsets of `p for p > 2.

1.1.3. Dimension reduction. By a highly influential lemma of [JL84], any finite subset S of
a Hilbert space embeds with bi-Lipschitz distortion O(1) into a k–dimensional Hilbert
space for k . log |S|; see [Nao18] for an indication of the significance of this statement.
The question whether this phenomenon holds with Hilbert space replaced by `1 was a
prominent open problem until it was resolved negatively in [BC05], where it was shown
that for arbitrarily large n ∈N there is an n–point subset Dn of `1 such that if Dn embeds
with bi-Lipschitz distortion O(1) into `k

1 , then necessarily k Ê nc for some universal
constant c > 0. In [LMN05] it was shown that Dn can be taken to be O(1)–doubling, and
in [NPS18] it was shown that `k

1 can be replaced by an arbitrary k–dimensional subspace
of the Schatten–von Neumann trace class S1; both of these enhancements hold without
changing the conclusion (other than perhaps values of universal constants).

The examples {Dn}∞n=1 of [BC05] are the diamond graphs [NR03], while their aforemen-
tioned doubling counterparts in [LMN05] are the Laakso graphs {Λn}∞n=1 that we discussed
in Remark 1.13. By [MN08, JS09] we have supn∈N cX (Dn) = supn∈N cX (Λn) =∞ for every
uniformly convex Banach space X . In fact, by [JS09] the converse of this statement holds
true (though we do not need it below), namely X admits an equivalent uniformly convex
norm if and only if supn∈N cX (Dn) =∞ or supn∈N cX (Λn) =∞. Theorem 1.14 below ob-
tains new examples that demonstrate the failure of dimension reduction in `1 à la [JL84],
which are qualitatively different than the previously known examples, since our examples
do admit a bi-Lipschitz embedding into a uniformly convex Banach space (specifically,
into `p for any p > 2). At present, this comes with a worse lower bound on the target
dimension, but see Remark 1.15 below which explains how Conjecture 1.4 would remedy
this (for the very same example that we consider in Theorem 1.14).

Theorem 1.14. There is a universal constant c > 0 with the following property. For every n ∈
N and 2 < p É 4 there exists a O(1)–doubling subset Hn =Hn(p) of `1 with |Hn | É n such
that c`q (Hn). 1 for all q Ê p, and for every D Ê 1, if X is a finite-dimensional subspace of
the Schatten–von Neumann trace class S1 for which cX (Hn) É D, then necessarily

dim(X ) Ê exp

(
c

D2 (logn)1− 2
p

)
. (20)
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In the statement of Theorem 1.14, recall that for p Ê 1 the Schatten–von Neumann
trace class Sp is the Banach space of all the compact operators T : `2 → `2 that satisfy

‖T ‖Sp

def=
(

Trace
[
(T ∗T )

p
2
]) 1

p <∞.

Note that `p is the subspace of Sp consisting of the diagonal operators. Thus, the dimen-
sion reduction lower bound (20) holds in particular for any subspace X of `1.

The proof of Theorem 1.14 is short (modulo previously stated results and the available
literature), so we present the quick derivation now instead of postponing it to a later
section; it mimics the reasoning of [LN04] while combining it with [LN14b], Theorem 1.7
and Theorem 1.8, as well as structural information on subspaces of S1 from [NPS18].

Proof of Theorem 1.14. By (9) we have |Bm | ³ m4 for all m ∈N. So, fix m ∈Nwith m ³ 4
p

n
such that n. |Bm | É n. Using the mapping φm, 1

p
: HZ→ `1 of Theorem 1.7, define

Hn
def= φm, 1

p
(Bm).

By combining Theorem 1.7 and Theorem 1.8, we indeed have c`q (Hn). 1 for all q Ê p.
Let X be a finite-dimensional subspace of S1. Fix 1 < r É 2 whose value will be specified

later so as to optimize the ensuing reasoning. By [NPS18, Theorem 12], we have4

cSr (X ) É dim(X )1− 1
r .

Hence, if cX (Hn) É D , then, since cHn
(Bm). (logn)

1
p by Theorem 1.7, we have

cSr (Bm). (logn)
1
p cSr (Hn) É (logn)

1
p DcSr (X ) É (logn)

1
p D dim(X )1− 1

r .

At the same time, by [LN14b] we have5 cSr (Bm)&
√

(r −1)logn, so we conclude that

inf
1<rÉ2

dim(X )1− 1
rp

r −1
&

(logn)
1
2− 1

p

D
.

This gives the desired bound (20) by choosing r −1 ³ 1/log(dim(X )). �

Remark 1.15. By substituting (6) into the reasoning of [LN14b], a positive resolution of
Conjecture 1.4 would imply that for every r ∈ (1,2] and n ∈Nwe have

c`r (Bn)& 4
p

r −1 ·
√

logn. (21)

An incorporation of this improved distortion lower bound into the above proof of Theo-
rem 1.14 (while using [LTJ80] in place of [NPS18] since we are in the simpler `p setting)
would imply that for any finite-dimensional subspace X of `1, if cX (Hn(p)) É D , then the
following improvement over (20) holds true.

dim(X ) Ê exp

(
c

D4 (logn)2− 4
p

)
. (22)

4If one only wishes to rule out embeddings into low-dimensional subspaces of `1 rather than of S1, then
it suffices to use here [LTJ80, Theorem 1.2], which yields an embedding into `r rather than Sr .

5As in the discussion before Conjecture 1.4, the dependence on r in this estimate is not stated in [LN14b],
while it is crucial for us here; a justification why the reasoning in [LN14b] implies this appears in Appendix A.



FOLIATED CORONA DECOMPOSITIONS 15

Notably, for p = 4 this would be an improvement from dim(X ) Ê exp
( c

D2

√
logn

)
to

dim(X ) Ê n
c

D4 , (23)

namely a power-type dimension reduction lower bound as in [BC05]. Understanding what
is the correct behavior as p → 2+ remains an intriguing open question; some deterioration
of the lower bound as in (20) or (22) must occur because by [JL84] logarithmic dimension
reduction is possible for finite subsets of a Hilbert space.

Another question that this discussion obviously raises is if (21) could be enhanced to

cSr (Bn)& 4
p

r −1 ·
√

logn. (24)

If so, then (23) would hold when X is a subspace of S1 rather than `1. More substantially,
this would resolve a difficult open question (see the discussion following Question 13
in [NY18]) by showing thatHZ does not admit a bi-Lipschitz embedding into S1. In fact,
for the latter conclusion it would suffice to establish the weaker property

lim
n→∞cS1+ 1

logn

(Bn) =∞. (25)

Indeed, by [NPS18] we have cS1 (Bn)& cSr (Bn) when r = 1+1/logn. Due to its significant
consequences, we expect that proving (25), and all the more so its stronger version (24),
would require a major and conceptually new idea.

We end this discussion on dimension reduction by noting that [Tao19] shows that one
could embed Bn with optimal distortion (up to universal constant factors) into Euclidean
space of dimension O(1). Theorem 1.14 shows that this fails badly if one aims for optimal
`1–distortion embedding of Bn into a bounded dimensional subspace of `1.

1.1.4. Permanence of compression rates of groups. Suppose that (M ,dM ) is a metric and
(X ,‖ · ‖X ) is a Banach space. The compression rate of a Lipschitz mapping f : M → X is
the non-decreasing function ω f : [0,∞) → [0,∞) that is defined [Gro93] by

∀ s Ê 0, ω f (s)
def= inf

x,y∈M
dM (x,y)Ês

‖ f (x)− f (y)‖X . (26)

Equivalently, ω f is the largest non-decreasing function from [0,∞) to [0,∞) such that

∀x, y ∈ M , ‖ f (x)− f (y)‖X Êω f
(
dM (x, y)

)
.

There is a great deal of interest in determining the largest possible compression rate of
1–Lipschitz mappings from a finitely generated group G (equipped with a word metric
that is induced by some finite generating set) to certain Banach spaces, notable and useful
examples of which are Hilbert space and L1. The literature on this topic is too extensive to
discuss here, and we only mention that a substantial part of it is devoted to understanding
the extent to which compression rates are preserved under various group operations
(e.g. various semidirect products). Theorem 1.16 below provides a new example of the
lack of such permanence which does not seem to be accessible using previously available
methods. It leverages the fact that we establish here a marked difference between the L1

embeddability of Heisenberg groups of dimension 3 and dimension 5.
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Theorem 1.16. There exists a finitely group G that has two finitely generated normal
subgroups H ,K /G such that the following properties hold true.

(1) Any h ∈ H and k ∈ K commute.
(2) H ∩K is the center of G.
(3) H and K are isomorphic.
(4) H and K are undistorted in G; in fact, they admit generating sets SH and SK

such that SH ∪SK generates G and the word metric on G that is induced by SH ∪SK

restricts to the word metrics on H and K that are induced by SH and SK , respectively.
(5) The L1 compression of G is asymptotically smaller than that of H (hence also of

K ∼= H). Concretely, there exists a Lipschitz mapping f : H → `1 that satisfies

∀ s Ê 3, ω f (s)&
s

4
√

log s · (loglog s)2
, (27)

yet for any Lipschitz mapping F : G → L1 there are arbitrarily large s Ê 4 for which

ωF (s) É s√
(log s) loglog s

. (28)

Proof. Let GR be the 5–dimensional Heisenberg group, i.e., R5 with the group operation

(x1, y1, x2, y2, z)(x ′
1, y ′

1, x ′
2, y ′

2, z ′)

=
(
x1 +x ′

1, y1 + y ′
1, x2 +x ′

2, y2 + y ′
2, z + z ′+ 1

2
(x1 y ′

1 +x2 y ′
2 − y1x ′

1 − y2x ′
2)

)
for (x1, y1, x2, y2, z), (x ′

1, y ′
1, x ′

2, y ′
2, z ′) ∈R5. Let G be the 5–dimensional integer Heisenberg

group, which is the subgroup G = {
(x1, y1, x2, y2, z + (x1 y1 +x2 y2)/2) : x1, x2, y1, y2, z ∈Z}

.
The subgroups H ,K are natural copies ofHZ in G , namely

H = {(x1, y1, x2, y2, z) ∈G : x2 = y2 = 0} and K = {(x1, y1, x2, y2, z) ∈G : x1 = y1 = 0}.

One directly checks the first four assertions of Theorem 1.16. The bound (27) follows by
considering the mapping f : HZ→ `1(`1) ∼= `1 that is given by

f
def=

∞⊕
n=1

1

n2φ22n , 1
4

,

where the mappings that are being concatenated are those of Theorem 1.7. The final
assertion (28) of Theorem 1.16 follows from [NY18, Theorem 9]. �

Remark 1.17. The term loglog s in (27) and (28) can be improved slightly; for (27) this
follows by examining the above proof, and for (28) this is explained by [NY18, Theorem 9].
However, some unbounded lower-order correction is necessary in (27) for the specific
groups that we used in the proof of Theorem 1.16; see Remark 3.3.

Obviously, Theorem 1.16 raises the question if a similar phenomenon could occur
for embeddings into a Hilbert space rather than into L1. Also, in Theorem 1.16 the
compression rate of the subgroups H ,K grows roughly (suppressing lower-order factors)
like s/ 4

√
log s as s → ∞, while the compression rate of G grows slower than s/

√
log s.

What are the possible asymptotic profiles of the compression rates that exhibit such
phenomena?
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1.2. Decomposing surfaces into approximately ruled pieces. In the previous sections,
we discussed consequences of Theorem 1.1 (and the refined version of its second part
in Theorem 1.7). In this section, we will give an overview of the concepts involved in the
proof of Theorem 1.1, especially our main contribution, which is a new way to describe
the structure of surfaces inH.

The statement of Theorem 1.1 is in terms of smooth functions f : H→R, but the main
bound (3) has an equivalent formulation in terms of surfaces inH; see (32) below. We will
prove it by showing that surfaces in H admit a multi-scale hierarchical decomposition
into pieces that are close to ruled surfaces (unions of horizontal lines) and that most of
these pieces (in a quantitative sense) are long and narrow, giving the decomposition the
appearance of a Venetian blind with many narrow slats; see Figure 2 and Figure 3 for
examples. For reasons that will be clarified soon, we call the above structure a foliated
corona decomposition. This decomposition is conceptually central to this work, and the
most involved part of this paper is to formulate this decomposition, prove its existence,
and demonstrate its utility for the aforementioned applications (more are forthcoming).

The defining feature of this decomposition is that its pieces, which we call pseudoquads,
have widely varying aspect ratios. Each pseudoquad is roughly rectangular, and we define
the aspect ratio of a pseudoquad to be its width divided by its height; long, narrow
rectangles have large aspect ratios, while tall, skinny rectangles have small aspect ratios.
The fact that the pieces of the decomposition (the slats of the Venetian blind) can have
unbounded aspect ratios allows the decomposition to have additional symmetries and
ultimately leads to the exponent 4 in Theorem 1.1.

Specifically, in order to work with long, narrow pieces, we must prove results on the
geometry ofH that are invariant not only under the usual scaling automorphisms, but also
under automorphisms that stretch and shearH. The resulting automorphism-invariant
bounds allow us to produce a decomposition that is likewise invariant under rescaling,
stretching, and shearing. Furthermore, the overlap of the pieces of our decomposition
is controlled by a coercive quantity that scales like the fourth power of the aspect ratio
under automorphisms. This leads to a new weighted Carleson packing condition in which
overlaps are normalized by the fourth power of the aspect ratio; this condition leads
directly to the exponent 4 in the bound (3) of Theorem 1.1.

Proving the optimality of Theorem 1.1 entails finding a surface for which (32) is sharp.
Part of the construction of such a surface can be seen in Figure 3. The surface in the figure
can be viewed as a surface with a foliated corona decomposition for which the weighted
Carleson packing condition is sharp. For this reason, it is pedagogically beneficial to
describe that construction after describing foliated corona decompositions. In truth, the
general decomposition methodology and the construction that demonstrates its optimal-
ity are intertwined: limitations of such a construction indicate what decomposition to
look for. We therefore suggest to also consider the alternative route of first examining the
construction of the specific (sharp) example prior to considering the task of decomposing
general surfaces; the proofs in the rest of this article follow the latter (“reverse”) route as
this leads to a more gradual introduction of notations and concepts.



18 ASSAF NAOR AND ROBERT YOUNG

The ensuing considerations belong firmly to the setting of the continuous Heisenberg
group and its Carnot–Carathéodory geometry. They therefore assume some familiarity
with notions from that setting; the pertinent background appears in Section 2 below.

1.2.1. Fractal Venetian blinds abound. In what follows, for any s > 0 the Hausdorff mea-
sure H s onHwill be with respect to the Carnot–Carathéodory metric d onH. We denote
the standard generators ofH by X = (1,0,0),Y = (0,1,0), and Z = (0,0,1).

ForΩ⊆H and a ∈R, consider the symmetric difference

DaΩ
def= Ω4ΩZ 2−2a = (

ΩàΩZ 2−2a )∪ (
ΩZ 2−2a àΩ)

(29)

IfΩ,U ⊆H are measurable, then, following [LN14b, NY18], we define vU (Ω) : R→R by

∀a ∈R, vU (Ω)(a)
def= 2aH 4 (U ∩DaΩ) = 2a

ˆ
U

∣∣1Ω(h)−1Ω
(
hZ−2−2a )∣∣dH 4(h). (30)

Thus, vU (Ω)(a) is a (normalized) measurement of the amount thatΩ changes within U
when translated up and down by the specified (Carnot–Carathéodory) distance 2−a .

By [NY18, Lemma 38], in order to prove the first part of Theorem 1.1, namely inequal-
ity (3) for any compactly supported smooth function f : H→R, it suffices to prove that
every measurable subsetΩ⊆H satisfies the following isoperimetric-type inequality.6∥∥vH(Ω)

∥∥
L4(R).H 3(∂Ω). (31)

This amounts in essence to an application of the coarea formula (e.g. [Amb01]).
A central step of [NY18] is a further reduction of (31) to the special case thatΩ is (a piece

of) an intrinsic Lipschitz epigraph. An intrinsic Lipschitz epigraph Γ+ is a region ofH that
is bounded by an intrinsic Lipschitz graph Γ. The notion of an intrinsic Lipschitz graph
was introduced in [FSSC06] and all of the relevant background is explained in Section 2.2
below. The intrinsic Lipschitz condition is parametrized by an intrinsic Lipschitz constant
λ ∈ (0,1). By combining Proposition 55, Theorem 57 and Lemma 58 of [NY18] (see the
deduction on page 232 of [NY18]) it follows that to prove (31) it suffices to show that for
every 0 <λ< 1 the vertical perimeter of any intrinsic λ–Lipschitz epigraph Γ+ ⊆H satisfies
the growth bound

∀r > 0,
∥∥vBr (0)

(
Γ+

)∥∥
L4(R).λ r 3, (32)

where Br (0) denotes the (Carnot–Carathéodory) ball of radius r centered at 0 = (0,0,0).7

The structural information that underlies the reduction of (31) to (32) is that for any
0 < λ< 1, any (sufficiently nice; see [NY18] for precise assumptions) surface in H has a
multi-scale hierarchical decomposition into pieces that are close to intrinsic λ–Lipschitz
graphs, and moreover that decomposition has controlled overlap in the sense that it
satisfies a O(1)–Carleson packing condition. As such, this decomposition is an intrinsic
Heisenberg analog of the corona decompositions that were introduced and developed

6The exponent 4 is not important here, i.e., [NY18] shows that for any q Ê 1, if ‖vH(Ω)‖Lq (R) .H 3(∂Ω)

holds for every measurable subset Ω ⊆ H, then (
´∞

0 (
´
R3 |D t

v f (h)|dh)q dt
t )1/q .

´
R3

(|X f (h)|+ |Y f (h)|) dh

holds for every compactly supported smooth function f :R3 →R.
7Also this deduction in [NY18] does not rely on the specific value of the exponent 4. Namely, for any q Ê 1,

if for every 0 <λ< 1, every intrinsic λ–Lipschitz epigraph Γ+ ⊆H satisfies ‖vBr (0)
(
Γ+

)‖Lq (R).λ r 3 for every

r > 0, then ‖vH(Ω)‖Lq (R).H 3(∂Ω) holds for every measurable subsetΩ⊆H.
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for subsets of Euclidean space in [DS91] and have since led to a variety of powerful
applications in harmonic analysis (see also the monograph [DS93]).

The corona decomposition of [NY18] is in some respects a Heisenberg variant of a
“vanilla” corona decomposition. Like corona decompositions in Rn , it is a hierarchical par-
tition of a surface into pieces of bounded aspect ratio, and the Carleson packing condition
governing overlaps of pieces depends only on the diameter of the pieces. Nevertheless,
there are key differences, including the fact that the proof in [NY18] relies on a new “stop-
ping rule” (based on the quantitative nonmonotonicity of [CKN11]) that yields, in fact,
a different proof of the existence of corona decompositions even in Euclidean space
(though, for less general sets than those that [DS91] treats). In addition, while “vanilla”
Euclidean corona decompositions cover a surface in Rn by pieces that are approximately
graphs of Lipschitz functions, the approximating graphs in [NY18] are intrinsic Lipschitz,
like the surface depicted in Figure 1. While Lipschitz graphs in Euclidean space vary
slowly in all directions, intrinsic Lipschitz graphs vary slowly in horizontal directions but
can vary quickly in vertical directions and can have Hausdorff dimension 2.5 with respect
to the Euclidean metric [KSC04]. This can make these graphs difficult to analyze, and
even after the decomposition step of [NY18], the challenge of establishing estimates such
as (32) remains.

In [NY18], we addressed this challenge for the 5–dimensional Heisenberg group H5,
but our techniques do not shed light on the 3–dimensional setting of Theorem 1.1. An
intrinsic Lipschitz graph inH5 is the intrinsic graph of a function ψ that is defined on a
4–dimensional vertical hyperplane V0. An inspection of the intrinsic Lipschitz condition
shows that the restriction of ψ to any coset ofH that is contained in V0 is Lipschitz with
respect to the Carnot–Carathéodory metric onH. In [NY18], we applied a representation-
theoretic functional inequality of [ANT13] to each of these restrictions, yielding a bound
on the vertical variation of ψ. The desired control on the vertical perimeter of intrinsic
Lipschitz graphs inH5 followed by integrating this bound over the cosets ofH in V0.

In the 3–dimensional setting of the present work, the intrinsic graph Γ in (32) corre-
sponds to an intrinsic Lipschitz function ψ : V0 →R, where V0 is a 2–dimensional vertical
plane in H. For concreteness, assume in what follows that V0 = {(x,0, z) : x, z ∈R} is the
xz–plane. The reasoning of [NY18] is irrelevant to proving (32): one cannot restrict ψ to
cosets of a lower-dimensional Heisenberg group, as there is no such group!

Our strategy here is therefore entirely different from that of [NY18]. We will prove (32) by
finding a new structural description of intrinsic Lipschitz graphs inH. Specifically, we will
prove that they admit a hierarchical family of partitions into pieces that are approximately
ruled surfaces and bound the total error of these approximations.

We call this description of Γ a foliated corona decomposition. It is a sequence of
nested partitions of Γ into approximately rectangular regions, called pseudoquads, of
varying heights and widths. On each pseudoquad, Γ is close to a vertical plane, and
these vertical planes can be glued together to form a collection of ruled surfaces such
that at most locations and scales, Γ is approximated by one of the ruled surfaces; see
Remark 7.6. Furthermore, the decomposition satisfies a new weighted variant of the
classical Carleson packing condition. Namely, we bound the weighted sum of the measures
of the pseudoquads in the decomposition, where the measure of each pseudoquad is
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normalized by the fourth power of its aspect ratio. We will see that the occurrence of
the fourth power here is dictated by the requirement that this decomposition should be
invariant under certain automorphisms ofH (scaling, stretch, and shear automorphisms).

Theorem 1.18. Any intrinsic Lipschitz graph inH has a foliated corona decomposition.

The above description of foliated corona decompositions and the statement of Theo-
rem 1.18 clearly lack rigorous definitions, but they convey the essence of what is achieved
here. The necessary technical matters are treated in Section 5 below, where a precise
formulation of Theorem 1.18 appears as Theorem 5.2. The justification that Theorem 1.18
can be used to achieve our goal (32) is carried out in Section 6 below; the groundwork of
constructing a foliated corona decomposition makes this deduction quite mechanical.

We will next cover a few technical details necessary to describe foliated corona decom-
positions and the subdivision mechanism that produces them. Recall that V0 ⊆H is the
xz–plane. Fix 0 < λ < 1 and let Γ be an intrinsic λ–Lipschitz graph that is the intrinsic
graph of ψ : V0 →R. That is, Γ=Ψ(V0), where Ψ(v) = vY ψ(v) for all v ∈V0. The function
ψ satisfies the intrinsic Lipschitz condition (Definition 2.2); the nonlinear nature of this
condition is the source of subtleties that ensue (and the reason why basic questions on
the rectifiability properties of intrinsic Lipschitz graphs remain open; see e.g. [DFO20]).

For any p ∈ Γ, there is a horizontal curve γ contained in Γ that passes through p, so Γ
is the union of all such curves. It is often convenient to work in V0 instead of Γ. To this
end, let Π : H→V0 be the projection to V0, so Π(Ψ(v)) = v for v ∈V0. The projected curve
Π◦γ is a curve in V0 which we call a characteristic curve; see Section 2.3 for a detailed
discussion. Parametrize γ so that Π(γ(t)) = (t ,0, g (t)) for some continuous function g .
This function is a solution of the differential equation g ′(t ) =−ψ(t ,0, g (t )), and conversely,
each solution gives a characteristic curve. If Γ is a vertical plane, then ψ(x,0, z) = ax +b
for some a,b ∈R, in which case the characteristic curves are parallel parabolas.

Since horizontal curves pass through every point of Γ, there is a characteristic curve
through every point of V0, so one can reconstruct Γ from its set of characteristic curves.
Note that the characteristic curve through p is not necessarily unique: when ψ is not
smooth, these curves can split and rejoin [BCSC15]. When ψ is smooth, the characteristic
curves foliate V0, so there is a coordinate system on V0 such that the foliation forms one
set of coordinate lines. However, it is difficult to use this coordinate system to study the
geometry of Γ because the distance between two characteristic curves can vary wildly.
Foliated corona decompositions provide a way to overcome this difficulty.

A pseudoquad for Γ is a region in V0 that is bounded by characteristic curves above and
below and by vertical line segments on either side. We call a pseudoquad Q rectilinear
if its top and bottom boundaries approximate two parallel parabolas; if the top and
bottom boundaries of Q are exactly two parallel parabolas, we call Q a parabolic rectangle.
Parabolic rectangles are the projections to V0 of rectangles inH bounded by two horizontal
line segments and two vertical line segments. The width δx (Q) and height δz (Q) of such
a pseudoquad are defined to be, respectively, the width and height of its approximating
parabolic rectangle; see Section 4. The aspect ratio of Q is α(Q) = δx (Q)/

√
δz (Q).

Let Q0 ⊆V0 be a rectilinear pseudoquad. A foliated corona decomposition for Γwith
root at Q0 is a sequence of nested partitions of Q0 into rectilinear pseudoquads. We con-
struct such a decomposition using the following subdivision algorithm which, importantly,
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outputs pseudoquads that can be divided into two sets VV and VH, called, respectively, the
vertically cut pseudoquads and horizontally cut pseudoquads. The algorithm repeatedly
cuts pseudoquads into halves. Let Q be a pseudoquad in the decomposition. If Ψ(Q)
is a region in Γ that is sufficiently close to a vertical plane VQ and if the characteristic
curves through Q are close to characteristic curves for VQ , then cut Q in half along one of
the characteristic curves of Γ. In this case, say that Q is horizontally cut and add it to VH.
Otherwise, cut Q in half along a vertical line through its center, say that Q is vertically cut,
and add it to VV. By applying this procedure iteratively, we obtain a sequence of nested
partitions of Q0; see Figure 2.

A crucial part of the algorithm is the mechanism determining whether to cut the
pseudoquad horizontally or vertically. We stated qualitatively how this step depends
on the geometry ofΨ(Q), but we implement it quantitatively by introducing a coercive
quantity called R–extended nonmonotonicity. This is a family of measures ΩP

Γ+,R on
the vertical plane V0, parametrized by R > 0; see Section 8. These are inspired by the
quantitative nonmonotonicity of [CKN11], but there are key differences. For instance,
while the nonmonotonicity of Γ on a subset U ⊆Hmeasures how lines intersect Γ inside
U , the R–extended nonmonotonicity ofΓ on a subset W ⊆V0 measures how lines intersect
Γ inside an R–neighborhood ofΨ(W ). We refer to Section 8 for the details, in particular
to Lemma 9.2 which shows that for any measurable U ⊆V0,∑

i∈Z
ΩP
Γ+,2−i (U ).λ |U |, (33)

where |U | is the area of U and λ is the intrinsic Lipschitz constant of ψ.
Analogously to [CKN11], extended nonmonotonicity is coercive in the following sense.

Let U = [0,1]× {0}× [0,1] ⊆V0 and for r > 0, let rU be the square of side r concentric with
U . There is a universal constant r > 1 such that if δ is sufficiently small, R is sufficiently
large, ψ(0) is bounded, andΩΓ+,R (rU ) < δ, thenΨ(U ) is close to a vertical plane and the
characteristic curves that pass through U are close to characteristic curves of that vertical
plane (i.e., parabolas). The proof of this geometric statement (whose precise formulation
appears as Proposition 7.2) is the most technically involved part of this work; it is outlined
in Section 10 and carried out in Section 11 and Section 12.

By translation, rescaling, and applying a shear automorphism, a similar coercive prop-
erty applies to any pseudoquad of aspect ratio 1, but for the subdivision algorithm, we
need a coercive property for pseudoquads of arbitrary aspect ratio. If Q is a pseudoquad
of aspect ratioα(Q), the stretch automorphism s(x, y, z) = (α(Q)−1x,α(Q)y, z) sends Q to a
pseudoquad of aspect ratio 1. The extended nonmonotonicity of s(Q) scales likeα(Q)4, so
if the extended nonmonotonicity of Γ+ on Q is at most δ|Q|/α(Q)4, thenΨ(Q) is close to a
vertical plane and the characteristic curves that pass through Q are close to characteristic
curves of that vertical plane.

Therefore, in the subdivision algorithm above, there is δ> 0 such that we cut Q hori-
zontally if and only if the extended nonmonotonicity of Γ+ on Q is at most δ|Q|/α(Q)4.
This criterion, combined with (33), leads to a crucial bound on the total pseudoquads
that have been vertically cut by the subdivision algorithm. Specifically, if Q is a pseudo-
quad of the decomposition and DV(Q) is the set of vertically cut pseudoquads Q ′ in the
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FIGURE 2. Stages in the construction of a foliated corona decomposition for a
bump function as in the top row of Figure 3. The aspect ratio of the regions in the
decomposition varies widely. On the sides, where the surface is close to a vertical
plane, the aspect ratio is large and the regions are short and wide; near the top
and bottom, where it is further from a plane, the regions are tall and narrow.
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decomposition that are contained in Q, then∑
Q ′∈DV(Q)

|Q ′|
α(Q ′)4 .λ |Q|. (34)

The condition (34) is the aforementioned weighted Carleson packing condition, and the
L4 norm that appears in Theorem 1.1 arises directly from the exponent 4 in (34).

Thus, the L4 norm in Theorem 1.1 is ultimately dictated by having to prove a coercive
property for intrinsic Lipschitz graphs that is invariant under stretch automorphisms.
This stretch-invariance has multiple effects. On one hand, stretch-invariance means that
it suffices to prove the coercive property for pseudoquads of aspect ratio 1; indeed, it is
enough to consider pseudoquads that approximate the unit square. On the other hand, it
induces a substantial complication in the proofs: since the intrinsic Lipschitz constant is
not invariant under stretch automorphisms, the coercivity must be independent of the
intrinsic Lipschitz constant.

1.2.2. A maximally bumpy surface. The optimality part of Theorem 1.1 corresponds to
constructing (in Section 3) an intrinsic Lipschitz graph for which the L4(R) norm in (32)
cannot be replaced by the Lq (R) norm for any 0 < q < 4. Theorem 1.7 is deduced in
Section 3.1 by analyzing this construction; the level sets of the resulting embedding
into L1 are a superposition of certain random rotations, scalings and translations of this
surface.

We will show that for any sufficiently small ε> 0, there are intrinsic Lipschitz surfaces
inH of bounded (Heisenberg) perimeter that are ε–far from planes at ε−4 different scales,
many more than the ε−2 different scales that are possible (by [NY18]) for such surfaces in
the 5–dimensional Heisenberg groupH5 (or, for that matter, in Rn , by the Jones travelling
salesman theorem [Jon90] and the higher-dimensional analogues thereof [DS91]).

We construct these surfaces by adding bumps to a vertical plane. While surfaces that
demonstrate that the bound of [NY18] for H5 is optimal can be constructed by adding
round bumps with equal width and height, it is more natural inH to add oblong bumps
with width (horizontal size) w , depth d (size perpendicular to the surface), and height h
(vertical size). The automorphisms of the Heisenberg group preserve the ratio d w/h, so
we can construct a family of bump functions by applying automorphisms to a prototype
bump with d = w = h = 1. The resulting bumps have h = d w , and we define the aspect
ratio α of such a bump to be

α= wp
h
= wp

d w
=

√
w

d
.

A horizontal curve connecting one side of the bump to its other side has slope roughly
d/w =α−2, so adding a layer of bumps with aspect ratio αÊ 1 to a surface multiplies its
perimeter by roughly 1+α−4. Thus, we can start with a unit square, then add ε−4 layers of
bumps of width ε−1ri , depth εri , and height r 2

i , for r1 À···À rε−4 . These bumps all have
aspect ratio ε−1, so the resulting surface Σ has bounded perimeter, and for any x ∈Σ, the
intersections Bri (x)∩Σ are each εri –far away from any plane. So, Σ is ε–far from planes
at ε−4 different scales. The implementation of this strategy in Section 3 is in essence
an example of a foliated corona decomposition. At each stage we use the characteristic
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FIGURE 3. The first three steps of the construction of a maximally rough surface
inH. The left and right column show the same surface from two different angles.
The center column shows a projection of the surface to the plane, with charac-
teristic curves marked. Since the second derivatives of these curves are small, the
Heisenberg area of the surface is bounded, but the surface can be made ε–far from
a plane at ε−4 different scales — much more than what is possible inH5.

curves of the surface that was obtained in the previous stage to guide us where to glue the
next layer of bumps. Figure 3 shows a sketch of the construction.
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It is highly informative to examine why this construction does not work inH5. Bumps
on a surface in H5 have five dimensions, which we denote w1, w2,d1,d2, and h, so that
h is vertical, the other four dimensions are horizontal, and d2 is normal to the surface.
The automorphisms ofH5 preserve the ratios d1w1/(d2w2), d1w1/h, and d2w2/h. If β is
a bump with d1w1 = d2w2 = h and d2 É w2, then the slopes of β in the three horizontal
directions are roughly d2/w1, d2/w2, and d2/d1. So, adding β to a vertical rectangle with
dimensions w1 ×w2 ×d1 ×h increases the volume of the rectangle by a factor of roughly

ν(w1, w2,d1,d2,h)
def= 1+max

{
d 2

2

w2
1

,
d 2

2

w2
2

,
d 2

2

d 2
1

}
,

and the resulting bump is roughly d2/
p

h–far from a 4–dimensional hyperplane at scalep
h. If d2/

p
h = ε, then d1w1 = h = ε−2d 2

2 , and

ν(w1, w2,d1,d2,h) Ê 1+ d 2
2

max{d 2
1 , w2

1}
Ê 1+ d 2

2

d1w1
= 1+ε2.

Hence, this construction results, at best, in a surface that is ε–far from planes at ε−2 differ-
ent scales. One may also consider bumps where d1w1, d2w2, and h are not proportional,
such as bumps with d1 = w1 = w2 = d−1

2 = r À 1 = h. This is more subtle than it might
initially seem. Indeed, because the d1– and w1–directions do not commute, there are no
r × r × r × r−1 ×1 boxes inH5 that stay close to horizontal. Consequently, a bump of these
dimensions behaves similarly to a collection of smaller bumps with d1w1 = d2w2 = h,
which are governed by the previous reasoning.

1.3. Roadmap. In Section 2, we present notation for working with the Heisenberg group
and some definitions and results related to intrinsic graphs and characteristic curves.
In Section 3, we construct an intrinsic graph with large vertical perimeter and use it to
construct the embeddings used in Theorem 1.7 and its consequences.

The rest of the paper is devoted to defining and constructing foliated corona decom-
positions and using them to prove equation (32) bounding the vertical perimeter of an
intrinsic Lipschitz graph. In Sections 4, we define a rectilinear foliated patchwork, which
decomposes an intrinsic Lipschitz graph into rectilinear pseudoquads, and in Section 5,
we define the weighted Carleson packing condition required for such a patchwork to be a
foliated corona decomposition. Then, in Section 6, we show that an intrinsic Lipschitz
graph that admits a foliated corona decomposition satisfies equation (32).

It remains to show that every intrinsic Lipschitz graph admits a foliated corona de-
composition. We produce foliated corona decompositions by the subdivision algorithm
described in Section 7. The fact that the patchworks produced by this algorithm satisfy
the weighted Carleson packing condition relies on careful analysis of a coercive quantity,
the extended parametric nonmonotonicity, defined in Section 8. When this coercive
quantity is small, the graph satisfies strong geometric bounds, detailed in Proposition 7.2.
Assuming Proposition 7.2, we prove the weighted Carleson condition in Section 9. In
Section 10, we outline the proof of Proposition 7.2, and in Sections 11–12, we prove it.
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2. PRELIMINARIES

Most of this section presents initial facts about the Heisenberg group that will be used
throughout what follows. However, we will start by briefly setting notation for measure
theoretical boundaries and interiors that are best described in greater generality (though
they will be applied below only to either the Heisenberg group or the real line).

Let (M,dM,µ) be a non-degenerate metric measure space, i.e., (M,dM) is a metric space
and µ is a Borel measure on M such that µ(BM(x,r )) > 0 for all x ∈M and r > 0, where
BM(x,r ) = {y ∈M : dM(x, y) É r } is the closed dM–ball of radius r centered at x.

Given a subset S ⊆M, we define the measure-theoretic support suppµ(S) of S to be the
usual measure-theoretic support of the indicator function 1S : M→ {0,1}, namely

suppµ(S)
def= ⋂

r>0

{
x ∈M : µ(BM(x,r )∩S) > 0

}
. (35)

The measure-theoretic boundary of S is defined as

∂µS
def= suppµ(S)∩ suppµ(MàS) = ⋂

r>0

{
x ∈M : 0 < µ(BM(x,r )∩S)

µ(BM(x,r ))
< 1

}
. (36)

The measure-theoretic interior of S is defined as

intµ(S)
def= Mà suppµ(MàS) = ⋃

r>0

{
x ∈M : µ(BM(x,r )àS) = 0

}
. (37)

These definitions are nonstandard; other works define the measure-theoretic boundary
as the set of points where the density of S is not 0 or 1. The advantage of our definition is
that one may check that intµ(S) is open inM and its (topological) boundary ∂ intµ(S) is
contained in ∂µS. The sets intµ(S), intµ(MàS), ∂µS are disjoint and their union isM, i.e.,

M= intµ(S)
⊔(

intµ(MàS)
)⊔

∂µS. (38)

2.1. The Heisenberg group. Here we summarize basic notation and terminology related
to the Heisenberg group.

Throughout what follows, ‖ ·‖ : R3 →Rwill denote the Euclidean norm on R3, namely
‖(a,b,c)‖ =

p
a2 +b2 + c2 for all a,b,c ∈R. Let

X
def= (1,0,0), Y

def= (0,1,0), Z
def= (0,0,1)

be the standard basis ofR3, and let x, y, z : R3 →R be the coordinate functions. Namely, for
u = (a,b,c) ∈R3 we set x(u) = a, y(u) = b and z(u) = c . With this notation, the Heisenberg
group operation (8) can be written as

∀u, v ∈H=R3, uv = u + v + x(u)y(v)− y(u)x(v)

2
Z . (39)

The linear span of a set of vectors S ⊆ R3 will be denoted 〈S〉. The plane H
def= 〈X ,Y 〉

is called the space of horizontal vectors. Let π : R3 →H be the orthogonal projection. A
horizontal line inH is a coset of the form w〈h〉 ⊆H for some w ∈H and h ∈H.

The union of the horizontal lines passing through a point u ∈H is the plane uH, which
we denote Hu and call the horizontal plane centered at u. Every plane P ⊆ R3 either
contains a coset of 〈Z 〉 (a vertical line), in which case we call P a vertical plane, or can be
written P =Hu for some unique u ∈H.
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If I ⊆ R is an interval and γ : I → H is a curve such that x ◦γ, y ◦γ, z ◦γ : I → R are
Lipschitz, then γ′(t) is defined for almost all t ∈ I . One then says that γ is a horizontal
curve if γ is tangent to Hγ(t ) at γ(t ) for almost all t ∈ I , i.e., for almost all t ∈ I we have

d

ds

(
γ(t )−1γ(s)

)∣∣∣∣
s=t

∈H.

Note that horizontality is left-invariant; if γ is a horizontal curve and g ∈H, then g ·γ is
also a horizontal curve. If γ(t ) = (γx (t ),γy (t ),γz (t )), then this requirement is equivalent
to the differential equation 2γ′z (t ) = γx (t )γ′y (t )−γy (t )γ′x (t ).

Define

`(γ)
def=

ˆ
I
‖π(γ′(t ))‖dt .

The sub-Riemannian or Carnot–Carathéodory metric d : H×H→ [0,∞) is defined by
letting d(v, w) be the infimum of `(γ) over all horizontal curves γ connecting v ∈H to
w ∈H. This metric is left-invariant, i.e., d(g a, g b) = d(a,b) for all a,b, g ∈H.

If γ is a horizontal curve connecting v to w , then π ◦γ is a curve in R2 of the same
length connecting π(v) to π(w), so d(v, w) Ê ‖π(v)−π(w)‖. Consequently, any horizontal
line inH is a geodesic. Also, d satisfies (e.g. [BR96, Gro96, Mon02]) the ball-box inequality

∀h = (x, y, z) ∈H, d(0,h) É |x|+ |y |+4
√
|z| É 2d(0,h)+4 · d(0,h)p

2π
É 4d(0,h). (40)

For h ∈H and r Ê 0 we let Br (h) = {g ∈H : d(g ,h) É r } = hBr (0) denote the closed ball
of radius r centered at h with respect to the sub-Riemannian metric d onH; throughout
what follows we will not use this notation for balls with respect to any other metric.

For σ> 0 denote by H σ the σ–dimensional Hausdorff measure that d induces onH.
Thus H 4 is the Lebesgue measure on R3, which is also the Haar measure on H. Given
a measurable subset E ⊆H, the associated perimeter measure that is induced by d will
be denoted by PerE (·); we refer to [FSSC01] for background on this fundamental notion,
noting only that there exists η> 0 such that if E ⊆H has a piecewise smooth boundary,
then PerE (U ) = ηH 3(U ∩∂E) for every open subset U ⊆H.

It is also beneficial to describe the group operation onH in terms of a symplectic form.
Let ωR2 : R2 ×R2 →R be the standard symplectic form, i.e.,

∀(a,b), (α,β) ∈R2, ωR2

(
(a,b), (α,β)

) def= aβ−bα= det

(
a b
α β

)
.

Under this notation, (39) can be written as follows.

∀u, v ∈H, uv = u + v + ωR2 (π(u),π(v))

2
Z . (41)

This lets us define automorphisms of H. Let A : R2 → R2 be an invertible linear map
with determinant J ∈ Rà {0}, so that ωR2 (A(v), A(w)) = JωR2 (v, w) for any v, w ∈ R2. It
follows from (41) that the map Ã : H→H that is defined by

∀(x, y, z) ∈H, Ã(x, y, z)
def= (A(x, y), J z) (42)

is an automorphism of H which, since Ã(H) =H, sends horizontal curves to horizontal
curves and is thus Lipschitz with respect to the sub-Riemannian metric onH. If A is an
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orthogonal matrix, then Ã is an isometry. As a notable special case, for a,b > 0, we define

∀(x, y, z) ∈H, sa,b(x, y, z)
def= (ax,by, abz), (43)

which we call a stretch map. When a = b = t , st ,t is the usual scaling automorphism of
H, which scales the sub-Riemannian metric onH by a factor of t . For simplicity, in what
follows we will sometimes write st ,t = st .

2.2. Intrinsic graphs and intrinsic Lipschitz graphs. Throughout what follows, we de-
note the xz–plane by V0, namely

V0
def= {(x, y, z) ∈H : y = 0} =R× {0}×R⊆H.

Note that the restriction of H 3 to V0 is proportional to the Lebesgue measure on V0.
Fix U ⊆V0. The intrinsic graph of a function ψ : U →R is defined in [FSSC06] to be

Γψ
def= {

vY ψ(v) : v ∈U
}= {(

x(v),ψ(v), z(v)+ 1

2
x(v)ψ(v)

)
: v ∈U

}
⊆H, (44)

where in (44), as well as throughout what follows, it is convenient to use the exponential
notation ut = tu = (t x(u), t y(u), t z(u)) for u ∈H and t ∈R. Observe that any coset of 〈Y 〉
that passes through U intersects Γψ in exactly one point. We will also use the following
notation for the intrinsic epigraph of ψ.

Γ+ψ
def= {

vY t : (v, t ) ∈U × (ψ(v),∞)
}

.

Suppose that U ⊆V0 is an open subset of V0 and that g : U → R is smooth. For every
ψ : U →R define a function ∂ψg : U →R by

∂ψg
def= ∂g

∂x
−ψ∂g

∂z
. (45)

If ψ is smooth, then we define the horizontal derivative of ψ to be the function

∂ψψ= ∂ψ

∂x
−ψ∂ψ

∂z
. (46)

Let v ∈U and let p
def= vY ψ(v) ∈ Γψ. One can interpret ∂ψψby considering the horizontal

plane Hp . This plane locally intersects Γψ in a curve, and the tangent vector of this curve
at p is given by X +∂ψψ(v)Y . The horizontal derivative also determines the slope of
the intrinsic tangent plane to Γψ, where the slope of a vertical plane is the slope of its
projection to H. As r → 0, rescalings of the intersections Br (p)∩Γψ converge to a vertical
tangent plane with slope ∂ψψ(v).

The following proposition is part of Theorem 1.2 of [ASCV06]. It expresses the area
H 3(Γψ) of Γψ, namely the 3-dimensional Hausdorff measure (with respect to the sub-
Riemannian metric) of Γψ, in terms of ∂ψψ.

Proposition 2.1 ([ASCV06]). There exists a constant c > 0 such that if U ⊆V0 is an open set
and ψ : U →R is smooth, then

H 3(Γψ) ³S 3(Γψ) = c

ˆ
U

√
1+ (∂ψψ)2 dw ³H 3(U )+‖∂ψψ‖L1(U ), (47)

where S 3 is the 3–dimensional spherical Hausdorff measure onH.
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Recent work [JNGV20] has shown that the spherical Hausdorff measure and the Haus-
dorff measure on Γψ are equal up to a multiplicative constant, so the first equivalence in
(47) can be replaced with an equality up to a constant factor.

For λ ∈ (0,1), define the double cone

Coneλ
def= {

h ∈H : |y(h)| >λd(0,h)
}

.

This is a cone centered on the horizontal line 〈Y 〉 which is scale-invariant, i.e.,

∀t > 0, st ,t (Coneλ) = Coneλ.

The intersection H∩Coneλ is a double cone in H with angle depending on λ. Specifically,

H∩Coneλ =
{

(x, y,0) ∈H : |y | >λ
√

x2 + y2

}
=

{
(x, y,0) ∈H : |y | > λp

1−λ2
|x|

}
.

(48)

Definition 2.2. Let U ⊆ V0 and let Γ⊆H be an intrinsic graph over U . For any λ ∈ (0,1),
we say that Γ is an intrinsic λ–Lipschitz graph if (hConeλ(V0))∩Γ = ∅ for every h ∈ Γ.
Equivalently, for every p, q ∈ Γ,

|y(q)− y(p)| Éλd(p, q).

We say that Γ is an intrinsic Lipschitz graph if it is intrinsic λ–Lipschitz for some λ ∈ (0,1).
If Γ= Γψ for some ψ : U →R, then we say that ψ is an intrinsic Lipschitz function.

Definition 2.2 gives the same class of intrinsic Lipschitz graphs as the definition in-
troduced in [FSSC06], but it gives different classes of intrinsic λ–Lipschitz graphs; see
Section 3.2 of [Rig19] for a proof that the definitions are equivalent.

The following simple bound will be convenient later.

Lemma 2.3. Let 0 É λÉ 1 and let Γ= Γψ be an intrinsic λ–Lipschitz graph of a function
ψ : U ⊆V0 →R. Let v, w ∈U and write p = vY ψ(v) ∈ Γ and q = wY ψ(w) ∈ Γ. Then

|y(p)− y(q)| = |ψ(v)−ψ(w)| É 2

1−λd(p, q〈Y 〉).

Proof. Denote m = d(p, w〈Y 〉). Let c ∈ w〈Y 〉 be a point such that d(p,c) = m. By the
intrinsic Lipschitz condition,

|y(c)− y(q)| É m +|y(p)− y(q)| É m +λd(p, q) É m +λ(m +|y(c)− y(q)|).

This simplifies to give

|y(c)− y(q)| É 1+λ
1−λm.

Hence,

|y(p)− y(q)| É |y(p)− y(c)|+ |y(c)− y(q)| É 2m

1−λ . �

Intrinsic Lipschitz graphs satisfy the following version of Rademacher’s differentiation
theorem due to [FSSC11, Theorem 4.29].
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Theorem 2.4 ([FSSC11]). Let 0 < λ < 1, let U ⊆ V0 be an open set and let f : U → R be a
function such that Γψ ⊆H is an intrinsic λ–Lipschitz graph. Then for almost every p ∈U ,
Γψ has an intrinsic tangent plane at pY ψ(p) whose slope satisfies

|∂ψψ(p)| É λp
1−λ2

. (49)

We note that [FSSC11, Theorem 4.29] is concerned with the (almost everywhere) ex-
istential statement of horizontal derivatives. The upper bound in (49) follows from (48)
and the fact that the intrinsic tangent plane at pY ψ(p) is disjoint from pConeλ (see also
Lemma 2.7). This bound on the horizontal derivatives of an intrinsic Lipschitz graph leads
to a bound on the perimeter measure. The following result follows from Theorem 4.1 of
[FSC07], which proves a similar bound on the Hausdorff measure of Γ, and the results
of [FSSC01], which imply that the Hausdorff measure of Γ and the perimeter measure of
Γ+ differ by at most a multiplicative constant. LetΠ : H→V0 be the natural (nonlinear)
projection to V0 along cosets of 〈Y 〉, i.e.,Π(v) = vY −y(v) for every v ∈H. Equivalently,

∀(x, y, z) ∈H, Π(x, y, z)
def= (

x,0, z − 1

2
x y

)
. (50)

Lemma 2.5 ([FSC07]). Fix λ ∈ (0,1). Let ψ : V0 →R be λ–intrinsic Lipschitz. The perimeter
measure PerΓ+ψ satisfies the following equivalence for measurable subsets A ⊆ Γψ.

PerΓ+ψ(A) ³λ |Π(A)|,
where here, and henceforth, | · | denotes the Haar measure on V0, normalized to coincide
with the usual 2–dimensional area measure in R3.

2.3. Characteristic curves. Let U ⊆V0 be an open set and let ψ : U →R be a continuous
function. The differential operator ∂ψ given in (45) defines a vector field on V0 that is
continuous and has x–coordinate 1, so by the Peano existence theorem, there is at least
one flow line of ∂ψ through every point of U , defined on an interval. These flow lines are
the graphs of functions g : I →R satisfying

∀t ∈ I , g ′(t )+ψ(
t ,0, g (t )

)= 0. (51)

We call these flow lines characteristic curves of Γψ.
The solution to (51) guaranteed by the Peano existence theorem is only local, but

when ψ is intrinsic Lipschitz, we can define g on all of R. Indeed, by the Peano existence
theorem, if Sr = [−1,1]×{0}×[−r,r ] and supq∈Sr

|ψ(q)| É r , then there exists a g : (−1,1) →
[−r,r ] that solves (51) with initial condition g (0) = 0. Let (x,0, z) ∈ Sr . By Lemma 2.3 with
v = 0, w = (x,0, z), there is some C =Cψ > 0 such that

|ψ(x,0, z)| É |ψ(0)|+ 2

1−λd
(
Y ψ(0), (x,0, z)

)ÉC +C |x|+C
√

|z| É 2C +C
p

r .

If r is sufficiently large, then supq∈Sr
|ψ(q)| É r , so (51) can be solved on (−1,1). More gen-

erally, for any x0, z0, there is a g : (x0 −1, x0 +1) →R that solves (51) with initial condition
g (x0) = z0. By patching together such solutions, we obtain a global solution to (51).

In this section, we will show that the characteristic curves of Γψ are the projections of
horizontal curves in Γψ and use them to describe Γψ. In the next section, we will describe
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how characteristic curves transform under automorphisms ofH; later, we will use these
curves to describe how horizontal lines intersect an intrinsic Lipschitz graph.

Lemma 2.6. Let Γ= Γψ. The characteristic curves of Γ are exactly the projections (underΠ)
of horizontal curves φ : I → Γ such that x(φ(t )) = t for every t ∈ I .

Because characteristic curves can branch and rejoin (see [BCSC15] for such examples),
there are intrinsic Lipschitz graphs with horizontal curves whose x–coordinate is not
monotone. Thus the condition x(φ(t )) = t of Lemma 2.6 cannot be dropped.

Proof of Lemma 2.6. First, we claim that if φ is a horizontal curve in Γ with x(φ(t)) = t ,
then Π ◦φ is a characteristic curve of Γ. Write Γ = Γψ and let φ : I → Γ be a horizontal
curve of the form φ(t) = X t Y f (t )Z g (t ). Then f and g are Lipschitz, Π(φ(t)) = (t ,0, g (t)),
and, since φ(t ) ∈ Γ, we have f (t ) =ψ(t ,0, g (t )). Since φ is horizontal,

d

du
φ(t )−1φ(t +u)

∣∣∣∣
u=0

∈H

for almost every t ∈ I . Observe that

φ(t )−1φ(t +u) = (
X t Y f (t )Z g (t ))−1(X t+uY f (t+u)Z g (t+u))

= X uY f (t+u)− f (t )Z g (t+u)−g (t )+u f (t ).

Since f and g are Lipschitz, the following identity holds almost everywhere.

d

du
φ(t )−1φ(t +u)

∣∣∣∣
u=0

= X + f ′(t )Y + (g ′(t )+ f (t ))Z . (52)

That is, g satisfies (51).
Conversely, suppose that g is a solution of (51) and let f (t) = ψ(t ,0, g (t)). By Theo-

rem 1.1 and Theorem 1.2 of [BCSC15], f is Lipschitz. Therefore, φ(t ) = X t Y f (t )Z g (t ) is a
Lipschitz curve in Γ such that Π(φ(t)) = (t ,0, g (t)) and such that φ satisfies (52) almost
everywhere. In combination with (51), this implies that φ is horizontal. �

Ifψ is smooth, the characteristic curves ofΓψ foliate U . Ifψ is merely intrinsic Lipschitz,
characteristic curves can branch and rejoin, but if two characteristic curves pass through
the same point, then they are tangent at that point; see Figure 1 of [BCSC15] for an
example of this phenomenon.

Characteristic curves satisfy bounds based on the intrinsic Lipschitz constant of Γ.

Lemma 2.7. Fix λ ∈ (0,1) and denote

L
def= λp

1−λ2
.

Let Γ = Γψ be an intrinsic λ–Lipschitz graph over an open set and let γ : I → V0 be a
characteristic curve for Γ parametrized so that x(γ(t )) = t for all t ∈ I . Then,

∀s, t ∈ I , |ψ(γ(s))−ψ(γ(t ))| É L|s − t |. (53)

Also, if we denote g (t ) = z(γ(t )), then

∀s, t ∈ I ,
∣∣g (t )− g (s)− g ′(s) · (t − s)

∣∣É L
(t − s)2

2
. (54)
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Proof. Since γ is characteristic, the curve φ(t ) = γ(t ) ·Y ψ(γ(t )) is horizontal. The intrinsic
Lipschitz condition implies that

∀δ ∈Rà {0},
|y(φ(t +δ))− y(φ(t ))|

d(φ(t ),φ(t +δ))
Éλ. (55)

By Pansu’s theorem [Pan89], for almost every t ∈ I , there is a vector ht ∈H such that

lim
δ→0

d
(
φ(t )hδt ,φ(t +δ)

)
δ

= 0.

Indeed, ht = (1,m,0), where m = (ψ◦γ)′(t ). Then

liminf
δ→0

|y(φ(t +δ))− y(φ(t ))|
d(φ(t ),φ(t +δ))

Ê liminf
δ→0

|δm|−d(φ(t )hδt ,φ(t +δ))

δ‖ht‖+d(φ(t )hδt ,φ(t +δ))
= |m|p

1+m2
.

By (55) it follows that |m|p
1+m2

Éλ, so for almost every t ∈ I ,

|(ψ◦γ)′(t )| = |m| É L. (56)

This implies (53). By (51), g ′(t) = −ψ(γ(t)), so it follows from (56) that |g ′′(t)| É L for
almost every t ∈ I . The remaining bound (54) is therefore justified as follows.∣∣g (t )− (

g (s)+ g ′(s) · (t − s)
)∣∣= ∣∣∣∣ˆ t

s
(t −u)g ′′(u)du

∣∣∣∣É L

∣∣∣∣ˆ t

s
(t −u)du

∣∣∣∣= L
(t − s)2

2
. �

Since there is a characteristic curve through every point p ∈U and the derivative of such
a curve at p is −ψ(p), an intrinsic graph Γ can be reconstructed from its characteristic
curves. Indeed, one way to construct intrinsic Lipschitz graphs is to construct a foliation
of V0 by C1 curves {z = gα(x)},α ∈ A such that Lip(g ′

α). 1 for everyα ∈ A. Each such curve
lifts to a horizontal curve, and one can show that the union of these lifts is an intrinsic
Lipschitz graph. (This is how the graphs in Figure 3 were constructed.)

For illustration, we consider planes inH. A vertical plane V that is not orthogonal to
V0 is an intrinsic graph over V0. The horizontal curves in V are parallel lines; let L be one
such line. The imageΠ(L) is a parabola in V0, and the characteristic curves of V are the
parabolas parallel toΠ(L). The second derivative of these parabolas depends on the angle
between V and V0.

Let v ∈ H. The horizontal plane Hv centered at v is not an intrinsic graph, but the
horizontal line v〈Y 〉 divides Hv into two intrinsic graphs. The horizontal lines in Hv

all pass through v , and their projections to V0 are parabolas through Π(v). Since they
all intersect at v , their projections are all tangent at Π(v). These parabolas foliate the
complement in V0 of the vertical line throughΠ(v). They have unboundedly large second
derivatives, so the two halves of Hv are locally intrinsic Lipschitz graphs, but not globally.

2.4. Automorphisms and characteristic curves. Recall that any invertible linear map
A : R2 →R2 induces an automorphism Ã ofH as in (42). We are particularly interested in
the case that Y is an eigenvector of A. In this case, Ã(〈Y 〉) = 〈Y 〉, so Ã sends cosets of 〈Y 〉
to cosets of 〈Y 〉. A set Γ is an intrinsic graph if and only if it intersects each coset of 〈Y 〉 at
most once, so Ã sends intrinsic graphs to intrinsic graphs.

One family of maps with this property are the stretch maps sa,b(x, y, z) = (ax,by, abz)
defined in (43). To construct a second family of maps with the above property, let b ∈R
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and consider the linear map Ab(x, y) = (x, y +bx), which is a shear of the plane R2. The
induced map Ãb , is an automorphism ofH given by the formula

∀(x, y, z) ∈H, Ãb(x, y, z) = (x, y +bx, z),

and we call such maps shear maps. (Note that these are different from the shear maps
considered in [Xie16].)

Let Π : H→ V0 be as in (50), i.e., the projection to V0 along cosets of 〈Y 〉. The maps
above preserve cosets of 〈Y 〉, so composed withΠ they induce maps from V0 to V0.

Lemma 2.8. Fix h = (x0, y0, z0) ∈H and v = (x,0, z) ∈V0. For any a,b, t ∈Rwe have

Π
(
sa,b(vY t )

)= sa,b(v) = (ax,0, abz),

Π
(

Ãb(vY t )
)= (

x,0, z − 1

2
bx2),

and

Π(hvY t ) = (
x +x0,0, z + z0 −x y0 − 1

2
x0 y0

)
.

Proof. Π(g Y t ) =Π(g ) for all g ∈H and t ∈R. Since sa,b and Ãb are homomorphisms,

Π
(
sa,b(vY t )

)=Π(
sa,b(v)Y bt )= sa,b(v) = (ax,0, abz),

and

Π
(

Ãb(vY t )
)=Π(

Ãb(v)Y t )= (x,bx, z)Y −bx = (
x,0, z − 1

2
bx2).

Finally,

Π(hvY t ) =Π(hv) = (
x0 +x, y0, z0 + z − 1

2
x y0

)
Y −y0

= (
x0 +x,0, z0 + z − 1

2
x y0 − 1

2
(x0 +x)y0

)
. �

We next describe how these maps affect characteristic curves and intrinsic graphs.

Lemma 2.9. Fix U ⊆ V0 and ψ : U → R be a continuous function. Write Γ = Γψ. Let
C = {(x,0, z) ∈ V0 : z = g (x)} be a characteristic curve of Γ. Let q : H→ H be a stretch
map, shear map, or left translation, and let q̂ : V0 →V0, q̂(v) =Π(q(v)) be the map that q
induces on V0. Then q(Γ) is the intrinsic graph of a function ψ̂ : q̂(U ) → R and q̂(C ) is a
characteristic curve of q(Γ). Also,

• If a,b ∈Rà {0} and q = sa,b , then ψ̂(q̂(v)) = bψ(v) for all v ∈U .
• If b ∈R and q = Ãb , then ψ̂(q̂(v)) =ψ(v)+bx(v) for all v ∈U .
• If h ∈H and q(p) = hp for all p ∈H, then ψ̂(q̂(v)) =ψ(v)+ y(h) for all v ∈U .

Proof. Any coset of 〈Y 〉 intersects q(Γ) at most once, so q(Γ) is an intrinsic graph with
domainΠ(q(Γ)) = q̂(Γ).

Let γ⊆ Γ be the horizontal curve such that Π(γ) =C . Then q(γ) is a horizontal curve
in q(Γ). For all g ∈H and t ∈Rwe haveΠ(g Y t ) =Π(g ). Consequently, we haveΠ(q(γ)) =
Π(q(C )) = q̂(C ), and q̂(C ) is characteristic for q(Γ).

For any v ∈U , we have q(vY ψ(v)) ∈ q(Γ), and since q(Γ) is an intrinsic graph, we must
have q(vY ψ(v)) = q̂(v)Y ψ̂(q̂(v)). The claimed expressions for ψ̂ follow directly. �
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Observe that if q : H→H preserves cosets of 〈Y 〉, then

q(Π(p)) ∈ q(p〈Y 〉) = q(p)〈Y 〉, (57)

so Π ◦ q = Π ◦ q ◦Π. In particular, if q1 and q2 are stretch maps, shear maps, or left
translations, then

q̂1 ◦ q̂2 =Π◦q1 ◦Π◦q2 =Π◦q1 ◦q2 = àq1 ◦q2.

Consequently, if a,b,c ∈R and q(v) = Y b Z−c Ã2a(v) for all v ∈H, then q̂(x,0, z) = (x,0, z −
ax2 −bx − c). That is, for any quadratic function f , there is a map q : H→H so that the
characteristic curves of q(Γ) are the characteristic curves of Γ translated by f .

Finally, stretch maps and shear maps send intrinsic Lipschitz graphs to intrinsic Lips-
chitz graphs (with a possible change in the Lipschitz constant).

Lemma 2.10. Let Γ be an intrinsic Lipschitz graph, and let a,b ∈Rà {0}. Then sa,b(Γ) and
Ãb(Γ) are intrinsic Lipschitz graphs, with an intrinsic Lipschitz constant depending on a,b,
and the intrinsic Lipschitz constant of Γ.

Proof. Let q = sa,b or q = Ãb . As Γ is an intrinsic Lipschitz graph, there is a scale-invariant
double cone C ⊆H containing a neighborhood of Y such that pC ∩Γ =∅ for all p ∈ Γ.
The image q(C ) is a scale-invariant double cone containing a neighborhood of Y . Since⋂

λ∈(0,1)
Coneλ = 〈Y 〉à {0},

there is a 0 <λ< 1 such that Coneλ ⊆ q(C ). For all p ∈ Γ,

q(p)Coneλ∩q(Γ) ⊆ q(p)q(C )∩q(Γ) = q(pC ∩Γ) =∅,

so q(Γ) is intrinsic λ–Lipschitz. �

2.5. Measures on lines and the kinematic formula. Let L be the space of horizontal
lines inH. For U ⊆H, denote the set of horizontal lines that intersect U by

L (U )
def= {L ∈L : L∩U 6=∅}.

Let N be the unique (up to constants) measure on L that is invariant under the action
of the isometry group of H. Scalings of horizontal lines are horizontal lines, so scaling
automorphisms ofH act on L , and L (st ,t (M)) = t 3L (M) for all t > 0. Henceforth N will
be normalized so that N (L (Br (x))) = r 3 for every r > 0 and x ∈H.

The Heisenberg group satisfies the following kinematic formula, which we record here
for ease of later use (see [Mon05] or equation (6.1) in [CKN11]). There exists a constant
c > 0 such that for any finite-perimeter set E ⊆H and any open subset U ⊆H,

PerE (U ) = c

ˆ
L

PerE∩L(U ∩L)dN (L). (58)

Consider also the set L # def= {(L, p) : L ∈L ∧ p ∈ L} of pointed horizontal lines. Asso-
ciate to each measurable subset K ⊆L # the following two quantities.ˆ

L

H 1({p ∈ L : (L, p) ∈ K }
)

dN (L), (59)
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and ˆ 2π

0

ˆ
H

1K
(
p〈cos(θ)X + sin(θ)Y 〉, p

)
dH 4(p)dθ. (60)

Both of the expressions in (59) and (60) define measures on L # that are invariant under
the isometry group ofH, which acts transitively on L #. Therefore, they are proportional,
and there is a constant C > 0 such that for every measurable K ⊆L #,

ˆ
L

H 1(KL)dN (L) =C

ˆ 2π

0

ˆ
H

1K (Lp,θ, p)dH 4(p)dθ, (61)

where we use the following notations for every L ∈L , p ∈H and θ ∈ [0,2π].

KL
def= {p ∈ L : (L, p) ∈ K } ⊆ L and Lp,θ

def= p〈cos(θ)X + sin(θ)Y 〉 ∈L . (62)

2.6. Vertical perimeter and parametric vertical perimeter. Given a measurable subset
E ⊆V0, a measurable function ψ : V0 →R and (a scale) a ∈R, we define the (normalized)
parametric vertical perimeter at scale a of ψ on E by

vP
E ,ψ(a)

def=
´

E

∣∣ψ(v)−ψ(
v Z−2−2a )∣∣dH 3(v)

2−a . (63)

This notion relates to the usual vertical perimeter (30) of the epigraph of ψ as follows.

Lemma 2.11 (parametric vertical perimeter versus vertical perimeter of epigraph). For
any measurable subset E ⊆V0, any measurable function ψ : V0 →R, and any a ∈R,

vP
E ,ψ(a) = vΠ−1(E)

(
Γ+ψ

)
(a).

Proof. Recalling (29), forΩ⊆H and a ∈Rwe denote DaΩ=Ω4ΩZ 2−2a
. Then

DaΓ
+
ψ = {

vY t : v ∈V0 ∧ ψ(v) < t Éψ(
v Z−2−2a )}⋃{

vY t : v ∈V0 ∧ ψ
(
v Z−2−2a )< t Éψ(v)

}
,

since, by definition, Γ+ψZ 2−2a = {
vY t : v ∈V0 ∧ ψ

(
v Z−2−2a )< t

}
. Therefore,

vΠ−1(E)
(
Γ+ψ

)
(a) =

H 4
(
Π−1(E)∩DaΓ

+
ψ

)
2−a =

´
E

∣∣ψ(v)−ψ(
v Z−2−2a )∣∣dH 3(v)

2−a = vP
E ,ψ(a),

where the second equality uses the fact that the map (x, y, z) 7→ (x,0, z) ·Y y = (x, y, z + x y
2 )

has constant Jacobian 1. �

An advantage of the parametric vertical perimeter is that it increases or decreases by a
constant factor under a stretch map or a shear map, as computed in the following lemma.

Lemma 2.12. Let ψ : V0 → R and E ⊆ V0 be measurable. Let q : H→H, q̂ : V0 → V0, and
ψ̂ : V0 →R be as in Lemma 2.9, i.e., q is a stretch map or a shear map, q̂ is the map induced
on V0, and ψ̂ is the function such that q(Γψ) = Γψ̂. Then for all t ∈Rwe have

• If a,b ∈Rà {0} and q = sa,b , then vP
q̂(E),ψ̂(t ) = |ab| 3

2 ·vP
E ,ψ

(
t + log2

√
|ab|

)
.

• If b ∈Rà {0} and q = Ãb , then vP
q̂(E),ψ̂(t ) = vP

E ,ψ(t ).
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Proof. If q = sa,b for some a,b ∈Rà {0}, then q̂(x,0, z) = (ax,0, abz) and ψ̂(q̂(v)) = bψ(v)
for every v = (x,0, z) ∈V0. So,

vP
q̂(E),ψ̂(t ) = 2t

ˆ
q̂(E)

∣∣ψ̂(v)− ψ̂(
v Z−2−2t )∣∣dH 3(v)

= 2t |b|
ˆ

q̂(E)

∣∣ψ(
q̂−1(v)

)−ψ(
q̂−1(v)Z−(ab)−12−2t )∣∣dH 3(v)

= 2t a2b2
ˆ

E

∣∣ψ(v)−ψ(
v Z−(ab)−12−2t )∣∣dH 3(v)

= |ab| 3
2 ·vP

E ,ψ

(
t + log2

√
|ab|

)
.

Next, if q = Ãb for some b ∈Rà {0}, then ψ̂(q̂(v)) =ψ(v)+bx(v) for all v = (x,0, z) ∈ E ,
and by Lemma 2.8 we have

q̂(v) =Π(
q(x,0, z)

)= (
x,0, z − 1

2
bx2).

So, ψ̂(v Z−2t ) =ψ(q̂−1(v Z−2−2t
))+bx(q̂−1(v Z−2−2t

)) =ψ(q̂−1(v)Z−2−2t
)+bx(v), and hence

vP
q̂(E),ψ̂(t ) = 2t

ˆ
q̂(E)

∣∣ψ(
q̂−1(v)

)−ψ(
q̂−1(v)Z−2−2t )∣∣dH 3(v)

= 2t
ˆ

E

∣∣ψ(v)−ψ(
v Z−2−2t )∣∣dH 3(v) = vP

E ,ψ(t ). �

We end this section by recording a straightforward a priori upper bound on vP
E ,ψ(a).

Lemma 2.13. Suppose that E ⊆V0 is measurable and ψ : V0 →R is smooth. Then

∀a ∈R, vP
E ,ψ(a) É min

{
2a+1‖ψ‖L∞(V0),2−a

∥∥∥∥∂ψ∂z

∥∥∥∥
L∞(V0)

}
H 3(E).

Proof. For all v = (x,0, z) ∈ E , we (trivially) have∣∣ψ(v)−ψ(
v Z−2−2a )∣∣= |ψ(x,0, z)−ψ(x,0, z −2−2a)| É 2‖ψ‖L∞(V0),

and ∣∣ψ(v)−ψ(
v Z−2−2a )∣∣= |ψ(x,0, z)−ψ(x,0, z −2−2a)| É 2−2a

∥∥∥∥∂ψ∂z

∥∥∥∥
L∞(V0)

.

Recalling the definition (63), we obtain the desired inequality by integrating over E . �

3. CONSTRUCTING SURFACES AND EMBEDDINGS

In this section, we will prove Proposition 3.4, following the reasoning sketched in
Section 1.2.2, to construct surfaces that are α–far from planes at α−4 different scales. We
use these surfaces to prove the following theorem.
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Theorem 3.1. For any k > 1, there is a left-invariant metric ∆=∆k : H×H→ [0,∞) on H
and a measure space (S,µ) such that (H,∆) embeds isometrically in L1(µ) and such that for
any h = (a,b,c) ∈Hwe have

|a|+ |b|.∆(0,h). |a|+ |b|+ min
{p|c|,k

}
4
√

logk
. (64)

If moreover 1 É |c| É k2, then, in fact

∆(0,h) ³ |a|+ |b|+
p|c|

4
√

logk
. (65)

We will prove Theorem 3.1 in Section 3.1 after deriving two of its applications, and
stating Proposition 3.4. The first application of Theorem 3.1 is the proof of Theorem 1.7.

Proof of Theorem 1.7 assuming Theorem 3.1. Letting∆ and (S,µ) be as in Theorem 3.1, fix
ξ : H→ L1(µ) such that ‖ξ(g )−ξ(h)‖L1(µ) =∆(g ,h) for all g ,h ∈H. Also, using [Ass83], fix

m ∈N and ϕ : H→Rm such that ‖ϕ(g )−ϕ(h)‖`m
1
³√

d(g ,h) for all g ,h ∈H.

Suppose thatϑÊ 1
4 . Consider the function τ : H→ L1(µ)⊕R2⊕Rm ∼= L1(ν) (for a suitable

measure ν) that is given by

τ
def= ξ

(logk)ϑ−
1
4

⊕π⊕ ϕ

(logk)ϑ
. (66)

Since ∆ is left-invariant, every g = (x, y, z),h = (χ,υ,ζ) ∈Hwith 1 É d(g ,h) É k satisfy

‖τ(g )−τ(h)‖L1(ν) ³ |x −χ|+ |y −υ|+
√|2z −2ζ−xυ+ yχ|

(logk)ϑ
, (67)

using (40) and Theorem 3.1. While (67) would hold even without the third component of
τ in (66), thanks to that component τ(HZ) is a locally-finite subset of L1(ν). Every finite
subset of L1(ν) embeds with distortion O(1) in `1 (by approximating by simple functions),
so by [Ost12], it follows that τ(HZ) admits a bi-Lipschitz embedding into `1 of distortion
O(1). As the word metric dW on HZ is bounded above and below by universal constant
multiples of d , this gives Theorem 1.7 provided k is a large enough universal constant
multiple of n. �

A second application of Theorem 3.1 is to construct a left-invariant metric onHZ with
the properties of Theorem 1.9, at the cost of losing an iterated logarithm in the associated
distortion bounds that we derived in the proof of Theorem 1.9. While the power of the
iterated logarithm can be improved by taking more care in the ensuing reasoning, some
unbounded lower-order loss must be incurred here; see Remark 3.3.

Theorem 3.2. For any 2 < p É 4 there is a left-invariant metric δ= δp onHZ that admits a
bi-Lipschitz embedding into both `1 and `q for all q Ê p, yet not into any Banach space
whose modulus of uniform convexity has power-type r for 2 É r < p (in particular, (HZ,δ)
does not admit a bi-Lipschitz embedding into a Hilbert space or `s for 1 < s < p). Moreover,
if we denote ϑ= 1/p, then for every h = (a,b,c) ∈HZ with |c| Ê 3 we have

δ(0,h) ³ |a|+ |b|+
p|c|

(log |c|)ϑ(loglog |c|)2
. (68)
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Proof. Define a left-invariant metric δ : HZ×HZ→ [0,∞) as a superposition of the metrics
{∆k }k>0 of Theorem 3.1, by setting for every h = (a,b,c) ∈HZ,

δ(0,h)
def=

∞∑
n=1

1

n2e(4ϑ−1)n
∆ee4n (0,h). (69)

We will first verify (68), which in particular implies that the sum defining δ converges, and
hence by Theorem 3.1 we would know that δ is indeed a left-invariant metric onHZ, and
that (HZ,δ) admits an isometric embedding into `1(L1(µ)). By [Ost12], it follows from this
that (HZ,δ) also admits a bi-Lipschitz embedding into the sequence space `1.

Fix h = (a,b,c) ∈HZ with |c| Ê ee4
and choose m = m(c) ∈N such that

ee4m É
√

|c| < ee4(m+1)
. (70)

Then,

δ(0,h)
(64)
. |a|+ |b|+

∞∑
n=1

min
{p|c|,ee4n

}
n2e4ϑn

. |a|+ |b|+
m∑

n=1

ee4n

n2e4ϑn
+

∞∑
n=m+1

p|c|
n2e4ϑn

³ |a|+ |b|+ ee4m

m2e4ϑm
+

p|c|
m2e4ϑm

(70)
. |a|+ |b|+

p|c|
(log |c|)ϑ(loglog |c|)2

.

Conversely, since the sum in (69) is at least its summands for n = 1 and n = m +1,

δ(0,h)& |a|+ |b|+
p|c|

(m +1)2e4ϑ(m+1)

(70)
& |a|+ |b|+

p|c|
(log |c|)ϑ(loglog |c|)2

.

This is (68) if |c| Ê ee4
, but then (68) follows formally in the remaining range 3 É |c| < ee4

(simply use the triangle inequality to reduce the upper bound to the case of large enough
|c| that we just proved, and take only the n = 1 summand in (69) for the lower bound).

By contrasting (68) with (9) we see that for every integer n Ê 3,

c(Bn ,δ)(Bn ,dW ). (logn)ϑ(loglogn)2. (71)

At the same time, if 2 É r < p and X is a Banach space whose modulus of uniform convexity
has power-type r , then by [LN14b] we have

cX (Bn ,dW )&X (logn)
1
r . (72)

By combining (71) and (72) we deduce that

cX (Bn ,δ)&X
(logn)

1
r −ϑ

(loglogn)2 = (logn)
1
r − 1

p

(loglogn)2 −−−−→
n→∞ ∞.

Consequently, (HZ,δ) does not admit a bi-Lipschitz embedding into X .
It remains to show that (HZ,δ) admits a bi-Lipschitz embedding into `q for any q Ê p.

As before, finite subsets of Lq embed with distortion O(1) in `p (by approximating by
simple functions). Thus, due to [Ost12], since (HZ,δ) is locally finite, it suffices to show that
(HZ,δ) admits a bi-Lipschitz embedding into Lq . By [LN14a, Lemma 3.1], for any 0 < ε< 1

2 ,
there exists a left-invariant metric ρε onHZ such that (HZ,ρε) embeds isometrically into
Lq , and

∀h = (a,b,c) ∈HZ, ρε(0,h) ³ |a|1−ε+|b|1−ε+ε 1
q |c| 1−ε

2 . (73)
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Define a left-invariant metric ρ : HZ×HZ→ [0,∞) by setting for every h = (a,b,c) ∈HZ,

ρ(0,h)
def=

(
|a|q +|b|q +

∞∑
n=1

1

n2q en(qϑ−1)
ρ2e−n (0,h)q

) 1
q

.

By design, (HZ,ρ) embeds isometrically into `q (Lq ). So, the proof of Theorem 3.2 will be
complete if we show that δ(0,h) ³ ρ(0,h) for all h = (a,b,c) ∈HZ with, say, |c| Ê 300. To
see this, by combining (68) and (73) it suffices to show that( ∞∑

n=1

1

n2q enqϑ|c|qe−n

) 1
q ³ 1

(log |c|)ϑ(loglog |c|)2
. (74)

Fix s = s(c) ∈N such that 2e s É log |c| < 2e s+1 (this is possible because |c| Ê 300). Then,( ∞∑
n=1

1

n2q enqϑ|c|qe−n

) 1
q

.
( s−1∑

k=0

1

(s −k)2q e(s−k)qϑ|c|qe−(s−k)

) 1
q +

( ∞∑
n=s+1

1

n2q enqϑ

) 1
q

³ 1

e sϑ

( s−1∑
k=0

eqkϑ

(s −k)2q (|c|e−s )qek

) 1
q + 1

s2e sϑ
³ 1

s2e sϑ
³ 1

(log |c|)ϑ(loglog |c|)2
,

where the final step holds by our choice of s, and the penultimate step holds as |c|e−s Ê 2e
by our choice of s, and therefore the sum in question is dominated by its k = 0 summand.
This proves half of the equivalence (74), and the remaining direction of (74) follows by
bounding from below the sum in the left hand side of (74) by its n = s summand. �

Remark 3.3. It is evident from the above proof of Theorem 3.2 that the power 2 of loglog |c|
in (68) can be improved to any fixed power that is strictly larger than 1. However, the lower
order term cannot be removed altogether. Specifically, suppose that d is a left-invariant
metric onHZ such that every h = (a,b,c) ∈HZ with |c| Ê 3 satisfies

d(0,h) ³ |a|+ |b|+
p|c|

4
√

log |c|
. (75)

We claim that neither `1 nor `4 contains a bi-Lipschitz copy of (HZ,d). In fact, we will next
show that for every integer n Ê 3 the word-ball Bn ⊆HZ satisfies the distortion bounds

4
√

loglogn. c`1 (Bn ,d). loglogn, (76)

and,

c`4 (Bn ,d) ³ 4
√

loglogn. (77)

We conjecture that the first inequality in (76) is sharp.
To prove (76), by substituting Theorem 1.1 into [NY18, Lemma 33], and then substi-

tuting the resulting inequality into [NY18, Lemma 30], we get that there is a universal
constant κÊ 5 such that for every integer n Ê 3, every function f :HZ→ `1 satisfies( n2∑

c=1

1

c3

( ∑
h∈Bn

‖ f (hZ c )− f (h)‖`1

)4
) 1

4

.
∑

h∈Bκn

(‖ f (hX )− f (h)‖`1 +‖ f (hY )− f (h)‖`1

)
. (78)
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Suppose that D Ê 1 is such that d(g ,h) É ‖ f (g )− f (h)‖`1 É Dd(g ,h) for all g ,h ∈ B2κn .
Then, by (75) and (78) we have

D &
( n2∑

c=3

1

c3

( p
c

4
√

logc

)4
) 1

4 =
( n2∑

c=3

1

c logc

) 1
4 ³ 4

√
loglogn. (79)

This proves the first inequality in (76). For the second inequality in (76) consider the sum

d1,n =
5dloglogne∑

j=0
∆

22 j

of metrics from Theorem 3.1. Then, by Theorem 3.1 the metric space (HZ,d1,n) embeds
isometrically into `1 and d. d1,n . (loglogn)d on Bn ×Bn .

The proof of (77) is analogous. For the lower bound on c`4 (Bn ,d) use (the case q = 4
of) Theorem 1.1 in [LN14b] to get the following estimate for any function f :HZ→ `4.

n2∑
c=1

1

c3

( ∑
h∈Bn

‖ f (hZ c )− f (h)‖`4

)4
.

∑
h∈B21n

(‖ f (hX )− f (h)‖2
`4
+‖ f (hY )− f (h)‖4

`4

)
.

With this inequality at hand, the desired lower bound follows as in (79). For the upper
bound on c`4 (Bn ,d), use the following metric onHZ which embeds isometrically into `4.

d4,n =
(5dloglogne∑

j=0
∆4

22 j

) 1
4

.

The above reasoning also shows mutatis mutandis that an unbounded lower-order
factor loss is needed in the compression bound (27) of Theorem 1.16. Specifically, there is
no mapping f :HZ→ `1 that is Lipschitz with respect to the word metric onHZ and whose
compression rate (recall (26)) satisfies ω f (s)& s/ 4

√
log s when s Ê 2. It would be worth-

while to obtain a characterization of the possible compression rates of embeddings ofHZ
into `1 in the spirit of [NY18, Theorem 9], but this would require more work. Specifically,
one would need to replace the use in [NY18] of [Tes08, Corollary 5] by a better embedding
ofHZ into `1; we expect that the existence of such an embedding could could be deduced
using the ideas of the present section, but we did not attempt to carry this out.

The main ingredient in the proof of Theorem 3.1 is the following proposition, which is
proved in Section 3.2. It constructs a function ψ : V0 →Rwhose intrinsic graph has small
horizontal perimeter but large vertical perimeter due to bumps at many different scales.
Here and throughout the rest of this section, we denote the unit square in V0 by U , i.e.,

U
def= [0,1]× {0}× [0,1] ⊆V0.

Proposition 3.4. There are universal constants ρ,R,r ∈Rwith R > r and ρ > 22(R−r ) such
that for any α ∈N, there is a smooth function ψ : V0 →R that has the following properties.

(1) ψ is periodic with respect to the integer lattice Z× {0}×Z of V0.
(2) ‖∂ψψ‖L2(U ). 1.
(3) ‖ψ‖L∞(V0) É 1

α2 .
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(4) vP
U ,ψ(a)& 1

α for any integer 0 É n <α4 and any a ∈ I + log2(αρn), where I = [r,R].
Hence, ∥∥∥vP

U ,ψ

∥∥∥
L1([log2(αρn )+r,log2(αρn )+R])

&
1

α
,

(5) For any q > 0, we have ∥∥∥vP
U ,ψ

∥∥∥
Lq (R)
&α

4
q −1.

(6) vP
U ,ψ(a).min

{
1
α , 2a

α2

}
for any a ∈R.

By Proposition 2.1, the second assertion of Proposition 3.4 implies that H 3(∂E). 1,
where E is the epigraph of the restriction of ψ to the unit square U ⊆V0. In combination
with Proposition 3.4.(5), since α can be arbitrarily large, this shows that the L4(R) norm
in (31) cannot be replaced by Lq (R) for any q ∈ (0,4); as explained in the introduction, this
also implies the optimality of Theorem 1.1. Furthermore, since the Lq -variant of (31) is a
consequence of the Lq -variant of (32), Proposition 3.4 also implies that for any q ∈ (0,4),
there is λ ∈ (0,1) such that for any c > 0, there is an intrinsic λ–Lipschitz graph Γ satisfying∥∥vB1(0)

(
Γ+

)∥∥
Lq (R) Ê c.

We expect that the construction in Section 3.2 can be modified to produce an intrinsic
Lipschitz graph directly (for instance, by stopping the construction early in regions where
∂ψψ gets too large), but this is not needed here, so we leave the details to future work.

Proposition 3.4.(5) follows directly from Proposition 3.4.(4). Indeed, since ρ > 22(R−r ),
the intervals {[log2(αρn)+ r, log2(αρn)+R]}n∈Z are disjoint. Consequently,∥∥∥vP

U ,ψ

∥∥∥q

Lq (R)
Ê
α4−1∑
n=0

∥∥∥vP
U ,ψ

∥∥∥q

Lq ([log2(αρn )+r,log2(αρn )+R])

Ê
α4−1∑
n=0

1

(R − r )q−1

∥∥∥vP
U ,ψ

∥∥∥q

L1([log2(αρn )+r,log2(αρn )+R])
&α4−q .

(80)

where the penultimate step is an application of Jensen’s inequality and the final step holds
because R − r > 0 is a constant and by Proposition 3.4.(4), each of the summands is at
least a universal constant multiple of α−q .

3.1. Obtaining an embedding from an intrinsic graph. Here we show how Theorem 3.1
follows from Proposition 3.4. Let ρ,r,R > 0 be the universal constants of Proposition 3.4.
Without loss of generality, we may take k > 8. Let α ∈N be the unique integer satisfying

4

√
logρ

(
k

8

)
Éα< 1+ 4

√
logρ

(
k

8

)
. (81)

Let ψ =ψα be the function produced by Proposition 3.4. Write Γ = Γψ and Γ+ = Γ+ψ.
Denote by A ⊆V0 ∩HZ the discrete subgroup that is generated by X and Z , so that as a
subset of R3 we have A =Z× {0}×Z. For every p ∈H define

∀h1,h2 ∈H, λp (h1,h2)
def= ∣∣1p−1Γ+(h1)−1p−1Γ+(h2)

∣∣= {
1 if |{ph1, ph2}∩Γ+| = 1,
0 otherwise.
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By the A–periodicity of ψ we have aΓ = Γ and λap (h1,h2) = λp (h1,h2) for all a ∈ A and
p,h1,h2 ∈ H. We can therefore define λp also when p is an equivalence class in the
quotient A\H. Consider the following fundamental domain for A.

P
def= {

X a Z c Y b : a,c ∈ [0,1) and b ∈R}= {(
a,b,c + 1

2
ab

)
: (a,b,c) ∈ [0,1)×R× [0,1)

}
.

We may define l : H×H→ [0,∞) by

l (h1,h2)
def=

ˆ
A\H

λp (h1,h2)dH 4(p) =
ˆ

P
λp (h1,h2)dH 4(p).

SinceH is a unimodular group (namely, one directly checks that the Lebesgue measure
H 4 is a bi-invariant Haar measure onH), and λp (g h1, g h2) =λpg (h1,h2), we have

∀g ,h1,h2 ∈H, l (g h1, g h2) = l (h1,h2),

i.e., l is a left-invariant semi-metric onH.

Lemma 3.5. For every a ∈Rwe have l
(
0, Z 2−2a )= 2−a ·vP

U ,ψ(a).

Proof. For v ∈V0 and b ∈R, we have vY b ∈ Γ+ if and only if b >ψ(v). So, for any c > 0,

λvY b (0, Z c ) =λ0(vY b , v Z c Y b) =
{

1 ψ(v) < b Éψ(v Z c ) or ψ(v Z c ) < b Éψ(v).

0 otherwise.

Consequently, ˆ
R

λvY b (0, Z c )db = |ψ(v Z c )−ψ(v)|.

Therefore, fixing a ∈R and denoting c = 2−2a , we see that

l
(
0, Z 2−2a )= ˆ

P
λp (0, Z c )dp =

ˆ
R

ˆ
U
λvY b (0, Z c )dv db

=
ˆ

U
|ψ(v Z c )−ψ(v)|dv = 2−a ·vP

U ,ψ(a). �

For every θ ∈ [0,2π) let Rθ : H→H be rotation around the z–axis by angle θ. Define the
following left-invariant semi-metric onH, which is also (by design) invariant under the
family of {Rθ : θ ∈ [0,2π)} automorphisms ofH.

∀h1,h2 ∈H, M(h1,h2)
def=

ˆ 2π

0
l
(
Rθ(h1),Rθ(h2)

)
dθ.

Lemma 3.6. For every w ∈H we have M(0, w). ‖w‖.

Proof. By the rotation-invariance of M , it suffices to show that M(0, X t ) . |t | for all t .
In fact, by the left-invariance of M and the triangle inequality, it suffices to prove that
M(X t , X −t ). t for 0 < t < 1

4 .
Let L0 = 〈X 〉 ⊆ H be the x–axis. Recall that Lp,θ = pRθ(L0) for p ∈ H and θ ∈ [0,2π).

The map (p,θ) 7→ (Lp,θ, p) is a bijection between H× [0,π) and the set of pointed lines
L # = {(L, p) : L ∈L ∧ p ∈ L}.
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By the above definitions, we have

M(X −t , X t ) =
ˆ 2π

0

ˆ
P
λp

(
Rθ(X −t ),Rθ(X t )

)
dH 4(p)dθ.

Let K ⊆ P×[0,2π) be the set of pairs (p,θ) such that Lp,θ intersects Γ transversally, i.e., Lp,θ

crosses the tangent plane of Γ at every intersection. Since Γ is smooth, the complement
of K has measure zero.

Let U ′ = B8(0)∩V0. Let (p,θ) ∈ K be such that λp (Rθ(X −t ),Rθ(X t )) 6= 0. Then the line
segment from pRθ(X −t ) to pRθ(X t ) crosses Γ at some point g ∈ Γ; we claim thatΠ(g ) ∈U ′.

By Proposition 3.4.(3), we have ‖ψ‖L∞(V0) É 1, so |y(g )| É 1 and |y(p)| É |y(g )|+ t É 2.
Since p ∈ P , there are a,b,c ∈ R such that p = X a Z c Y b , and these satisfy |a| É 1, |c| É 1,
and |b| = |y(p)| É 2. By (40),

d(0, g ) É |a|+4
√
|c|+ |b| É 7

and

d(0,Π(g )) É d(0, g )+|y(g )| É 8,

soΠ(g ) ∈U ′.
Let Γ(U ′) = Γ∩Π−1(U ′) = Γψ|U ′ and for L ∈L , let

IL = {
p ∈ L : d

(
p,L∩Γ(U ′)

)É t
}
.

We have seen above that if (p,θ) ∈ K and λp (Rθ(X −t ),Rθ(X t )) 6= 0, then there is some
g ∈ Lp,θ ∩Γ(U ′) such that d(p, g ) É t . That is, p ∈ ILp,θ . Furthermore, if L intersects Γ
transversally, then

H 1(IL) É 2t |L∩Γ(U ′)| = 2t PerΓ+∩L
(
Π−1(U ′)

)
.

Hence,

M(X −t , X t ) =
ˆ 2π

0

ˆ
P
λp

(
Rθ(X −t ),Rθ(X t )

)
dH 4(p)dθ

(61)
.

ˆ
L

H 1(IL)dN (L)

. t

ˆ
L

PerΓ+∩L
(
Π−1(U ′)

)
dN (L)

(58)³ t PerΓ+
(
Π−1(U ′)

)
. t .

where PerΓ+
(
Π−1(U ′)

)
. 1 by Proposition 2.1 and Proposition 3.4.(2). �

Next, define a left-invariant semi-metricΛ onH by

∀h1,h2 ∈H, Λ(h1,h2)
def=

ˆ R+log2ρ

r−log2ρ

2a M
(
s2−a (h1), s2−a (h2)

)
da.

Lemma 3.7. For all c > 0 we have

Λ(0, Z c ) =Λ(0, Z−c ).min

{p
c

α
,

1

α2

}
.
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Also, for all 1
α2ρ2α4 É c É 1

α2 we have

Λ(0, Z c ) =Λ(0, Z−c )&

p
c

α
.

Proof. Write c = 2−2t for some t ∈R. SinceΛ is a left-invariant metric,Λ(0, Z c ) =Λ(0, Z−c ).
By Lemma 3.5 we have the following identity.

Λ(0, Z c ) = 2π

ˆ R+log2ρ

r−log2ρ

2a l
(
0, Z 2−2(t+a)

)
da = 2π2−t

ˆ R+log2ρ

r−log2ρ

vP
U ,ψ(t +a)da. (82)

So,Λ(0, Z c ).min
{p

c
α , 1

α2

}
for c ∈ (0,∞) by (82) and the final assertion of Proposition 3.4.

If 1
α2ρ2α4 É c É 1

α2 , then t ∈ [log2(αρn), log2(αρn+1)] for some integer 0 É n <α4. Hence,

[t − log2ρ+ r, t + log2ρ+R] ⊇ [log2(αρn)+ r, log2(αρn)+R],

so (82) implies that

Λ(0, Z c ) Ê 2π2−t
∥∥∥vP

U ,ψ

∥∥∥
L1([log2(αρn )+r,log2(αρn )+R])

&

p
c

α
,

where the final step is the third assertion of Proposition 3.4 (and the definition of t ). �

Lemma 3.8. Λ(h1,h2). d(h1,h2) for all h1,h2 ∈H.

Proof. By Lemma 3.6 we have M(0, X t ). |t | for any t ∈R, so

Λ(0, X t ) =
ˆ R+log2ρ

r−log2ρ

2a M
(
0, X 2−a t )da. t (R − r +2log2ρ). |t |.

Therefore also Λ(0,Y t ) =Λ(0, X t ). |t |, by the rotation-invariance of Λ. Since Λ is left-
invariant it suffices to show thatΛ(0,h). d(0,h) for all h ∈H. Any h ∈H can be written as
h = X aY b[X c ,Y c ] for a,b,c ∈R satisfying |a|, |b|, |c|. d(0,h), so

Λ(0,h) ÉΛ(0, X a)+Λ(0,Y b)+2Λ(0, X c )+2Λ(0,Y c ). d(0,h). �

Proof of Theorem 3.1. Define a semi-metric ∆ onH by setting for every h1,h2 ∈H,

∆(h1,h2)
def= kαΛ

(
s 1

kα
(h1), s 1

kα
(h2)

)+√(
x(h1)−x(h2)

)2 + (
y(h1)− y(h2)

)2. (83)

Observe that (H,∆) embeds isometrically into L1 becauseΛ is an integral of so-called cut
semimetrics (see e.g. [DL97, 4.1] for the definition). Such semimetrics embed isometrically
into R, so an integral of cut semimetrics embeds isometrically in L1. By construction,Λ is
both left-invariant and invariant under the rotations {Rθ : θ ∈ [0,2π]}.

Suppose that v = (a,b,c) ∈ H and let w = (a,b,0) so that w ∈ H and v = w Z c . By
Lemma 3.6 and the second part of Lemma 3.7, we have

|a|+ |b|.∆(0, v) É∆(0, w)+∆(0, Z c ). |a|+ |b|+ min
{p|c|,k

}
α

.

Recalling that α³ 4
√

logk is given in (81), this establishes (64).
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To prove Theorem 3.1, it therefore remains to establish (65), i.e.,

1 É |c| É k2 =⇒ ∆(0, v)& |a|+ |b|+
p|c|
α

. (84)

By Lemma 3.8, there is L > 0 such that∆(h1,h2) É Ld(h1,h2) for any h1,h2 ∈H. By the first

part of Lemma 3.7, there is C > 0 such that ∆(0, Z c ) Ê C
p

c
α for all 1 É c É k2. On one hand,

if ‖w‖ Ê C
p|c|

2Lα , then ∆(0, v) Ê ‖w‖ ³ |a|+|b|+
p|c|
α . On the other hand, if ‖w‖ < C

p|c|
2Lα , then

∆(0, v) Ê∆(0, Z c )−∆(0, w) Ê C
p

c

α
−L‖w‖ Ê C

p|c|
2α

& |a|+ |b|+
p|c|
α

.

In either case, (84) holds. �

3.2. Constructing a bumpy intrinsic graph. In this section, we prove Proposition 3.4.
We start with a brief overview of our strategy. As sketched in Section 1.2.2, we will prove
Proposition 3.4 by constructing a smooth function ψ : V0 → R whose intrinsic graph is
roughly α−1–far from a vertical plane at α4 different scales. Specifically, for a suitable
choice of universal constant ρ > 1 we will construct ψ as a sum ψ = ∑α4−1

i=0 βi . Each of
the summands βi : V0 →R will itself be a sum of smooth bump functions of amplitude
‖βi‖L∞(V0) ³α−2ρ−i that are supported on regions whose width (x–coordinate) is ρ−i and
whose height (z–coordinate) is roughly α−2ρ−2i ; their aspect ratio is therefore roughly

ρ−i√
α−2ρ−2i

³α.

These regions cover V0 and have disjoint interiors. We will see that the bumpiness of βi at
scale α−2ρ−2i implies the desired lower bounds on vP

U ,ψ(t ) when t is near log2(αρi ).
In order to ensure that ‖∂ψψ‖L2(U ) is bounded, we construct βi iteratively. For i ∈N,

we denote ψi =∑i−1
j=0β j and align the long axis of the bump functions making up βi with

the characteristic curves of Γψi . This ensures that the characteristic curves of Γψ cross
the bumps from left to right. Since ∂ψ f measures the change in f : V0 → R along the
characteristic curves of Γψ and each bump has amplitude roughly α−2ρ−i and width ρ−i ,
we have |∂ψβi |.α−2ρ−i /ρ−i ³α−2.

This iterative procedure is one of the motivations for the definition of a foliated corona
decomposition. A foliated corona decomposition of an arbitrary intrinsic graph Γ can
be viewed as a sequence of partitions of V0 into regions as above, where the pieces of
the partition are aligned with the characteristic curves of Γ. One can use these partitions
to reconstruct Γ as a sum of perturbations, just as we constructed ψ as a sum of bump
functions. Theorem 1.18 then states that any intrinsic Lipschitz graph can be constructed
by such a process.

This construction also demonstrates the importance of the aspect ratio. If the construc-
tion is modified so that the bump functions making up βi are supported on regions of
aspect ratioαi , then ‖∂ψβi‖L2(U ) ³α−2

i . If the scales of the bump functions are sufficiently
separated, then {∂ψβi }iÊ0 are roughly orthogonal in L2(U ) and

‖∂ψψ‖2
L2(U ) ³

∑
iÊ0

‖∂ψβi‖2
L2(U ) ³

∑
iÊ0

α−4
i .
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For ψ to be intrinsic λ–Lipschitz, we must have ‖∂ψψ‖2
L2(U ).λ 1, which necessitates that∑

i α
−4
iÊ0.λ 1. This motivates the α(Q)−4 factor in the weighted Carleson condition (34).

We next set some notation in preparation for the proof of Proposition 3.4. If ψ : V0 →R

is smooth, then the vector field

Mψ
def= ∂

∂x
−ψ ∂

∂z

corresponding to ∂ψ is smooth (recall the definitions in Section 2.2). The flow lines of Mψ

are the characteristic curves of Γψ, which foliate V0 (recall the terminology in Section 2.3).
For s ∈R, let Φ(ψ)s : V0 →V0 be the flow of Mψ, so thatΦ(ψ)0 = idV0 and such that for any
v ∈V0, the curve s 7→Φ(ψ)s(v) is a characteristic curve of Γψ.

Denote ψ0 ≡ 0 and let Γ0 = Γψ0 =V0. This function and graph are periodic with respect
to Z× {0}×Z and ψ0 is zero on ∂U . Suppose that i Ê 0 and that ψi : V0 → R is smooth,
periodic with respect to Z× {0}×Z, and zero on ∂U . We constructψi+1 : V0 →R as follows.
Let

Gi
def= {

(mρ−i ,0,nα−2ρ−2i ) : m,n ∈Z}⊆V0. (85)

Label the points in Gi arbitrarily as vi ,1, vi ,2, . . . and note that the points U ∩ {vi ,1, vi ,2, . . .}
form a ρi ×α2ρ2i grid in U . For each j ∈N and s, t ∈R define

Ri , j (s, t )
def= Φ(ψi )s(vi , j Z t ) ∈V0. (86)

Each Ri , j is a diffeomorphism from R2 to V0. For any s0, t0 ∈R, the image Ri , j (s0 ×R) is
a vertical line and Ri , j (R× t0) is a characteristic curve of Γψi . Using the terminology of
foliated patchworks that we will introduce in Section 4, the map Ri , j sends rectangles in
V0 to pseudoquads of Γψi (regions in V0 that are bounded by characteristic curves of Γψi

above and below and by vertical line segments on either side). Denote

Qi , j
def= Ri , j

(
[0,ρ−i ]× [0,α−2ρ−2i ]

)⊆V0. (87)

Thus, Qi , j is a pseudoquad whose lower-left corner is vi , j . The sets Qi ,1,Qi ,2, . . . cover V0

and have disjoint interiors. They are obtained by cutting V0 into vertical strips of width
ρ−i , then cutting each vertical strip along characteristic curves separated by α−2ρ−2i .

Since ψi is zero on ∂U , the top and bottom edges of U are characteristic curves of Γψi .
The bottom boundary of each Qi ,0 and the top boundary of Qi ,α2ρ2i−1 thus lie in ∂U , and
the Qi , j ’s partition U (up to overlap on boundaries). In particular, the resulting partition
of V0 is periodic with respect to Z× {0}×Z.

Note, however, that the Qi , j ’s from one step in this construction generally do not
partition the Qi , j ’s from another step. One can modify the construction so that the
partitions in each step are nested, as in Figure 2, but it requires some additional care.

Let β : V0 →R be a smooth function supported on the unit square U such that β is not
identically zero and its partial derivatives of order at most 2 are all in the interval [−1,1].
Fix also α,ρ ∈Nwith ρ > 1. Define βi , j : V0 →R by setting it to be 0 on V0 àQi , j , and for
all Ri , j (s, t ) ∈Qi , j ,

βi , j
(
Ri , j (s, t )

) def= α−2ρ−iβ(ρi s,0,α2ρ2i t ). (88)
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Thus βi , j is a bump function supported on Qi , j . Write

βi
def=

∞∑
j=1

βi , j , (89)

and

ψi+1
def= ψi +βi . (90)

Since Qi ,1,Qi ,2, . . . have disjoint interiors, ‖ψi+1‖L∞(V0) É ‖ψi‖L∞(V0)+α−2ρ−i , so by induc-
tion we have

‖ψi‖L∞(V0) É α−2

ρ−1
Éα−2. (91)

Since the Qi , j ’s form a periodic partition of V0, ψi+1 is periodic. Since ∂U is contained in
the boundaries of the Qi , j , we have ψi+1|∂U =ψi |∂U = 0.

Thus, by induction, for any integer i Ê 0, ψi satisfies the first and third assertions
(periodicity and L∞ boundedness) of Proposition 3.4. We will show that ifρ is large enough
(depending only on β), then ψ=ψα4 satisfies the remaining assertions of Proposition 3.4,
namely, the stated upper bounds on ∂ψψ and lower bounds on vP

U ,ψ(a).

3.2.1. The horizontal perimeter of Γψi . In this section, we prove the second assertion of
Proposition 3.4 by bounding ‖∂ψiψi‖L2(U ). This bound, combined with Proposition 2.1,
gives an upper bound on H 3(Γψi |U ).

Write for simplicity ∂i
def= ∂ψi and let Di

def= ∂i+1ψi+1 −∂iψi . For f , g ∈ L2(U ) we write

〈 f , g 〉U
def=

ˆ
U

f g dH 3.

Lemma 3.9. For every ρ Ê 5 and αÊ 1,

∀i ∈N, ‖Di‖L∞(V0).α
−2,

and

∀m,n ∈N, |〈Dm ,Dn〉U |.α−4ρm−n .

Note that Lemma 3.9 implies that for every i ∈N,

‖∂ψiψi‖L2(U ).

p
i

α2 . (92)

Thus, ‖∂ψiψi‖L2(U ). 1 for i .α4, i.e., the second assertion of Proposition 3.4 holds true.
To deduce (92) from Lemma 3.9 write

∂ψiψi =
i−1∑
n=0

Dn , (93)

and expand the squares to get

‖∂ψiψi‖2
L2(U ) =

i−1∑
n=0

‖Dn‖2
L2(U ) +2

i−1∑
m=0

i−1∑
n=m+1

〈Dm ,Dn〉.
i−1∑
n=0

α−4 +
i−1∑

m=0

∞∑
k=1

α−4ρ−k ³ iα−4,

where the penultimate step is Lemma 3.9 and the final step holds because ρ Ê 2.
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Fix an integer i Ê 0 and note that

Di = ∂i+1ψi+1 −∂iψi = (∂i+1 −∂i )ψi+1 +∂iβi =−βi
∂ψi+1

∂z
+∂iβi . (94)

We will prove Lemma 3.9 by bounding the terms in the right hand side of (94) separately.
To this end, it will be convenient to define as follows a system of flow coordinates on Qi , j .

Fix i ∈ N∪ {0} and j ∈ N. Write for simplicity (x0,0, z0) = vi , j , Q = Qi , j and R = Ri , j .
Denote R−1 = (s, t) : Q →R2 and let (x,0, z) : Q →R2 be the standard coordinate system.
Then s and t are functions of x and z and, conversely, x and z are functions of s and t .
Recalling the differential equation (51) for characteristic curves, we have

x = x0 + s and z = z0 + t −
ˆ s

0
ψi

(
R(σ, t )

)
dσ.

Consequently, (∂x
∂s

∂x
∂t

∂z
∂s

∂z
∂t

)
=

(
1 0

−ψi 1−´ s
0
∂ψi

∂t (R(σ, t ))dσ

)
, (95)

where for f : R2 → R, the partial derivatives ∂ f
∂s and ∂ f

∂t denote ∂s[ f ◦R] and ∂t [ f ◦R],

respectively. In particular, it follows that ∂s
∂z = 0 and ∂z

∂t · ∂t
∂z = 1. Also,

∂

∂s
= ∂

∂x
−ψi

∂

∂z
= ∂i , (96)

so ∂
∂s does not depend on j .
Observe that by the definition of βi , for all s, t ∈ [0,ρ−i ]× [0,α−2ρ−2i ], we have

βi
(
Ri , j (s, t )

)=α−2ρ−iβ(ρi s,0,α2ρ2i t ).

It follows that for any m,n ∈N∪ {0}, we have∥∥∥∥ ∂m

∂sm

∂n

∂t n βi

∥∥∥∥
L∞(Qi , j )

=α−2ρ−iρmi (α2ρ2i )n
∥∥∥∥ ∂m

∂xm

∂n

∂zn β

∥∥∥∥
L∞(U )

. (97)

This is especially useful when m +n É 2, since in this case
∥∥∥ ∂m

∂xm
∂n

∂zn β
∥∥∥

L∞(U )
É 1. Thus,∥∥∥∥∂βi

∂t

∥∥∥∥
L∞(Qi , j )

É ρi and

∥∥∥∥∂2βi

∂t 2

∥∥∥∥
L∞(Qi , j )

Éα2ρ3i . (98)

Furthermore, since {Qi , j }∞j=1 cover V0,

‖∂iβi‖L∞(V0) = max
j∈N

‖∂iβi‖L∞(Qi , j )
(96)= max

j∈N

∥∥∥∥∂βi

∂s

∥∥∥∥
L∞(Qi , j )

(97)É α−2. (99)

The following lemma obtains bounds on vertical derivatives that will be used later.

Lemma 3.10. If ρ Ê 8, then for all i ∈N∪ {0} we have∥∥∥∥∂ψi

∂z

∥∥∥∥
L∞(V0)

É 2ρi−1, (100)

and ∥∥∥∥∂2ψi

∂z2

∥∥∥∥
L∞(V0)

É 2α2ρ3i−3. (101)
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Furthermore, if (s, t ) are the above flow coordinates on Qi , j for some j ∈N, then the follow-
ing bound holds point-wise on Qi , j .

3

4
< e−2ρ−1 É ∂t

∂z
=

(
∂z

∂t

)−1

É e2ρ−1 < 4

3
(102)

Proof. Denote for every integer i Ê 0,

mi
def=

∥∥∥∥∂ψi

∂z

∥∥∥∥
L∞(V0)

and µi
def=

∥∥∥∥∂2ψi

∂z2

∥∥∥∥
L∞(V0)

. (103)

Thus m0 =µ0 = 0. Fix j ∈N and let (s, t ) be the flow coordinates on Qi , j . We will first use
the above identities to deduce bounds on vertical derivatives of t in terms of mi ,µi , and
then bootstrap these bounds to deduce the desired bounds on mi ,µi themselves.

By (95), the following identity holds point-wise on Qi , j .

∂

∂s

∂z

∂t
=−∂ψi

∂t
=−∂ψi

∂z

∂z

∂t
− ∂ψi

∂x

∂x

∂t
=−∂ψi

∂z

∂z

∂t
.

Consequently,
∂

∂s

(
log

∂z

∂t

)
=−∂ψi

∂z
.

Since ∂z
∂t = 1 when s = 0, we integrate to get the identity

∂z

∂t
= exp

(
−
ˆ s

0

∂ψi

∂z

(
Ri , j (σ, t )

)
dσ

)
. (104)

And, by differentiating (104) we also get

∂2z

∂t 2 =−∂z

∂t

ˆ s

0

∂2ψi

∂z2

(
Ri , j (σ, t )

)∂z

∂t

(
Ri , j (σ, t )

)
dσ. (105)

For points in Qi , j , we have |s| É ρ−i , so it follows from (104) that
∣∣log ∂z

∂t

∣∣É ρ−i mi , i.e.,

e−ρ
−i mi É ∂z

∂t
É eρ

−i mi . (106)

By substituting (106) into (105) we deduce that∣∣∣∣∂2z

∂t 2

∣∣∣∣É ρ−i e2ρ−i miµi . (107)

Since ∂z
∂t · ∂t

∂z = 1, it follows from (106) that

e−ρ
−i mi É ∂t

∂z
É eρ

−i mi , (108)

and also ∣∣∣∣∂2t

∂z2

∣∣∣∣= ∣∣∣∣−(
∂z

∂t

)−3 ∂2z

∂t 2

∣∣∣∣ (106)∧(107)É ρ−i e5ρ−i miµi . (109)

The bounds (108) and (109) on the vertical derivatives of the flow coordinate t are in
terms of the bounds mi ,µi on the vertical derivatives of ψi , but they imply as follows
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unconditional bounds on mi ,µi (hence also, by (108) and (109) once more, unconditional
bounds on the vertical derivatives of t ). Firstly, observe that∥∥∥∥∂βi

∂z

∥∥∥∥
L∞(Qi , j )

É
∥∥∥∥∂βi

∂t

∥∥∥∥
L∞(Qi , j )

∥∥∥∥∂t

∂z

∥∥∥∥
L∞(Qi , j )

(98)∧(108)É ρi eρ
−i mi ,

and∥∥∥∥∂2βi

∂z2

∥∥∥∥
L∞(Qi , j )

=
∥∥∥∥ ∂

∂z

∂t

∂z

∂βi

∂t

∥∥∥∥
L∞(Qi , j )

=
∥∥∥∥∂2t

∂z2

∂βi

∂t
+

(
∂t

∂z

)2 ∂2βi

∂t 2

∥∥∥∥
L∞(Qi , j )

(98)∧(108)∧(109)É ρ−i e5ρ−i miµiρ
i +e2ρ−i miα2ρ3i = e5ρ−i miµi +e2ρ−i miα2ρ3i .

Since {Qi , j }∞j=1 cover V0, it follows that∥∥∥∥∂βi

∂z

∥∥∥∥
L∞(V0)

É ρi eρ
−i mi and

∥∥∥∥∂2βi

∂z2

∥∥∥∥
L∞(V0)

É e5ρ−i miµi +e2ρ−i miα2ρ3i .

Since by (90) we have ∂ψi+1

∂z = ∂ψi

∂z + ∂βi

∂z and ∂2ψi+1

∂z2 = ∂2ψi

∂z2 + ∂2βi

∂z2 , we deduce that

mi+1 É mi +ρi eρ
−i mi and µi+1 Éµi +e5ρ−i miµi +e2ρ−i miα2ρ3i . (110)

By induction, we suppose that (100) and (101) hold for some integer i Ê 0, that is,

mi É 2ρi−1 and µi É 2α2ρ3i−3. (111)

Since ρ Ê 8, it follows that

mi+1
(110)∧(111)É

(
2

ρ
+e2ρ−1

)
ρi É

(
1

4
+ 4
p

e

)
ρi É 2ρi .

Thus (100) holds for all integers i Ê 0. Likewise,

µi+1
(110)∧(111)É

(
2

ρ3 + 2e10ρ−1

ρ3 +e4ρ−1

)
α2ρ3i É

(
2

83 + 2e
5
4

83 +p
e

)
α2ρ3i É 2α2ρ3i ,

so (101) also holds for all integers i Ê 0. The remaining assertion (102) follows by substi-
tuting the above bound on mi into (108). �

Next, we will use the bounds of Lemma 3.10 to bound {Di }∞i=0 and their derivatives.

Lemma 3.11. Suppose that ρ Ê 8. For every integer i Ê 0 we have

‖Di‖L∞(V0) É 3α−2, (112)∥∥∥∥∂Di

∂z

∥∥∥∥
L∞(V0)

É 6ρ2i , (113)

‖∂i Di‖L∞(V0) = 5α−2ρi . (114)

Proof. Fix j ∈N. Let (s, t ) be the flow coordinates on Qi , j . By (94) and (96), we have

Di =−βi
∂ψi+1

∂z
+ ∂βi

∂s
. (115)

Therefore, by Lemma 3.10 and (97) we have

‖Di‖L∞(Qi , j ) Éα−2ρ−i ·2ρi +α−2 = 3α−2.
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This proves (112) because {Qi , j }∞j=1 cover V0.

Next, we consider ∂Di
∂z . By differentiating (115) we see that

∂Di

∂z
=−∂t

∂z
· ∂βi

∂t
· ∂ψi+1

∂z
−βi

∂2ψi+1

∂z2 + ∂t

∂z
· ∂

2βi

∂s∂t
.

Hence, by Lemma 3.10 and (97) we see that∥∥∥∥∂Di

∂z

∥∥∥∥
L∞(Qi , j )

É 4

3
·ρi ·2ρi +α−2ρ−i ·2α2ρ3i + 4

3
·ρ2i = 6ρ2i .

As before, this proves (113) because {Qi , j }∞j=1 cover V0.
Finally, we consider ∂i Di . Note first that for any m ∈N,∥∥∥∥∂(∂mψm)

∂z

∥∥∥∥∞ (93)É
m−1∑
n=0

∥∥∥∥∂Dn

∂z

∥∥∥∥∞ (113)É 6
ρ2m −1

ρ2 −1
É 7ρ2m−2, (116)

where we used the assumption ρ Ê 8. Recalling (94) and (96), we have

∂i Di = ∂

∂s

(
−βi

∂ψi+1

∂z
+ ∂βi

∂s

)
=−∂βi

∂s
· ∂ψi+1

∂z
−βi

∂

∂s

(
∂ψi+1

∂z

)
+ ∂2βi

∂s2 .

Using Lemma 3.10 and (97), it follows that

‖∂i Di‖L∞(Qi , j ) É 3α−2ρi +α−2ρ−i
∥∥∥∥ ∂

∂s

∂ψi+1

∂z

∥∥∥∥
L∞(Qi , j )

. (117)

To bound the last term in (117), we first calculate the Lie bracket[
∂

∂z
,
∂

∂s

]
=

[
∂

∂z
,
∂

∂x
−ψi

∂

∂z

]
=−∂ψi

∂z
· ∂
∂z

.

This implies that

∂

∂s

∂ψi+1

∂z
= ∂

∂z

(
∂ψi+1

∂s

)
+ ∂ψi

∂z
· ∂ψi+1

∂z

= ∂

∂z

(
∂iψi + ∂βi

∂s

)
+ ∂ψi

∂z
· ∂ψi+1

∂z
= ∂(∂iψi )

∂z
+ ∂t

∂z
· ∂

2βi

∂s∂t
+ ∂ψi

∂z
· ∂ψi+1

∂z
.

Therefore, by Lemma 3.10, (97), (113), and (116), we conclude that (since ρ Ê 8),∥∥∥∥ ∂

∂s

∂ψi+1

∂z

∥∥∥∥
L∞(Qi , j )

É 7ρ2i−2 + 4

3
·ρ2i +2ρi−1 ·2ρi É 2ρ2i .

Due to (117), this implies the final desired bound (114) of Lemma 3.11. �

The first assertion (112) of Lemma 3.11 gives the first assertion of Lemma 3.9. To prove
the second assertion of Lemma 3.9, we first bound the variation of Dm on each of the
pseudoquads {Qn, j }∞j=1 when n Ê m.

Lemma 3.12. Fix two integers n Ê m Ê 0. For any j ∈N and any w, w ′ ∈Qn, j , we have

|Dm(w)−Dm(w ′)|.α−2ρm−n .
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Proof. Let R = Rn, j and let (s, t), (s′, t ′) ∈ [0,ρ−n]× [0,α−2ρ−2n] be such that R(s, t) = w
and R(s′, t ′) = w ′. With respect to flow coordinates on Qn, j , we have

∂Dm

∂s
= ∂nDm = ∂mDm + (ψm −ψn)

∂Dm

∂z
.

Since ‖ψm −ψn‖L∞(V0) Éα−2ρ−m +α−2ρ−n É 2α−2ρ−m , using Lemma 3.11 we get that∥∥∥∥∂Dm

∂s

∥∥∥∥
L∞(Qn, j )

É 5α−2ρm +2α−2ρ−m ·6ρ2m = 17α−2ρm .

Hence, using Lemma 3.10 and Lemma 3.11 we conclude that

|Dm(w)−Dm(w ′)| É
∥∥∥∥∂Dm

∂s

∥∥∥∥
L∞(Qn, j )

|s − s′|+
∥∥∥∥∂Dm

∂z

∥∥∥∥
L∞(Qn, j )

∥∥∥∥∂z

∂t

∥∥∥∥
L∞(Qn, j )

|t − t ′|

É 17α−2ρm−n +6ρ2m · 4

3
·α−2ρ−2n .α−2ρm−n . �

Prior to proving Proposition 3.4, we record a quick consequence of Green’s theorem.

Lemma 3.13. Let M ⊆V0 be a region bounded by a simple piecewise-smooth closed curve
and let f : V0 →R be a smooth function. Then

ˆ
M
∂ f f dw =

ˆ
∂M

(
f 2

2
, f

)
· dr.

In particular, if g : V0 →R is another smooth function such that f = g on ∂M, thenˆ
M
∂ f f dw =

ˆ
M
∂g g dw.

Proof. Since

∇×
(

f 2

2
, f

)
= ∂ f

∂x
− f

∂ f

∂z
= ∂ f f ,

the lemma follows from Green’s Theorem. �

Proof of Lemma 3.9. The first assertion of Lemma 3.9 was proved in Lemma 3.11, so here
we treat its second assertion, namely that {Dn}∞n=0 are almost-orthogonal.

Fix m,n ∈N∪{0} with n Ê m and j ∈N. Sinceψn+1−ψn =βn = 0 on ∂Qn, j , Lemma 3.13
implies that

´
Qn, j

Dn(w)dw = 0. So, fixing an arbitrary basepoint w0 ∈Q, we have∣∣∣∣ˆ
Qn, j

Dm(w)Dn(w)dw

∣∣∣∣= ∣∣∣∣ˆ
Qn, j

(
Dm(w)−Dm(w0)

)
Dn(w)dw

∣∣∣∣.α−4ρm−nH 3(Qn, j ),

where in the final step we used (112) and Lemma 3.12. Hence, |〈Dm ,Dn〉U | is at most∑
j∈N

Qn, j⊆U

∣∣∣∣ˆ
Qn, j

Dm(w)Dn(w)dw

∣∣∣∣É ∑
j∈N

Qn, j⊆U

H 3(Qn, j )α−4ρm−n ³α−4ρm−n . �
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3.2.2. The vertical perimeter of Γψi . Here we will complete the proof of Proposition 3.4.

Define φ : V0 → R to be the A–periodic extension of β|U , i.e., φ(x,0, z)
def= β({x},0, {z})

for (x,0, z) ∈V0, where {a} = a −bac is the fractional part of a ∈R. Because the function

vP
U ,φ : R→ [0,∞)

is continuous and not identically zero, there exist η,R,r ∈Rwith r < R such that

∀a ∈ I
def= [r,R], vP

U ,φ(a) Ê η> 0. (118)

We will show that if ρ ∈N is large enough (depending only on the initial choice of bump
function β), then the conclusion of Proposition 3.4 holds for the above interval I . To this
end, we will first establish the following point-wise bound on the vertical perimeter of
each of the perturbations {βi }∞i=0 in terms of the vertical perimeter of φ.

Lemma 3.14. Suppose that ρ > 5. For every i ∈N∪ {0} and a ∈Rwe have

vP
U ,βi

(a) Ê 1

2α
vP

U ,φ

(
a − log2(αρi )

)− 3ρi−1

2a .

In particular, if ρ Ê 12
2rη and a ∈ I + log2(αρi ), then

vP
U ,βi

(a) Ê η

2α
− 3ρi−1

2r+log2(αρi )
Ê η

4α
.

Proof of Proposition 3.4 assuming Lemma 3.14. Fix an integer ρ Ê max{12/(2rη),8} that
will be specified later and let ψ=ψα4 . The first three assertions of Proposition 3.4 were
established in the construction of ψ and in the discussion after Lemma 3.9. We will
establish the last three by showing that

∀a ∈R, vP
U ,ψ(a).min

{
1

α
,

2a

α2

}
, (119)

and

∀a ∈
α4−1⋃
n=0

(
I + log2(αρn)

)
, vP

U ,ψ(a)&
1

α
. (120)

For every i ∈N∪ {0}, by the definition of βi and by (98) and (102) we have∥∥βi
∥∥

L∞(V0) Éα−2ρ−i and

∥∥∥∥∂βi

∂z

∥∥∥∥
L∞(V0)

É 2ρi .

Due to Lemma 2.13, for every a ∈Rwe have

vP
U ,βi

(a) É min
{

2a+1α−2ρ−i ,2−a+1ρi
}
= 2α−12−|a−log2(αρi )|. (121)

Consequently,

vP
U ,ψα4

(a) = vP

U ,
∑α4

i=0βi
(a) É

α4∑
i=0

vP
U ,βi

(a)
(121)É

∞∑
i=0

2α−12−|a−log2(αρi )|.α−1.

This proves (119), because by Lemma 2.13 we also have

vP
U ,ψα4

(a). 2a‖ψα4‖L∞(V0)
(91)É 2aα−2.
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It remains to prove (120), as we saw in (80) that this implies the remaining assertions of
Proposition 3.4. Fix n ∈ {0, . . . ,α4 −1} and a ∈ I + log2(αρn), so that vP

U ,βn
(a) > η/(4α) by

Lemma 3.14. Let s = max{|r |, |R|}, so that |a − log2(αρn)| É s. It follows from (121) that

vP
U ,βi

(a) É 2α−12−| log2(αρn )−log2(αρi )|+|a−log2(αρn )| É 2α−1ρ−|n−i |2s (122)

for any i ∈N∪ {0}. Hence, by combining Lemma 3.14 and (122) we conclude that

vP
U ,ψα4

(a) = vP

U ,
∑α4

i=0βi
(a) Ê vP

U ,βn
(a)−

n−1∑
i=0

vP
U ,βi

(a)−
α4∑

i=n+1
vP

U ,βi
(a)

Ê η

4α
−2

∞∑
k=1

2α−1ρ−k 2s Ê η

4α
− 5

αρ
2s .

Choosing ρ
def=

⌈
max

{
8, 12

2rη , 40·2s

η

}⌉
, this completes the proof of Proposition 3.4. �

Proof of Lemma 3.14. We will start by introducing some (convenient, though ad hoc) no-
tation and making some preliminary observations. For i ∈N∪ {0} define a (discontinuous
in the first variable) map Si : R2 → R2 as follows. If s ∈ R, then let m ∈ Z be the unique
integer such that s ∈ [mρ−i , (m +1)ρ−i ), and set for every t ∈R,

Si (s, t )
def= Φ(ψi )s−mρ−i (mρ−i ,0, t ),

where we recall the notation Φ(·)·(·) for characteristic curves that we set at the start of
Section 3.2. Note that by design x(Si (s, t)) = s. Observe also that the lines R× {0}× {0}
and R× {0}× {1} are characteristic curves for Γψi , since ψi vanishes on those lines. Hence
Si (s,0) = (s,0) and Si (s,1) = (s,1) for all s ∈ [0,1]. As x(S(s, t)) = s for all t ∈ R, by the
continuity of Si in the second variable, this implies that Si (s, [0,1]) = {s}× {0}× [0,1]. So,

Si ([0,1]2) =U . (123)

The mapping Si is related as follows to the mappings Ri ,1,Ri ,2, . . . that are given in (86).
Suppose as above that s ∈ [mρ−i , (m +1)ρ−i ) for some m ∈ Z, and fix t ∈ R and n ∈ Z.
Recalling that vi ,1, vi ,2, . . . is an enumeration of the points in the grid Gi that is given
in (85), let j ∈N be the index for which vi , j = (mρ−i ,0,nα−2ρ−2i ). Then

Si (s, t ) = Ri , j (s −mρ−i , t −nα−2ρ−2i ).

Recalling the definition (87) of the pseudo-quad Qi , j , this implies that

Si
(
[mρ−i , (m +1)ρ−i )× [nα−2ρ−2i , (n +1)α−2ρ−2i ]

)=Qi , j .

Also, recalling the definitions (88) and (89), it follows that if we define φi : V0 →R by

∀(s, t ) ∈R2, φi (s,0, t )
def= α−2ρ−iφ(ρi s,0,α2ρ2i t ), (124)

then

∀(s, t ) ∈R2, βi
(
Si (s, t )

)=φi (s,0, t ). (125)

Fix i ∈N∪ {0}, a ∈R and (x,0, z) ∈U . Let s = s(x, z), t = t (x, z), t ′ = t ′(x, z, a) ∈R satisfy

Si (s, t ) = (x,0, z) and Si (s, t ′) = (x,0, z −2−2a). (126)
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Due to (102) we have e−2ρ−1
2−2a É t − t ′ É e2ρ−1

2−2a . Hence,

|t ′− (t −2−2a)| É (e2ρ−1 −1)2−2a É 3ρ−12−2a . (127)

Now,

|βi (x,0, z)−βi (x,0, z −2−2a)|
(125)∧(126)= |φi (s,0, t )−φi (s,0, t −2−2a)−φi (s,0, t ′)+φi (s,0, t −2−2a)|

Ê |φi (s,0, t )−φi (s,0, t −2−2a)|− |φi (s,0, t ′)−φi (s,0, t −2−2a)|
(124)Ê |φi (s,0, t )−φi (s,0, t −2−2a)|−ρi |t ′− (t −2−2a)|
(127)Ê |φi (s,0, t )−φi (s,0, t −2−2a)|−3ρi−12−2a .

In other words, we established the following point-wise estimate for the vertical difference
quotients that occur in the definition (63) of (parameterized) vertical perimeter.

|βi (x,0, z)−βi (x,0, z −2−2a)|
2−a Ê |φi (s,0, t )−φi (s,0, t −2−2a)|

2−a − 3ρi−1

2a .

By integrating this inequality over U we get

vP
U ,βi

(a)
(63)Ê

ˆ 1

0

ˆ 1

0

|φi (s(x, z),0, t (x, z))−φi (s(x, z),0, t (x, z)−2−2a)|
2−a dx dz − 3ρi−1

2a

(95)=
ˆ
S−1

i (U )

|φi (s,0, t )−φi (s,0, t −2−2a)|
2−a

∣∣∣∣∂z

∂t
(s, t )

∣∣∣∣ ds dt − 3ρi−1

2a

(102)∧(123)Ê 1

2

ˆ 1

0

ˆ 1

0

|φi (s,0, t )−φi (s,0, t −2−2a)|
2−a ds dt − 3ρi−1

2a .

(128)

It therefore remains to note the following identity.ˆ 1

0

ˆ 1

0

|φi (s,0, t )−φi (s,0, t −2−2a)|
2−a ds dt

=
ˆ ρi

0

ˆ α2ρ2i

0

α−4ρ−4i |φ(σ,0,τ)−φ(σ,0,τ−α2ρ2i 2−2a)|
2−a dσdτ (129)

= 1

α

ˆ
U

|φ(v)−φ(v Z−α2ρ2i 2−2a
)|

αρi 2−a
dv (130)

= 1

α
vP

U ,φ

(
a − log2(αρi )

)
, (131)

where (129) uses the definition (124) and the change of variables (s, t ) = (ρ−iσ,α−2ρ−2iτ),
(130) holds by the periodicity of φ, and (131) is a restatement of the definition (63). �

4. PSEUDOQUADS AND FOLIATED PATCHWORKS

Let Γ be the intrinsic Lipschitz graph of f : V0 →R. A pseudoquad Q is a region of V0

bounded by two vertical lines and two characteristic curves of Γ, i.e., a region of the form

Q = {
(x,0, z) ∈V0 : x ∈ I and g1(x) É z É g2(x)

}
,
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where I = [a,b] ⊆R is a closed, bounded interval and g1, g2 : R→R are functions whose
graphs are characteristic. We say that I is the base of Q and we call g1 and g2 the lower
and upper bounds of Q, respectively. The width of the pseudoquad Q is just the length
`(I ) = b −a of its base I = [a,b]. But, the height of Q is not always well-behaved, since
characteristic curves can join and split. We therefore introduce rectilinear pseudoquads,
which approximate projections of rectangles in vertical planes. If Γ is a vertical plane,
its characteristic curves are a family of parallel parabolas; conversely, any pseudoquad
bounded by two parallel parabolas is the projection of a rectangle inH (a loop composed
of two parallel horizontal lines and two vertical lines) to V0. Thus, if

R = {
(x,0, z) ∈V0 : x ∈ I and h1(x) É z É h2(x)

}
where h1,h2 : R→ R are quadratic functions that differ by a constant, then we call R a
parabolic rectangle with width

δx (R)
def= `(I )

and height

δz (R)
def= h2 −h1.

For r > 0 and an interval I , let r I be the scaling of I around its center by a factor of r , i.e.,

r I
def=

[
a +b

2
− r`(I )

2
,

a +b

2
+ r`(I )

2

]
.

For ρ > 0, let

ρR
def= {

(x,0, z) ∈V0 : x ∈ ρI and z ∈ ρ2[h1(x),h2(x)]
}

=
{

(x,0, z) ∈V0 : x ∈ ρI and

∣∣∣∣z − h1(x)+h2(x)

2

∣∣∣∣É ρ2δz (R)

2

}
.

(132)

For 0 <µÉ 1
32 , a µ–rectilinear pseudoquad is a pair (Q,R), where Q is a pseudoquad and

R is a parabolic rectangle with the same base I as Q such that, if g1 and g2 (respectively
h1 and h2) are the lower and upper bounds of Q (respectively R), then

max
{‖g1 −h1‖L∞(4I ),‖g2 −h2‖L∞(4I )

}Éµδz (R). (133)

We will frequently refer to a µ–rectilinear pseudoquad (Q,R) as simply Q, but we define
its width and height to be the width and height of the associated parabolic rectangle, i.e.,
δx (Q) = δx (R) and δz (Q) = δz (R). Likewise, for ρ Ê 1, we define ρQ = ρR. Note that Q
need not be contained in 1Q = R, but the following lemma holds.

Lemma 4.1. Let Q be a µ–rectilinear pseudoquad. Then Q ⊆ 2Q. In fact, for every t ∈R,

Q Z tδz (Q) ⊆
√

2|t |+2 ·Q.

Proof. Let R, g1, g2, h1, h2 be as above. Let mg = g1+g2

2 and mh = h1+h2
2 . Fix (x,0, z) ∈Q,

so that g1(x) É z É g2(x). For i ∈ {1,2}, we have

|mh(x)− gi (x)| É |mh(x)−hi (x)|+ |hi (x)− gi (x)| É δz (Q)

2
+µδz (Q) É δz (Q),

so
|mh(x)− (z + tδz (Q))| É (1+|t |)δz (Q).

Therefore, (x,0, z +δz (Q)) ∈p
2|t |+2 ·Q. �
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Continuing with the above notation, define the aspect ratio of Q to be

α(Q)
def= δx (Q)√

δz (Q)
. (134)

We use a square root here because the distance in the Heisenberg metric between the top
and bottom of Q is proportional to

√
δz (Q); thus this aspect ratio is invariant under the

Heisenberg scaling. Let |Q| be the Lebesgue measure of Q as a subset of V0
∼=R2.

The following lemma is a direct consequence of Lemma 2.9.

Lemma 4.2. Let a,b ∈Rà {0} and let g = q ◦ρh ◦ sa,b : H→H be a composition of a shear
map q, a left-translation by h ∈ H, and a stretch map sa,b . Let ĝ : V0 → V0 be the map
induced on V0, i.e., ĝ (x) =Π(g (x)) for all x ∈V0. Suppose that (Q,R) is a µ–rectilinear pseu-
doquad for an intrinsic graph Γ. Then (Q̂, R̂) = (ĝ (Q), ĝ (R)) is a µ–rectilinear pseudoquad
for the intrinsic graph ĝ (Γ), with the following parameters.

δx (Q̂) = |a|δx (Q), δz (Q̂) = |ab|δz (Q), |Q̂| = |a2b| · |Q|, α(Q̂) =
√

|a|
|b| ·α(Q).

Remark 4.3. For any µ–rectilinear pseudoquad (Q,R), there is a transformation of H
that sends R to a square in V0 and Q to an approximation of the square. That is, if
a,b,c,d , x0, w ∈R are such that

R = {(x,0, z) ∈V0 : |x −x0| É w ∧|ax2 +bx + c − z| É d},

h(v) = sw−1,wd−1

(
X −x0 Y b Z−c Ã2a(v)

)
,

and ĥ =Π◦h, then, by the remarks after Lemma 2.9, ĥ(R) = [−1,1]× {0}× [−1,1].
By Lemma 4.2, (ĥ(Q), ĥ(R)) is µ–rectilinear, so if ĝ1 and ĝ2 are the lower and upper

bounds of ĥ(Q), then |ĝ1(t )+1| < 2µ and |ĝ2(t )−1| < 2µ for all t ∈ [−4,4].

We will prove Theorem 1.18 by constructing a collection of nested partitions of V0 into
pseudoquads. We will describe these partitions by associating a rectilinear pseudoquad to
each vertex of a rooted tree. Let (T, v0) be a rooted tree with vertex set V (T ). For v ∈ V (T ),
we let C (v) =C 1(v) denote the set of children of v and inductively for n Ê 2 let

C n(v) = ⋃
w∈C n−1(v)

C (w)

be the set of n’th generation descendants of v . Let D(v) =⋃∞
n=0 C n(v) where C 0(v) = {v}.

For v ∈ V (T )à {v0}, there is a unique parent vertex w such that v ∈C (w), and we denote
this vertex by P (v). If w ∈D(v), we say that w is a descendant of v or that v is an ancestor
of w and write w É v . This is a partial order with maximal element v0.

Definition 4.4 (rectilinear foliated patchwork). If Q is a µ–rectilinear pseudoquad, a µ-
rectilinear foliated patchwork for Q is a complete rooted binary tree (∆, v0) (i.e., every vertex
has exactly two children) such that every vertex v ∈ V (∆) is associated to a µ–rectilinear
pseudoquad (Qv ,Rv ) with Qv0 =Q. Each vertex v ∈ V (∆) is either vertically cut or horizon-
tally cut in the following sense.

Let w and w ′ be the children of v, let I = [a,b] be the base of Qv , and let g1 and g2

(respectively h1 and h2) be the lower and upper bounds of Qv (respectively Rv ).
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(1) If v is vertically cut, then Qw and Qw ′ are the left and right halves of Qv , separated
by the vertical line x = a+b

2 . That is,

Qw =
{

(x,0, z) ∈V0 : a É x É a +b

2
and g1(x) É z É g2(x)

}
,

and

Qw ′ =
{

(x,0, z) ∈V0 :
a +b

2
É x É b and g1(x) É z É g2(x)

}
.

Similarly,

Rw =
([

a,
a +b

2

]
× {0}×R

)
∩Rv and Rw ′ =

([
a +b

2
,b

]
× {0}×R

)
∩Rv .

We therefore have δx (Qw ) = δx (Qw ′) = δx (Qv )
2 and δz (Qw ) = δz (Qw ′) = δz (Qv ).

(2) If v is horizontally cut, then Qw and Qw ′ are the top and bottom halves of Qv ,
separated by a characteristic curve. That is, there is a function c : R→ R whose
graph is characteristic, a quadratic function k : R→R, and d ∈ (0,∞) such that

Qw = {
(x,0, z) ∈V0 : a É x É b and g1(x) É z É c(x)

}
,

Qw ′ = {
(x,0, z) ∈V0 : a É x É b and c(x) É z É g2(x)

}
,

Rw = {
(x,0, z) ∈V0 : a É x É b and k(x)−d É z É k(x)

}
,

Rw ′ = {
(x,0, z) ∈V0 : a É x É b and k(x) É z É k(x)+d

}
.

Then δx (Qw ) = δx (Qw ′) = δx (Qv ) and δz (Qw ) = δz (Qw ′) = d. Furthermore, Qw

and Qw ′ are assumed to be µ–rectilinear; thus

max
{‖(k −d)− g1‖L∞(4I ),‖k − c‖L∞(4I ),‖(k +d)− g2‖L∞(4I )

}Éµd . (135)

In either case, Qv =Qw ∪Qw ′ and Qw ,Qw ′ have disjoint interiors. Let VV(∆) ⊆ V (∆) be
the set of vertically cut vertices and let VH(∆) ⊆ V (∆) be the set of horizontally cut vertices.

It follows from the above definition that v É w if and only if Qv ⊆Qw . Furthermore, if
the interior of Qv intersects Qw , then either v É w or w É v .

Lemma 4.5. For every ε> 0 there exists 0 < µ= µ(ε) É 1
32 such that if Q is a µ–rectilinear

pseudoquad, then
(1−ε)δx (Q)δz (Q) É |Q| É (1+ε)δx (Q)δz (Q). (136)

If Q is horizontally or vertically cut as in Definition 4.4 and Q ′ is a child of Q, then(
1

2
−ε

)
|Q| É |Q ′| É

(
1

2
+ε

)
|Q|. (137)

If Q is vertically cut, then δx (Q ′) = δx (Q)
2 , δz (Q ′) = δz (Q), and α(Q ′) = α(Q)

2 . If Q is horizon-
tally cut, then δx (Q ′) = δx (Q), and(

1

2
−2µ

)
δz (Q) É δz (Q ′) É

(
1

2
+2µ

)
δz (Q). (138)

Finally, (p
2−ε

)
α(Q) Éα(Q ′) É

(p
2+ε

)
α(Q). (139)
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When ε= 1
4 we can take here µ= 1

32 .

Proof. Suppose that µÉ ε
8 . Let (Q,R) be a µ–rectilinear pseudoquad. Suppose that g1 and

g2 (respectively h1 and h2) be the lower and upper bounds of Q (respectively R) and let I
be the base of Q. Then |R| = δx (Q)δz (Q) and∣∣|Q|−δx (Q)δz (Q)

∣∣= ∣∣|Q|− |R|∣∣É ˆ
I
|g1 −h1|dx +

ˆ
I
|g2 −h2|dx É 2µδx (Q)δz (Q), (140)

so (136) is satisfied.
Let Q ′ be a child of Q. If Q is vertically cut, then the formulas for δx (Q ′), δz (Q ′), and

α(Q ′) follow from Definition 4.4. As Q ′ is µ–rectilinear, (140) implies that∣∣∣∣|Q ′|− |Q|
2

∣∣∣∣É ∣∣|Q ′|−δx (Q ′)δz (Q ′)
∣∣+ 1

2

∣∣δx (Q)δz (Q)−|Q|∣∣É 2µδx (Q)δz (Q) É 4µ|Q|,

so Q satisfies (137) if Q is vertically cut.
If Q is horizontally cut, then δx (Q ′) = δx (Q) by Definition 4.4. Let c,k,d = δz (Q ′) be as

in Definition 4.4 and let t ∈ I . As ‖gi −hi‖L∞(I ) Éµδz (Q) for i ∈ {1,2} and δz (Q) = h2 −h1,

(1−2µ)δz (Q) É g2(t )− g1(t ) É (1+2µ)δz (Q).

By (135),

(1−µ) ·2d É g2(t )− g1(t ) É (1+µ) ·2d .

Then d É 1+2µ
2−2µδz (Q) < δz (Q), so

|2d −δz (Q)| É |2d − (g2(t )− g1(t ))|+ |(g2(t )− g1(t ))−δz (Q)| É 4µδz (Q),

proving (138). This directly implies Equation (139), and the horizontally cut case of (137)
follows from the above calculation and (140). �

The following two lemmas will be helpful later.

Lemma 4.6. For any quadratic function q : R→R and any t ∈R,

|q(t )| É (1+ t +2t 2)‖q‖L∞([−1,1]).

Proof. One only needs to note that, since q is quadratic, for any t ∈Rwe have

q(t ) = q(0)+ t · q(1)−q(−1)

2
+ t 2 · q(−1)−2q(0)+q(1)

2
. �

Lemma 4.7. For every r Ê 2 there is µ= µ(r ) > 0 such that if ∆ is a µ–rectilinear foliated
patchwork and v, w ∈ V (∆) satisfy w É v, then rQw ⊆ rQv .

Proof. It suffices to consider the case that w ∈ C (v). If v is vertically cut, this holds
vacuously, so suppose that v is horizontally cut. Let g1 and g2 (respectively h1 and h2)
be the lower and upper bounds of Qv (respectively Rv ) and let I be their base. Denote
mv = (h1 +h2)/2. Then r Rv is bounded by mv ± r 2δz (Qv )/2.

Let c,k,d = δz (Qw ) be as in Definition 4.4. By Lemma 4.5, we have d É 3
4δz (Qv ). Then

‖(k −d)−h1‖L∞(4I ) É ‖k −d − g1‖L∞(4I ) +‖g1 −h1‖L∞(4I ) Éµd +µδz (Qv ) É 2µδz (Qv ).
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Likewise, ‖(k +d)−h2‖L∞(4I ) É 2µδz (Qv ). By Lemma 4.6, since k,h1,h2 are quadratic
functions, if µ is at most a sufficiciently small universal constant multiple of r−2, then

max{‖(k −d)−h1‖L∞(r I ),‖(k +d)−h2‖L∞(r I )} É δz (Qv )

16
.

By the triangle inequality,

‖k −mv‖L∞(r I ) É δz (Qv )

16
.

Suppose that Qw is the lower half of Qv , so that Qw is bounded by g1 and c and Rw is

bounded by k −d and k. Let mw = k − d
2 so that rQw is bounded by mw ± r 2d

2 . For x ∈ r I ,

|mv (x)−mw (x)| É δz (Qv )

16
+ d

2
É 7

16
δz (Qv ) É r 2δz (Qv )

2
− r 2d

2
,

so [
mw (x)− r 2d

2
,mw (x)+ r 2d

2

]
⊆

[
mv (x)− r 2δz (Qv )

2
,mv (x)+ r 2δz (Qv )

2

]
.

That is, rQw ⊆ rQv . The case that Qw is the upper half of Qv is treated analogously. �

Let ∆ be a µ–rectilinear foliated patchwork for a µ–rectilinear pseudoquad Q. For every
subset of vertices S ⊆ V (∆), define the weight of S to be

W (S)
def= ∑

w∈S

|Qw |
α(Qw )4

(134)= ∑
w∈S

δz (Qw )2

δx (Qw )4 |Qw |. (141)

We will use this to define a weighted Carleson condition which is a variant of the Carleson
packing condition that is used in the theory of uniform rectifiability [DS93].

Definition 4.8 (weighted Carleson packing condition). Suppose that ∆ is a µ–rectilinear
foliated patchwork for a µ–rectilinear pseudoquad Q. We say that ∆ satisfies a weighted
Carleson packing condition or that∆ is weighted Carleson with constant C ∈ (0,∞) if every
v ∈ V (∆) satisfies

W
(
D(v)∩VV(∆)

)ÉC |Qv |, (142)

where we recall that D(v) are the descendants of v and VV(∆) are the vertically cut vertices.

Remark 4.9. Vertical cuts increase W and horizontal cuts decrease it. More precisely,
suppose that v, w ∈ V (∆) and w is a child of v . If v is vertically cut, then by Lemma 4.5
(with ε= 1

4 ),

W ({w}) =α(Qw )−4|Qw | = 16α(Qv )−4|Qw | Ê 16α(Qv )−4 ·
(

1

2
−ε

)
|Qv | Ê 4W ({v}). (143)

When ε→ 0+, W ({w}) approaches 8W ({v}). If v is horizontally cut, then by Lemma 4.5
(with ε= 1

4 ),

W ({w}) =α(Qw )−4|Qw | É (
p

2−ε)−4
(

1

2
+ε

)
W ({v}) É 3

7
W ({v}), (144)

and W ({w}) approaches 1
8W ({v}) when ε→ 0+.

The next lemma implies that even though only VV(∆) appears in (142), this condition
formally implies bounds on VH(∆) as well.
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Lemma 4.10. Let ∆ be a 1
32 –rectilinear foliated patchwork for Q with W (VV(∆)) <∞, and

let v0 be the root of ∆. Then

W
(
VV(∆)

)
.W

(
VH(∆)

)
.W

(
VV(∆)

)+α(Q)−4|Q|.
Proof. Let TH (respectively TV) be the set of connected components of the subgraph of ∆
spanned by VH(∆) (respectively VV(∆)). Let T ∈TH and let M(T ) be the maximal vertex
of T . Each vertex of T is horizontally cut, so by (144), we have W (C (v)) É 6

7W ({v}) for all
v ∈ V (T ). Therefore, W (V (T )) ³W ({M(T )}), because

W
(
V (T )

)= ∞∑
n=0

W
(
C n(M(T ))∩V (T )

)É ∞∑
n=0

(
6

7

)n

W ({M(T )}).W
(
{M(T )}

)
.

Hence, if we denote SM = {M(T ) : T ∈TH}, then W (VH(∆)) ³W (SM ).
Now, take T ∈TV. By (143), we have W ({w}) Ê 4W ({v}) for all v ∈ V (T ) and w ∈C (v).

As W (V (T )) <∞, it follows that T must be finite. Let m(T ) = {w ∈ V (T ) : C (w) 6⊆ V (T )} be
the lower boundary of T and let Sm =⋃

T∈TV
m(T ).

For all v ∈ V (T ), let A(v) = {w ∈ V (T ) : w Ê v} be the set of ancestors of v in T . By (143),

W
(

A(v)
)É |A(v)|−1∑

n=0
4−nW ({v}) É 2W ({v}).

Every vertex of T is an ancestor of a leaf, so it follows that

W
(
V (T )

)ÉW

( ⋃
v∈m(T )

A(v)

)
É ∑

v∈m(T )
W

(
A(v)

)É 2W
(
m(T )

)É 2W
(
V (T )

)
.

Therefore, W (VV(∆)) ³W (Sm).
If v ∈ SM and v 6= v0, then P (v) is horizontally cut and has a vertically cut child, so

P (v) ∈ Sm . In fact, P (SM à {v0}) = Sm . Since W ({v}) ³W ({P (v)}) for all v and since P is
a two-to-one map, it follows that W (SM à {v0}) ³W (Sm). Therefore,

W
(
VH(∆)

)³W (SM ).W (Sm)+W ({v0}) ³W (VV(∆))+α(Q)−4|Q|,
and

W
(
VV(∆)

)³W (Sm) ³W (SM à {v0}) ÉW (SM ). �

Suppose that ∆= (Qv )v∈V (∆) is a µ–rectilinear foliated patchwork for Γ= Γ f . For σ> 0,
a set of σ–approximating planes for ∆ is a collection of vertical planes (Pv )v∈VH(∆) such
that for every v ∈ VH(∆), if fv : V0 →R is the affine function such that Γ fv = Pv , then

‖ fv − f ‖L1(10Qv )

|Qv |
Éσδz (Qv )

δx (Qv )
. (145)

The following lemma verifies that the choice of right-hand side in (145) produces a
condition that is invariant under stretch automorphisms and shear automorphisms.

Lemma 4.11. Let ∆ = (Qv )v∈V (∆) be a µ–rectilinear foliated patchwork for an intrinsic
Lipschitz graph Γ= Γ f with a set (Pv )v∈VH(∆) of σ–approximating planes and let r : H→H

be a left translation, a stretch automorphism, or a shear map. Let r̂ =Π◦ r : V0 →V0 be the
map induced on V0. Then ∆′ = ((r̂ (Qv ), r̂ (Rv )))v∈V (∆) is a µ–rectilinear foliated patchwork
for r (Γ) and (r (Pv ))v∈VH(∆) is a set of σ–approximating planes for ∆′.
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Proof. By Lemma 2.10 and Lemma 4.2, r (Γ) is an intrinsic Lipschitz graph and the el-
ements of ∆′ are µ–rectlinear pseudoquads for r (Γ). It is straightforward to check that
Definition 4.4 holds for∆′. Let v ∈ VH(∆) and let fv : V0 →R be the affine function such that
Pv = Γ fv . By Lemma 2.9, there are functions f̂ and f̂v such that r (Γ) = Γ f̂ and r (Pv ) = Γ f̂v

.
If r is a left translation or a shear map and w ∈ 10Qv , then r̂ (w) ∈ 10r̂ (Qv ) and∣∣ f̂

(
r̂ (w)

)− f̂v
(
r̂ (w)

)∣∣= | f (w)− fv (w)|.
In this case, δx (Qv ) = δx (r̂ (Qv )) and δz (Qv ) = δz (r̂ (Qv )), so if Pv is a σ–approximating
plane for Qv , then r (Pv ) is a σ–approximating plane for r̂ (Qv ).

If r = sa,b for some a,b ∈Rà{0}, then r̂ = r |V0 , r̂ (10Qv ) = 10r̂ (Qv ), and for any w ∈ 10Qv ,∣∣ f̂
(
r̂ (w)

)− f̂v
(
r̂ (w)

)∣∣= |b| · | f (w)− fv (w)|.
In this case, δx (r̂ (Qv )) = |a|δx (Qv ) and δz (r̂ (Qv )) = |ab|δz (Qv ), so by (145),

‖ f̂v − f̂ ‖L1(10r̂ (Qv ))

|r̂ (Qv )| = |a2b2|‖ fv − f ‖L1(10Qv )

|a2b| · |Qv |
É |b|σδz (Qv )

δx (Qv )
=σδz (r̂ (Qv ))

δx (r̂ (Qv ))
. �

5. FOLIATED CORONA DECOMPOSITIONS

An intrinsic graph that admits rectilinear foliated patchworks that satisfy a weighted
Carleson condition and have approximating planes is said to have a foliated corona
decomposition.

Definition 5.1. Fix 0 < µ0 É 1
32 and D : R+×R+ → R+. We say that an intrinsic Lipschitz

graph Γ has a (D,µ0)–foliated corona decomposition if for every 0 < µÉ µ0, every σ> 0
and every µ–rectilinear pseudoquad Q ⊆V0, there is a µ–rectilinear foliated patchwork ∆
for Q such that ∆ is D(µ,σ)–weighted-Carleson and has a set of σ–approximating planes.

The following theorem is a more precise formulation of Theorem 1.18.

Theorem 5.2. For every 0 <λ< 1 there is a function Dλ : R+×R+ →R+ such that for any
0 <µ0 É 1

32 , any intrinsic λ–Lipschitz graph has a (Dλ,µ0)–foliated corona decomposition.

Definition 5.1 requires the root of the foliated patchwork to be µ–rectilinear; the next
lemma shows that intrinsic Lipschitz graphs have many µ–rectilinear pseudoquads.

Lemma 5.3. Let µ0 > 0, let 0 < λ < 1, and let Γ = Γ f be an intrinsic λ–Lipschitz graph.
There is an α0 > 0 with the following property. Let Q be a pseudoquad for Γ, let v be a point
in the lower boundary of Q and suppose that v Z s is in the upper boundary. Let r = δx (Q).
If rp

s
Éα0, then there is a parabolic rectangle R such that (Q,R) is µ0–rectilinear.

Proof. Denote

L
def= λp

1−λ2
and α0

def= min

{√
µ0

16L
,
µ0(1−λ)

24

}
.

Let g1, g2 : R → R be the lower and upper bounds of Q and let I be its base. After a
translation, we may suppose that v = 0 and f (v) = 0. Then I ⊆ [−r,r ], g1(0) = 0, g2(0) = s,
and g ′

1(0) =− f (0) = 0. Let R = I×[0, s]; we claim that (Q,R) is aµ0–rectilinear pseudoquad.
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It suffices to show that for all t ∈ [−4r,4r ] and i ∈ {1,2}, we have |gi (t )− gi (0)| Éµ0s. By
Lemma 2.7, for all t ∈ [−4r,4r ], we have∣∣gi (t )− (

gi (0)+ t g ′
i (0)

)∣∣É 8r 2L É µ0s

2
.

In particular, |g1(t )| Éµ0s. Lemma 2.3 implies that

|g ′
2(0)| = | f (Z s)− f (0)| É 3

1−λd(0, Z s) = 3
p

s

1−λ É µ0

8
· s

r
,

so if |t | É 4r , then

|g2(t )− g2(0)| É µ0

8
· s

r
·4r + µ0s

2
Éµ0s. �

Corollary 5.4. Continuing with the setting and notation of Lemma 5.3, any 1
32 –rectilinear

pseudoquad Q such that α(Q) É α0
2 is µ0–rectilinear.

Proof. Let v be in the lower boundary of Q. Then there is an s Ê (1− 1
16 )δz (Q) such that

v Z s is in the upper boundary. If α(Q) É α0
2 , then

δx (Q) É α0

2

√
δz (Q) Éα0

p
s,

so Lemma 5.3 implies that Q is µ0–rectilinear. �

The following lemma shows that the choice of µ0 is not important; we can increase µ0

at the cost of an increase in D .

Lemma 5.5. For any λ > 0 and 0 < µ0 < µ′
0 É 1

32 , and any D : R+×R+ → R+, there exists
D ′ : R+×R+ →R+ such that if Γ is an intrinsic λ–Lipschitz graph that has a (D,µ0)–foliated
corona decomposition, then Γ also has a (D ′,µ′

0)–foliated corona decomposition.

Proof. Fix 0 < µ< µ′
0 and 0 <σ< 1. Let α0 > 0 be as in Lemma 5.3. Suppose that we are

given a µ–rectilinear pseudoquad Q. We wish to construct a rectilinear foliated patchwork
for Q with a set of σ–approximating planes. If α(Q) < α0

2 , then by Corollary 5.4, Q is
µ0–rectilinear, and since Γ admits a (D,µ0)–foliated corona decomposition, the desired
patchwork and set of approximating planes for Q exist.

We thus suppose that α(Q) Ê α0
2 and denote

i0 =
⌈

log2
α(Q)

α0

⌉
+1.

We will construct a rectilinear foliated patchwork for Q by first cutting Q vertically i0 times
into pseudoquads P1, . . . ,P2i0 of width 2−i0δx (Q0), height δz (Q), and aspect ratio

α(Pi ) = δx (Pi )√
δz (Pi )

= 2−i0α(Q) < α0

2
.

By Corollary 5.4, each Pi is µ0–rectilinear and thus admits a D(µ,σ)–weighted Carleson
rectilinear foliated patchwork and a set of σ–approximating planes. Combining these
patchworks, we obtain a rectilinear foliated patchwork ∆′ for Q0. Let v0 be its root vertex.
Note that for any 0 É m É i0 and any w ∈C m(v0), we have α(Qw ) = 2−mα(Q0).
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It remains to check that ∆′ is weighted Carleson. Let p1, . . . , p2i0 ∈ V (∆′) be the vertices
such that P j = Qp j . If v ∈ V (∆′) and v É p j for some j , then Qv satisfies the weighted
Carleson condition (142) with constant at most D(µ,σ).

Otherwise, v is an ancestor of some p j and Qv = Pa ∪·· ·∪Pb for some a É b. For each
w ∈ V (∆′), let A(w) be the set of ancestors of w . Every ancestor of p j except possibly p j

itself is vertically cut, so by (143), the weight of P k (p j ) decays exponentially. Thus

W
(

A(p j )
)= i0∑

k=0
W

(
{P k (p j )}

) (143)É
i0∑

k=0
4−kW ({p j }) É 2W ({p j }).

For each w ∈ V (∆′), let DV(w) =D(w)∩VV(∆′) be the set of vertically cut descendants
of w . As every element of DV(v) is a descendant or an ancestor of some p j with a É j É b,

W
(
DV(v)

)É b∑
j=a

[
W

(
DV(p j )

)+W
(

A(p j )
)]É b∑

j=a

[
D(µ,σ)|P j |+2W ({p j })

]
= D(µ,σ)|Qv |+2 ·α(Pa)−4|Qv | É D(µ,σ)|Qv |+α−4

0 |Qv |.
Therefore, ∆′ is

(
D(µ,σ)+α−4

0

)
–weighted Carleson. �

6. VERTICAL PERIMETER AND FOLIATED CORONA DECOMPOSITIONS

In this section we will assume Theorem 5.2 and prove the following theorem, which
bounds the vertical perimeter of half-spaces bounded by intrinsic Lipschitz graphs.

Theorem 6.1. For any 0 <λ< 1 and r > 0, if Γ is an intrinsic λ–Lipschitz graph, then∥∥vBr (0)
(
Γ+

)∥∥
L4(R).λ r 3.

This coincides with the bound (32) needed in Section 1.2.1. Combined with the re-
duction from arbitrary sets to intrinsic Lipschitz graphs described in that section, this
completes the proof of Theorem 1.1.

6.1. Vertical perimeter for graphs with foliated corona decompositions. Theorem 6.1
is a consequence of the following lemma.

Lemma 6.2. Suppose that f : V0 → Γ is intrinsic Lipschitz and denote Γ = Γ f . Fix σ> 0.
Let Q ⊆V0 be a 1

32 –rectilinear pseudoquad. Let ∆ be a 1
32 –rectilinear foliated patchwork for

Q and let (Pv )v∈VH(∆) be a set of σ–approximating planes. Denoting t0 =− log4δz (Q), we
have ∥∥vP

Q, f

∥∥
L4([t0,∞)).σ|Q| 3

4 W
(
V (∆)

) 1
4 . (146)

Note that while the intrinsic Lipschitz constant of f appears in Theorem 6.1, it does
not appear in (146). Indeed, this bound is invariant under scalings and stretch auto-
morphisms; if Γ, Q, and (∆, (Qv )v∈V (∆)) are as in Lemma 6.2, a,b > 0, s = sa,b , and ŝ =
Π◦ s|V0 = s|V0 , then, by Lemma 4.11, ŝ(Q) is a pseudoquad in s(Γ) = Γ f̂ , where f̂ = b f ◦ ŝ−1.

Furthermore, ∆′ = (ŝ(Qv ))v∈V (∆) is a foliated patchwork for ŝ(Q) and (s(Pv ))v∈VH(∆) is a set
of σ–approximating planes.
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By Lemma 4.2, α(ŝ(Qv )) =
√

a
bα(Qv ) and |ŝ(Qv )| = a2b|Qv |, so W (V (∆′)) = b3W (V (∆))

and

|ŝ(Q)| 3
4 W

(
V (∆′)

) 1
4 = (a2b)

3
4 |Q| 3

4 b
3
4 W

(
V (∆)

) 1
4 = (ab)

3
2 |Q| 3

4 W
(
V (∆)

) 1
4 .

If (146) holds for f and Q, then, by Lemma 2.12,∥∥vP
ŝ(Q), f̂

∥∥
L4([t0−log4(ab),∞)) = (ab)

3
2
∥∥vP

Q, f

∥∥
L4([t0,∞))

.σ(ab)
3
2 |Q| 3

4 W
(
V (∆)

) 1
4 =σ|ŝ(Q)| 3

4 W
(
V (∆′)

) 1
4 .

That is, (146) holds for f̂ and s(Q).
To prove Lemma 6.2, we will need some lemmas on partitions and coherent sets. A

collection {Q1, . . . ,Qn} of pseudoquads is a partition of Q if Q = ⋃n
i=1 Qi and if the Qi

overlap only along their boundaries. A coherent subtree of T is a connected subtree such
that for every v ∈ T , either all children of v are contained in T or none of them are. A
coherent subset of V (∆) is the vertex set of a coherent subtree.

Lemma 6.3. Let ∆ be a rectilinear foliated patchwork for Q and suppose that S ⊆ V (∆) is
coherent. Let M = maxS be the maximal element of S and let minS be the set of minimal
elements of S. Denote

F1 = F1(S)
def= {

p ∈QM : there are infinitely many v ∈ S such that p ∈Qv
}
.

Then

QM = F1
⋃( ⋃

w∈minS
Qw

)
. (147)

The interiors of {Qw : w ∈ minS} are pairwise disjoint and disjoint from F1. If S is finite,
then minS is a partition of QM .

Proof. Let v ∈ minS and let p ∈ intQv . If u ∈ S and p ∈Qu , then either u < v or v É u. The
first is impossible by the minimality of v , so v É u. It follows that there are only finitely
many w ∈ S such that p ∈Qw and no such w is minimal except v . That is, intQv is disjoint
from F1 and if u ∈ minS and u 6= v , then intQv is disjoint from intQu .

If p ∈ QM àF1, then the set {v ∈ S : p ∈ Qv } is finite and thus has a minimal element
v0. Let w be a child of v0 such that p ∈Qw . The minimality of v0 implies that w 6∈ S, so
v ∈ min(S) by the coherence of S. This implies (147). �

Lemma 6.4. Fix 0 <µÉ 1
32 and let (∆, (Qv )v∈∆) be a µ–rectilinear foliated patchwork for

Q with W (VV(∆)) <∞. For any 0 <σÉ δz (Q), denote Sσ = {v ∈ V (∆) : δz (Qv ) Êσ} and let
Fσ = minSσ. Then {Qv }v∈Fσ is a partition of Q into horizontally cut pseudoquads such that
σÉ δz (Qv ) < 4σ for all v ∈ Fσ.

Proof. By Definition 4.4 and Lemma 4.5, the height of every pseudoquad of ∆ is equal to
the height of its sibling and at most the height of its parent. Therefore, Sσ is coherent. If
v ∈ Sσ, then

W ({v}) =α(Qv )−4|Qv | ³ δz (Qv )3δx (Qv )−3 Êσ3δx (Q)−3,

which is bounded away from 0, so Lemma 4.10 implies that Sσ is finite. By Lemma 6.3, Fσ
partitions Q.
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Suppose v ∈ Fσ and let w ∈C (v). By the minimality of v , we have v ∈ Sσ and w 6∈ Sσ,
so δz (Qv ) Ê σ > δz (Qw ). Since δz (Qw ) < δz (Qv ), v is horizontally cut. Furthermore,
by Lemma 4.5, σ > δz (Qw ) Ê 1

4δz (Qv ), so v is a horizontally cut pseudoquad such that
σÉ δz (Qv ) < 4σ, as desired. �

We will use these partitions to decompose the parametric vertical perimeter of f and
prove Lemma 6.2.

Proof of Lemma 6.2. By the remarks after Lemma 6.2, condition (146) is invariant under
scaling, so we may rescale so that δz (Q) = 1. Let ∆ be a 1

32 –rectilinear foliated patchwork
for Q and let (Pv )v∈VH(∆) be a set ofσ–approximating planes. Without loss of generality, we
suppose that W (V (∆)) <∞. For each v ∈ VH(∆), let fv : V0 →R be the affine function such
that Γ fv = Pv . For i ∈N∪ {0} let Ci = F2−2i−1 ⊆ VH(∆) be as in Lemma 6.4, so that {Qv }v∈Ci

is a partition of Q into horizontally-cut pseudoquads with heights in [2−2i−1,2−2i+1). No
vertex of ∆ appears in more than one of the Ci ’s.

We start by bounding vP
Qv , f (t) from above for each v ∈Ci for a fixed i ∈N∪ {0}. Then

we have 2−2i É 2δz (Qv ), so Lemma 4.1 implies that Z−2−2t
Qv ⊆ 10Qv for any t ∈ [i , i +1].

Therefore, since fv is constant on vertical lines,

vP
Qv , f (t ) = 2t

ˆ
Qv

∣∣ f (w)− f
(
w Z−2−2t )∣∣dw

É 2t
ˆ

Qv

(
| f (w)− fv (w)|+ ∣∣ fv

(
w Z−2−2t )− f

(
w Z−2−2t )∣∣)dw

= 2t
(
‖ f − fv‖L1(Qv ) +‖ f − fv‖L1(Z−2−2t Qv )

)
(145)É 2t+1|Qv |σδz (Qv )

δx (Qv )

(136)³ σδz (Qv )
3
2 ³σα(Qv )−1|Qv |.

Since {Qv }v∈Ci is a partition of Q, we have vP
Q, f (t ) =∑

v∈Ci
vP

Qv , f (t ) for all t ∈R. Thus∥∥vP
Q, f

∥∥
L4([i ,i+1)) É

∑
v∈Ci

∥∥vP
Qv , f

∥∥
L4([i ,i+1]).

∑
v∈Ci

σα(Qv )−1|Qv |. (148)

Consequently,

∥∥vP
Q, f

∥∥4
L4([0,∞)) =

∞∑
i=0

∥∥vP
Q, f

∥∥4
L4([i ,i+1))

(148)
. σ4

∞∑
i=0

( ∑
v∈Ci

α(Qv )−1|Qv |
)4

Éσ4
∞∑

i=0

( ∑
v∈Ci

|Qv |
)3( ∑

v∈Ci

α(Qv )−4|Qv |
)

(141)= σ4|Q|3
∞∑

i=0
W (Ci ) Éσ4|Q|3W

(
V (∆)

)
,

where the third step is an application of Hölder’s inequality. �

Finally, we use Lemma 2.11 and Lemma 2.12 to prove Theorem 6.1.

Proof of Theorem 6.1. After scaling, it suffices to prove the theorem in the case that r = 1,
i.e., that if Γ is the intrinsic graph of an intrinsic λ–Lipschitz function f : V0 →R, then∥∥vB1

(
Γ+

)∥∥
L4(R).λ 1. (149)
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By the definition (30),

∀t ∈R, vB1

(
Γ+

)
(t ) = 2t

∣∣B1 ∩
(
Γ+4Γ+Z 2−2t )∣∣É 2t |B1|. 2t .

Hence,

∀a ∈R,
∥∥vB1

(
Γ+

)∥∥
L4((−∞,a]) =

(ˆ a

−∞
vB1

(
Γ+

)
(t )4 dt

) 1
4

.
(ˆ a

−∞
24t dt

) 1
4

. 2a ,

and therefore we have the following simple a priori bound.

∀a ∈R,
∥∥vB1

(
Γ+

)∥∥
L4(R). 2a +∥∥vB1

(
Γ+

)∥∥
L4((a,∞)). (150)

We will first treat the (trivial) case B5∩Γ=∅, so that either B5 ⊆ Γ+ or B5 ⊆ Γ−. Without
loss of generality, suppose that B5 ⊆ Γ+. This implies that B1 ⊆ Γ+∩Z 2−2t

Γ+ for any t Ê 0,
so vB1 (Γ+)(t ) = 0, and therefore in this case (149) follows from the case a = 0 of (150).

We may thus suppose from now on that B5 ∩Γ 6=∅. Fix any point p ∈ B5 ∩Γ. Then
d(p,〈Y 〉) É 5 and p = vY f (v) for some v ∈V0 with | f (v)| É 5, so by Lemma 2.3, we have

| f (0)| É | f (v)|+ | f (v)− f (0)| É 5+ 2

1−λd(p,〈Y 〉). 1

1−λ .

Likewise, for any t ∈R,

| f (Z t )| É | f (0)|+ 2

1−λd(0, Z t ). 1+
p|t |
1−λ .

For t ∈R, let g t : R→Rbe a function such that g t (0) = t and the graph of g t is characteristic
for f . By (51), g ′

t (0) =− f (Z t ), so by Lemma 2.7 and the estimate above,

max
x∈[−1,1]

|g t (x)− t | É |g ′
t (0)|+ λ

2
p

1−λ2
= | f (Z t )|+ λ

2
p

1−λ2
.λ 1+

√
|t |. (151)

The right hand side of (151) grows slower than |t | as |t |→∞, so there is t0 = t0(λ) > 1 such
that the pseudoquad Q that is bounded by the lines x =±1 and z = g±t0 (x) is 1

32 –rectilinear
and contains the projectionΠ(B1).

Theorem 5.2 applied with the choice of parameters µ0 = 1
32 and σ= 1 shows that Q has

a foliated patchwork ∆ and a set of 1–approximating planes that satisfy

W
(
VV(∆)

)
.λ |Q|.λ 1.

By Lemma 4.10, this implies that

W
(
V (∆)

)
.W

(
VV(∆)

)+α(Q)−4|Q|.λ 1. (152)

By Lemma 2.11 and Lemma 6.2, we conclude as follows.∥∥vB1

(
Γ+

)∥∥
L4(R).

1√
δz (Q)

+∥∥vB1

(
Γ+

)∥∥
L4([− log4δz (Q),∞))

É 1√
δz (Q)

+∥∥vP
Q, f

∥∥
L4([− log4δz (Q),∞)).

1√
δz (Q)

+|Q| 3
4 W

(
V (∆)

) 1
4 .λ 1,

where the first step is an application of (150) with a = − log4δz (Q), the second step is
an application of Lemma 2.11 because Q ⊇ Π(B1), the third step is an application of
Lemma 6.2, and the final step holds due to (152) and because |Q| ³ δz (Q) ³λ 1. �
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7. THE SUBDIVISION ALGORITHM: CONSTRUCTING A FOLIATED CORONA DECOMPOSITION

In this section, we will formulate an iterative subdivision algorithm (Lemma 7.3 below)
and prove that, given certain propositions on the geometry of pseudoquads, this algorithm
produces a foliated corona decomposition. In the following sections, we will prove these
geometric propositions. Together, these arguments establish Theorem 5.2.

Fix λ,σ ∈ (0,1). Let f : V0 → R, and suppose that Γ = Γ f is an intrinsic λ–Lipschitz
graph. Let 0 <µÉ 1

32 . To show that Γ admits a foliated corona decomposition, we must
show that for any µ–rectilinear pseudoquad Q, there is a µ–rectilinear foliated patchwork
∆ for Q which has a set of σ–approximating planes and such that ∆ is weighted-Carleson.

In order to describe the subdivision algorithm that produces ∆, we will introduce the
R–extended parametric normalized nonmonotonicity of Γ, denoted byΩP

Γ+,R , which is a
measure on V0 with density based on how horizontal line segments of length at most
R > 0 intersect Γ. If Γ is a plane, for instance, then ΩP

Γ+,R = 0, while ΩP
Γ+,R has positive

density when Γ is bumpy at scale R.
This is in the spirit of the quantitative nonmonotonicity used in [CKN11] and [NY18],

but it counts different segments, and, like the parametric vertical perimeter, it is defined
in terms of the function f . We will give a full definition in Section 8 and discuss the
relationship between extended nonmonotonicity and quantitative nonmonotonicity in
Remarks 8.4 and 10.2. In Section 9, we will show that there is c > 0 depending on the
intrinsic Lipschitz constant of Γ such that the following kinematic formula (inequality)
holds for every measurable subset U ⊆V0.∑

i∈Z
ΩP
Γ+,2−i (U ) É c|U |.

Definition 7.1. Suppose that η,r,R > 0 and Q is a 1
4 –rectilinear pseudoquad. We say that

Γ is (η,R)–paramonotone on rQ if it satisfies the following bound.

ΩP
Γ+,Rδx (Q)(rQ)

|Q| É η

α(Q)4 . (153)

This condition is invariant under scalings, stretch maps, and shear maps; see the discussion
immediately after the proof of Lemma 8.8 below.

One of the main results of [CKN11] was that for small η > 0, any η–monotone set is
close to a plane inH; this is a “stability version” of the characterization of monotone sets
in [CK10b]. The following proposition, which we will prove in Sections 10–12, states not
only that paramonotone pseudoquads are close to vertical planes inH, but also that their
characteristic curves are close to the characteristic curves of their approximating planes.

Proposition 7.2. There is a universal constant r > 1 such that for any σ> 0 and 0 < ζÉ 1
32 ,

there are η,R > 0 such that if Γ= Γ f is the intrinsic Lipschitz graph of f : V0 →R, and if Q
is a 1

32 –rectilinear pseudoquad for Γ such that Γ is (η,R)–paramonotone on rQ, then

(1) There is a vertical plane P ⊆H (a σ–approximating plane) and an affine function
F : V0 →R such that P is the intrinsic graph of F and

‖F − f ‖L1(10Q)

|Q| Éσδz (Q)

δx (Q)
. (154)
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(2) Let u ∈ 4Q and let gΓ, gP : R→R be such that {z = gΓ(x)} (respectively {z = gP (x)})
is a characteristic curve for Γ (respectively P) that passes through u. Then

‖gP − gΓ‖L∞(4I ) É ζδz (Q).

It is important to observe that the bounds in Proposition 7.2 do not depend on the
intrinsic Lipschitz constant of f . Indeed, this proposition holds when Γ is merely the
intrinsic graph of a continuous function. This is important because paramonotonicity is
invariant under stretch automorphisms; a bound that depended on the intrinsic Lipschitz
constant of Γwould not be invariant.

Proposition 7.2 allows us to construct a µ–rectilinear foliated patchwork and a col-
lection of σ–approximating planes by recursively subdividing Q according to a greedy
algorithm.

Lemma 7.3. Let r be as in Proposition 7.2. Fix 0 <µÉ 1
32 and σ> 0. There are η,R > 0 with

the following property. Let Γ be an intrinsic Lipschitz graph and let Q be a µ–rectilinear
pseudoquad. There is a µ–rectilinear foliated patchwork ∆ for Q, such that for all v ∈ V (∆),
Qv is horizontally cut if and only if Γ is (η,R)–paramonotone on rQ, and ∆ admits a set of
σ–approximating planes.

Proof. Let r,η, and R be positive constants so that Proposition 7.2 is satisfied with ζ= µ
4 .

We construct∆ by a greedy algorithm. Denote the root vertex of∆ by v0 and let Qv0 =Q;
by assumption, it is µ–rectilinear. Suppose by induction that we have already constructed
a µ–rectilinear pseudoquad (Qv ,Rv ). Let v ∈ V (∆) be a vertex with children w and w ′.
Let I = [a,b] be the base of Qv and let g1, g2 : R→ R be its lower and upper bounds,
respectively.

Suppose that Γ is not (η,R)–paramonotone on rQv . The vertical line x = a+b
2 cuts Qv

and Rv vertically into two halves. Let Qw and Qw ′ be the halves of Qv and let Rw and
Rw ′ be the halves of Rv . Since (Qv ,Rv ) is µ–rectilinear, (Qw ,Rw ) and (Qw ′ ,Rw ′) are both
µ–rectilinear.

Now suppose that Γ is (η,R)–paramonotone on rQv . Proposition 7.2 states that there
is a σ–approximating plane P for Qv such that for every u ∈ 4Qv , any characteristic curve
of Γ that passes through u is ζδz (Q)–close to the characteristic curve of P that passes
through u. For i ∈ {1,2}, let ui =

( a+b
2 , gi ( a+b

2 )
)
, and let m be the midpoint of u1 and u2.

Let g3 : R→ R be a function whose graph is a characteristic curve for Γ that passes
through m. Let Qw and Qw ′ be the pseudoquads with base I that are bounded by the
graphs of g1, g3, and g2.

The characteristic curves of P that pass through u1, u2, and m are parallel evenly-
spaced parabolas; let h1,h2,h3 : V0 → R be the corresponding quadratic functions and
let d = h2 −h3 = h3 −h1 be the constant distance between them. Let Rw and Rw ′ be
the parabolic rectangles with base I that are bounded by these three parabolas. By
Proposition 7.2, we have ‖gi −hi‖L∞(4I ) É ζδz (Q) for i ∈ {1,2,3}. In particular, every x ∈ I
satisfies

|δz (Q)−2d | É |δz (Q)− (g2(x)−g1(x))|+ |g2(x)−g3(x)−d |+ |g3(x)−g1(x)−d | É 3ζδz (Q),
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so d Ê 1
4δz (Q) and ‖gi − hi‖L∞(4I ) É 4ζd = µd for i ∈ {1,2,3}. That is, (Qw ,Rw ) and

(Qw ′ ,Rw ′) are µ–rectilinear and satisfy Definition 4.4 with k = h3. We construct the desired
rectilinear foliated patchwork by repeating this process for every vertex of ∆. �

Pseudoquads that are not paramonotone contribute to the nonmonotonicity of Γ, so, as
in [NY18], the total number and size of these pseudoquads is bounded by the measure of
Γ. In Section 9, we will use an argument based on the Vitali Covering Lemma to prove that
rectilinear foliated patchworks constructed using Lemma 7.3 satisfy a weighted Carleson
condition, as stated in the following proposition.

Proposition 7.4. Let r > 1 and let 0 < µ É 1
32r 2 . Let η,R > 0 and let 0 < λ < 1. Let Γ

be an intrinsic λ–Lipschitz graph, let ∆ be a µ–rectilinear foliated patchwork for Γ, and
suppose that for all v ∈ V (∆), the pseudoquad Qv is horizontally cut if and only if Γ is
(η,R)–paramonotone on rQv . Let W : 2V (∆) → [0,∞] be as in (141). Then for any v ∈ V (∆),

W
(
{w ∈ VV(∆) : w É v}

)
.η,r,R,λ |Qv |. (155)

With these tools at hand, Theorem 5.2 follows directly.

Proof of Theorem 5.2 assuming Proposition 7.2 and Proposition 7.4. Let r be as in Propo-
sition 7.2 and write µ0 = 1

32r 2 . Fix 0 < µÉ µ0 and σ> 0, and let η,R be as in Lemma 7.3.
Since Γ is an intrinsic λ–Lipschitz graph, Lemma 7.3 produces a µ–rectilinear foliated
patchwork ∆ rooted at Q with a set of σ–approximating planes. By Proposition 7.4, this
patchwork is weighted–Carleson with a constant depending on η,r,R,σ, and λ. Since
r > 1 is universal and η,R depend only onµ,σ, we obtain Theorem 5.2 by using Lemma 5.5
to increase µ0 = 1

32r 2 to µ0 = 1
32 . �

Observe in passing that since in the above proof the patchwork that established The-
orem 5.2 was obtained from Proposition 7.2, we actually derived the following more
nuanced formulation of Theorem 5.2; it is worthwhile to state it explicitly here because
this is how it will be used in forthcoming work of the second named author.

Theorem 7.5. For every 0 < λ < 1 there is a function Dλ : R+×R+ → R+, and for every
0 < µ É 1

32 and σ > 0 there are η = η(µ,σ),R = R(µ,σ) > 0 with the following properties.
Suppose that Γ⊆H is an intrinsic λ–Lipschitz graph over V0 and Q ⊆V0 is a µ–rectilinear
pseudoquad for Γ. Then there is a µ–rectilinear foliated patchwork ∆ for Q such that ∆
is Dλ(µ,σ)–weighted-Carleson and has a set of σ–approximating planes. Moreover, for
all vertices v ∈ V (∆), the associated pseudoquad Qv is horizontally cut if and only if Γ is
(η,R)–paramonotone on rQ, where r > 1 is the universal constant in Proposition 7.2.

Remark 7.6. While the results in this paper rely only on approximating a intrinsic Lipschitz
graph by vertical planes to bound its vertical perimeter, Theorem 7.5 allows one to glue
vertical planes together to approximate an intrinsic Lipschitz graph by ruled surfaces.
Indeed, with notation as in Theorem 7.5, let F ⊆ V (∆) be a finite coherent subset such
that every vertex in F is horizontally cut. Let vF be the maximal element of F and let
m(F ) be the set of minimal elements of F . Then {Qv : v ∈ m(F )} is a partition of QvF into
a stack of pseudoquads Q1, . . . ,Qk that are vertically adjacent. The characteristic curves
bounding these pseudoquads can be approximated by parabolas, denoted h0, . . . ,hk ,
and the µ–rectilinearity of ∆ implies that these parabolas do not intersect inside QvF ;
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see the proof of Lemma 9.5. We can then construct a foliation of QvF by parabolas by
linearly interpolating between the hi ’s. Since any parabola is the projection of a horizontal
line to V0, this foliation is the set of characteristic curves of a ruled surface Σ ⊆ H. By
passing to a limit, one can construct a ruled surface corresponding to any coherent
subset of horizontally cut vertices. This procedure is roughly analogous to the method
used in [DS91] to approximate stopping-time regions in uniformly rectifiable sets in Rn

by Lipschitz graphs. In our setting, we can use linear interpolation instead of using a
partition of unity as in [DS91] or [NY18].

By Proposition 7.2, Σ approximates Γ and the characteristic curves of Σ approximate
the characteristic curves of Σ inside QvF (with accuracy depending on the heights of
the Qi ’s). In fact, if v ∈ VH(∆) is a vertex such that every descendant of v is horizontally
cut (i.e., D(v) ⊆ VH(∆)), then Σ coincides with Γ over Qv . We omit the details of these
approximations because they are not needed in the current work, but complete details
will be given in forthcoming work of the second named author where they will be used to
analyze intrinsic Lipschitz functions.

We will prove Proposition 7.2 and Proposition 7.4 in the following sections. Specifi-
cally, in Section 8, we will define extended nonmonotonicity and extended parametric
normalized nonmonotonicity and prove some of their basic properties. In Section 9, we
will prove that Proposition 7.2 implies Proposition 7.4. Finally, in Sections 10–12, we will
prove Proposition 7.2.

8. EXTENDED NONMONOTONICITY

8.1. Extended nonmonotonicity in R. In this section, we define the extended nonmono-
tonicity and extended parameterized nonmonotonicity of a set E ⊆H. Like the quantitative
nonmonotonicity that was defined in [CKN11] and the horizontal width that was defined
in [FOR20], these measure how horizontal lines intersect ∂E .

We first define these quantities on subsets of lines, then define them on subsets ofH by
integrating over the space of horizontal lines. Let L be the space of horizontal lines inH.
Let N be the Haar measure on L , normalized so that the measure of the set of lines that
intersect the ball of radius r is equal to r 3.

Recall that a measurable subset S ⊆R is monotone [CK10b] if its indicator function is
a monotone function (i.e., S is equal to either ∅,R, or some ray). For a measurable set
U ⊆R, we define the nonmonotonicity of S on U by

NMS(U )
def= inf

{
H 1(U ∩ (M 4S)

)
: M is monotone

}
,

where, as usual, M 4S = (M àS)∪ (S àM) is the symmetric difference of M and S.
For S ⊆R, we say that S has finite perimeter if ∂H 1 S is a finite set, where we recall the

notation (36) for measure theoretical boundary, which in the present setting becomes

∂H 1 S
def= {

x ∈R : 0 <H 1((x −ε, x +ε)∩S
)< 2ε for all ε> 0

}
.

If S ⊆R is a set of finite perimeter, then there is a unique collection of disjoint closed
intervals of positive length I (S) = {I1(S), I2(S), . . . } such that S 4⋃

I (S) has measure zero.
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For any R > 0, we define as follows a point measure ωS,R supported on the boundaries of
the intervals in I (S) of length at most R.

ωS,R
def= ∑

I∈I (S)
H 1(I )ÉR

H 1(I ) · (δmin I +δmax I ).

Let

ω̂S,R = ωS,R +ωRàS,R

2
.

These measures are inspired by analogous measures {ŵi }i∈Z used in [CKN11]. It was
shown in [CKN11] that if δ> 0 is sufficiently small, then the nonmonotonicity of S at scale
δi is bounded in terms of a measure ŵi that counts the set of endpoints of intervals in S
or RàS of length between δi and δi+1. The main difference between ŵi and ω̂S,δi is that
ŵi ignores intervals of length less than δi+1, but ω̂S,δi weights them by their lengths.

For U ⊆R, we call ω̂S,R (U ) the R–extended nonmonotonicity of S on U . (We will typically
use this notation when R > diamU .) We use the term “extended” here because it depends
not only on S ∩U , but also on the behavior of S outside U . For example, let U = [a,b]
and suppose that S ⊆ R is a set with locally finite perimeter. If ω̂S,R (U ) = 0 for all R > 0,
then there can be no finite-length interval in I (S) or I (RàS) with a boundary point in U .
That is, U ∩∂H 1 S is empty or, up to a measure-zero set, S = [c,∞) or S = (−∞,c] for some
c ∈ [a,b]. Similarly, when S = [a,b] and R > b −a, if ω̂S,R (U ) is much smaller than b −a,
then either U ∩∂H 1 S is almost empty or U is almost monotone on an R–neighborhood of
S. This follows from the following two lemmas. The first lemma is based on the bounds in
Proposition 4.25 of [CKN11] and Lemma 3.4 of [FOR20].

Lemma 8.1. Let a,b ∈R, let U ⊆ [a,b], and let R Ê b−a. For any finite-perimeter set S ⊆R,

NMS(U ) É diam
(
(a,b)∩∂H 1 S

)É ω̂S,R
(
(a,b)

)
.

Proof. Let δ= diam
(
(a,b)∩∂H 1 S

)
. Consider the following set of closed intervals.

J
def= {I ∈I (S)∪I (RàS) : I ∩ (a,b) 6=∅}.

This set is finite, so we may label its elements J1, . . . , Jn in increasing order. After changing
S on a measure-zero subset, the interiors of the Ji ’s are alternately contained in S and
disjoint from S. If n = 1, then NMS(U ) = 0 and δ= 0, so we suppose that n Ê 2. Then

δ= min(Jn)−max(J1) =
n−1∑
i=2

H 1(Ji )

and

ω̂S,R
(
(a,b)

)Ê 2
n−1∑
m=2

H 1(Jm) Ê δ.

Regardless of whether J1 and Jn are in or out of S, there is a monotone subset M ⊆R such
that 1M agrees with 1S on J1 and Jn . Then

NMS(U ) ÉH 1(U ∩ (S 4M)
)ÉH 1([a,b]à (J1 ∪ Jn)

)= δ. �

A similar reasoning gives the following lower bound. Recall that suppH 1 and intH 1

denote measure-theoretic support and interior, see (35)–(37).
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Lemma 8.2. Fix R, a,b ∈Rwith a < b and R Ê b−a. Let S ⊆R have locally finite perimeter
such that a,b ∈ suppH 1 (RàS). For any closed interval I ⊆ [a,b], either I ⊆ intH 1 S or

ω̂S,R (I ) Ê H 1(S ∩ I )

2
.

Proof. Suppose that I 6⊆ intH 1 S. Let I1, . . . , In be the intervals in I (S) that intersect I .
By assumption, each of the intervals I1, . . . , In has at least one endpoint in I . Further-
more, since a,b ∈ suppH 1 (Rà S), we have I j ⊆ [a,b] for all j ∈ {1, . . . ,n}. In particular,
max j∈{1,...,n}`(I j ) É R. Up to a null set, we have S ∩ I ⊆⋃n

j=1 I j , so

ω̂S,R (I ) Ê
n∑

j=1

H 1(I j )

2
Ê H 1(S ∩ I )

2
. �

These lemmas yield the following description of sets with small extended nonmono-
tonicity, which states that points in their measure theoretic boundary must be either very
close to each other, or very far from each other.

Proposition 8.3. Let S ⊆R be a set with locally finite perimeter and fix c,d ∈Rwith c < d.
Let R Ê d − c and suppose that 0 < ε< d−c

8 and ω̂S,R ((c,d)) < ε. Then,

∀t ∈ [c +4ε,d −4ε]∩∂H 1 S, diam
(
(t −R, t +R)∩∂H 1 S

)< ε. (156)

Proof. Fix t ∈ [c +4ε,d −4ε]∩∂H 1 S. We will prove that this implies that

(t −R, t +R)∩∂H 1 S ⊆ (c,d). (157)

Equation (156) is a consequence of the inclusion (157), since by Lemma 8.1,

diam
(
(t −R, t +R)∩∂H 1 S

) (157)É diam
(
(c,d)∩∂H 1 S

)É ω̂S,R
(
(c,d)

)< ε.

Suppose by way of contradiction that (157) fails. So, there is u ∈ (t −R, t +R)∩∂H 1 S
with u Ê d or u É c. We will treat only the case u Ê d since the case u É c is analogous.
Lemma 8.2 applied with [a,b] = [t ,u] and I = [t ,d ], gives

H 1(S ∩ [t ,d ])

2
É ω̂S,R ([t ,d ]) < ε.

If we replace S by RàS, the Lemma 8.2 gives

H 1([t ,d ]àS)

2
É ω̂S,R ([t ,d ]) < ε.

So d − t < 4ε, which contradicts the choice of t . �

Remark 8.4. Despite the name “extended nonmonotonicity,” there is no direct comparison
between the extended nonmonotonicity of S on U and the nonmonotonicity of S on
a neighborhood of U . For example, if R > 0, 0 < ε < 1, and S = [−ε,ε]∪ [R,∞), then
NMS(R) = 4ε, but ω̂S,R is the point measure

ω̂S,R = εδ−ε+
(
ε

2
+ R

2

)
δε+ R

2
δR ,

so ω̂S,R ([−1,1]) is large despite S having small nonmonotonicity. Conversely, for any
T ⊆R that contains [−1,1], the boundary ∂H 1 T is disjoint from (−1,1), so ω̂T,R ((−1,1)) = 0
regardless of the behavior of T on the rest of R.
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8.2. Extended nonmonotonicity inH. We have defined NM and ω̂ for subsets of R, but
the same definitions are valid for subsets of any line L ∈ L . This lets us define the
nonmonotonicity of a subset ofH by integrating over horizontal lines.

When U ,E ⊆H are measurable sets, we define the nonmonotonicity of E on U by

NME (U )
def=

ˆ
L

NME∩L(U ∩L)dN (L).

(Note that this definition differs from the definition in [CKN11]. Specifically, in [CKN11],
this was only defined in the case that U = Br (x) for some r ∈ (0,∞) and x ∈H, and was
normalized by a factor of r−3 to make it scale-invariant.)

Definition 8.5. Fix R > 0. Let E ⊆H be a set with finite perimeter. By the kinematic formula
(Section 2.5), for almost every L ∈L , the intersection E ∩L is a set with finite perimeter, and
we define for U ⊆H,

ω̂E ,R (U ,L)
def= ω̂E∩L,R (U ∩L). (158)

We then define a measure ENME ,R onH by setting

ENME ,R (U )
def=

ˆ
L

ω̂E ,R (U ,L)dN (L).

We call ENME ,R (U ) the R–extended nonmonotonicity of E on U , and for ν> 0 we say that
E is (ν,R)–extended monotone on U if ENME ,R (U ) É ν. Like ω̂S,R (·), ENME ,R (U ) depends
on the behavior of E in an R–neighborhood of U . If R É R ′, then ENME ,R É ENME ,R ′ .

When we say that a subset U ⊆H is convex, we will always mean that it is convex as a
subset of the vector space R3. For every g ∈H, the map v 7→ g v is an affine map fromH to
itself, so convexity is preserved by left multiplication.

Lemma 8.6. Let U ⊆H be a measurable bounded set and let K ⊆U be convex. Let E ⊆H be
a finite-perimeter set. Then, for every R > diamU we have

NME (K ) É ENME ,R (U ).

Proof. Let L ∈L be a horizontal line. By convexity, the intersection I = L∩K is an interval
and `(I ) É diamU . By Lemma 8.1,

NME∩L(I ) É ω̂E∩L,R (I ) É ω̂E ,R (U ,L).

Integrating both sides of this inequality with respect to N yields the desired bound. �

We will also define a parametric version of extended nonmonotonicity that is better
adapted to intrinsic Lipschitz graphs. This is based on a different measure on the space of
horizontal lines, denoted NP , which we next describe.

Let W0 = {x = 0} be the y z–plane and let LP be the set of horizontal lines that are not
parallel to W0. Each L ∈LP intersects W0 in a single point w(L), called the intercept of L,
and has a unique slope m(L) ∈R such that L = w(L) · 〈X +m(L)Y 〉.

The map (m, w) : LP →R×W0 is a bijection, and we define NP to be the pullback of
the Lebesgue measure on R×W0 under this bijection. This measure is preserved by shear
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maps and translations. If a,b > 0 and if L(0,y,z),m is the line with slope m and intercept
(0, y, z), then sa,b(L(0,y,z),m) = L(0,by,abz),m b

a
, so for any measurable set A ⊆LP ,

NP
(
sa,b(A)

)= b3NP (A). (159)

Let E ⊆H. For any R > 0, any U ⊆V0, and any L ∈LP , we define

ω̂P
E ,R (U ,L)

def= ω̂x(E∩L),R

(
x
(
Π−1(U )∩L

))
. (160)

This is similar to ω̂E ,R (Π−1(U ),L) in (158), but the projection to the x–coordinate that
appears in (160) changes the measures and lengths involved by a constant factor.

When E is a finite-perimeter subset ofH, we define a measureΩP
E ,R on V0 by setting for

any measurable subset U ⊆V0,

ΩP
E ,R (U )

def= 1

R

ˆ
LP

ω̂P
E ,R (U ,L)dNP (L). (161)

We call ΩP
E ,R (U ) the R–extended parametric normalized nonmonotonicity of E on U . Note

that the definition (161) includes an R−1 factor that does not appear in Definition 8.5; we
will see that this normalization allows for the kinematic formula (33) to hold.

In general, the measureΩP
E ,R is not necessarily locally finite. Indeed, if B ⊆H is a ball,

then the set of lines that pass through B has infinite NP –measure. But when Γ is an
intrinsic λ–Lipschitz graph, any line with sufficiently large slope intersects Γ exactly once.
If E = Γ+ and L ∈LP is a line such that L∩E is nonmonotone, then L has bounded slope;
it follows thatΩP

Γ+,R (K ) is finite for any compact K ⊆V0. Furthermore,ΩP
Γ+,R is bounded

below by ENMΓ+,R .

Lemma 8.7. Let R > 0 and let x ∈H. Suppose that E is a finite-perimeter subset ofH and
let U ⊆H be measurable. Then

ENME ,R (U ).RΩP
E ,R

(
Π(U )

)
.

Proof. Let L ∈LP and let m = m(L) be the slope of L, so that the restriction x|L shrinks
lengths by a factor of φ(m) =

p
1+m2. Then

ω̂P
E ,R (Π(U ),L) = ω̂E ,φ(m)·R (Π−1(Π(U )),L)

φ(m)
Ê ω̂E ,R (U ,L)

φ(m)
.

For w ∈W0 and m ∈R, let Lw,m be the line Lw,m = w · 〈X +mY 〉 ∈LP . Then it follows that

RΩP
E ,R

(
Π(U )

)= ˆ
W0

ˆ
R

ω̂P
E ,R (Π(U ),Lw,m)dm dw Ê

ˆ
W0

ˆ
R

ω̂E ,R (U ,Lw,m)p
1+m2

dm dw.

For θ ∈ R, let Rθ : H→ H be the rotation by angle θ around the z–axis. Since N is
invariant under translations and rotations, there is c > 0 such that for any measurable
f : L →R, ˆ

L

f (M)dN (M) = c

ˆ
W0

ˆ π
2

− π
2

f
(
Rθ(Lg ,0)

)
dθdg .

Any line in LP can be written as Rθ(Lg ,0) for some θ ∈R and g ∈W0. Specifically, for w ∈
W0 and m ∈ R, let θ(m) = arctanm and let gm(w) be the W0–intercept of R−θ(m)(Lw,m)),
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so that Lw,m = Rθ(m)(Lgm (w),0). Writing gm in coordinates as gm = (0,bm ,cm), its Jacobian
is

Jgm (y, z) = det

( dbm
dy

dbm
dz

dcm
dy

dcm
dz

)
= det

(
cos(arctanm) 0

dcm
d y 1

)
= 1p

1+m2
.

Consequently,

ˆ
W0

ˆ π
2

− π
2

f
(
Rθ(Lg ,0)

)
dθdg =

ˆ
W0

ˆ
R

f (Lw,m)
dθ

dm
Jgm (w)dm dw

=
ˆ

W0

ˆ
R

f (Lw,m)

(1+m2)
3
2

dm dw.

Thus

ENME ,R (U ) =
ˆ

L

ω̂E ,R (U ,L)dN (L) = c

ˆ
W0

ˆ
R

ω̂E ,R (U ,Lw,m)

(1+m2)
3
2

dm dw É cRΩP
E ,R

(
Π(U )

)
,

as desired. �

One advantage ofΩP over ENM is thatΩP scales nicely under automorphisms.

Lemma 8.8. Fix a,b ∈Rà {0} and let g = q ◦ρh ◦ sa,b : H→H be a composition of a shear
map q, a left-translation by h ∈ H, and a stretch map sa,b . Let ĝ : V0 → V0 be the map
induced on V0, i.e., ĝ (x) =Π(g (x)) for all x ∈ V0. Let E ⊆H be a set with finite perimeter.
For any measurable U ⊆V0 and any R > 0, ifΩP

E ,R (U ) is finite, then

ΩP
g (E),|a|R (ĝ (U )) = |b|3ΩP

E ,R (U ), (162)

and

ΩP
g (E),|a|R (ĝ (U ))

|ĝ (U )| = b2

a2 ·
ΩP

E ,R (U )

|U | . (163)

In particular, if g is a composition of a scaling, shear, and translation, i.e., when a = b
above, then g preserves the density ofΩP

E ,R .

Proof. The identity (162) is verified by computing as follows, using (159).

ΩP
g (E),|a|R

(
ĝ (U )

)= 1

|a|R
ˆ

LP

ω̂P
g (E),|a|R

(
ĝ (U ),L

)
dNP (L)

= |b|3
|a|R

ˆ
LP

ω̂P
g (E),|a|R

(
ĝ (U ), g (L)

)
dNP (L)

= |b|3
|a|R

ˆ
LP

|a|ω̂P
E ,R (U ,L)dNP (L)

= |b|3ΩP
E ,R (U ),

By Lemma 2.8 we have |ĝ (U )| = a2|b| · |U |, which implies (163). �
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Suppose that Q is a pseudoquad for an intrinsic Lipschitz graph Γ⊆H and that g is as
in Lemma 8.8. If Γ is (η,R)–paramonotone on rQ as in Definition 7.1, then the density of
ΩP
Γ+,Rδx (Q) is bounded as follows:

ΩP
Γ+,Rδx (Q)(rQ)

|Q| É η

α(Q)4 .

Let Q̂ = ĝ (Q) and Γ̂= g (Γ). Then (163) and Lemma 4.2 imply that

ΩP
Γ̂+,Rδx (Q̂)

(rQ̂)

|Q̂| É ηb2

a2α(Q)4 = η

α(Q̂)4
,

so Γ̂ is (η,R)–paramonotone on rQ̂ if and only if Γ is (η,R)–paramonotone on rQ.
In particular, it follows from Lemma 8.7 that if Γ is (η,R)–paramonotone on rQ, then

ENMΓ+,Rδx (Q)
(
Π−1(rQ)

)
.Rδx (Q)ΩP

Γ+,Rδx (Q)(rQ) É δx (Q)|Q|
α(Q)4 ηR ³Q ηR. (164)

9. THE KINEMATIC FORMULA AND THE PROOF OF PROPOSITION 7.4

In this section, we prove Proposition 7.4 using two lemmas. The first bounds the total
weight of the vertically cut descendants of a vertex v ∈ V (∆) in terms ofΩP .

Lemma 9.1. Let r , η, R, λ, Γ, and ∆ be as in Proposition 7.4. Then for any v ∈ V (∆),

W ({w ∈ VV(∆) : w É v}).η,r,R

∞∑
i=0

ΩP
Γ+,2−i Rδx (Qv )(rQv ). (165)

The second is a kinematic formula boundingΩP in terms of Lebesgue measure on V0.

Lemma 9.2. Let 0 <λ< 1 and let Γ be an intrinsic λ–Lipschitz graph. For any measurable
set U ⊆V0, ∑

i∈Z
ΩP
Γ+,2−i (U ).λ |U |. (166)

Proposition 7.4 follows from Lemma 9.1 and Lemma 9.2.

Proof of Proposition 7.4 assuming Lemma 9.1 and Lemma 9.2. Fix v ∈ V (∆) and denote
δ= δx (Qv ). Due to Lemma 9.1,

W ({w ∈ VV(∆) : w É v}).η,r,R

∞∑
i=0

ΩP
Γ+,2−i Rδ(rQv ).

Let k be the integer such that 2k−1 É Rδ< 2k . Then
∞∑

i=0
ΩP
Γ+,2−i Rδ(rQv ) É

∞∑
i=0

2ΩP
Γ+,2−i+k (rQv )

(166)
. λ |rQv |.

Thus, W ({w ∈ VV(∆) : w É v}).η,r,λ,R |Qv |. �

We first establish Lemma 9.1, which we prove using an argument based on the Vitali
Covering Lemma. The first step is to construct partitions of Q into pseudoquads with
dyadic widths. As in Lemma 6.4, we construct these partitions from coherent subtrees.
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Lemma 9.3. Let 0 <µÉ 1
32 and let (∆, (Qv )v∈∆) be a µ–rectilinear foliated patchwork for a

µ–rectilinear pseudoquad Q. Fix j ∈N∪ {0}. For v ∈ V (∆), let DV(v) ⊆ V (∆) denote the set
of vertically cut descendants of v, and let

F j (v)
def=

{
w ∈DV(v) : δx (Qw ) = 2− jδx (Q)

}
.

Then, for any w, w ′ ∈ F j (v), if w 6= w ′, then Qw and Qw ′ have disjoint interiors.

Proof. Let D(v) be the set of descendants of v and let

R j =
{

w ∈D(v) : δx (Qw ) Ê 2− jδx (Qv )
}

.

By Lemma 4.5, this is a coherent set and F j (v) = minR j , so Lemma 6.3 implies that F j (v)
consists of pseudoquads with disjoint interiors. �

Let v0 be the root of ∆ (so Q =Qv0 ). For each j ∈N∪ {0} we write F j = F j (v0). Denote
I = x(Q) and l j = 2− j`(I ) = 2− jδx (Q). Let I j ,1, . . . , I j ,2 j be the partition of I into 2 j intervals
of length l j , so that for any v ∈ V (∆), there are j ,m ∈N∪ {0} such that x(Qv ) = I j ,m . We
partition F j into columns as follows.

∀m ∈ {1, . . . ,2 j }, F j ,m
def= {w ∈ F j : x(Qw ) = I j ,m}. (167)

Each column satisfies the following version of the Vitali Covering Lemma.

Lemma 9.4. For each j ∈N∪ {0} and m ∈ {1, . . . ,2 j }, there is a (possibly finite) sequence of
vertices D j ,m = {v1, v2, . . .} ⊆ F j ,m such that rQv1 ,rQv2 , . . . are pairwise disjoint and

W (D j ,m) ³r W (F j ,m).

We prove Lemma 9.4 using the following expansion property.

Lemma 9.5. Let r > 1 and 0 < µÉ 1
32r 2 . Let ∆ be a µ–rectilinear foliated patchwork. Let

v, w ∈ V (∆) be vertices such that x(Qv ) = x(Qw ) and suppose that rQv ∩ rQw is nonempty.
If δz (Qv ) Ê δz (Qw ), then Qw ⊆ 3rQv , and if δz (Qw ) Ê δz (Qv ), then Qw ⊆ 3rQv .

Proof. Write I = [−1,1]. By rescaling and translating, we may suppose without loss of
generality that x(Qv ) = x(Qw ) = I . Also, we may suppose that Qv is vertically below Qw .
We first construct a stack of pseudoquads of width at least 2 that connects Qv and Qw .

For u ∈ V (∆), let A(u) = {t ∈ V (∆) : t Ê u} be the set of ancestors of u. If u 6= v0, let S(u)
be the sibling of u and let P (u) be the parent of u. Let

J = A(v)∪ A(w)∪S
(

A(v)∪ A(w)
)
.

Since A(v)∪ A(w) spans a connected subtree of ∆, so does J , and J is a coherent subset of
V (∆). Furthermore, J is finite, so K = min J is a partition of Q.

If u ∈ K , then u is either an ancestor of v or w or a sibling of such an ancestor. In either
case, δx (Qu) Ê 2, and the base of Qu either contains I or its interior is disjoint from I . Let
K ′ = {u ∈ K : I ⊆ x(Qu)}. For each u ∈ K ′, Qu intersects the z–axis in an interval. We denote
the elements of K ′ by u1, . . . ,un , in order of increasing z–coordinate. These pseudoquads
form a stack; each pseudoquad Qui is vertically adjacent to Qui+1 . We suppose that ua = v
and ub = w , with a < b.
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Rectilinearity implies that the boundaries of the Qui ’s have similar slopes. For each
i ∈ {1, . . . ,n}, let gi be the lower bound of Qui and let gi+1 be its upper bound. These may
be defined on different domains, but all of their domains contain I . For each i ∈ {1, . . . ,n},
let Rui be the parabolic rectangle associated to Qui and let di = δz (Qui ), so that there are
quadratic functions hi : R→R satisfying∥∥∥∥gi −

(
hi − di

2

)∥∥∥∥
L∞(I )

Éµdi and

∥∥∥∥gi+1 −
(
hi + di

2

)∥∥∥∥
L∞(I )

Éµdi .

Then ∥∥∥∥(
hi+1 − di+1

2

)
−

(
hi + di

2

)∥∥∥∥
L∞(I )

Éµ(di +di+1). (168)

Hence, for any i , j ∈ {1, . . . ,n} with i < j ,∥∥∥∥∥h j −hi −
j−1∑
k=i

dk +dk+1

2

∥∥∥∥∥
L∞(I )

Éµ
j−1∑
k=i

(dk +dk+1).

Since h j −hi −∑ j−1
k=i

dk+dk+1
2 is quadratic, by Lemma 4.6 it follows that∥∥∥∥∥h j −hi −

j−1∑
k=i

dk +dk+1

2

∥∥∥∥∥
L∞([−r,r ])

É 4r 2µ
j−1∑
k=i

(dk +dk+1) É
j−1∑
k=i

di +di+1

8
.

Denoting

D =
b−1∑
k=a

dk +dk+1

2
,

it follows that for all x ∈ [−r,r ] we have
3

4
D É hb(x)−ha(x) É 5

4
D. (169)

Suppose that δz (Qw ) É δz (Qv ). For each i ∈ {1, . . . ,n}, the definition (132) of rQ states

rQui =
{

(x, z) ∈V0 : x ∈ [−r,r ] and |z −hi (x)| É r 2di

2

}
.

Since δz (Qw ) É δz (Qv ) and rQv intersects rQw , there is t ∈ [−r,r ] such that

hb(t )−ha(t ) É r 2(db +da)

2
= r 2(δz (Qv )+δz (Qw ))

2
É r 2δz (Qv ),

and thus by (169) we have D É 4
3 r 2δz (Qv ).

Let (x, z) ∈Qw . By (168),

z ∈ [gb(x), gb+1(x)] ⊆
[

hb(x)− 3

4
δz (Qw ),hb(x)+ 3

4
δz (Qw )

]
,

so

|ha(x)− z| É |ha(x)−hb(x)|+ |hb(x)− z| É 5

4
D + 3

4
δz (Qw ) É (3r )2δz (Qv )

2
,

where the penultimate step uses (169) and the final step uses the upper bound on D
that we derived above and the assumption δz (Qw ) É δz (Qv ). It follows that (x, z) ∈ 3rQv

and thus Qw ⊆ 3rQv . If δz (Qv ) É δz (Qw ), then the analogous reasoning shows that
Qv ⊆ 3rQw . �
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Proof of Lemma 9.4. Similarly to the proof of the Vitali covering lemma, we define induc-
tively a sequence S0,S1 . . . , of subsets of F j ,m as follows. Let S0 =∅. For each i ∈N, let vi

be an element of F j ,m à⋃i−1
k=0 Si that maximizes δz (Qvi ). Define

Si =
{

w ∈ F j ,m à
i−1⋃
k=0

Sk : rQvi ∩ rQw 6=∅
}

.

If
⋃i

k=1 Sk = F j ,m , we stop. By construction, rQv1 ,rQv2 , . . . are disjoint. We will show that
the set D j ,m = {v1, v2, . . .} ⊆ F j ,m satisfies the desired properties.

We first claim that F j ,m = S1 ∪S2 ∪ . . ., where this holds by construction if there are
only finitely many vi ’s. So, suppose that there are infinitely many vi ’s and let w ∈ F j ,m .
There are only finitely many elements of F j ,m with height greater than δz (Qw ), so there
is i ∈N such that δz (Qvi ) < δz (Qw ). By the maximality of δz (Qvi ), this implies that w ∈
S1 ∪ . . .∪Si−1.

We next show that W (D j ,m) ³r W (F j ,m). As D j ,m ⊆ F j ,m , we have W (D j ,m) ÉW (F j ,m).
Conversely, if w ∈ Si , then rQw intersects rQvi and δz (Qw ) É δz (Qvi ), so Lemma 9.5
implies that Qw ⊆ 3rQvi . Since the elements of F j ,m are pairwise disjoint (Lemma 9.3)
pseudoquads of the same width, we have α(Qw ) Êα(Qvi ) and

W (Si ) = ∑
w∈Si

α(Qw )−4|Qw | Éα(Qvi )−4
∑

w∈Si

|Qw |

=α(Qvi )−4
∣∣∣ ⋃

w∈Si

Qw

∣∣∣Éα(Qvi )−4
∣∣3rQvi

∣∣³ r 3W ({vi }).

By summing this bound over j , we conclude

W (F j ,m) =W (S1)+W (S2)+ . . .. r 3(W ({v1})+W ({v2})+ . . .
)= r 3W (D j ,m). �

We are now ready to prove Lemma 9.1.

Proof of Lemma 9.1. It suffices to treat the case where v is the root of ∆, so Qv =Q. Fix
j ∈N∪ {0} and m ∈ {1, . . . ,2 j }. Let F j ,m and D j ,m be as in Lemma 9.4.

Since, by definition, F j ,m consists only of vertices that are vertically cut, by hypothesis,
Γ is not (η,R)–paramonotone on Qw for each w ∈ F j ,m , i.e.,

∀w ∈ F j ,m , ΩP
Γ+,Rl j

(rQw ) > ηα(Qw )−4|Qw | = ηW ({w}).

Let Sm = r I j ,m × {0}×R⊆V0. The sets {rQw }w∈D j ,m are disjoint subsets of Sm ∩ rQ, so

W (F j ,m) ³r W (D j ,m) É η−1
∑

w∈D j ,m

ΩP
Γ+,Rl j

(rQw ) É η−1ΩP
Γ+,Rl j

(Sm ∩ rQ).

By summing this bound over m ∈ {1, . . . ,2 j } we get

W (F j ).r

2 j∑
m=1

η−1ΩP
Γ+,Rl j

(Sm ∩ rQ).r η
−1ΩP

Γ+,Rl j
(rQ),

where the last step holds because the scaled intervals r I j ,1, . . . ,r I j ,2 j have bounded overlap
(depending on r ). By summing this bound over j , we conclude as follows.

W
(
VV(∆)

)= ∞∑
j=0

W (F j ).r η
−1

∞∑
j=0

ΩP
Γ+,R2− jδx (Q)(rQ). �
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Next, we prove Lemma 9.2 using the following kinematic formula for intrinsic Lipschitz
graphs. Recall (Section 2.1) that for a measurable subset E ⊆H, we let PerE denote the
perimeter measure of E ; this measure is supported on ∂E , and when E is bounded by
an intrinsic Lipschitz graph, it differs from 3–dimensional Hausdorff measure on ∂E
by at most a multiplicative constant. For any horizontal line L ∈ L , let ∂H 1|L E be the
measure-theoretic boundary of E in L and let PerE ,L be the counting measure on ∂H 1|L E .

Lemma 9.6. Fix 0 < λ < 1. Let ψ : V0 → R be intrinsic λ–Lipschitz and let Γ = Γψ be its
intrinsic graph. Let U ⊆V0 be a measurable set. For almost every L ∈LP , the intersection
L∩Γ+ has locally finite perimeter. If M ⊆LP is the set of lines that intersect Γ at least twice,
then ˆ

M

PerΓ+,L
(
Π−1(U )

)
dNP (L).λ |U |. (170)

Proof. The measures NP and N are absolutely continuous with respect to each other.
Indeed, for each m > 0, if D ⊆ LP is a set of lines with slopes that lie in [−m,m], then
NP (D) ³m N (D). By (58), there is c > 0 such that for any measurable A ⊆H,

PerΓ+(A) = c

ˆ
L

PerΓ+,L(A)dN (L).

Since Γ+ has locally finite perimeter, this implies that for almost every line L ∈LP , the
intersection L∩Γ+ has locally finite perimeter. For L ∈LP let m(L) be the slope of L as in
Section 8. Suppose that p ∈ L ∩Γ. By (48), if |m(L)| > λ/

p
1−λ2, then L ⊆ p ·Coneλ and

thus L intersects Γ exactly once. Consequently, |m(M)| Éλ/
p

1−λ2 for every M ∈M , and
hence NP (D) ³λ NP (D) for every measurable D ⊆M . So, by (58) and Lemma 2.5,ˆ

M

PerΓ+,L
(
Π−1(U )

)
dNP (L).λ PerΓ+

(
Π−1(U )

)³λ |U |. �

Proof of Lemma 9.2. For a finite-perimeter set S ⊆R and R > 0, let I (S) and

ω̂S,R = ωS,R +ωRàS,R

2
be as in Section 8.1. Divide I (S) according to the length of the intervals as follows.

∀ j ∈Z, C j (S)
def=

{
I ∈I (S) : 2− j−1 < |I | É 2− j

}
.

Let E j (S) ⊆ R be the set of endpoints of the intervals in C j (S). Let λS, j be the counting
measure on E j (S) and let

λ̂ j (S)
def= λS, j +λRàS, j

2
.

Then
∑

j∈Z λ̂S, j É PerS . (This isn’t necessarily an equality as the left hand side is influenced
only by bounded intervals while the right hand side could have a contribution from rays.)

For each k ∈Z, the measure ω̂S,2−k is a point measure supported on the set
∞⋃

j=k

(
E j (S)∪E j (RàS)

)
,

that weights each point according to the lengths of the intervals it bounds. In particular,

supp
(
ω̂S,2−k − ω̂S,2−k−1

)⊆ Ek (S)∪Ek (RàS),
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and
∀p ∈ Ek (S)∪Ek (RàS), 2−k−2 É ω̂S,2−k (p)− ω̂S,2−k−1 (p) É 2−k .

Consequently, if we denote

κ̂S,k
def= 2k(

ω̂S,2−k − ω̂S,2−k−1

)
,

then κ̂S, j ³ λ̂S, j and∑
j∈Z

κ̂S, j =
∑
j∈Z

2 j+1ω̂S,2− j −
∑
j∈Z

2 j ω̂S,2− j =
∑
j∈Z

2 j ω̂S,2− j .

It follows that ∑
j∈Z

2 j ω̂S,2− j ³
∑
j∈Z

λ̂S, j É PerS . (171)

For every measurable E ⊆H and U ⊆V0, and every L ∈LP , we have∑
j∈Z

2 j ω̂P
E ,2− j (U ,L)

(160)∧(171)
. Perx(E∩L)

(
x(Π−1(U )∩L)

)= PerE ,L
(
Π−1(U )

)
. (172)

Let M ⊆LP be the set of lines that intersect Γ at least twice. If L ∈LP àM , then I (L∩Γ+)
consists of infinite rays, so ω̂Γ+,R (U ,L) = 0 for any U ⊆V0. Thus,∑

j∈Z
ΩP
Γ+,2− j (U )

(161)= ∑
j∈Z

ˆ
M

2 j ω̂P
Γ+,2− j (U ,L)dNP (L)

(172)
.

ˆ
M

PerΓ+,L(Π−1(U ))dNP (L)
(170)
.λ |U |. �

10. OUTLINE OF PROOF OF PROPOSITION 7.2

The rest of this paper is dedicated to the proof of Proposition 7.2. This is the longest
part of the proof of Theorem 5.2, and we will divide it into two pieces.

In the first step (Section 11), we prove the following Proposition 10.1, which is a stability
result for extended-monotone sets (Definition 8.5). For every r > 0 and h ∈H, let B r (h) ⊆H
be the convex hull of Br (h) (as a subset of R3); when h is omitted, we take it to be 0. The
convex hull of Br with respect to the horizontal lines or with respect to all lines in R3 is
the same, and B r ⊆ B2r .

Proposition 10.1. Let E ⊆ H be a measurable set. For any ε > 0, there are ν,R > 0 such
that if E ⊆H is (ν′,R ′)–extended monotone on B 1 for some ν′,R ′ > 0 that satisfy R ′ Ê R and
ν′R ′ É νR, then there is a plane P ⊆H such that

|B 1 ∩ (P+4E)| < ε.

If Γ is an intrinsic Lipschitz graph and E = Γ+, then we can take P to be a vertical plane.

Proposition 10.1 is in the spirit of the stability theorem for monotone sets that was
proved in [CKN11], though here we do not need to obtain an explicit dependence of ν,R
on ε (in [CKN11] it was important to get power-type dependence). The lack of explicit
dependence lets us use a compactness argument that was not available in the context
of [CKN11]. At the same time, Theorem 4.3 of [CKN11] states that if the nonmonotonicity
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of E is small on the unit ball B1, then there is a smaller ball Bε3 on which E is O(ε)–
close to a plane, while Proposition 10.1 assumes a stronger hypothesis, namely that
ENME ,R (B 1) < ν, and obtains the stronger conclusion that E is close to a plane on the
same ball B 1.

Remark 10.2. The stronger conclusion above is crucial for the covering argument that we
used in Section 9 because of the delicacy of the Vitali-type argument used in Lemma 9.4.
We use Lemma 9.4 to show that if ∆ is a µ–rectilinear foliated patchwork, 0 < µ < 1

32r 2 ,
and F ⊆ V (∆) is a collection of vertices corresponding to pseudoquads of the same width,
then there is a large subset G of these pseudoquads such that if Q,Q ′ ∈ G , then rQ is
disjoint from rQ ′. Lemma 9.4 only holds when µ=O(r−2). If µr 2 is too large, then a µ–
rectilinear foliated patchwork could contain arbitrarily many vertically cut pseudoquads
Q1,Q2, . . . ,Qn of equal height and width such that rQ1, . . . ,rQn all intersect.

We do not see how a modified subdivision algorithm that uses monotonicity instead
of paramonotonicity can ensure that the conditions of Lemma 9.4 are satisfied. For
example, consider a modification of the subdivision algorithm in Section 7 that produces
a patchwork∆ by cutting a pseudoquad Q horizontally or vertically depending on whether
Γ is η–monotone (rather than paramonotone) on rQ for some r > 0. Theorem 4.3 of

[CKN11] implies that if Γ is sufficiently monotone on rQ, then Γ is O(r− 1
3 )–close to a

plane on Q. Indeed, there are sets that have zero nonmonotonicity on rQ, but are only
ε(r )–close to a plane on Q, where ε(r ) → 0 as r →∞. It follows that this modified algorithm
can, at best, produce µ(r )–rectilinear foliated patchworks, where µ(r ) → 0 as r →∞. In
particular, since µ(r ) depends on r , we cannot choose µ so that µ< 1

32r 2 .
Consequently, we cannot prove the weighted Carleson condition for this modified

algorithm. The weighted Carleson condition bounds the number of vertically cut pseudo-
quads based on the total nonmonotonicity of Γ, but without Lemma 9.4, a small amount
of nonmonotonicity can lead to many vertically cut pseudoquads. That is, if Q1, . . . ,Qn are
pseudoquads in the patchwork such that rQ1, . . . ,rQn all intersect, then nonmonotonicity
on the intersection rQ1 ∩·· ·∩ rQn could force the algorithm to cut all of the Qi vertically.

Using extended nonmonotonicity rather than nonmonotonicity lets us avoid this
problem. The fact that r is a universal constant in Proposition 7.2 means that for any
µ, there is a subdivision algorithm that produces a µ–rectilinear foliated patchwork by
cutting each pseudoquad Q based on whether Γ is (η(µ),R(µ))–paramonotone on rQ. In
particular, we can choose µ< 1

32r 2 so that Lemma 9.4 applies.

In the second step, we prove parts 1 and 2 of Proposition 7.2. By Remark 4.3, after a
stretch, shear, and translation, we may suppose that Q is a rectilinear pseudoquad for
Γ that is close to [−1,1]2 and Γ is (η,R)–paramonotone on rQ. For any given c, if R is
sufficiently large, η is sufficiently small, andΠ(B c ) ⊆ rQ, then, by Lemma 8.7, Γ+ has small
extended nonmonotonicity on B c , so Γ+ is close to a half-space P+ on B c .

Note that even though Γ+ is close to a half-space P+ on B c , it does not immediately fol-
low that the corresponding intrinsic Lipschitz function f is L1–close to an affine function.
Using Remark 4.3 to normalize Q stretches Γ and changes its intrinsic Lipschitz constant.
Consequently, even though f is close to an affine function on most of Q, it may still take
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on large values on the rest of Q. To show that this does not happen, we must introduce
new methods based on analyzing the characteristic curves of Γ.

For example, a key step in the proof of part 1 of Proposition 7.2 is to show that ‖ f ‖L1(Q)

is bounded. Since f is intrinsic Lipschitz, ‖ f ‖L1(Q) <∞, but we need a bound independent
of the intrinsic Lipschitz constant. We obtain such a bound by studying how lines intersect
the characteristic curves. Since Q is µ–rectilinear, the top and bottom boundaries of Q
are characteristic curves that are close to the top and bottom edges of [−1,1]2. If L is a
horizontal line such that Π(L) crosses [−1,1]2 from top to bottom, then Π(L) must also
cross the top and bottom boundaries of Q. At these intersection points, the slope of
Π(L) is less than the slope of the boundary, so the corresponding points of L lie in Γ+. If
Γ+∩L is close to monotone, then most of the interval between these points lies in Γ+ and
therefore, f is bounded on Q ∩Π(L). By integrating over a family of lines that all cross the
top and bottom boundaries, we obtain the desired L1 bound. Similar arguments based
on characteristic curves lead to part 2 of Proposition 7.2, which completes the proof of
Proposition 7.2.

11. EXTENDED-MONOTONE SETS ARE CLOSE TO HALF-SPACES

In this section, we will prove Proposition 10.1 by studying limits of (ε,R)–extended
monotone sets. Let U ⊆H be measurable and let E1,E2, . . . ⊆H be a sequence of measur-
able sets such that Ei is ( 1

i , i )–extended monotone on U . By passing to a subsequence, we
may suppose that 1Ei converges weakly to a function f ∈ L∞(H) taking values in [0,1]. We
call f a U –LEM (limit of extended monotones) function.

One difficulty of studying f is that it need not take values only in {0,1}. Indeed, the
extended monotonicity ENMEi ,i (B 1) only depends on the intersection of Ei with lines
that pass through B 1. These lines do not cover all ofH, so there are regions ofHwhere f
can take on arbitrary values.

Nevertheless, in Section 11.1, we will show that, after changing f on a measure-zero
set, f (B 1) ⊆ {0,1}. This will follow from the fact that, by Lemma 8.6,

lim
i→∞

NMEi (B 1) = 0.

We will show that a sequence of sets with nonmonotonicity going to zero on B 1 converges
to a subset which is monotone on B 1. If U is an open set, a subset E ⊆ H is said to be
monotone on U if NME (U ) = 0.

Then, in Section 11.2, we will use techniques from [CK10b] and [CKN11] to characterize
sets such that NMF (B 1) = 0. A set that is monotone on B 1 need not be a half-space, but
we will show that if F is such a set, then the measure-theoretic boundary ∂H 4 F is a union
of horizontal lines that has an approximate tangent plane at every point. That is, for any
g ∈ ∂H 4 F , the blowups g · sn,n(g−1∂H 4 F ) converge in the Hausdorff metric to a plane Tg

as n →∞. In fact, at all but countably many points g ∈ ∂H 4 F , there is a unique horizontal
line Lg through g that is contained in ∂H 4 F , and Tg is the vertical plane containing Lg ;
in this case, g has an approximate tangent subgroup in the sense of [MSSC10]. At the
remaining points, Tg is the horizontal plane centered at g .

Finally, in Section 11.3, we prove Proposition 10.1. The proof is somewhat involved,
but, as an illustration, we consider the case that f = 1E , where E is precisely ∞–extended
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monotone on B 1. That is, for every line L, either B 1 ∩∂(L∩E ) =∅ or L∩E is a monotone
subset of L.

We first claim that for every point b ∈ B 1 ∩∂H 4 E , if the approximate tangent plane Tb

is vertical and Hb is the horizontal plane centered at b, then Hb ∩∂H 4 E =Hb ∩Tb . Let T ±
b

be the two half-spaces bounded by Tb , labeled so that T +
b ∩Br (b) approximates E ∩Br (b)

at small scales. Let Lb =Hb ∩Tb be the horizontal line in ∂H 4 E that passes through b and
let L be a line through b that intersects Tb transversally. Then E ∩L is a monotone set with
b ∈ ∂H 1 (E ∩L), so T +

b ∩L ⊆ E ∩L and T −
b ∩L ⊆ LàE . This holds for every horizontal line

through b except Lb , so Lb cuts Hb into two half-planes P± = T ±
b ∩Hb such that P+ ⊆ E

and P− ⊆Hb àE .
When b′ ∈ Lb is close to b, the plane Hb′ intersects Hb along Lb and the angle between

the two planes is small. As above, there are two half-planes P ′
± = T ±

b′ ∩Hb′ such that
P ′+ ⊆ E and P ′− ⊆Hb′ àE . As b′ varies over points close to b, the half-plane P ′+ varies over
half-planes close to P+. Therefore P+ is in the interior of E , P− is in the exterior, and
Hb ∩∂H 4 E = Lb .

Suppose that L1 and L2 are two lines in ∂H 4 E that intersect B 1, and suppose by way of
contradiction that they are not coplanar. By the hyperboloid lemma [CK10b, Lemma 2.4]
(see Lemma 11.1), for any point q ∈ L1 except possibly a single point, there is a horizontal
line M that connects q to a point r in L2. Then r ∈Hq ∩∂H 4 E = L1, so L1 and L2 intersect

and are thus coplanar; this is a contradiction. It follows that B 1 ∩∂H 4 E is contained in a
plane. The proof of Proposition 10.1 runs along the same lines, but it takes some further
technical work to apply the weaker hypothesis that f is merely an LEM function.

One of the key tools in the proof is the following “hyperboloid lemma,” which is stated
as Lemma 2.4 in [CK10b]. A pair of horizontal lines L1,L2 ∈ L are said to be skew if L1

and L2 are disjoint and the projections π(L1),π(L2) ⊆H∼=R2 are not parallel.

Lemma 11.1 (Cheeger–Kleiner hyperboloid lemma [CK10b]). For any L1,L2 ∈L we have

(1) Suppose that the projections π(L1),π(L2) are parallel but π(L1) 6=π(L2). Then every
point in L1 can be joined to L2 by a unique line. In fact, there is a unique fiber
π−1(p) such that every line joining L1 to L2 passes through π−1(p). Conversely, for
every a ∈π−1(p), there is a unique line joining L1 to L2 that passes through a.

(2) If L1,L2 are skew, then there is a hyperbola S ⊆H with asymptotes π(L1) and π(L2)
such that every tangent line of S has a unique horizontal lift that intersects L1 and
L2. If p ∈ H is the intersection between π(L1) and π(L2) and a ∈ L1 is such that
π(a) 6= p, then there is a unique horizontal line that connects a to a point in L2.

11.1. Stability of locally monotone sets. We begin the proof of Proposition 10.1 by using
a compactness argument to prove the following lemma. Throughout what follows, given a
measure space (S,Σ,µ) and a measurable subsetΩ ∈Σwithµ(Ω) > 0, we use the (standard)
notation

ffl
Ω to denote the averaging operator onΩ, i.e.,

∀ f ∈ L1(Ω,µ),

 
Ω

f dµ
def= 1

µ(Ω)

ˆ
Ω

f dµ.
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Lemma 11.2. Let U ⊆ H be a bounded open set and let E1,E2, . . . ⊆ H be a sequence of
measurable sets such that NMEi (U ) < 1

i for every i ∈N. There is a subsequence (Ei j ) j∈N and
a set F ⊆U that is monotone on U such that lim j→∞

∣∣(Ei j ∩U )4F
∣∣= 0.

It follows that for any ε> 0, there is a δ> 0 such that if E ⊆H is a measurable set and
NME (U ) < δ, then there is a set F ⊆U such that |(E ∩U )4F | < ε and F is monotone on U .

Proof. After passing to a subsequence, we may suppose that the characteristic functions
1Ei converge weakly to a function f ∈ L∞(U ) taking values in [0,1]. We claim that f is a
characteristic function.

By Theorem 4.3 of [CKN11] (see also [NY18, Theorem 63]), for every ε > 0, there are
c(ε) > 0 and δ(ε) > 0 such that if p ∈H, α> 0, and NME (Bα(p)) < δ(ε)α−3, then there is a
half-space P+ such that

 
Bc(ε)α(p)

|1P+(h)−1E (h)|dH 4(h) < ε. (173)

(The hypothesis in [CKN11] is that NME (Bα(p)) < δ(ε), but our definition of NME (Bα(p))
differs from the definition in [CKN11] by a normalization factor.)

By the Lebesgue density theorem, for almost every point p ∈U , we have

lim
s→0

 
Bs (p)

| f (h)− f (p)|dH 4(h) = 0. (174)

Let p be such a point and let r > 0 be such that Br (p) ⊆U . By (173), for any 0 < s < r , any
ε> 0, and any sufficiently large i ∈N (depending on s,ε), there is a half-space Q+

i with
 

Bc(ε)s (p)
|1Q+

i
(h)−1Ei (h)|dH 4(h) < ε.

Choose a half-space Q+ such that for infinitely many i ∈Nwe have
 

Bc(ε)s (p)
|1Q+(h)−1Ei (h)|dH 4(h) < 2ε.

Then  
Bc(ε)s (p)

|1Q+(h)− f (h)|dH 4(h) < 3ε. (175)

Since the function (x ∈ [0,1]) 7→ x(1−x) is nonnegative and 1–Lipschitz,
 

Bc(ε)s (p)
f (h)

(
1− f (h)

)
dH 4(h) É 3ε+

 
Bc(ε)s (p)

1Q+(h)
(
1−1Q+(h)

)
dH 4(h) = 3ε.

This holds for all 0 < s < r , so

lim
s→0

 
Bs (p)

f (h)(1− f (h))dH 4(h) = 0.

By (174), this implies f (p)(1− f (p)) = 0 and thus f (p) ∈ {0,1}.
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Thus f is equivalent to a characteristic function on U . Let F = f −1(1). By weak conver-
gence, limi→∞ |U ∩ (Ei 4F )| = 0. For any i ∈N,

NMF (U ) =
ˆ

L

NMF∩L(U ∩L)dN (L)

É
ˆ

L

(
NMEi∩L(U ∩L)+H 1(U ∩L∩ (Ei 4F )

))
dN (L).NMEi (U )+|U ∩ (Ei 4F )|.

Both terms on the right go to zero as i →∞, so NMF (U ) = 0, i.e., F is monotone on U . �

Corollary 11.3. Let U ⊆H be a convex bounded open set and let f : H→ [0,1] be a U –LEM
function. There is a monotone set E ⊆U such that f |U = 1E up to a measure-zero set.

Proof. Suppose that E1,E2, . . . ⊆H are measurable, Ei is ( 1
i , i )–extended monotone on U

for all i ∈N, and 1Ei converges weakly to f . By Lemma 8.6, for i > diamU we have

NMEi (U ) É ENMEi ,i (U ) É 1

i
.

So, by Lemma 11.2, f |U = 1F for some set F ⊆U that is monotone on U . �

11.2. Locally monotone sets are bounded by rectifiable ruled surfaces. Here we will
describe sets that are monotone on an open subset ofH, which we call locally monotone
sets. Note that a locally monotone set need not be a half-space; see Example 9.1 of [CKN11].
Regardless, we use the techniques developed in [CK10b] and [CKN11] to describe such
sets.

Proposition 11.4. Let E ⊆H be a measurable set that is monotone on a convex open set
U ⊆H. Then

(1) U ∩∂H 4 E has empty interior.
(2) For every p ∈U ∩∂H 4 E, there is a horizontal line L through p with U ∩L ⊆ ∂H 4 E.

If this line is not unique, then U ∩Hp ⊆ ∂H 4 E, and we call p a characteristic point.
(3) ∂H 4 E has an approximate tangent plane Tp at every p ∈U ∩∂H 4 E. The plane Tp

is horizontal if and only if p is a characteristic point, and there are only countably
many characteristic points in U .

(4) If Tp is vertical, then it divides H into two half-spaces T +
p and T −

p such that the
following holds. For ε, t > 0, let

W ±
ε,t = {v ∈ T ±

p ∩B t (p) : d(v,Tp ) > εt }

For any 0 < ε< 1
10 , there is r > 0 such that if 0 <α< r , then

W +
ε,α ⊆ intH 4 (E) and W −

ε,α ⊆ intH 4 (HàE).

We rely on the following proposition and lemmas, which adapt results from [CK10b].

Proposition 11.5 (generalization of [CK10b, Proposition 5.8]). Let E ⊆H be a measurable
set that is monotone on a convex open set U ⊆H. Let L be a horizontal line and let p, q ∈ L
be points such that p 6= q and the segment [p, q] ⊆ L is contained in U . We choose the linear
order on L so that p < q. Suppose that q ∈ intH 4 (E).

(1) If p ∈ suppH 4 (E) and r ∈ L∩U satisfies p < r < q, then r ∈ intH 4 (E).
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(2) If p ∈ suppH 4 (HàE) and r ∈ L∩U satisfies p < q < r , then r ∈ intH 4 (E).

Proof. Proposition 5.8 of [CK10b] proves this result in the case that U =H, generalizing
Proposition 4.6 of [CK10b], which proves it when E is precisely monotone (i.e., M ∩E and
M ∩E c are connected sets for every horizontal line M). The reasoning in Proposition 5.8
of [CK10b] only uses the fact that for almost every line segment S in a small neighborhood
of [p,max{q,r }], the intersection S ∩E is monotone. This holds here, so the conclusion
of Proposition 5.8 holds here as well. For completeness, we will sketch the argument of
[CK10b].

For any x ∈H, v1, v2 ∈H, let γx,v1,v2 : [0,2] →H be the broken geodesic

γx,v1,v2 (t ) =
{

xv t
1 t ∈ [0,1]

xv1v t−1
2 t ∈ [1,2].

In case (1), we have p < r < q with p ∈ suppH 4 (E ) and q ∈ intH 4 (E ). Given an ε> 0, one

considers the paths γx,v1,v2 where x ∈ Bε(p)∩E and v1, v2 ∈H satisfy ‖vi − (p−1r )
1
2 ‖ < ε.

Then γx,v1,v2 (0) is close to p, γx,v1,v2 (2) is close to r , and γx,v1,v2 lies in a small neighbor-
hood of [p, q]. Further, for any x, we can vary v1 and v2 so that γx,v1,v2 (2) = xv1v2 covers
a neighborhood of r .

Suppose that E is precisely monotone and that q ∈ int(E). Let x, v1, v2 be as above and
let λ1(t ) = xv t

1 and λ2(t ) = xv1v t
2 be the two segments of γx,v1,v2 . These are two lines that

are close to L, so there are t1, t2 > 1 such that λi (ti ) is close to q . Since q ∈ int(E), if ε is
sufficiently small, then λi (ti ) ∈ E . Since λ1(0) = x ∈ E and λ1(t1) ∈ E , precise monotonicity
implies λ1(1) ∈ E , and since λ2(0) =λ1(1) ∈ E and λ2(t2) ∈ E , we have λ2(1) = xv1v2 ∈ E . If
we fix x and let v1 and v2 vary, then xv1v2 covers a neighborhood of r , so r ∈ int(E).

In our case, E is not precisely monotone and q ∈ intH 4 (E ), but the reasoning above still
holds for almost every triple (x, v1, v2). Since H 4(Bε(p)∩E ) > 0, there is an x ∈ Bε(p)∩E )
such that xv1v2 ∈ E for almost every pair (v1, v2). Therefore, r ∈ intH 4 (E).

In case (2), we have p < q < r with p ∈ suppH 4 (HàE ) and q ∈ intH 4 (E ). Let s ∈ L∩U be
such that p < q < r < s and consider γx,v1,v2 such that x ∈ Bε(p)àE , ‖v1 −p−1s‖ < ε, and
‖v2− s−1r‖ < ε. That is, γx,v1,v2 is a path from a neighborhood of p to a neighborhood of s
to a neighborhood of r . Again, for any x, we can vary v1 and v2 so that γx,v1,v2 (2) = xv1v2

covers a neighborhood of r . If ε is sufficiently small, we have γx,v1,v2 ([0,2]) ⊆U .
Suppose again that E is precisely monotone and that q ∈ int(E). Let λ1(t) = xv t

1 and
λ2(t) = xv1v t

2. Since λ1 and λ2 are both close to L, if ε is sufficiently small, there are
t1 ∈ (0,1) and t2 > 1 such that λi (ti ) is close to q and λi (ti ) ∈ E . Since λ1(0) = x 6∈ E
and λ1(t1) ∈ E , we have λ1(1) ∈ E , and since λ2(0) = λ1(1) ∈ E and λ2(t2) ∈ E , we have
λ2(1) = xv1v2 ∈ E . For any fixed x, as v1 and v2 vary, xv1v2 covers a neighborhood of r .

Again, when E is not precisely monotone and q ∈ intH 4 (E), the reasoning above fails
for a null set of triples (x, v1, v2). Since p ∈ suppH 4 (HàE), there is an x ∈ Bε(p)∩ (HàE)
such that xv1v2 ∈ E for all but a measure zero set of pairs (v1, v2), so r ∈ intH 4 (E). �

By Proposition 11.5 and the proof of [CK10b, Lemma 4.8], we get the following lemma.

Lemma 11.6 (generalization of [CK10b, Lemma 4.8]). Let E ⊆H be a measurable set that
is monotone on a convex open set U ⊆H. If L is a horizontal line such that L∩U contains
at least two points of ∂H 4 E, then L∩U ⊆ ∂H 4 E.



FOLIATED CORONA DECOMPOSITIONS 89

Proof. Let I = L ∩U . Let p, q ∈ I ∩ ∂H 4 E be distinct points. Choose the linear order
on L so that p < q . Let r ∈ I be such that q < r . By part (1) of Proposition 11.5, if
r ∈ intH 4 (E), then q ∈ intH 4 (E), which is a contradiction. Likewise, if r ∈ intH 4 (HàE),
then q ∈ intH 4 (HàE), which is a contradiction, so r ∈ ∂H 4 E . Thus [q,∞)∩ I ⊆ ∂H 4 E . By
symmetry, I à(p, q) = I ∩(

(−∞, p]∪[q,∞)
)⊆ ∂H 4 E for any distinct points p, q ∈ I ∩∂H 4 E .

Let r, s ∈ I ∩ [q,∞) be such that r < s. Then r, s ∈ I ∩∂H 4 E , so I à (r, s) ⊆ ∂H 4 E . Since (r, s)
and (p, q) are disjoint, I ⊆ ∂H 4 E . �

Likewise, the following lemma is based on the proof of Lemma 4.9 of [CK10b].

Lemma 11.7 (generalization of [CK10b, Lemma 4.9]). Let E ⊆H be a measurable set that
is monotone on a convex open set U ⊆H. For every p ∈U ∩∂H 4 E, there is a horizontal line
L such that p ∈ L and L∩U ⊆ ∂H 4 E.

Proof. Let B ⊆U be a ball centered at p and let Hp be the horizontal plane centered at
p. Let B ′ = B à {p}. Suppose by way of contradiction that Hp ∩B ′∩∂H 4 E = ∅. Since
Hp ∩B ′ is connected, we have Hp ∩B ′ ⊆ intH 4 (E ) or Hp ∩B ′ ⊆ intH 4 (HàE ). Without loss
of generality, we assume that Hp ∩B ′ ⊆ intH 4 (E).

Let M be a line through p and let q,r ∈ M ∩B be two points on opposite sides of p.
Then q,r ∈ intH 4 (E), so by part (1) of Proposition 11.5, we have p ∈ intH 4 (E). This is a
contradiction, so there exists some point q lying in Hp ∩B ′∩∂H 4 E . Let L be the line
containing p and q ; then by Lemma 11.6, L∩U ⊆ ∂H 4 E , as desired. �

The fact that U ∩∂H 4 E has empty interior also follows from the techniques of [CK10b].

Lemma 11.8. If E and U are as in Lemma 11.7, then U ∩∂H 4 E has empty interior.

Proof. The measure-theoretic version of Lemma 4.12 of [CK10b], whose proof appears
in (part (4) of) the proof of Theorem 5.1 of [CK10b], asserts that if F ⊆ H is monotone
on H, then ∂H 4 F 6=H. That proof relies on the monotonicity of a configuration of line
segments, and it directly shows that there is a large enough universal constant r > 0 such
that this configuration lies in the ball Br (0). Consequently, if Br (0) ⊆U , then there is a
point p ∈ Br (0) such that p 6∈ ∂H 4 E . By rescaling and translation, this is true with Br (0)
replaced by an arbitrary ball, and thus intH 4 (E)∪ intH 4 (RàE) is dense in U . �

Lemma 11.8 proves part (1) of Proposition 11.4. Lemma 11.6 and Lemma 11.7 imply
the first half of part (2) of Proposition 11.4. Before proving the rest of Proposition 11.4, we
make the following definition.

Definition 11.9. Let U ⊆H be a convex open set and let A ⊆H. We say that A is U –ruled
if for all L ∈L , if L∩U intersects A in two points, then L∩U ⊆ A. We call such a line L a
U –ruling of A.

Lemmas 11.6–11.8 imply that U ∩∂H 4 E is U –ruled and has empty interior. We will
prove the rest of Proposition 11.4 by studying lines in the boundary of such a set. The
following lemma is based on Step B3 in Section 8.2 of [CKN11], which shows that the
boundary of a monotone set cannot contain skew lines.

Lemma 11.10. Let M1 be the line 〈X 〉 and let M2 be the line Z 〈Y 〉. There exists r0 > 1 such
that any B r0 –ruled set containing (M1 ∪M2)∩B r0 has nonempty interior.
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Proof. Let r0 be large enough that [−2,2]3 ⊆ B r0 . Let E be a B r0 –ruled set with B r0 –rulings
M1, M2 ∈L . By Lemma 11.1, there is a hyperbola S ⊆H, asymptotic to the x–axis and the
y–axis, such that every tangent line of S has a unique horizontal lift that intersects M1

and M2. Indeed, for every t 6= 0, the points X t ∈ M1 and Z Y 2/t ∈ M2 are connected by a
horizontal line

∀u ∈R, Lt (u)
def= X t

(
−t ,

2

t
,0

)u

=
(
(1−u)t ,

2u

t
,u

)
.

For t ∈ [−2,−1]∪ [1,2] and u ∈ [0,1], the point Lt (u) lies on a horizontal line segment
connecting two points in E , so Lt (u) ∈ E . The resulting family of points

S
def= {Lt (u) : t ∈ [−2,−1]∪ [1,2],u ∈ [0,1]} ⊆ E

consists of two disjoint embedded surfaces.
Let

w
def= Lp

2

(
1

2

)
=

(p
2

2
,

p
2

2
,

1

2

)
and let w ′ = s−1,−1(w) = L−p2( 1

2 ). Let M be the horizontal line from w to w ′. Then M

intersects S twice, at w and w ′, so M ∩B r0 ⊆ E . One calculates

d

dt
Lt (u)

∣∣
(t ,u)=(

p
2, 1

2 ) = (1−u,−2ut−2,0)
∣∣
(t ,u)=(

p
2, 1

2 ) =
(

1

2
,−1

2
,0

)
d

du
Lt (u)

∣∣
(t ,u)=(

p
2, 1

2 ) = (−t ,2t−1,1)
∣∣
(t ,u)=(

p
2, 1

2 ) = (−p2,
p

2,1),

so M intersects S transversally at w and w ′. By transversality, any horizontal line M ′ close
to M intersects S near w and w ′, so M ′∩B r0 ⊆ E . These lines cover a neighborhood of M ,
so E contains a nonempty open set. �

As shown in the next lemma, for any pair of skew lines, there is an automorphism of
H that sends them to M1 and M2. The next lemma uses this fact to show that nearby
skew lines in ∂H 4 E must have nearly parallel projections. For φ ∈R, let Rφ : H→H be the
rotation by angle φ around the z–axis.

Lemma 11.11. Let r0 be as in Lemma 11.10. Let L1,L2 ∈ L be skew lines and let p ∈H
be the intersection of π(L1) and π(L2). Suppose that the angle between π(L1) and π(L2) is
θ ∈ (0, π2 ). For i ∈ {1,2}, let qi ∈H be the point where π−1(p) intersects Li . Suppose that

d(q1, q2) É
p
θ

r0
p

2
. (176)

If L1,L2 ∈L are B 1(q1)–rulings of an B 1(q1)–ruled set S, then S has nonempty interior.

Proof. After applying a translation and rotation and possibly replacing S with s1,−1(S), we
may suppose that q1 = 0, q2 = Z h for some h > 0 and that π(L1) and π(L2) form angles of
θ
2 with the x–axis. (We cannot control which line forms a positive angle with the x–axis

and which line forms a negative angle.) Let t = tan θ
2 ∈ (0,1) so that the lines

π
(
spt , 1p

t
(L1)

)
and π

(
spt , 1p

t
(L2)

)
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are perpendicular. There is an angle φ=±π
4 such that if

f
def= Rφ ◦ s 1p

h
, 1p

h
◦ spt , 1p

t
,

then f (L1) = M1 and f (L2) = M2, where M1, M2 are the lines in Lemma 11.10. Now, by the
ball-box inequality and our hypothesis on d(q1, q2),

Lip( f −1) =
p

hp
t

(40)É d(q1, q2)p
tanθ/2

É d(q1, q2)p
θ/2

(176)É 1

r0
.

Thus, f −1(B r0 ) ⊆ B r0 Lip( f −1) ⊆ B 1, or B r0 ⊆ f (B 1). Since f (S) is a f (B 1)–ruled set and M1

and M2 are f (B 1)–rulings of f (S), by Lemma 11.10, f (S) has nonempty interior and thus
S has nonempty interior. �

It follows from Lemma 11.8 and Lemma 11.11 that two lines in ∂H 4 E with different
angles must either intersect or stay at least a definite distance apart. In the terminology of
[CKN11], every pair of rulings of ∂H 4 E must form a degenerate initial condition.

Lemma 11.12. For any ε > 0, there is δ > 0 such that if S is a B 1–ruled set with empty
interior and L1,L2 are B 1–rulings of S that intersect Bδ and such that∠(π(L1),π(L2)) > ε,
then L1 and L2 intersect.

Proof. We suppose that 0 < ε< 1 and take δ= ε
3
2

100r0
É 1

100 , where r0 is as in Lemma 11.10.

Let p ∈H be the intersection of the projections π(L1) and π(L2). Since π(Bδ) is the ball
BH
δ

of radius δ in H, the projections intersect BH
δ

and form an angle of at least ε, so

‖p‖ É δ

sin ε
2

É 4δ

ε
< 1

4
.

For i ∈ {1,2}, let qi = π−1(p)∩ Li . By assumption, L1 and L2 intersect Bδ ⊆ B2δ, so if
bi ∈ Li ∩Bδ, then

d(0, qi ) É d(0,bi )+d(bi , qi ) = d(0,bi )+‖π(bi )−π(qi )‖ É d(0,bi )+‖π(bi )‖+‖p‖ É 3δ+‖p‖.

In particular, d(0, qi ) É 1
2 . Hence B 1

2
(q1) ⊆ B 1, so S is a B 1

2
(q1)–ruled set. Further,

d(q1, q2) É 2‖p‖+6δ< 20δ

ε
É

p
ε

5r0
.

Because S has empty interior, Lemma 11.11 implies that L1 and L2 cannot be skew lines,
and must therefore intersect. �

The next lemma completes the proof of part (2) of Proposition 11.4.

Lemma 11.13. Suppose that U is a convex open set and that E ⊆ H is monotone on U .
Let p ∈U , and let L1 and L2 be two distinct U –rulings of ∂H 4 E that intersect at p. Then
U ∩Hp ⊆ ∂H 4 E, and there is a neighborhood A containing p such that A∩∂H 4 E = A∩Hp ,
where we recall that Hp denotes the horizontal plane through p.
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Proof. Since U is convex, ∂H 4 E is U –ruled. After translating and applying an automor-
phism, we may suppose that p = 0 and that L1 and L2 are the x–axis and y–axis, respec-
tively. Set ε= 1

40 and let δ> 0 satisfy Lemma 11.12. Suppose that Bδ ⊆U .
Fix q ∈ B δ

8
∩∂H 4 E . By Lemma 11.7, ∂H 4 E has a U –ruling Mq that passes through q .

We will show that Mq intersects both L1 and L2 and that any such line passes through p.

For any horizontal line L, let L =π(L). Either∠(L1, Mq ) Ê π
4 or∠(L2, Mq ) Ê π

4 . Therefore,
by Lemma 11.12, Mq intersects either L1 or L2. Suppose by way of contradiction that

Mq intersects L2 but not L1. By Lemma 11.12, this implies that ∠(L1, Mq ) É ε. Let r

be the intersection of Mq with L2 and let t = d(p,r ) > 0 (see Figure 4). Straightforward

trigonometry shows that t < δ
4 .

r

b

N

Mq

L1p

a

L2

FIGURE 4. If line Mq intersects the y–axis L2 but not the x–axis L1, there
must be a line N intersecting L1 and Mq as seen above. Lines above are
projected to H by π.

Let a = p X −t ∈ L1. By Lemma 11.1, there is a unique point b ∈ Mq such that there is a
horizontal line N that passes through a and b. Indeed, since r , p, a, and b are the vertices
of a quadrilateral Q in H whose sides are horizontal lines, the projection π(Q) has zero

signed area. Since the triangle 4π(p)π(r )π(a) has area t 2

2 , the triangle 4π(b)π(r )π(a)

must also have area t 2

2 , so π(b) is the intersection of Mq with the line 〈X +Y 〉. Because

Mq has slope between −ε and ε, this implies that |π(b)− (t , t)| É 4εt É t
10 . In particular,

d(r,b) = |π(r )−π(b)| É 2t ,∠(L1, N ) > ε, and∠(L2, N ) > ε. Then d(p,b) É d(p,r )+d(r,b) É
3t < δ, so b ∈ Bδ.

Since a,b ∈ U ∩∂H 4 E , N is a U –ruling of ∂H 4 E . By Lemma 11.12 and the fact that
∠(L2, N ) > ε, N intersects L2. That is, L1, L2, and N are three distinct lines in H that
intersect pairwise. If three distinct lines intersect pairwise, then they must all intersect
at the same point. Otherwise, their projections to H would contain a non-degenerate
triangle that lifts to a horizontal closed curve inH, but this is impossible since the signed
area of the projection of a horizontal closed curve must vanish. But L1 intersects N at a
and intersects L2 at p, where d(p, a) = t > 0 by construction. This is a contradiction, so
Mq intersects L1 and L2. Since Mq , L1, and L2 are distinct lines that intersect pairwise,
Mq must intersect L1 and L2 at p.
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Hence, every point q ∈ B δ
2
∩∂H 4 E lies on the horizontal plane Hp through p. The

measure-theoretic boundary of E disconnects B δ
2

, so B δ
2
∩∂H 4 E = B δ

2
∩Hp .

Consequently, any line L through p intersects U ∩ ∂H 4 E in at least two points, so
U ∩L ⊆ ∂H 4 E . The union of all such lines is Hp , so U ∩Hp ⊆ ∂H 4 E �

Finally, we prove parts (3) and (4) of Proposition 11.4.

Proof of parts (3) and (4) of Proposition 11.4. Due to Lemma 11.13, if p is a characteristic
point, then ∂H 4 E has a horizontal approximate tangent plane at p. Lemma 11.13 also
implies that if p is a characteristic point, then there is a ball B such that B contains no
characteristic points other than p. That is, the characteristic points form a discrete subset
ofH; sinceH is separable, there are only countably many characteristic points.

Let p ∈U ∩∂H 4 E be a non-characteristic point, so that there is a unique line L through
p. Let V be the vertical plane that contains L. Fix 0 < ε< 1

10 . We claim that there is r > 0

such that if 0 <αÉ r , then Bα(p)∩∂H 4 E is contained in the εα–neighborhood of V .
We translate, rotate, and rescale so that p = 0, L is the x–axis, and B 1 is a subset of U

that contains no characteristic points. Then V =V0 is the xz–plane. LetΠ : H→V0 be the
projection to V0 along cosets of 〈Y 〉, as in Section 2.2, so thatΠ(x, y, z) = (x,0, z − x y

2 ).

For each point s ∈ B 1 ∩∂H 4 E , there is a unique U –ruling Ms passing through s. By

Lemma 11.12, there is δ ∈ (0,1) such that ∠(Ms ,L) < ε2

200 for every s ∈ Bδ∩∂H 4 E . Let

r = min{δ, ε
80 } and let 0 < α É r . Let q ∈ Bα∩∂µE and suppose by way of contradiction

that d(q,V0) = |y(q)| > εα. Without loss of generality, we may suppose that y(q) > εα.
Let m ∈ R be the slope of π(Mq ), so that Mq = q · 〈X +mY 〉. Let γ(t) = q · (X +mY )t

parametrize Mq . Then

|m| = |sin∠(Ms ,L)| < ε2

200
.

Since q ∈ Bα ⊆ B2α, we haveΠ(q) ∈ B4α and thus |z(Π(q))| É 16α2. By (51), for all t ∈R,

d

dt
z
(
Π

(
γ(t )

))=−y
(
γ(t )

)=−y(q)−mt .

Consequently,

∀t ∈R, z
(
Π

(
γ(t )

))= z(q)− y(q)t −m
t 2

2
.

Letting s = 20α
ε , it follows that

z
(
Π

(
γ(s)

))É 16α2 −αεs + ε2

200
· s2

2
É−3α2

and

z
(
Π

(
γ(−s)

))Ê−16α2 +αεs − ε2

200
· s2

2
Ê 3α2.

So, there is t with |t | < s É 1
4 and z(Π(γ(t ))) = 0, i.e.,Π(γ(t )) ∈ L. The coset N = γ(t )〈Y 〉 is

thus a horizontal line that intersects Mq at γ(t ) and intersects L atΠ(γ(t )). Since

d
(
0,γ(t )

)É d(0, q)+|t | É 2α+ 1

4
É 1

2
,
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and
d

(
0,Π

(
γ(t )

))É 2d
(
0,γ(t )

)É 1,

γ(t) and Π(γ(t)) belong to B 1 ∩∂H 4 E , so N ∩B 1 ⊆ ∂H 4 E . Then Mq and N are distinct
U –rulings of ∂H 4 E passing through γ(t), which contradicts the fact that there are no
characteristic points in B 1. Therefore, d(q,V0) É εα for all q ∈ Bα∩∂H 4 E .

Let Tp =V0 and let T +
p and T −

p be the corresponding half-spaces. The argument above
shows that for any 0 <αÉ r , the sets W ±

ε,α are disjoint from ∂H 4 E , so each set is contained
in either intH 4 (E) or intH 4 (HàE).

Consider W +
ε,r and W −

ε,r . Every line sufficiently close to the y–axis intersects both of
these sets, so if both are contained in intH 4 (E), then by Proposition 11.5, p ∈ intH 4 (E) as
well. Likewise, if both are contained in intH 4 (HàE ), then p ∈ intH 4 (HàE ). Either of these
conclusions is a contradiction, so one of W +

ε,r ,W −
ε,r is contained in intH 4 (E ) and the other

is contained in intH 4 (E). If necessary, we switch T +
p and T −

p so that W +
ε,r ⊆ intH 4 (E).

We claim that W +
ε,α ⊆ intH 4 (E) for every α ∈ (0,r ]. Fix 0 < βÉ r with β

2 <α< β. Then
W +
ε,α intersects W +

ε,β, so if W +
ε,β ⊆ intH 4 (E), then W +

ε,α ⊆ intH 4 (E) as well. By induction,

W +
ε,α ⊆ intH 4 (E) for all 0 <αÉ r . Likewise, W −

ε,α ⊆ intH 4 (HàE) for all 0 <αÉ r . �

11.3. Stability of extended monotone sets. Here we prove Proposition 10.1. We show
that there are ν> 0 and R > 0 such that if E is a set that is (ν,R)–extended monotone on
B 1, then E is close to a half-space on B 1. If R ′ Ê R and ν′R ′ É νR, then (ν′,R ′)–extended
monotonicity implies (ν,R)–extended monotonicity, so this implies the full proposition.

To prove this, it suffices to show that if f is a B 1–LEM function, then f |B 1
is the charac-

teristic function of a half-space. Suppose that f is a weak limit of a sequence (1Ei )i , where
E1,E2, . . . ⊆H are sets such that Ei is ( 1

i , i )–extended monotone on B 1. By Corollary 11.3,

f |B 1
is the characteristic function of a locally monotone subset F ⊆ B 1, but this result only

uses the fact that each Ei is 1
i –monotone on B 1. In this section, we improve Corollary 11.3

by using the stronger hypothesis that the Ei are extended monotone sets.
The first issue is that ENMEi ,R (B 1) only depends on the intersection of Ei with lines

through B 1. These lines don’t cover all ofH, so a B 1–LEM function need not take values in
{0,1} outside B 1. The following lemma shows that it is takes values in {0,1} on lines that
intersect the boundary of F transversally. For p ∈H and V ∈H a horizontal vector, the
coset p〈V 〉 is a horizontal line. Let p〈V 〉+ = {pV t : t > 0} and let p〈V 〉− = {pV t : t < 0}.

Lemma 11.14. Let f be a B 1–LEM function and let F = f −1(1)∩B 1 be the corresponding
locally monotone set. Let p ∈ B 1 ∩∂H 4 F be a point with a vertical approximate tangent
plane Tp and let V ∈Hp be a horizontal vector pointing into T +

p . Then,

p〈V 〉+ ⊆ intH 4

(
f −1(1)

)
and p〈V 〉− ⊆ intH 4

(
f −1(0)

)
. (177)

Proof. Let Ei ⊆ H be a sequence of sets such that Ei is ( 1
i , i )–monotone on B 1 and 1Ei

converges weakly to f . Let L = p〈V 〉, L± = p〈V 〉± and θ =∠(V ,Tp ). Let ε= θ
20 and let W ±

ε,t

be as in Proposition 11.4. For t > 0, L± intersects W ±
ε,t in an interval of length at least t

2 .
Fix t > 0 and let q = pV t . For the first inclusion in (177), the goal is to demonstrate that

q ∈ intH 4 ( f −1(1)). Let 0 <α< t
2 be a radius such that Bα(p) ⊆ B 1, W +

ε,α ⊆ F up to a null
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set, and W −
ε,α ⊆HàF up to a null set. For any δ> 0, let Kδ ⊆L be the set of lines of the

form q ′〈V ′〉 where q ′ ∈ Bδ(q) and V ′ ∈H is a horizontal vector such that∠(V ,V ′) < δ. For
K ∈Kδ, let K ± = K ∩T ±

p .
Since the lines Kδ are all close to L, there is a δ depending on θ and α such that

0 < δ < min{ε,α} and every line K ∈ Kδ intersects both W +
ε,α and W −

ε,α in intervals of
length at least α

4 . We claim that

lim
i→∞

H 4((HàEi )∩Bδ(q)
)= 0,

and thus that f = 1 almost everywhere on Bδ(q).
For each i ∈N define

Ti
def=

{
K ∈Kδ : H 1(K ∩B 1 ∩ (Ei 4F )

)< α

8

}
.

By Fubini’s theorem, for any measurable subset A ⊆H and any horizontal vector M ∈H
that is not parallel to Tp , we haveˆ

Tp

H 1(b〈M〉∩ A)sin
(
∠(M ,Tp )

)
dH 3(b) ³H 4(A). (178)

Therefore, limi→∞N (Ti ) =N (Kδ), and for almost every K ∈Ti ,

H 1(K +∩F ∩Bα(p)
)ÊH 1(K +∩W +

ε,α) > α

4
.

By the definition of Ti , this implies that

H 1(K +∩Ei ∩Bα(p)
)> α

8
, (179)

and likewise,

H 1(K −∩E c
i ∩Bα(p)

)> α

8
. (180)

Let
Si

def= {
K ∈Ti : H 1(K ∩Bδ(q)∩ (HàEi )

)> 0
}
.

Suppose that i Ê d(p, q)+2δ+2α and K ∈ Si . By (179), (180), and the definition of Si ,
there are disjoint intervals I1 = K −∩Bα(p), I2 = K +∩Bα(p), and I3 = K ∩Bδ(q) such
that: I2 is between I1 and I3; I1 ∪ I2 ∪ I3 has diameter at most i ; H 1(I1 ∩ (HàEi )) > α

8 ;
H 1(I2 ∩Ei ) > α

8 ; and H 1(I3 ∩ (HàEi )) > 0. Lemma 8.2 implies that

ω̂Ei ,i (B 1,K ) Ê ω̂Ei ,i (Bα(p),K ) Ê H 1(Ei ∩ I2)

2
Ê α

16
.

Hence,
α

16
N (Si ) É

ˆ
L

ω̂Ei ,i (B 1,K )dN (K ) = ENMEi ,i (B 1) É 1

i
,

so limi→∞N (Si ) = 0.
Let

Ri
def= {

K ∈Kδ : H 1(K ∩Bδ(q)∩ (HàEi )
)> 0

}
.

Then N (Ri ) ÉN (Si )+N (KδàTi ), and so limi→∞N (Ri ) = 0. By (178),

H 4(Bδ(q)∩ (HàEi )
)³δ ˆ

Kδ

H 1(K ∩Bδ(q)∩ (HàEi )
)

dN (K ) É
ˆ

Ri

2δdN (K ),



96 ASSAF NAOR AND ROBERT YOUNG

where the last inequality follows from the fact that H 1(K ∩Bδ(q)) É 2δ for any horizontal
line K . We therefore conclude as follows.

lim
i→∞

H 4(Bδ(q)∩ (HàEi )
)É lim

i→∞
2δN (Ri ) = 0. �

By Lemma 11.7, B 1∩∂H 4 F is a union of line segments. Extended monotonicity implies
that these line segments can be extended to lines.

Lemma 11.15. Let f be a B 1–LEM function and let F = f −1(1)∩B 1 be the corresponding
locally monotone set. Let L be a horizontal line. If an open subinterval I ⊆ L is contained in
B 1 ∩∂H 4 F , then L ⊆ ∂H 4 F .

Proof. By Proposition 11.4, ∂H 4 F has at most countably many characteristic points. Let
p ∈ I be non-characteristic. Then the vertical plane Tp containing L is the approximate
tangent plane to ∂H 4 F at p. Recalling that Hp is the horizontal plane centered at p, every
horizontal line through p, other than L itself, intersects ∂H 4 F transversally at p, so by
Lemma 11.14, we have T +

p ∩Hp ⊆ intH 4 (F ) and T −
p ∩Hp ⊆ intH 4 (HàF ). Since L lies in the

closures of T +
p ∩Hp and T −

p ∩Hp , we have L ⊆ suppH 4 (F )∩ suppH 4 (HàF ) = ∂H 4 F . �

Finally, we show that if B 1 ∩∂H 4 F is nonplanar, then we can construct an arrangement
of lines that leads to a contradiction.

Lemma 11.16. Let f be a B 1–LEM function. There is a plane Q ⊆H such that f |B 1
= 1Q+

outside a null set. In fact, the same holds true in a larger set. Let

S
def= (Q ∩B 1)H (181)

be the union of the horizontal lines intersecting Q ∩B 1. Then f |S = 1Q+ outside a null set.

Proof. Let F = f −1(1)∩B 1 be the locally monotone set corresponding to f and suppose
by way of contradiction that B 1 ∩∂H 4 F is non-planar. By part (2) of Proposition 11.4 and
by Lemma 11.15, for every point p ∈ B 1 ∩∂H 4 F , there is a horizontal line Mp through p
such that Mp ⊆ ∂H 4 F .

Reasoning as in Lemma 4.11 of [CK10b] shows that there are two B 1–rulings of F that
satisfy one of the cases of Lemma 11.1, i.e., they are a pair of skew lines or a pair of lines
with distinct parallel projections. Indeed, suppose that J and K are B 1–rulings of F with
parallel projections. If π(J) 6= π(K ), we are done; otherwise, J and K are contained in a
vertical plane V . Let L be a B 1–ruling of F not in V , which exists by the assumed non-
planarity. Then L is skew to J or K or parallel to V with a distinct projection. It remains to
treat the case when any two B 1–rulings of F have nonparallel projections. Let J and K be
two such rulings. If J and K are disjoint, we are done, so we suppose J and K intersect
at a point p and are thus contained in the horizontal plane Hp centered at p. If L is a

B 1–ruling of F that is not contained in Hp (it exists by assumed non-planarity), then L
intersects Hp at a single point other than p, so L is skew to either J or K , as desired.

This shows that there are two B 1–rulings L1 and L2 of F that are skew or have distinct
parallel projections. Let I = L1 ∩B 1 and let p ∈ I be a noncharacteristic point such
that π(p) 6∈π(L2). By Lemma 11.1, there is a horizontal line M that goes through p and
intersects L2 at q . This line is not equal to L1, so it intersects ∂H 4 F transversally at p. By
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Lemma 11.14, this implies that q ∈ intH 4 ( f −1(0)) or q ∈ intH 4 ( f −1(1)), but q ∈ L2 ⊆ ∂H 4 F ,
which is a contradiction. Therefore, B 1 ∩∂H 4 F is planar and there is a plane Q such that
F ∩B 1 =Q+∩B 1 up to a null set. Since f takes values in {0,1} inside B 1, this implies the
first part of Lemma 11.16.

With S as in (181), take w ∈ Q+∩S. Then w lies on a horizontal line that intersects
Q∩B 1 transversally, and Lemma 11.14 implies that w ∈ intH 4 ( f −1(1)). It follows that f = 1
almost everywhere in Q+∩S and likewise that f = 0 almost everywhere in Q−∩S. �

The second part of Proposition 10.1 states that extended monotone intrinsic graphs
are close to vertical planes. This follows from the fact that neighborhoods of the center of
a horizontal plane cannot be approximated by intrinsic graphs.

Lemma 11.17. Let V0 be the xz–plane and let E1,E2, . . . ⊆ H be a sequence of intrinsic
graphs over V0 such that E+

i is ( 1
i , i )–extended monotone on B 1 and 1E+

i
converges weakly

to a function f ∈ L∞(H) as i →∞. There is a vertical plane Q ⊆ H such that f |B 1
= 1Q+

outside a null set. Furthermore, if S is as in (181), then f |S = 1Q+ outside a null set.

Proof. For any intrinsic graph Γ and any g ∈ Γ+, we have g Y t ∈ Γ+ for every t > 0. Since
H 4 is right-invariant, this implies that for any measurable set U ⊆N and any i ∈N,

H 4(U ∩E+
i

)ÉH 4(U ∩E+
i Y t ).

Therefore, ˆ
U

f dH 4 É
ˆ

U Y t
f dH 4.

Consequently,

f (g ) É f (g Y t ) for almost every (g , t ) ∈H× (0,∞). (182)

If f is almost-surely constant on B 1, we can take Q to be a vertical plane that does not
intersect B 1. We thus suppose that f |B 1

is not almost-surely constant. By Lemma 11.16,
there is a plane Q that satisfies f |S = 1Q+ outside a null set, where S is given in (181).

Suppose for contradiction that Q is horizontal. Let c ∈H be such that Q =Hc = cH and
let p ∈Q ∩ int(B 1) be such that x(p) 6= x(c). Let L be the horizontal line from c to p and let
V = (xV , yV ,0) be the horizontal vector such that p = cV . Set q = cV −1 = c(−xV ,−yV ,0).
We claim that there is ε > 0 such that {pY ±ε, qY ±ε} ⊆ S. Choose ε > 0 so that pY t ∈ B 1

and rt = c(xV , yV + t ,0) ∈ B 1 ∩Q for all t ∈ [−2ε,2ε]. Then

rt

(
−2xV ,−2yV − 3t

2
,0

)
= c(xV , yV + t ,0)

(
−2xV ,−2yV − 3t

2
,0

)
= c

(
−xV ,−yV − t

2
,

xV t

4

)
= qY − t

2 .

It follows that qY − t
2 ∈ rtH⊆ S. In particular, qY ±ε ∈ S. At the same time, pY ε and pY −ε

are on opposite sides of Q; equation (182) implies that pY ε ∈Q+ and pY −ε ∈Q−. Likewise,
qY ±ε ∈Q±. But since c is between p and q , the points pY ε and qY ε are on opposite sides
of Q, which is a contradiction. Therefore, Q is a vertical plane. �
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Proof of Proposition 10.1. If the first part of the proposition were false, then there would
exist ε> 0 and a sequence of measurable sets (Ei )∞i=1 such that for any i ∈N, the set Ei is

( 1
i , i )–extended monotone on B 1 and |B 1 ∩ (P+4Ei )| > ε for every plane P ⊆H. There is

a subsequence (Ei ( j ))∞j=1 whose characteristic functions converge weakly to a B 1–LEM
function f . By Lemma 11.16, there is a plane Q ⊆H such that f = 1Q+ almost everywhere
on B 1. Then lim j→∞ |B 1 ∩ (Q+4Ei ( j ))| = 0, which is a contradiction.

Similarly, if the second part of the proposition were false, then there would exist ε> 0
and a sequence of intrinsic graphs (Ei )∞i=1 over V0 such that for any i ∈N, the epigraph E+

i

is ( 1
i , i )–extended monotone on B 1 and |B 1 ∩ (P+4E+

i )| > ε for every vertical plane P ⊆H.
Passing to a subsequence, we may suppose that the indicators 1E+

i
converge weakly to a

B 1–LEM function f . By Lemma 11.17, there is a vertical plane Q ⊆H such that f = 1Q+

almost everywhere on B 1. Then limi→∞ |B 1∩(Q+4E+
i )| = 0, which is a contradiction. �

12. L1 BOUNDS AND CHARACTERISTIC CURVES ON MONOTONE INTRINSIC GRAPHS

Here we complete the proof of Proposition 7.2, which obtains L1 bounds for paramono-
tone pseudoquads and bounds their characteristic curves.

Fix 0 <µÉ 1
32 and a µ–rectilinear pseudoquad Q in an intrinsic Lipschitz graph Γ= Γ f .

Suppose that Γ is (η,R)–paramonotone on rQ. By Remark 4.3, we can normalize Q and
Γ so that the corresponding parabolic rectangle is the square [−1,1]× {0}× [−1,1]; by
Lemma 8.8 and the discussion immediately after its proof, the normalized pseudoquad
remains paramonotone. So, it suffices to prove Proposition 7.2 for such pseudoquads.

For t > 0, denote D t = [−t , t ]× {0}× [−t 2, t 2] ⊆V0. By our choice of normalization, we
have tQ = D t . Furthermore, D t ⊆ B5t andΠ(B t ) ⊆ D t . We will proceed in several steps.

(1) First, we will prove in Lemma 12.2 that there is a universal constant κ> 0 such that
‖ f ‖L1(Q) É κ when η is sufficiently small. This relies on Lemma 12.1 that bounds
the tails of f in regions that are bounded above and below by supercharacteristic
curves (projections of horizontal curves in Γ∪Γ+).

(2) Next, we will show that Γ is close to a plane on a ball around the origin. Since
‖ f ‖L1(Q) É κ, the intersections Γ+∩Bκ and Γ−∩Bκ both have positive measure.
For any r > 0, we haveΠ(B r ) ⊆ rQ, so ENMΓ+,R (B r ). ηR . When ηR is sufficiently
small and r and R are sufficiently large, Proposition 10.1 implies that there is a
vertical plane P that intersects Bκ and approximates Γ on Br , i.e.,

H 4
(
(Γ+4P+)∩B r

)
< ε.

Furthermore, since ‖ f ‖L1(Q) É κ, the slope and y–intercept of π(P ) are both at
most some universal constant.

We then apply an automorphism that sends P to V0. Since the slope and
y–intercept of P are bounded, there is a universal constant c > 0 and a map
q : H→ H (a composition of a left translation in the y–direction and a shear)
such that q(P ) = V0 and Bc−1s−c ⊆ q(Bs) ⊆ Bcs+c for all s > c2. We let Γ̂ = q(Γ),
Q̂ = q̂(Q) =Π(q(Q)), and let f̂ be such that Γ̂= Γ f̂ . Since q preserves H 4,

H 4
(
(Γ̂+4V +

0 )∩B c−1r−c

)
< ε. (183)
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This inequality controls f̂ on V0 ∩B c−1r−c , and we choose r large enough that
11Q̂ ⊆ B c−1r−c .

(3) By (183), ˆ
10Q̂

min
{
1, | f̂ (p)|} dH 3(p) É ε,

so a bound on the tails of f̂ would lead to a bound on ‖ f̂ ‖L1(10Q̂). We bound
the tails in Lemma 12.4, by finding supercharacteristic curves above and below
10Q̂, then applying Lemma 12.1 again. This implies that ‖ f̂ ‖L1(10Q̂). ε when η is
sufficiently small, which proves the first part of Proposition 7.2.

(4) Finally, we bound the characteristic curves of Γ̂ in Lemma 12.6, by showing that
if Γ̂ contains characteristic curves that are not nearly parallel to the x–axis, then
either ‖ f̂ ‖L1 is bounded away from zero orΩP

Γ+,R is bounded away from zero. This
completes the proof of Proposition 7.2.

We will use the following notation for horizontal lines. Every horizontal line in LP can
be written uniquely as follows for some for some w = (0, y0, z0) ∈H and m ∈R.

Lw,m
def= w〈X +mY 〉.

Let ρLw,m : R→ Lw,m be the following parametrization, so that x(ρL(t )) = t for all t ∈R.

∀t ∈R, ρLw,m (t )
def= w(X +mY )t .

For every x ∈R define

gLw,m (x)
def= z

(
Π

(
ρLw,m (x)

))=−m

2
x2 − y0x + z0. (184)

Note that since Lw,m is horizontal, we have y(ρLw,m (x)) =−g ′
Lw,m

(x).

12.1. Bounding the tails of f . We start by showing that if Q is a rectilinear pseudoquad
for Γ = Γ f such that Γ+ is (η,R)–paramonotone on rQ, as in Proposition 7.2, and Q is
normalized so that the corresponding parabolic rectangle is a 2×2 square, as in Remark 4.3,
then there is a universal constant κ such that ‖ f ‖L1(Q) É κ when r and R are sufficiently
large and η is sufficiently small.

This step relies on the following lemma, which will also be used in step 3. A super-
characteristic curve (respectively subcharacteristic curve) for Γ is the projectionΠ(γ) of a
horizontal curve γ : I →H such that x(γ(t )) = t for all t ∈ I and γ(I ) ⊆ Γ∪Γ+ (respectively
γ(I ) ⊆ Γ∪Γ−).

Such a curve can be written as a graph of the form {z = g (x)} ⊆V0. By the argument of
Lemma 2.6, g is differentiable almost everywhere and satisfies g ′(x) = y(γ(x)) for almost
every x ∈ I . Since g is locally Lipschitz, g (x) = g (x0)+´ x

x0
g ′(t )dt = g (x0)+´ x

x0
y(γ(t ))dt for

all x, x0 ∈ I , and therefore g ′(x) = y(γ(x)) for every x ∈ I . In particular, g ′(x) É− f (x,0, g (x))
for all x ∈ I . We then say that g is a function with supercharacteristic graph.

Lemma 12.1. Let g1, g2 : [−2,2] →R be functions with supercharacteristic graphs such that
sup g1([−2,2]) < inf g2([−2,2]). For 0 É r É 2, let

Ur = {(x,0, z) ∈V0 : |x| É r and g1(x) É z É g2(x)}.
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Denoting H = max{‖g1‖L∞([−2,2]),‖g2‖L∞([−2,2])}, for any t Ê 8H we have

|{v ∈U1 : f (v) Ê t }|. 1

t 2Ω
P
Γ+,4(U2). (185)

Likewise, if g1, g2 : [−2,2] →R have subcharacteristic graphs and Ur and H are as above,
then for any t Ê 8H we have

|{v ∈U1 : f (v) É−t }|. 1

t 2Ω
P
Γ+,4(U2).

Once we prove Lemma 12.1, we will apply it to the case that Q approximates [−1,1]2

and g1 and g2 are the lower and upper bounds of Q.

Proof. Fix t Ê 8H and y0,m, z0 ∈R such that |y0 − t
2 | < t

12 and |m| < t
12 . Let L = L(0,y0,z0),m .

For any s ∈ [−2,2] we have ∣∣∣∣g ′
L(s)+ t

2

∣∣∣∣= ∣∣∣∣y
(
ρL(s)

)− t

2

∣∣∣∣< t

4
, (186)

so −3
4 t < g ′

L(s) <−1
4 t on [−2,2].

We claim that for any almost every such L we have

ω̂P
Γ+,4(U2,L) Ê 1

2
H 1

(
x
(
Γ−∩L∩Π−1(U1)

))
. (187)

By (186), we have

gL(−2) = gL(s)−
ˆ s

−2
g ′

L(u)du >−H + (s +2)
t

4
Ê−H +2H = H ,

and

gL(2) = gL(s)+
ˆ 2

s
g ′

L(u)du < H − (2− s)
t

4
É H −2H =−H .

Hence,Π(L) crosses U2 negatively (from top to bottom), as depicted in Figure 12.1. The
curve Π(L) only intersects the top and bottom of U2, not the sides, so we say that Π(L)
is transverse to the boundary of U2 if Π(L) intersects the top and bottom boundaries
transversally; that is, if gL(u) = gi (u) for some u ∈ [−2,2] and i = 1,2, then g ′

L(u) 6= g ′
i (u).

Suppose thatΠ(L) is transverse to the boundary of U2 and that L∩Γ+ has finite perime-
ter; these are true for almost every L. IfΠ(L) does not intersect U1, then the right side of
(187) is 0 and the inequality holds trivially. We thus suppose in addition that L intersects
U1. In this case, there is some s ∈ [−1,1] such that |gL(s)| É H .

Fix i ∈ {1,2} and suppose thatΠ(L) crosses the graph of gi negatively at (u,0, gL(u)). Let
v = ρL(u) be the point on L over the intersection. Then gL(u) = gi (u) and g ′

L(u) < g ′
i (u).

Since the graph of gi is supercharacteristic, f (u,0, gi (u)) É−g ′
i (u), and therefore

y(v) =−g ′
L(u) >−g ′

i (u) Ê f
(
u,0, gi (u)

)= f
(
Π(v)

)
.

That is, v ∈ Γ+.
SinceΠ(L) is transverse to the boundary of U2, the intersectionΠ(L)∩U2 consists of a

collection of intervals. Let [a1,b1], . . . , [an ,bn] ⊆R be the disjoint intervals such that

x(Π(L)∩U2) = [a1,b1]∪·· ·∪ [an ,bn],
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g2

g1

L

FIGURE 5. Two characteristic curves g1 and g2 and a horizontal line L,
projected to V0; the positive y–axis points toward the reader. SinceΠ(L)
crosses U2 negatively, the segments of L at the first and last crossings lie
in Γ+, so the size of the intersection L∩Γ− is bounded by ω̂P

Γ+,4(U2,LZ t ).

and these intervals are in ascending order. The projection Π(L) does not intersect the
left or right boundary of U2, soΠ(L) crosses the graph of g1 or g2 at each ai or bi . Since
gL is decreasing and sup g1([−2,2]) < inf g2([−2,2]), the crossings of g2 all have smaller
x–coordinate than the crossings of g1.

Consider S = x(L∩Γ+). SinceΠ(L) crosses the graph of g2 negatively at a1 and crosses
the graph of g1 negatively at bn , the argument above implies that a1,bn ∈ S. Furthermore,
for each i ∈ {1, . . . ,n}, one of three cases holds.

(1) Π(L) crosses the graph of g2 negatively at ai and positively (from bottom to top)
at bi .

(2) Π(L) crosses the graph of g2 negatively at ai and crosses the graph of g1 negatively
at bi .

(3) Π(L) crosses the graph of g1 positively at ai and negatively at bi .

In each case, ai ∈ S or bi ∈ S. By Lemma 8.2 (applied with [a,b] = [a1,bn]),

ω̂S,4([ai ,bi ]) = ω̂RàS,4([ai ,bi ]) Ê 1

2
H 1(x(Γ−∩L)∩ [ai ,bi ]).

Summing over i ∈ {1, . . . ,n}, we find that

ω̂S,4

( n⋃
i=1

[ai ,bi ]
)
= ω̂P

Γ+,4(U2,L) Ê 1

2
H 1

(
x
(
Γ−∩L∩Π−1(U2)

))
. (188)

This proves (187).
Next, let A =U1 ∩ f −1([t ,∞)). By (186), y(ρL(s)) < t for all s ∈ [−2,2], so ifΠ(ρL(s)) ∈ A,

then ρL(s) ∈ Γ−. Therefore, by (187),

1

2
H 1(x(Π(L)∩ A)

)É 1

2
H 1

(
x
(
Γ−∩L∩Π−1(U1)

))É ω̂P
Γ+,4(U2,L).
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By Fubini’s Theorem, for any y0 and m as above,

1

2
|A| = 1

2

ˆ
R

H 1(x(L(0,y0,z0),m ∩ A)
)

dz0 É
ˆ
R

ω̂P
Γ+,4(U2,L(0,y0,z0),m)dz0.

Therefore, recalling the definition (161) ofΩP , we have

ΩP
Γ+,4(U2) = 1

4

ˆ
L

ω̂P
Γ+,4(U2,L)dNP (L)

Ê 1

4

ˆ t
12

− t
12

ˆ 7t
12

5t
12

ˆ
R

ω̂P
Γ+,4(U2,L(0,y0,z0),m)dz0 dy0 dm

Ê 1

8

ˆ t
12

− t
12

ˆ 7t
12

5t
12

|A|dy0 dm

= t 2

288
|A|.

That is,

|{v ∈U1 : f (v) Ê t }|. 1

t 2Ω
P
Γ+,4(U2).

This proves (185).
We can show that

|{v ∈U1 : f (v) É−t }|. 1

t 2Ω
P
Γ+,4(U2).

when g1, g2 have subcharacteristic graphs by either applying a similar argument or by
replacing Γ, Ur , etc. by s1,−1(Γ), s1,−1(Ur ), etc. �

The desired bound on ‖ f ‖L1(Q) follows by integrating (185) with respect to t .

Lemma 12.2. Let f : V0 →R be a continuous function and let Γ be its intrinsic graph. Let
(Q, [−1,1]× {0}× [−1,1]) be a 1

32 –rectilinear pseudoquad for Γ. Suppose thatΩP
Γ+,4(2Q) É 1.

There is a universal constant κ> 0 such that ‖ f ‖L1(Q) É κ.

Proof. Let g1 and g2 be the lower and upper bounds of Q and for 0 É r É 2, let Ur be as
in Lemma 12.1. Then Q =U1 and U2 ⊆ 2Q. Let H = 2. Since the graphs of g1 and g2 are
supercharacteristic and U2 ⊆ 2Q, Lemma 12.1 implies that for any t Ê 16,

|{v ∈Q : f (v) Ê t }|. t−2ΩP
Γ+,4(U2) É t−2ΩP

Γ+,4(2Q) É t−2.

Since the graphs of g1 and g2 are also subcharacteristic, for any t Ê 16 we also have

|{v ∈U1 : f (v) É−t }|. t−2.

Then

‖ f ‖L1(Q) =
ˆ ∞

0
|{v ∈Q : | f (v)| Ê t }|dt . 16|Q|+

ˆ ∞

16
t−2 dt . 1. �
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12.2. Constructing the approximating plane. Now we will use Lemma 12.2 and the
results of Section 11 to show that if Q is a paramonotone pseudoquad for Γ f , then f is
close on Q to an affine function with bounded coefficients.

Lemma 12.3. Let κ> 0 be the constant in Lemma 12.2, and let C = 4κ. For any 0 < ε< 1
and r Ê 2κ+6, there are 0 < η< 1

2 and R > 0 with the following property.
Let Γ = Γ f be an intrinsic graph such that (Q, [−1,1]× {0}× [−1,1]) is a 1

32 –rectilinear
pseudoquad for Γ. Let g1 and g2 be the lower and upper bounds of Q, respectively. If Q is
(η,R)–paramonotone on rQ, then there is a vertical plane P ⊆H such that

H 4
(
B r ∩

(
P+4Γ+

))< ε. (189)

Moreover, P is the graph of an an affine function F : V0 →R of the form F (w) = a +bx(w),
whose coefficients satisfy max{|a|, |b|} ÉC .

Proof. We have δx (Q) = 2 and α(Q) =p
2. Also, 2 É |Q| É 6. Hence, recalling (153), if Γ is

(η,R)–paramonotone on rQ, then assuming R Ê 2 and ηR < 1 we have

ΩP
Γ+,4(2Q) É R

2
ΩP
Γ+,2R (rQ) É R

2
ηα(Q)−4|Q| É Rη< 1,

so by Lemma 12.2 we have ‖ f ‖L1(Q) < κ.
SinceΠ(B r ) ⊆ rQ, (164) implies that

ENMΓ+,2R (B r ). ηR.

By Proposition 10.1, when R is sufficiently large and ηR is sufficiently small, there is a
half-space P+ bounded by a vertical plane such that

H 4
(
B r ∩

(
P+4Γ+

))< ε.

If necessary, we may rotate P infinitesimally around the z–axis so that it is not perpendic-
ular to V0. Then P is the graph of an affine function F : V0 →R. Let a,b ∈R be such that
F (w) = a +bx(w) for all w ∈V0.

For all w ∈V0, let f̄ (w) (respectively F̄ (w)) be the element of [−2κ,2κ] that is closest to
f (w) (respectively F (w)). Since r Ê 2κ+6, the intrinsic graphs of F̄ and f̄ over Q both lie
in B r . Therefore,∥∥F̄ − f̄

∥∥
L1(Q) ÉH 4

(
B r ∩ (Γ+

f̄
4Γ+

F̄
)
)
ÉH 4

(
B r ∩ (Γ+f 4Γ+F )

)
É ε,

and thus ∥∥F̄
∥∥

L1(Q) É ε+
∥∥ f̄

∥∥
L1(Q) É ε+‖ f ‖L1(Q) É 2κ. (190)

The map F is affine, and [−1,1]× {0}× [−1
2 , 1

2 ] ⊆Q, so |{q ∈Q : |F (q)| > 2κ}| > 1 if |a| > 2κ
or |b| > 4κ, which implies that ‖F̄‖L1(Q) > 2κ in contradiction to (190). So, max{|a|, |b|} É
4κ. �

We will next use Lemma 12.3 to construct a new intrinsic Lipschitz graph Γ̂ that is
close to V0 on a ball around 0. Let 0 < ε< 1 and r > 0 be numbers to be chosen later. Let
η,R,C ,Γ, f ,Q be as in Lemma 12.3, so that there is a vertical plane P approximating Q
that is the graph of an affine function F (w) = a +bx(w) with max{|a|, |b|} ÉC .
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Let q = qa,b : H→H be the map given by

∀(x, y, z) ∈H, q(x, y, z)
def= Y −a(x, y −bx, z) =

(
x, y −a −bx, z + ax

2

)
.

This is a shear map that preserves the x–coordinate and sends P to V0. Let q̂ : V0 →V0 be
the map that q induces on V0, i.e.,

∀x, z ∈R, q̂(x,0, z) =Π(
q(x,0, z)

)= (
x,0, z +ax + b

2
x2

)
. (191)

Let Γ̂= q(Γ) and Q̂ = q̂(Q). By Lemma 2.9, Q̂ is a pseudoquad for Γ̂ that contains 0 and
Γ̂= Γ f̂ , where

f̂ (v) = f (q̂−1(v))−a −bx(v) = f (q̂−1(v))−F (q̂−1(v)).

Since a,b ∈ [−C ,C ], there is a universal constant c > 0 such that for all s > c2,

Dc−1s−c ⊆ q̂(Ds) = sQ̂ ⊆ Dcs+c , (192)

where we recall Ds = [−s, s]× {0}× [−s2, s2], and

Bc−1s−c ⊆ q(Bs) ⊆ Bcs+c . (193)

Bounds on Γ and Q correspond directly to bounds on Γ̂ and Q̂. For example, shear
maps preserve H 4, so

H 4 (
Bc−1r−c ∩ (V +

0 4 Γ̂+)
)ÉH 4 (

q(Br )∩ (V +
0 4 Γ̂+)

)=H 4(Br ∩ (P+4Γ+)
)< ε. (194)

In particular, when r is sufficiently large,

‖min{| f −F |, r

2
}‖L1(10Q) ÉH 4(Br ∩ (P+4Γ+)

)< ε. (195)

Maps induced by shears preserve the Lebesgue measure H 3 on V0, so by (192),

‖ f −F‖L1(10Q) = ‖ f̂ ‖L1(10Q̂) É ‖ f̂ ‖L1(D11c ), (196)

and by Lemma 8.8, Γ̂ is (η,R)–paramonotone on rQ̂.

12.3. Bounding ‖ f −F‖L1(10Q). Next, we bound ‖ f −F‖L1(10Q). Lemma 12.2, Lemma 12.3,
and (195) imply that ‖ f −F‖L1(Q) and that ‖min{| f −F |, r

2 }‖L1(10Q) can be made arbitrarily
small. It remains to show that | f −F | does not have large tails on 10Q. We previously used
Lemma 12.1 to bound the tails of f on Q, but this used the fact that Q is bounded above
and below by characteristic curves. We will have to do more work to find supercharacter-
istic curves above and below 10Q. In fact, we will show the following bound on f̂ , then
use (196) to show a similar bound on | f −F |.
Lemma 12.4. For any δ> 0, there is β=β(δ) > 0 with the following property. Let Γ̂= Γ f̂ be
an intrinsic Lipschitz graph. Let τ> 0 and suppose that

H 4(B144τ∩ (Γ̂+4V +
0 )

)<βτ4, (197)

and that the density ofΩP
Γ̂+,48τ

on D24τ is bounded by

τ−3ΩP
Γ̂+,48τ

(D24τ) <β.

Then ‖ f̂ ‖L1(D8τ) É δτ4.
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Proof. Recall that by Lemma 8.8, the density ofΩP
Γ̂+,48τ

is invariant under scaling, so, after

rescaling, it is enough to treat the case τ= 1. Let

U
def=

{
L(0,y0,z0),m : z0 ∈ [200,201] ∧ y0 ∈ [1,2] ∧ m ∈

[
− y0

20
,− y0

21

]}
.

We claim that there is some L ∈U such that the segmentΠ(ρL([−16,16])) is a supercharac-
teristic curve above D8. A similar construction will produce a second supercharacteristic
curve below D8, so we can use Lemma 12.1 to bound f̂ from above.

We clip f̂ between −24 and 24 and call the result h; that is, for all w ∈V0, let h(w) be the
element of [−24,24] that is closest to f̂ (w). For L ∈LP and t ∈R, let hL(t) = h(Π(ρL(t))).
Define

U1
def= {

L ∈U :Π(ρL([−16,16])) is supercharacteristic
}

U2
def=

{
L ∈U :

ˆ 24

−24
|hL(t )|dt > 1

24

}
U3

def=
{

L ∈U : ω̂P
Γ̂+,48

(D24,L) Ê 1
}

.

We claim that almost every L ∈U is contained in U1 ∪U2 ∪U3.
Let L ∈ U and suppose that x(L ∩ Γ̂+) is a subset of R with locally finite perimeter.

This is true for almost every L. Suppose that L 6∈ U1 ∪U2. Then Π(ρL([−16,16])) is not
supercharacteristic, so there is some a ∈ [−16,16] such that ρL(a) ∈ Γ̂−. Let p be the
intersection point of L with V0; by our choice of parameters, x(p) ∈ [20,21]. Also, since
m < − 1

24 , we have y(ρL(t)) > 1
24 for t É 19. Since L 6∈ U2, there are b1 ∈ [16,17] and

b2 ∈ [18,19] such that for i ∈ {1,2} we have hL(bi ) É 1
24 < y(ρL(bi )) and thus ρL(bi ) ∈ Γ̂+.

Similarly, y(ρL(t)) < − 1
24 for all t Ê 22, so there is c ∈ [22,23] such that hL(c) > y(ρL(c))

and ρL(c) ∈ Γ̂−. There is an element of ∂H 1 x(L∩ Γ̂+) in (a,b1) and another in (b2,c). Since
a,b1,b2,c ∈ [−24,24], Lemma 8.1 implies that

ω̂P
Γ̂+,48

(D24,L) Ê b2 −b1 Ê 1

and thus L ∈U3.
Therefore, U1 ∪U2 ∪U3 contains all of U except a null set. We will next show that

NP (U2) and NP (U3) are bounded by multiples of β.
Suppose L = L(0,y0,z0),m . As in (184), let gL(t ) = z(Π(ρL(t ))) =−m

2 t 2 − y0t + z0. For every
t ∈ [−24,24], we have

|gL(t )−200| É 1+ m

2
t 2 + y0|t | É 1+ 242

20
+48 É 100, (198)

so Π(ρL([−24,24])) ⊆ D24. Furthermore, D24 ⊆ B120, so for all v ∈ D24 and t ∈ [−24,24], we
have vY t ∈ B144. Thus

‖h‖L1(D24) ÉH 4(B144 ∩ (Γ̂+4V +
0 )

)<β. (199)

Therefore, for any y0 ∈ [1,2] and m ∈ [− y0

20 ,− y0

21

]
,

ˆ 201

200

ˆ 24

−24
|hL(t )|dt dz0 É ‖h‖L1(D24) <β.
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It follows that {z0 ∈ [200,201] : L(0,y0,z0),m ∈U2} has measure at most 24β and thus

NP (U2) É
ˆ 2

1

ˆ − y0
21

− y0
20

24βdm dy0 É 24β.

To bound NP (U3), observe that

NP (U3) É
ˆ

LP

ω̂P
Γ̂+,48

(D24,L)dNP (L) = 48ΩP
Γ̂+,48

(D24) < 48β.

It follows that if β is sufficiently small, then

NP (U1) ÊNP (U )−NP (U2)−NP (U3) > 0.

Therefore U1 is nonempty. That is, there exists a line L ∈U with parametrization ρL such
that S2 = Π(L)∩ {−16 É x É 16} is a supercharacteristic curve. By (198), S2 is above D8

and S2 ⊆ D24. By symmetry, there also exists a line L′ and a supercharacteristic curve
S1 =Π(L′)∩ {−16 É x É 16} that lies below D8 and satisfies S1 ⊆ D24.

By Lemma 12.1 applied to a rescaling of Γ̂, there is some C > 24 such that for any t >C ,

|{v ∈ D8 : f̂ (v) Ê t }|. t−2ΩP
Γ̂+,48

(D24) É t−2β.

Applying another symmetry, the analogous reasoning shows that for any t >C ,

|{v ∈ D8 : f̂ (v) É−t }|. t−2β.

Then, for all sufficiently small β,

‖ f̂ ‖L1(D8) = ‖h‖L1(D8) +
ˆ ∞

24

∣∣{v ∈ D8 : | f̂ (v)| Ê t
}∣∣ dt

. ‖h‖L1(D8) +C
∣∣{v ∈ D8 : | f̂ (v)| Ê 24

}∣∣+ˆ ∞

C
t−2βdt

Éβ+C
∣∣{v ∈ D8 : | f̂ (v)| Ê 24

}∣∣+β,

where we use the fact C > 24 to go from the first line to the second. But∣∣{v ∈ D8 : | f̂ (v)| Ê 24
}∣∣= ∣∣{v ∈ D8 : |h(v)| = 24

}∣∣É ‖h‖L1(D8)

24
É β

24
,

so ‖ f̂ ‖L1(D8).β. This proves Lemma 12.4, for β at most a constant multiple of δ. �

We will use the following corollary in the proof of Proposition 7.2.

Corollary 12.5. Let c be the universal constant in (192)–(196) and let κ be the universal
constant in Lemma 12.2. Denote

τ
def= 1

8
max{100,11c} and r

def= max
{
2κ+6,144cτ+ c2}.

For any λ > 0, there are η,R > 0 with the following property. Let Γ = Γ f be an intrinsic
Lipschitz graph and (Q, [−1,1]× {0}× [−1,1]) a 1

32 –rectilinear pseudoquad for Γ. Suppose
that Γ is (η,R)–paramonotone on rQ, and P, F , and Γ̂= Γ f̂ are as in Lemma 12.3 and the
remarks immediately after its proof. Then

‖F − f ‖L1(10Q) Éλ|Q| and ‖ f̂ ‖L1(D100) Éλ.
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Proof. Set δ= λτ−4. Let β=β(δ) be as in Lemma 12.4. By Lemma 12.3, there are η0, R0

such that if Γ is (η0,R0)–paramonotone on rQ, then

H 4
(
B 144cτ+c2 ∩ (P+4Γ+)

)
<βτ4.

By (194), this implies that

H 4
(
B 144τ∩ (V +

0 4 Γ̂+)
)
<βτ4.

We take R > R0 and ηR < η0R0, so that (η,R)–paramonotonicity implies (η0,R0)–para-
monotonicity. Then, by (192) and the paramonotonicity of Q,

ΩP
Γ̂+,48τ

(D24τ) É Rδx (Q̂)

48τ
ΩP
Γ̂+,Rδx (Q̂)

(D24τ)

É R

24τ
ΩP
Γ+,Rδx (Q)(D24cτ+c2 ) É R

24τ
|Q|ηα(Q)−4. η.

If η is sufficiently small, then Lemma 12.4 implies that

‖ f̂ ‖L1(Dmax{100,11c}) <λ.

By (196), this implies that ‖F − f ‖L1(10Q) Éλ|Q|. �

12.4. Characteristic curves are close to lines. Finally, in this section we will show that
the characteristic curves of Γ̂ are close to horizontal lines and prove Proposition 7.2. The
key argument is that when characteristic curves fail to be horizontal, configurations like
those in Figure 6 produce nonmonotonicity.

γ(t1)

γ(t0)

q

L

γ

p

FIGURE 6. A characteristic curve γ and a horizontal line L, projected to
V0. The projection of L crosses γ positively at p, so L passes behind Γ̂ at
p, and L intersects V0 (shown as parallel horizontal lines) at q . If f̂ is zero
away from γ, then L intersects Γ̂ at least three times (twice near p and

once at q) and the contribution to ω̂P is at least x(q)−x(p)
2

Lemma 12.6. For any A > 0, there are δ= δ(A),θ = θ(A) > 0 with the following property.
Let Γ̂= Γ f̂ be an intrinsic Lipschitz graph. Suppose that

ΩP
Γ̂+,16

(D8) < θ and
∥∥ f̂

∥∥
L1(D8) < δ.
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Let γ : R→V0 be a characteristic curve through 0 and write γ(t ) = (t ,0, g (t )) for t ∈R. Then
|g (t )| < A for all t ∈ [−1,1].

Proof. We may suppose that 0 < A < 1. Choose δ= A2

96 and θ = A3

105 . Our goal is to show

that if ‖ f̂ ‖L1(D8) < δ and if there is t0 ∈ [−1,1] with |g (t0)| Ê A, then ΩP
Γ̂+,16

(D8) Ê θ. After

applying a symmetry, we may suppose that t0 > 0 and that g (t0) É−A, as in Figure 6.
Take z0 ∈ (− A

2 ,0), y0 ∈ [ A
4 , A

2 ], m ∈ [− y0

5 ,− y0

6 ], and w = (0, y0, z0). Let L = Lw,m . Suppose
that Π(L) and γ intersect transversally and L ∩ Γ̂− has finite perimeter; these hold for
almost every tuple (y0, z0,m). We will show that if

ˆ 8

0

∣∣ f̂
(
t ,0, gL(t )

)∣∣dt < A

24
, (200)

then ω̂P
Γ̂+,16

(D8,L) Ê 1, where gL = z(Π(ρL)).

Suppose that (200) holds. For t ∈ [−8,8], we have

|gL(t )| É |z0|+ |m|
2

t 2 +|y0t | < 1+ 64

20
+4 < 64,

so Π(ρL([−8,8])) ⊆ D8. The graphs of gL and g intersect as depicted in Figure 6. That is,
gL(0) = z0 < g (0), gL is decreasing on [0,5], and gL(0)− gL(1) = m

2 + y0 < A
2 , so

gL(t0) Ê gL(1) > gL(0)− A

2
>−A Ê g (t0).

It follows that the graph of gL crosses γ positively at some point p = (a,0, g (a)), where
a ∈ [0, t0]. Since g is characteristic,

f̂
(
a,0, g (a)

)=−g ′(a) >−g ′
L(a) = y

(
ρL(a)

)
,

so ρL(a) ∈ Γ̂−.
Let q be the point where L intersects V0. Then x(q) =− y0

m ∈ [5,6]. Since m É− A
24 , we

have y(ρL(t )) Ê A
24 for t É 4 and y(ρL(t )) É− A

24 for t Ê 7. By (200), there are b1 ∈ [1,2] and
b2 ∈ [3,4] such that

f̂
(
bi ,0, gL(bi )

)< A

24
É y

(
ρL(bi )

)
.

This implies ρL(bi ) ∈ Γ̂+. Similarly, there is c ∈ [7,8] such that y(ρL(c)) < f̂ (c,0, gL(c)) and
thus ρL(c) ∈ Γ̂−. There is an element of ∂H 1

(
x(L∩ Γ̂+)

)
in (a,b1) and another in (b2,c),

and by Lemma 8.1,

ω̂P
Γ̂+,16

(D8,L) Ê b2 −b1 Ê 1,

as desired.
Therefore, for almost every (m, y0, z0) as above, regardless of whether (200) holds,

ω̂P
Γ̂+,16

(D8,L)+ 24

A

ˆ 8

0

∣∣ f̂
(
t ,0, gL(t )

)∣∣dt Ê 1, (201)

since we showed that at least one of the summands on the left hand side of (201) is at
least 1. By integrating (201) with respect to z0, we see that for almost every (m, y0) that
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satisfy y0 ∈ [ A
4 , A

2 ] and m ∈ [− y0

5 ,− y0

6 ], we have

ˆ 0

− A
2

ω̂P
Γ̂+,16

(D8,L)dz0 Ê A

2
− 24

A

ˆ 0

− A
2

ˆ 8

0
| f̂ (x,0, gL(x))|dx dz0

Ê A

2
− 24

A
‖ f̂ ‖L1(D8) Ê A

2
− 24δ

A
= A

4
.

By integrating this bound over m and y0 as above, we conclude as follows.

ΩP
Γ̂+,16

(D8) Ê 1

16

ˆ A
2

A
4

ˆ − y0
6

− y0
5

ˆ 0

− A
2

ω̂P
Γ̂+,16

(D8,L)dz0 dm dy0 Ê A3

105 . �

Part 2 of Proposition 7.2 follows from Lemma 12.6.

Corollary 12.7. For every 0 < ζ< 1 there are δ= δ(ζ) > 0 and θ = θ(ζ) > 0 with the following
property. Let Γ̂= Γ f̂ be an intrinsic Lipschitz graph such that

ΩP
Γ̂+,128

(D100) < θ and
∥∥ f̂

∥∥
L1(D100) < δ.

Let Q̂ be a pseudoquad for Γ̂with x(Q̂) = [−1,1] such that 0 ∈ Q̂ and δz (Q̂) = 2. For u ∈ 4Q̂,
if gu : R→ R is such that {z = gu(x)} is a characteristic curve for Γ̂ that passes through u,
then ‖g − z(u)‖L∞([−4,4]) É ζ. That is, Q̂ satisfies part 2 of Proposition 7.2 for P =V0.

Proof. For p ∈V0 and t > 0, denote D t (p) = pD t . Let A = ζ
64 and let δ,θ > 0 be constants

satisfying Lemma 12.6 for this choice of A.
Let p ∈ D36 so that D64(p) ⊆ D100. Then ΩP

Γ̂+,8·16
(D82 (p)) < θ and ‖ f̂ ‖L1(D82 (p)) < δ, so

by Lemma 8.8, the rescaling s1/8,1/8(p−1Γ̂) satisfies Lemma 12.6. Hence, if γ= {z = gp (x)}
is a characteristic curve for Γ̂ that passes through p, then

‖gp − z(p)‖L∞([x(p)−8,x(p)+8]) É 64A = ζ.

Let g1 and g2 be the lower and upper bounds of Q̂, respectively. Then g1(0) ∈ [−3,0] and
g2(0) ∈ [0,3], so ‖g1−g1(0)‖L∞([−8,8]) É ζ and ‖g2−g2(0)‖L∞([−8,8]) É ζ. Therefore, 4Q̂ ⊆ D36.
If u ∈ 4Q̂ and {z = gu(x)} is a characteristic curve, then

‖gu − z(u)‖L∞([−4,4]) É ‖gu − z(u)‖L∞([x(u)−8,x(u)+8]) É ζ. �

Finally, we combine the results of this section to prove Proposition 7.2.

Proof of Proposition 7.2. By Lemma 2.9 and Lemma 8.8, if Q is a pseudoquad of Γ and h
is a composition of a shear map, a translation, and a stretch map, then Q and Γ satisfy
Proposition 7.2 if and only if ĥ(Q) =Π(h(Q)) and h(Γ) do. So, by Remark 4.3, it suffices to
prove Proposition 7.2 for rectilinear pseudoquads of the form (Q, [−1,1]× {0}× [−1,1]).

Let r be as in Corollary 12.5; we may suppose r > 100. Let δ= δ(ζ),θ = θ(ζ) > 0 as in
Corollary 12.7. Then we can choose R0 = R0(λ,ζ) > 0 and η0 = η0(λ,ζ) > 0 so that if Γ is
(η0,R0)–paramonotone on rQ and P , F , and Γ̂= Γ f̂ are as above, then

‖F − f ‖L1(10Q) Éλ|Q| and ‖ f̂ ‖L1(D100) É δ. (202)
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Denote R = max{R0,128} and η = min{ θR ,η0
R0
R }. Since R Ê R0, ηR É η0R0, and Γ is

(η,R)–paramonotone on rQ, it is also (η,R)–paramonotone, so Q satisfies (202), which
implies part 1 of Proposition 7.2. Furthermore,

ΩP
Γ̂+,128

(D100) É R

128
ΩP
Γ̂+,R

(rQ) É R

128
|Q|α(Q)−4η< θ.

Thus Γ̂ satisfies the hypotheses of Corollary 12.7, so Q̂ satisfies part 2 of Proposition 7.2.
As Q̂ is the image of Q under a shear map, part 2 of Proposition 7.2 holds for Q as well. �
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[CDH10] I. Chatterji, C. Druţu, and F. Haglund. Kazhdan and Haagerup properties from the median view-
point. Adv. Math., 225(2):882–921, 2010.

[CK10a] J. Cheeger and B. Kleiner. Differentiating maps into L1, and the geometry of BV functions. Ann. of
Math. (2), 171(2):1347–1385, 2010.

[CK10b] J. Cheeger and B. Kleiner. Metric differentiation, monotonicity and maps to L1. Invent. Math.,
182(2):335–370, 2010.

[CKN09] J. Cheeger, B. Kleiner, and A. Naor. A (logn)Ω(1) integrality gap for the sparsest cut SDP. In 2009
50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), pages 555–564.
IEEE Computer Soc., Los Alamitos, CA, 2009. doi:10.1109/FOCS.2009.47.

[CKN11] J. Cheeger, B. Kleiner, and A. Naor. Compression bounds for Lipschitz maps from the Heisenberg
group to L1. Acta Math., 207(2):291–373, 2011.

[Cla36] J. A. Clarkson. Uniformly convex spaces. Trans. Amer. Math. Soc., 40(3):396–414, 1936.
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APPENDIX A. ON THE IMPLICIT DEPENDENCE ON p IN [LN14b]

A version of Theorem 1.3 was stated in [LN14b] with an implicit dependence on the
exponent p. In this section, we explain how the arguments in [LN14b] can be used to
derive the explicit dependence on p that we needed in Section 1.1.3.

Let (E ,‖ ·‖E ) be a Banach space and fix q ∈ [2,∞]. The q–uniform convexity constant
of X , denoted Kq (E), is defined [Bal92, BCL94] as the infimum over K ∈ (0,∞] such that

∀x, y ∈ E ,
(
‖x‖q

E + 1

K q ‖y‖q
E

) 1
q É

(
1

2
‖x + y‖q

E + 1

2
‖x − y‖q

E

) 1
q

. (203)

Setting x = 0 in (203) shows that necessarily K Ê 1. By convexity, (203) always holds
when K =∞ or when q =∞ and K = 1. Thus, (203) quantifies the extent to which the
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norm ‖ ·‖E is strictly convex. An equivalent (but somewhat less convenient to work with)
formulation of this fact (see [Fig76, BCL94]) is that Kq (E ) is bounded above and below by
universal constant multiples of the infimum over those C > 0 such that the sharpened
triangle inequality ‖u + v‖E É 2−C−q‖u − v‖q

E holds for any two unit vectors u, v ∈ E .
Theorem 1.3 is the special case E =R, q = 2 and 1 < p É 2 of the following theorem.

Theorem A.1. For any p > 1 and q Ê 2, if (E ,‖·‖E ) is a Banach space with Kq (E ) <∞, then
every smooth and compactly supported function f : H→ E satisfies

(ˆ ∞

0
‖D t

v f ‖max{p,q}
Lp (H 4;E)

dt

t

) 1
max{p,q}

.max
{

(p −1)
1
q −1,Kq (E)

}
‖∇H f ‖Lp (H 4;`2

p (E)), (204)

where we use the (standard) notation ∇H f
def= (X f ,Y f ) ∈ E ×E for the horizontal gradient.

Theorem A.1 is due to [LN14b], except that it is stated there with a factor that depends
in an unspecified way on p, q,E in place of the quantity max{Kq (E),1/(p −1)1−1/q }. This
is because the proof of [LN14b] uses the vector-valued Littlewood–Paley–Stein inequality
of [MTX06], for which explicit bounds on the relevant constants were not available in the
literature at the time when [LN14b] was written. However, such bounds were subsequently
derived in [HN19] (using in part an argument of [LN14b] itself), so we will next briefly
explain how to obtain Theorem A.1 by incorporating this input into [LN14b].

Let {ht }t>0 and {pt }t>0 be the heat and Poisson kernels on R, respectively, i.e.,

∀ s > 0, ht (s)
def= 1

2
p
πt

e−
s2

4t and pt (s)
def= t

π(s2 + t 2)
.

It will be convenient to denote the time derivatives ∂
∂t ht , ∂

∂t pt by ḣt , ṗt , respectively, i.e.,

∀ s > 0, ḣt (s) = s2 −2t

8
p
πt

5
2

e−
s2

4t and ṗt (s) = s2 − t 2

π(s2 + t 2)2 .

By a straightforward evaluation of the integral in (205) below, one checks the following
standard identity (semigroup subordination; see e.g. [Boc55, Section 4.4]).

∀ s > 0, ṗt (s) = 1p
π

ˆ ∞

0

e−
t2

4up
u

ḣu(s)du. (205)

Fix φ ∈ Lq (R;E) and p Ê 1. The following bound holds for any t > 0.

∥∥t ṗt ∗φ
∥∥p

Lq (R,E) = 2p
∥∥∥∥ˆ ∞

0

te−
t2

4u

2u
p
πu

uḣu ∗φdu

∥∥∥∥p

Lq (R,E)

É 2p−1tp
π

ˆ ∞

0
u− 3

2 e−
t2

4u ‖uḣu ∗φ‖p
Lq (R;E) du.

(206)
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The first step of (206) is the representation (205), and the second step of (206) is Jensen’s
inequality, because

´∞
0 t exp(−t 2/(4u))/(2u

p
πu)du = 1. Integration of (206) gives

ˆ ∞

0
‖t ṗt ∗φ‖p

Lq (R;E)

dt

t
É 2p−1

p
π

ˆ ∞

0

(ˆ ∞

0
e−

t2

4u dt

)
u− 3

2 ‖uḣu ∗φ‖p
Lq (R;E) du

= 2p−1
ˆ ∞

0
‖uḣu ∗φ‖p

Lq (R;E)

du

u
.

(207)

Now, if q Ê 2 and Kq (E) <∞, then it was proved8 in [HN19] that(ˆ ∞

0
‖t ḣt ∗φ‖q

Lq (R;E)

dt

t

) 1
q

.Kq (E)‖φ‖Lq (R;E). (208)

In combination with (207) we therefore see that also(ˆ ∞

0
‖t ṗt ∗φ‖q

Lq (R;E)

dt

t

) 1
q

.Kq (E)‖φ‖Lq (R;E). (209)

Remark A.2. The reason why we passed from the vector-valued Littlewood–Paley–Stein
inequality (208) for the heat semigroup to its counterpart (209) for the Poisson semigroup
is that at the time when [LN14a] was written this was known (with Kq (E ) in (209) replaced
by an unspecified constant factor) for the Poisson semigroup due to [MTX06], while the
validity of (208) was an open question. For this reason, [LN14a] worked with the Poisson
semigroup, so it is simplest to use (209) when we refer below to steps in [LN14a]. However,
one could repeat the reasoning of [LN14a] mutatis mutandis while working directly with
the heat semigroup and using (208). The above subordination argument is standard, but
we included the quick derivation to verify that the constants are universal.

The case p = q of Theorem A.1 follows by substituting (209) into [LN14b]. Specifically,
we are asserting that the implicit constant in [LN14b, Theorem 2.1] is O(Kq (E)) when
p = q . To check this, note that in the proof of [LN14b, Theorem 2.1] the only loss of a factor
that is not a universal constant occurs in [LN14b, equation (18)], which is an instantiation
of [LN14b, inequality (15)]; the latter inequality is the same as (209) when p = q , except
that the constant factor in the right hand side is now specified to be O(Kq (E)).

The case p > q of Theorem A.1 follows from the case p = q . When p > q , we have
Kq (E) Ê Kp (E) (for justification of this monotonicity, see [BCL94] or [MN14, Section 6.2])

8[HN19] states (208) with the factor Kq (E) in the right hand side replaced by a parameter mq (E) that
is called [Pis86b] the martingale cotype q constant of E . There is no need to state the definition of mq (E)
here because it will not have a role in the ensuing discussion; it suffices to recall that by the martingale
inequality of [Pis75] we have mq (E). Kq (E). So, (207) is a formal consequence of [HN19], but the above
formulation is essentially (namely, up to O(1)–renorming) equivalent to that of [HN19]. For the reverse
direction use the fact that there is a norm ||| · ||| on E that satisfies ‖x‖E ³ |||x||| for all x ∈ E and such that
Kq (E , ||| · |||).mq (E). This renorming statement is essentially due to the deep work [Pis75], except that it is
derived in [Pis75] with the weaker property ‖x‖E É |||x|||.mq (E)‖x‖E . The existence of such a norm which
is O(1)–equivalent to ‖ · ‖E follows by combining [LNP09] and [MN13a], though we checked (details omitted)
that one could adapt the reasoning in [Pis75] so as to obtain a proof of this fact which avoids any reference to
the nonlinear considerations of [LNP09, MN13a]. Alternatively, Gilles Pisier has recently showed us (private
communication) a derivation of this O(1)–renorming result from the statement of [Pis75, Theorem 3.1].
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and (p −1)1−1/q É (p −1)1−1/p (since p > q Ê 2), so the constant on the right hand side
of (204) increases as q decreases. We thus suppose from now that 1 < p < q .

For M > 1, let βM : H→ [0,1] be a smooth bump function that is O(1)–Lipschitz (with
respect to the Carnot–Carathéodory metric d), satisfies βM (h) = 1 for all h ∈ BM , and has
supp(βM ) ⊆ BM+1.

For a smooth compactly supported f : H→ E , consider FM : H→ Lp (H 4;E) given by

∀g ,h ∈H, FM (h)(g )
def= βM (h) f (g h). (210)

We have (q −1)
1
q −1 É 1 É Kq (E), so the case p = q of Theorem A.1 with E replaced by

Lp (H 4;E) gives(ˆ ∞

0
‖D t

vFM‖q
Lq (H 4;Lp (H 4;E))

dt

t

) 1
q

.Kq
(
Lp (H 4;E)

)‖∇HFM‖Lq (H 4;`2
q (Lp (H 4;E)))

.max
{

(p −1)
1
q −1,Kq (E)

}
‖∇HFM‖Lq (H 4;`2

q (Lp (H 4;E))),

(211)

where the last step uses the fact that, by inequality (4.4) in [Nao14]9, we have

Kq
(
Lp (H 4;E)

)
.max

{
(p −1)

1
q −1,Kq (E)

}
. (212)

To bound the final term in (211) from above, note that by the left invariance of ∇H,

∇HFM (h)(g ) = (
XβM (h) f (g h),YβM (h) f (g h)

)+βM (h)∇H f (g h).

Hence, for all h ∈H,

‖∇HFM (h)‖`2
q (Lp (H 4;E)). ‖ f ‖L∞(H 4;E)1BM+1(0)àBM (0)(h)+‖∇H f ‖Lp (H 4;E)1BM+1(0)(h).

So,

‖∇HFM‖Lq (H 4;`2
q (Lp (H 4;E))).M

3
q ‖ f ‖L∞(H 4;E) +M

4
q ‖∇H f ‖Lp (H 4;E). (213)

In order to bound the left hand side of (211) from below, note that by (40), if 0 < t < M 2

16
and h ∈ BM−4

p
t (0), then hZ t ∈ BM , and therefore β(h) =β(hZ t ) = 1. Hence,

∀h ∈ BM−4
p

t (0), ‖D t
vFM (h)‖Lp (H 4;E) = ‖D t

v f ‖Lp (H 4;E).

Consequently,

‖D t
vFM‖Lq (H 4;Lp (H 4;E)) ÊH 4(BM−4

p
t (0)

) 1
q ‖D t

v f ‖Lp (H 4;E) ³
(
M −4

p
t
) 4

q ‖D t
v f ‖Lp (H 4;E).

Hence, for every 0 < T < M
4 we have(ˆ T 2

0
‖D t

vFM‖q
Lq (H 4;Lp (H 4;E))

dt

t

) 1
q

& (M −4T )
4
q

(ˆ T 2

0
‖D t

v f ‖q
Lp (H 4;E)

dt

t

) 1
q

.

Combining this with (211) and (213), letting M →∞ and then T →∞, gives Theorem A.1.

9Formally, [Nao14, inequality (4.4)] is the dual of (212); see [BCL94, Lemma 5] for the relevant duality.
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Remark A.3. In the setting of the proof of Theorem A.1, the Hardy–Littlewood–Stein
(Poisson semigroup) G–function of a function φ ∈ Lq (R;E) is the function Gq (φ) : R→R

that is defined by

∀x ∈ E , Gq (φ)(x)
def=

(ˆ ∞

0
‖t ṗt ∗φ(x)‖q

E

dt

t

) 1
q

. (214)

By [MTX06], if Kq (E) <∞, then for every 1 < p <∞,

‖Gq (φ)‖Lp (R).p,q,Kq (E) ‖φ‖Lp (R;E). (215)

If the implicit constant in (215) were O(max{Kq (E),1/(p −1)1−1/q }) for 1 < p < q (this is
so when p Ê q by (209) and Jensen’s inequality), then Theorem A.1 would follow by direct
substitution into [LN14b] without the need to consider the above averaging argument
using the auxiliary function FM in (210). However, it seems that the interpolation argu-
ment [MTX06] does not yield this dependence. Determining the optimal dependence on
p, q,Kq (E) in the G–function bound (215) remains an interesting open question.

The same question for the heat semigroup variant of (215), i.e., with ṗt replaced by ḣt

in (214), is a bigger mystery. That such an inequality for the vector-valued heat semigroup
Hardy–Littlewood–Stein G–function holds with any dependence on p, q,Kq (E) was es-
tablished recently in [Xu20], but as p → 1+ the dependence of [Xu20] seems suboptimal.
Obtaining the analogue of (208) for the n–dimensional heat semigroup (in which case φ
is a mapping from Rn to E) would be very interesting. In [Xu20], this is achieved with a
constant that is independent of n but has a much worse dependence on Kq (E).

A substitution of Theorem A.1 into the reasoning of [LN14b] yields the following re-
statement of the nonembedding result of [LN14b], with explicit dependence on Kq (E).

Theorem A.4. For q Ê 2, if E is a Banach space with Kq (E) <∞, then for every n ∈N, the
word-ball inH of radius n has E–distortion

cE (Bn)&
(logn)

1
q

Kq (E)
.

Since by [BCL94], the Schatten–von Neumann trace class Sr has K2(Sr ) =p
r −1 when

1 < r É 2, Theorem A.4 implies the lower bound on cSr (Bn) that we used in Section 1.1.3
(recall that the behavior as r → 1+ was important for that application). This also shows
that the following question about a possible strengthening of Theorem A.4 would imply
the distortion lower bound (24) that we asked about in Section 1.1.3. In fact, a positive
answer to this question would be a remarkable geometric result, which, as we explained
in Section 1.1.3, would have strong implications; at present, we do not have sufficient
evidence to conjecture that the answer is indeed positive in such great generality.

Question A.5. Can the conclusion of Theorem A.4 be improved to cE (Bn)&
(

logn
Kq (E)

) 1
q

?
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Added in proof. Q. Xu recently resolved [Xu21a] many of the questions on the growth-
rate of the optimal constants in vector-valued Littlewood–Paley-–Stein inequalities that
we raised in Remark A.3. See also his work [Xu21b] for the evaluation of the order of
magnitude of the constants in the classical (real-valued) Littlewood–Paley inequalities.
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