FOLIATED CORONA DECOMPOSITIONS

ASSAF NAOR AND ROBERT YOUNG

Dedicated to the memory of Louis Nirenberg

ABSTRACT. We prove that the L_4 norm of the vertical perimeter of any measurable subset of the 3–dimensional Heisenberg group \mathbb{H} is at most a universal constant multiple of the (Heisenberg) perimeter of the subset. We show that this isoperimetric-type inequality is optimal in the sense that there are sets for which it fails to hold with the L_4 norm replaced by the L_q norm for any $q < 4$. This is in contrast to the 5–dimensional setting, where the above result holds with the L_4 norm replaced by the L_2 norm.

The proof of the aforementioned isoperimetric inequality introduces a new structural methodology for understanding the geometry of surfaces in \mathbb{H}. In previous work (2017) we showed how to obtain a hierarchical decomposition of Ahlfors-regular surfaces into pieces that are approximately intrinsic Lipschitz graphs. Here we prove that any such graph admits a foliated corona decomposition, which is a family of nested partitions into pieces that are close to ruled surfaces.

Apart from the intrinsic geometric and analytic significance of these results, which settle questions posed by Cheeger–Kleiner–Naor (2009) and Lafforgue–Naor (2012), they have several noteworthy implications. We deduce that the L_1 distortion of a word-ball of radius $n > 2$ in the discrete 3–dimensional Heisenberg group is bounded above and below by universal constant multiples of $\sqrt[4]{\log n}$; this is in contrast to higher dimensional Heisenberg groups, where our previous work (2017) showed that the distortion of a word-ball of radius $n > 2$ is of order $\sqrt[4]{\log n}$. We also show that for any $p > 2$ there is a metric space that embeds into both ℓ_1 and ℓ_p, yet not into a Hilbert space. This answers the classical question of whether there is a metric analogue of the Kadec–Pełczyński theorem (1962), which implies that a normed space that embeds into both L_p and L_q for $p < 2 < q$ is isomorphic to a Hilbert space. Another consequence is that for any $p > 2$ there is a Lipschitz function $f: \ell_p \to \ell_1$ that cannot be factored through a subset of a Hilbert space using Lipschitz functions, i.e., there are no Lipschitz functions $g: \ell_p \to \ell_2$ and $h: g(\ell_p) \to \ell_1$ such that $f = h \circ g$; this answers the question, first broached by Johnson–Lindenstrauss (1983), whether there is an analogue of Maurey’s theorem (1974) that such a factorization exists if f is linear. Finally, we obtain conceptually new examples that demonstrate the failure of the Johnson–Lindenstrauss dimension reduction lemma (1983) for subsets of ℓ_1; these are markedly different from the previously available examples (Brinkman–Charikar, 2003) which do not embed into any uniformly convex normed space, while for any $p > 2$ we obtain subsets of ℓ_1 for which the Johnson–Lindenstrauss lemma fails, yet they embed into ℓ_p.

(A.N.) PRINCETON UNIVERSITY, DEPARTMENT OF MATHEMATICS, FINE HALL, WASHINGTON ROAD, PRINCETON, NJ 08544-1000, USA. E-MAIL ADDRESS: naor@math.princeton.edu.

(R.Y.) NEW YORK UNIVERSITY, COURANT INSTITUTE OF MATHEMATICAL SCIENCES, 251 MERCER STREET, NEW YORK, NY 10012, USA. E-MAIL ADDRESS: ryoung@cims.nyu.edu.

A.N. was supported by the BSF, the Packard Foundation and the Simons Foundation. R.Y. was supported by NSF grant 1612061 and the Sloan Foundation. The research that is presented here was conducted under the auspices of the Simons Algorithms and Geometry (A&G) Think Tank.
CONTENTS

1. Introduction 3
 1.1. Geometric implications 6
 1.1.1. Embeddings 6
 1.1.2. Aspects of the Ribe program 8
 1.1.3. Dimension reduction 13
 1.1.4. Permanence of compression rates of groups 15
 1.2. Decomposing surfaces into approximately ruled pieces 17
 1.2.1. Fractal Venetian blinds abound 18
 1.2.2. A maximally bumpy surface 23
 1.3. Roadmap 25
2. Preliminaries 26
 2.1. The Heisenberg group 26
 2.2. Intrinsic graphs and intrinsic Lipschitz graphs 28
 2.3. Characteristic curves 30
 2.4. Automorphisms and characteristic curves 32
 2.5. Measures on lines and the kinematic formula 34
 2.6. Vertical perimeter and parametric vertical perimeter 35
3. Constructing surfaces and embeddings 36
 3.1. Obtaining an embedding from an intrinsic graph 41
 3.2. Constructing a bumpy intrinsic graph 45
 3.2.1. The horizontal perimeter of Γ_{ψ} 47
 3.2.2. The vertical perimeter of Γ_{ψ} 53
4. Pseudoquads and foliated patchworks 55
5. Foliated corona decompositions 62
6. Vertical perimeter and foliated corona decompositions 64
 6.1. Vertical perimeter for graphs with foliated corona decompositions 64
7. The subdivision algorithm: constructing a foliated corona decomposition 68
8. Extended nonmonotonicity 71
 8.1. Extended nonmonotonicity in \mathbb{R} 71
 8.2. Extended nonmonotonicity in \mathbb{H} 74
9. The kinematic formula and the proof of Proposition 7.4 77
10. Outline of proof of Proposition 7.2 82
11. Extended-monotone sets are close to half-spaces 84
 11.1. Stability of locally monotone sets 85
 11.2. Locally monotone sets are bounded by rectifiable ruled surfaces 87
 11.3. Stability of extended monotone sets 94
12. L_1 bounds and characteristic curves on monotone intrinsic graphs 98
 12.1. Bounding the tails of f 99
 12.2. Constructing the approximating plane 103
 12.3. Bounding $\|f - F\|_{L_1(Q)}$ 104
 12.4. Characteristic curves are close to lines 107
References 110
Appendix A. On the implicit dependence on p in [LN14b] 114
1. Introduction

Since our main theorem (Theorem 1.1 below) can be stated without the need to recall any specialized background, we will start by formulating it. After doing so, we will explain its significance and context, as well as geometric applications that answer longstanding open questions. We will then describe our main conceptual contribution, called a foliated corona decomposition, which is a new structural methodology that we introduce in the proof of this theorem; see Remark 1.2 and mainly Section 1.2 for an overview.

For a smooth function \(f : \mathbb{R}^3 \to \mathbb{R} \) define \(Xf, Yf : \mathbb{R}^3 \to \mathbb{R} \) by setting for \(h = (x, y, z) \in \mathbb{R}^3 \),
\[
Xf(h) \overset{\text{def}}{=} \frac{\partial f}{\partial x}(h) + \frac{1}{2} y \frac{\partial f}{\partial z}(h) \quad \text{and} \quad Yf(h) \overset{\text{def}}{=} \frac{\partial f}{\partial y}(h) - \frac{1}{2} x \frac{\partial f}{\partial z}(h).
\]
(1)

Also, for \(t \in (0, \infty) \) define \(D_t f : \mathbb{R}^3 \to \mathbb{R} \) by setting for \(h = (x, y, z) \in \mathbb{R}^3 \),
\[
D_t f(h) \overset{\text{def}}{=} \frac{f(x, y, z + t) - f(h)}{\sqrt{t}}.
\]
(2)

Theorem 1.1. Every compactly supported smooth function \(f : \mathbb{R}^3 \to \mathbb{R} \) satisfies\(^1\)
\[
\left(\int_0^\infty \left(\int_{\mathbb{R}^3} |D_t f(h)| \, dh \right)^4 \frac{dt}{t} \right)^{\frac{1}{4}} \lesssim \int_{\mathbb{R}^3} \left(|Xf(h)| + |Yf(h)| \right) \, dh.
\]
(3)

Moreover, one cannot replace the \(L_4 \left(\frac{dt}{t} \right) \) norm above by an \(L_q \left(\frac{dt}{t} \right) \) norm for any \(0 < q < 4 \).

The second assertion (sharpness) of Theorem 1.1 resolves negatively the conjecture of [LN14b] that (3) holds with the \(L_4 \left(\frac{dt}{t} \right) \) norm in the left hand side replaced by the \(L_2 \left(\frac{dt}{t} \right) \) norm. Notwithstanding the optimality of (3), it should be noted that it was previously unknown whether such a bound holds true merely for some finite exponent, namely that there exists \(0 < p < \infty \) such that in the setting of Theorem 1.1 we have
\[
\left(\int_0^\infty \left(\int_{\mathbb{R}^3} |D_t f(h)| \, dh \right)^p \frac{dt}{t} \right)^{\frac{1}{p}} \lesssim \int_{\mathbb{R}^3} \left(|Xf(h)| + |Yf(h)| \right) \, dh.
\]
(4)

It is simple to justify (see [NY18, Remark 4]) that if (4) holds, then the analogous bound holds for any larger exponent \(P > p \).

Remark 1.2. To briefly indicate what goes into Theorem 1.1, we first note that the functional inequality (3) is equivalent to a certain isoperimetric-type inequality (see (31)) for sufficiently smooth surfaces in \(\mathbb{R}^3 \). By [NY18], it turns out that it suffices to prove this isoperimetric-type inequality for a more restricted class of surfaces (intrinsic Lipschitz graphs; see Section 2.2). Such surfaces can still be very complicated, as one can see in

\(^1\)We will use throughout the following (standard) asymptotic notation. For \(a, b \in (0, \infty) \), the notations \(a \lesssim b \) and \(b \gtrsim a \) mean that \(a \leq C b \) for some universal constant \(C \in (0, \infty) \). The notation \(a \asymp b \) stands for \((a \lesssim b) \land (b \lesssim a)\). If we need to allow for dependence on parameters, we indicate this by subscripts. For example, in the presence of an auxiliary parameter \(q \), the notation \(a \lesssim_q b \) means that \(a \leq C(q) b \), where \(C(q) \in (0, \infty) \) is allowed to depend only on \(q \), and analogously for the notations \(a \gtrsim_q b \) and \(a \asymp_q b \).
Figure 1. An example of an intrinsic Lipschitz graph.

Figure 1. However, notice that the example in Figure 1 has an anisotropic texture, with features of many different scales that line up along a one-dimensional foliation.

We prove the desired isoperimetric-type inequality by showing that the texture of any intrinsic Lipschitz graph can be encoded as a foliated corona decomposition, which is a multi-scale hierarchical partition of the surface. The pieces of this decomposition are roughly rectangular regions that mimic the dimensions and orientation of the features of the surface. Crucially, we can control the number and size of these pieces. The desired inequality holds locally on each piece up to suitably controlled error, and the full inequality is obtained by summing the resulting estimates. This process is illustrated in Figure 2 and Figure 3, and a more detailed overview can be found in Section 1.2.
In contrast to Theorem 1.1, we have the following theorem, the case \(p = 2 \) of which is due to [ANT13] and the case \(p \in (1,2) \) of which is due (via a different proof) to [LN14b].

Theorem 1.3. If \(f: \mathbb{R}^3 \to \mathbb{R} \) is smooth and compactly supported, then for every \(p \in (1,2) \),

\[
\left(\int_0^\infty \left(\int_{\mathbb{R}^3} |D_t f(h)|^p \, dh \right) \frac{\frac{d}{dt}}{t} \right)^{\frac{1}{p}} \lesssim \frac{1}{\sqrt{p-1}} \left(\int_{\mathbb{R}^3} (|X f(h)|^p + |Y f(h)|^p) \, dh \right)^{\frac{1}{p}}.
\]

See [LN14b] for a variant of Theorem 1.3 when \(p > 2 \). The pertinent point of comparison to (3) is as \(p \to 1^+ \), namely there is a jump discontinuity at the endpoint \(p = 1 \).

It should be noted that the dependence on \(p \) in the right hand side of (5) is not specified in [LN14b], but one obtains (5) in the form stated above by tracking the dependence on \(p \) in the proof of [LN14b]; we explain how to do so in Appendix A below. We conjecture that the following bound holds, which is better than (5) only in terms of the dependence on \(p \); its geometric ramifications will be derived later (see Remark 1.15), at which point it will become clear why we need to record an explicit (power-type) dependence as \(p \to 1^+ \) in (5) rather than using the implicit \(\lesssim_p \) notation as done in [LN14b].

Conjecture 1.4. In the setting of Theorem 1.3 we have

\[
\left(\int_0^\infty \left(\int_{\mathbb{R}^3} |D_t f(h)|^p \, dh \right) \frac{\frac{d}{dt}}{t} \right)^{\frac{1}{p}} \lesssim \frac{1}{\sqrt{p-1}} \left(\int_{\mathbb{R}^3} (|X f(h)|^p + |Y f(h)|^p) \, dh \right)^{\frac{1}{p}}.
\]

Another key point of comparison between Theorem 1.1 and the literature is with its higher-dimensional counterpart due to [NY18]. For a smooth function \(f: \mathbb{R}^5 \to \mathbb{R} \), denote in analogy to (1) and (2) for every \(h = (x_1, y_1, x_2, y_2, z) \in \mathbb{R}^5 \) and \(t \in (0, \infty) \),

\[
X_1 f(h) \overset{\text{def}}{=} \frac{\partial f}{\partial x_1}(h) - \frac{1}{2} y_1 \frac{\partial f}{\partial z}(h), \quad X_2 f(h) \overset{\text{def}}{=} \frac{\partial f}{\partial x_2}(h) - \frac{1}{2} y_2 \frac{\partial f}{\partial z}(h),
\]

\[
Y_1 f(h) \overset{\text{def}}{=} \frac{\partial f}{\partial y_1}(h) + \frac{1}{2} x_1 \frac{\partial f}{\partial z}(h), \quad Y_2 f(h) \overset{\text{def}}{=} \frac{\partial f}{\partial y_2}(h) + \frac{1}{2} x_2 \frac{\partial f}{\partial z}(h),
\]

and

\[
D_t^k f(h) \overset{\text{def}}{=} \frac{f(x_1, y_1, x_2, y_2, z + t) - f(h)}{\sqrt{t}}.
\]

We then have the following theorem (it holds with \(\mathbb{R}^5 \) replaced mutatis mutandis by \(\mathbb{R}^{2k+1} \) for every \(k \geq 2 \); we are focusing only on \(\mathbb{R}^5 \) because the crucial qualitative difference that we establish here is between dimension 3 and all the larger odd dimensions).

Theorem 1.5. If \(f: \mathbb{R}^5 \to \mathbb{R} \) is smooth and compactly supported, then for every \(p \in [1,2] \),

\[
\left(\int_0^\infty \left(\int_{\mathbb{R}^5} |D_t^k f(h)|^p \, dh \right) \frac{\frac{d}{dt}}{t} \right)^{\frac{1}{p}} \lesssim \left(\int_{\mathbb{R}^5} (|X_1 f(h)|^p + |Y_1 f(h)|^p + |X_2 f(h)|^p + |Y_2 f(h)|^p) \, dh \right)^{\frac{1}{p}}.
\]

The case \(p = 2 \) of Theorem 1.5 is from [ANT13] and in the range \(p \in (1,2) \) the bound (7) but with \(\lesssim \) replaced by \(\lesssim_p \) is from [LN14b]. The case \(p = 1 \) of Theorem 1.5 is from [NY18]. Inequality (7) as stated above, i.e., with the right hand side multiplied by a universal constant rather than a constant that depends on \(p \) as in [LN14b], follows by interpolating.
between the cases \(p = 1 \) and \(p = 2 \) of [NY18] and [ANT13], respectively. Indeed, (7) asserts the boundedness of a linear operator, the \(L_2(L_p) \) norms in the left hand side of (7) are an interpolation family by classical interpolation theory [BL76], and the Sobolev \(W^{1,p} \) norms in the right hand side of (7) are an interpolation family by [Bad09, Theorem 8.8].

1.1. Geometric implications. Let \(\mathbb{H} \) be the 3–dimensional Heisenberg group with real coefficients. As a set, \(\mathbb{H} \) is identified with \(\mathbb{R}^3 \), and the group structure on \(\mathbb{H} \) is given by

\[
\forall g = (x, y, z), h = (\chi, v, \zeta) \in \mathbb{R}^3, \quad gh \stackrel{\text{def}}{=} \left(x + \chi, y + v, z + \zeta + \frac{1}{2}(xv - y\chi)\right).
\]

(8)

The identity element is \(0 = (0, 0, 0) \) and the inverse of \(g = (x, y, z) \) is \(g^{-1} = (-x, -y, -z) \). The center of \(\mathbb{H} \) is \(\{0\} \times \{0\} \times \mathbb{R} \) and if we let \(\mathbb{H}_Z \) be the discrete subgroup of \(\mathbb{H} \) that is generated by \((1, 0, 0) \) and \((0, 1, 0) \), then we have

\[
\mathbb{H}_Z = \left\{(x, y, z + \frac{x y}{2}) : x, y, z \in \mathbb{Z}\right\} \subseteq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}/2.
\]

Let \(d_W : \mathbb{H}_Z \times \mathbb{H}_Z \to \mathbb{N} \cup \{0\} \) be the left-invariant word metric on \(\mathbb{H}_Z \) that is induced by the symmetric set of generators \(\{-1, 0, 0\}, \{1, 0, 0\}, \{0, -1, 0\}, \{0, 1, 0\}\). It is well-known (and elementary to verify) that for every \(g = (x, y, z), h = (\chi, v, \zeta) \in \mathbb{H}_Z \) we have

\[
d_W(g, h) = |x - \chi| + |y - v| + \sqrt{|2z - 2\zeta - xv + y\chi|}
\]

(9)

In fact, an exact formula for \(d_W(g, h) \), which directly implies (9), is derived in [Bla03]. For every \(n \in \mathbb{N} \), denote the word-ball of radius \(n \) centered at the identity element by

\[
\mathcal{B}_n \stackrel{\text{def}}{=} \left\{g \in \mathbb{H}_Z : d_W(g, 0) \leq n\right\}.
\]

1.1.1. Embeddings. Recall that a metric space \((M, d_M) \) is said to admit a bi-Lipschitz embedding into a Banach space \((X, \| \cdot \|_X) \) if there exist \(D \in [1, \infty) \) and \(\phi : M \to X \) such that

\[
\forall x, y \in M, \quad d_M(x, y) \leq \|\phi(x) - \phi(y)\|_X \leq Dd_M(x, y).
\]

(11)

The infimum over those \(D \in [1, \infty) \) for which this holds is called the \(X \)-distortion of \(M \) and is denoted \(c_X(M) \). If no such \(D \) exists, then one writes \(c_X(M) = \infty \).

Theorem 1.6 below is a sharp asymptotic evaluation of \(c_{\ell_1}(\mathcal{B}_n) \). It answers a question posed in [LN06, CK10a, CK10b, CKN09, CKN11, Nao10, Pan13, LN14b]; these references ask for the asymptotic evaluation of \(c_{\ell_1}(\mathcal{B}_n) \), but most of them also conjecture that \(c_{\ell_1}(\mathcal{B}_n) \gtrsim \sqrt{\log n} \), so Theorem 1.6 constitutes both a resolution of an open problem, and an unexpected answer. The fact that \(\lim_{n \to \infty} c_{\ell_1}(\mathcal{B}_n) = \infty \) is due to [CK10a], the previously best known upper bound [Ass83] was \(c_{\ell_1}(\mathcal{B}_n) \lesssim \sqrt{\log n} \) and the previously best-known lower bound [CKN11] was \(c_{\ell_1}(\mathcal{B}_n) \geq (\log n)^\delta \) for some positive but very small universal constant \(\delta \); thus both the upper and the lower bounds of Theorem 1.6 are new.

Theorem 1.6. \(c_{\ell_1}(\mathcal{B}_n) \approx \sqrt{\log n} \) for every integer \(n \geq 2 \).

In contrast, the word-ball of radius \(n \geq 2 \) in the 5–dimensional Heisenberg group has \(\ell_1 \)-distortion of order \(\sqrt{\log n} \); this was proved in [NY18] using Theorem 1.5.

The statement of Theorem 1.6 has two parts. While the lower bound \(c_{\ell_1}(\mathcal{B}_n) \gtrsim \sqrt{\log n} \) is framed above as a “negative result” (impossibility of embedding), it encapsulates a “positive result,” namely the aforementioned new structural information on surfaces
in \mathbb{H}, to which most of this article is devoted. The upper bound $c_{\ell_1}(\mathcal{B}_n) \lesssim \sqrt{\log n}$ is a “positive result,” namely a new geometric realization of \mathcal{B}_n, but we will soon see that it has ramifications for counterexamples to natural geometric questions.

The estimate (3) of Theorem 1.1 implies the lower bound $c_{\ell_1}(\mathcal{B}_n) \gtrsim \sqrt{\log n}$. In fact, such vertical-versus-horizontal Poincaré inequalities were originally envisaged as obstructions to embeddings of \mathcal{B}_n into various spaces; see [ANT13, NN12, LN14b, NY17], and most pertinently Section 3 of [NY18], where we treated such matters in greater generality than what is needed here; in particular, for any $p \geq 1$, if every compactly supported smooth function $f: \mathbb{R}^3 \to \mathbb{R}$ satisfies the inequality

$$\left(\int_0^\alpha \left(\int_{\mathbb{R}^n} |D^t_x f(h)| \, dh \right)^p \frac{dt}{t} \right)^{\frac{1}{p}} \lesssim \int_{\mathbb{R}^n} (|X f(h)| + |Y f(h)|) \, dh,$$

then by [NY18, § 3] and the reasoning in [NY18, § 1.3] we have $c_{\ell_1}(\mathcal{B}_n) \gtrsim (\log n)^{\frac{1}{4}}$.

Thus, $c_{\ell_1}(\mathcal{B}_n) \gtrsim \sqrt{\log n}$, since Theorem 1.1 asserts that (12) holds for $p = 4$. This also demonstrates that the matching upper bound $c_{\ell_1}(\mathcal{B}_n) \lesssim \sqrt{\log n}$ of Theorem 1.6 implies the second assertion of Theorem 1.1, namely the optimality of the $L_4(\frac{dt}{t})$ norm in the left hand side of (3). Here we prove the following more refined embedding statement which we formulate as a separate theorem because it has further noteworthy applications.

Theorem 1.7. For every $\theta \geq \frac{1}{4}$ and every integer $n \geq 2$ there exists $\phi = \phi_{\theta, \psi}: \mathbb{H}_z \to \ell_1$ with respect to which every two points $g = (x, y, z), h = (\chi, v, \xi) \in \mathbb{H}_z$ with $d_W(g, h) \leq 2n$ satisfy

$$\|\phi(g) - \phi(h)\|_{\ell_1} \approx |x - \chi| + |y - v| + \sqrt{|2z - 2\xi - xv + y\chi|}. \quad (13)$$

By (9) and the case $\theta = \frac{1}{4}$ of Theorem 1.7, the following weakening of (13) holds.

$$\forall g, h \in \mathcal{B}_n, \quad \frac{d_W(g, h)}{\sqrt{\log n}} \lesssim \|\phi(g) - \phi(h)\|_{\ell_1} \lesssim d_W(g, h).$$

So, the upper bound $c_{\ell_1}(\mathcal{B}_n) \lesssim \sqrt{\log n}$ of Theorem 1.6 follows from Theorem 1.7. However, Theorem 1.7 is of further use thanks to the following embedding result of [LN14a]. At present, the fact that both our embedding and that of [LN14a] yield the same expression (up to universal constant factors) for the metric in the image seems to be a fortunate and consequential coincidence; it would be valuable, if possible, to explain conceptually why those formulas coincided (e.g. is this inevitable due to underlying symmetries?)

Theorem 1.8. For any $p > 2$, any $\theta \geq \frac{1}{p}$ and any integer $n \geq 2$ there is $\psi = \psi_{n, p, \theta}: \mathbb{H}_z \to \ell_p$ such that every $g = (x, y, z), h = (\chi, v, \xi) \in \mathbb{H}_z$ with $d_W(g, h) \leq 2n$ satisfy

$$\|\psi(g) - \psi(h)\|_{\ell_p} \approx |x - \chi| + |y - v| + \sqrt{|2z - 2\xi - xv + y\chi|} / (\log n)^{\theta}. \quad (14)$$

Theorem 1.8 is not formulated explicitly in [LN14a], but it is a direct consequence of Lemma 3.1 in [LN14a] combined with the finite-determinacy theorem of [Ost12], which together imply that for every $\epsilon \in (0, \frac{1}{2})$ there exists an embedding $\sigma = \sigma_{\epsilon, p}: \mathbb{H} \to \ell_p$ for which every $g = (x, y, z), h = (\chi, v, \xi) \in \mathbb{H}_z$ satisfy

$$\|\sigma(g) - \sigma(h)\|_{\ell_p} \approx |x - \chi|^{1-\epsilon} + |y - v|^{1-\epsilon} + \epsilon \frac{1}{p} |2z - 2\xi - xv + y\chi|^{\frac{1}{p}}. \quad (15)$$
(Without reference to [Ost12], Lemma 3.1 in [LN14a] asserts the existence of such an embedding into L_p rather than into ℓ_p.) To derive Theorem 1.8 from (15), let $\pi: \mathbb{H} \to \mathbb{R}$ be the map that is given by setting $\pi(x, y, z) = (x, y)$ for $(x, y, z) \in \mathbb{H}$ and choose

$$\varepsilon = \frac{1}{\log n} \quad \text{and} \quad \psi = \frac{\sigma}{(\log n)^{\frac{1}{p} - \frac{1}{q}}} \oplus \pi: \mathbb{H}_\mathbb{Z} \to \ell_p \oplus \mathbb{R}^2 \cong \ell_p.$$ \hfill (16)

1.1.2. Aspects of the Ribe program. Inspired by a fundamental rigidity theorem of [Rib76] and first put forth in [Bou86], the Ribe program is a web of conjectures and analogies whose goal is to transfer linear phenomena in the geometry of Banach spaces to questions about metric spaces, where Lipschitz mappings take the role of bounded linear operators; see e.g. the surveys [Kal08, Nao12, Bal13, Ost13, Nao18]. We will now explain how the above results answer natural questions in this area.

Theorem 1.9 below follows from Theorem 1.7, Theorem 1.8 and [ANT13, LN14b]. It answers a longstanding question in metric embedding theory; even though (to the best of our knowledge) this question never appeared in published texts, it was a folklore open problem. To briefly explain the context, the classical work [KP62] (together with a differentiation argument of [Man72]) implies that for $1 \leq p < r < q < \infty$, if a Banach space X admits a bi-Lipschitz embedding into both L_p and L_q, then X also admits a bi-Lipschitz embedding into L_r. The case $r = 2$ of this statement is that if X embeds into L_p for two finite values of p that lie on both sides of 2, then X must embed into (hence, by [Enf70], be linearly isomorphic to) a Hilbert space; a different proof of the latter statement, as a special case of a much more general phenomenon, follows from [Kwa72]. In light of these facts about the geometry of Banach spaces, one is naturally led to ask if a metric space M that embeds bi-Lipschitzly into L_p for two finite values of p that lie on both sides of 2 must admit a bi-Lipschitz embedding into a Hilbert space.

Theorem 1.9. For any $2 < p \leq 4$ there is a metric space M that admits a bi-Lipschitz embedding into ℓ_1 and into ℓ_r for all $r \geq p$, yet M does not admit a bi-Lipschitz embedding into L_q for any $1 < q < p$. More generally, M does not admit a bi-Lipschitz embedding into a Banach space whose modulus of uniform convexity has power type q for $2 \leq q < p$.

For the statement of Theorem 1.9, recall that a Banach space $(X, \|\cdot\|)$ has modulus of uniform convexity of power type q if there is $C > 0$ such that the sharpened triangle inequality $\|x + y\| \leq 2 - C\|x - y\|^q$ holds for any unit vectors $x, y \in X$. By [Cla36, Han56], for $1 < q < \infty$ any $L_q(\mu)$ space has modulus of uniform convexity of power type $\max(q, 2)$.

Proof of Theorem 1.9 assuming Theorem 1.7 and Theorem 1.8. For every $n \in \mathbb{N}$, we define $M_n = \phi_{n, \theta}(\mathcal{B}_n) \subseteq \ell_1$, where $\phi_{n, \theta}$ is as in Theorem 1.7 applied with $\theta = \frac{1}{p} \geq \frac{1}{4}$.

By considering the union of sufficiently widely-spaced translations in ℓ_1 of the finite sets $\{M_n\}_{n=1}^\infty$, we see that there is $M \subseteq \ell_1$ such that $\sup_{n \in \mathbb{N}} c_M(M_n) < \infty$.

For every $r \geq p$, consider $\psi_{n, r, \theta}(\mathcal{B}_n) \subseteq \ell_r$, where $\psi_{n, r, \theta}$ is as in Theorem 1.8. Theorem 1.7 and Theorem 1.8 show that $\psi_{n, r, \theta}(\mathcal{B}_n)$ is bi-Lipschitz equivalent with $O(1)$ distortion to M_n. Hence, by considering a suitable union of translations in ℓ_r of the finite

\footnote{We have seen it appear in writing only in grant proposals, and it was posed verbally among experts. In particular, we are indebted to Gideon Schechtman for valuable discussions on this matter over the years.}
sets \(\{ \psi_{n,r,b}(\mathcal{B}_n) \}_{n=1}^\infty \), we see that \(c_{\ell_p}(M) < \infty \). Let \(X \) be a Banach space whose modulus of uniform convexity has power type \(q \) for \(2 \leq q < p \). By [LN14b] we have

\[
(\log n)^{\frac{1}{q}} \lesssim_X c_X(\mathcal{B}_n) \lesssim (\log n)^{\theta} c_X(M_n) = (\log n)^{\frac{1}{q}} c_X(M_n),
\]

where the penultimate step holds because, due to (13), \(M_n \) and \(\mathcal{B}_n \) are bi-Lipschitz equivalent with distortion \(O((\log n)^{\theta}) \). Therefore, since \(q < p \),

\[
c_X(M_n) \gtrsim_X (\log n)^{\frac{1}{q} - \frac{1}{p}} \frac{1}{n^\epsilon} \rightarrow \infty.
\]

Hence, \(c_X(M) = \infty \), as required. For future reference we record in passing that we obtained the following bound when \(X = L_q \) and \(1 < q < p \).

\[
c_{L_q}(M_n) \gtrsim (\log n)^{\frac{1}{q} - \frac{1}{p}}.
\]

(17)

Note that the bound in [ANT13], which is asymptotically weaker than that of [LN14b], suffices for the qualitative conclusion \(c_X(M) = \infty \) of Theorem 1.9. The above estimates seem to be the best that one could achieve using available methods; it would be very interesting to determine the optimal behavior, e.g., if an \(n \)-point metric space \(W \) embeds with \(O(1) \) distortion into \(\ell_1 \) and also into \(\ell_p \) for some \(p > 2 \), how large can \(c_{\ell_1}(W) \) be? \(\square \)

Remark 1.10. With more care it is possible to ensure that the metric space \(M \) of Theorem 1.9 is a left-invariant metric \(\delta = \delta_p \) on \(\mathbb{H}_Z \); see Theorem 3.2. Concretely, for \(p = 4 \) the metric \(\delta_4 \) can be taken to satisfy the following bounds for any \((a, b, c) \in \mathbb{H}_Z \) with \(|c| \geq 3 \).

\[
\delta_4(\mathbf{0}, (a, b, c)) = |a| + |b| + \frac{\sqrt{|c|}}{\sqrt[4]{\log |c| \cdot (\log \log |c|)^2}}.
\]

By the reasoning in [NP11, Section 9], since \(\mathbb{H}_Z \) is amenable, it follows that \((\mathbb{H}_Z, \delta) \) admits a bi-Lipschitz embedding into \(L_1 \) and \(L_r \) for all \(r \geq p \) which is also equivariant (with respect to an action of \(\mathbb{H}_Z \) on, respectively, \(L_1 \) and \(L_p \) by affine isometries); we did not investigate if this holds for equivariant embeddings into the sequence spaces \(\ell_1 \) and \(\ell_r \).

The natural question how the embeddability of a group into \(L_p \) depends on \(p \) was also studied in the literature; see [CDH10, Czu17], and especially the recent solution of this question in [MdI20], where it is proved that the phenomenon of Theorem 1.9 does not hold for equivariant coarse embeddings (namely, for such embeddings the corresponding set of \(p \) is always an interval). Note that for coarse embeddings that need not be equivariant, the statement of [MdI20] was previously known as a direct consequence of [MN04, Remark 5.10] (from here, using [NP11], one gets the full equivariant statement of [MdI20] for amenable groups). Theorem 3.2 shows that the situation is markedly different if one considers bi-Lipschitz embeddings rather than coarse embeddings.

The following question arises naturally from Theorem 1.9 and seems quite difficult.

Question 1.11. For a metric space \(M \), how complicated can the following set be?

\[\{ 1 \leq p < \infty : c_{L_p}(M) < \infty \}. \]

Theorem 1.9 leaves the possibility that there is better behavior in the reflexive range, i.e., that if a metric space \(M \) embeds bi-Lipschitzly into \(\ell_p \) and \(\ell_q \) for \(1 < q < 2 < p < \infty \), then \(M \) embeds bi-Lipschitzly into a Hilbert space. If true, this would be an excellent theorem,
but due to Theorem 1.9 we speculate that the answer is negative. A substantial new idea seems to be needed here. Less ambitiously, does the above assumption (even allowing $q = 1$) imply that M embeds into a Hilbert space with finite average distortion (see [Nao19] for the relevant definition)? Does this imply that every n–point subset of M embeds into a Hilbert space with bi-Lipschitz distortion $o(\log n)$, i.e., asymptotically better than the distortion that is guaranteed by the general embedding theorem of [Bou85]?

The above reasoning also leads to Theorem 1.12 below, which answers another natural question arising in the Ribe program, on the factorization of Lipschitz functions.

We first briefly make preparatory observations that will be also useful elsewhere. Recall that for $K \in \mathbb{N}$ a metric space X is said to be K–doubling if for every $r > 0$, any ball $B \subseteq X$ of radius r can be covered by K balls of radius $r/2$. X is doubling if it is K–doubling for some $K \in \mathbb{N}$. The metric space M of Theorem 1.9 can be taken to be doubling. Indeed, fix $p > 2$ and $n \in \mathbb{N}$. As in the proof of Theorem 1.9, write $\theta = 1/\min(p, 4)$. It was shown in [LN14a] that $\psi_{n, p, \theta}(\mathbb{H}_2)$ is a $O(1)$–doubling subset of ℓ_p. Let $S \subseteq \ell_p$ be the disjoint union of translates in ℓ_p of the finite sets $\psi_{n, p, \theta}(\mathbb{B}_n))_{n=1}^\infty$ that are sufficiently widely-spaced so as to ensure that S is a doubling subset of ℓ_p, and $\sup_{n \in \mathbb{N}} c_S(M_n) < \infty$. As in the proof of Theorem 1.9, using Theorem 1.7 we get an embedding $\varphi: S \to \ell_1$ satisfying $\|\varphi(x) - \varphi(y)\|_{\ell_1} \approx \|x - y\|_{\ell_p}$ for all $x, y \in S$. Thus $\varphi(S) = M$ is a doubling subset of ℓ_1.

Since S is doubling, by [LN05] we can extend φ to a Lipschitz function $f: \ell_p \to \ell_1$. If there were Lipschitz mappings $g: \ell_p \to \ell_2$ and $h: g(\ell_p) \to \ell_1$ such that $f = h \circ g$, then it would follow that for all $x, y \in S$ we have

$$\|x - y\|_{\ell_p} \approx \|\varphi(x) - \varphi(y)\|_{\ell_1} = \|h(g(x)) - h(g(y))\|_{\ell_1} \lesssim \|g(x) - g(y)\|_{\ell_2} \lesssim \|x - y\|_{\ell_p}.$$

Therefore, $g \circ \varphi^{-1}$ would be a bi-Lipschitz embedding of M into ℓ_2, which we proved above was impossible. We thus arrive at the following statement.

Theorem 1.12. For any $2 < p < \infty$ there is a Lipschitz mapping $f: \ell_p \to \ell_1$ that cannot be factored through a subset of a Hilbert space using Lipschitz mappings. Namely, there do not exist Lipschitz mappings $g: \ell_p \to \ell_2$ and $h: g(\ell_p) \to \ell_1$ such that $f = h \circ g$. More generally, f cannot be factored using Lipschitz mappings through a subset of a Banach space whose modulus of uniform convexity has power type q for $2 \leq q < \min\{4, p\}$.

By [LP68, Theorem 5.2], for $p \geq 2$ any linear operator from ℓ_p to ℓ_1 factors through ℓ_2 (the factorization is via linear operators, though by [JMS09] this is equivalent to factorization using Lipschitz functions as above). Theorem 1.12 demonstrates that there is no analogue of this factorization phenomenon for Lipschitz mappings.

Such investigations arose in the Ribe program in the seminal work [JL84] which had a major influence on the subsequent fruitful efforts by many mathematicians in search of metric analogues of the extension and factorization paradigm of [Mau74]. This search is itself intimately intertwined with the search for metric theories of type and cotype.

We refer to the survey [Mau03] for an exposition of the powerful and deep theory of type and cotype of Banach spaces; it suffices to say here that one can define linear invariants of Banach spaces that are called type 2 and cotype 2, such that L_p has type 2 if $2 \leq p < \infty$ and cotype 2 if $1 \leq p \leq 2$, and such that the following extension and factorization phenomenon [Mau74] holds.
Suppose that Y is a Banach space of type 2 and that Z is a Banach space of cotype 2. Let X be a linear subspace of Y and let $\tau: X \to Z$ be a bounded linear operator. Then there exist a bounded linear operator $T: Y \to Z$ that extends τ, a Hilbert space H and bounded linear operators $A: Y \to H$, $B: A(Y) \to Z$ with $T = BA$.

[JL84] raised the question of when the analogous statement holds in the metric setting. Namely, now Y, Z are metric spaces, X is an arbitrary subset of Y, $f: X \to Z$ is a Lipschitz mapping, and we ask for the same extension and factorization through a Hilbert space H, i.e., to establish the existence of Lipschitz mappings $F: Y \to Z$, $\alpha: Y \to H$ and $\beta: \alpha(Y) \to Z$, such that the following diagram commutes.

\[
\begin{array}{ccc}
Y & \xrightarrow{\alpha} & H \\
\downarrow{\alpha(Y)} & \downarrow{\beta} & \downarrow{\subseteq} \\
X & \xrightarrow{f} & Z
\end{array}
\] \hspace{1cm} (18)

An implicit but central part of this endeavor encompasses the important issue of how to define useful notions of type 2 and cotype 2 for metric spaces so that, at the very least, ℓ_p has type 2 for $2 \leq p < \infty$ and cotype 2 for $1 \leq p \leq 2$. Clearly (18) has two components. The first is if f admits the Lipschitz extension F. The second is if F can be factored through a subset of a Hilbert space. While these questions come hand-in-hand in the linear theory of [Mau74] (see also [Pis86a]), they are different issues in the metric setting.

The main focus of [JL84] was the Lipschitz extension problem, so it highlighted the first component above. At the time, the metric version of the extension problem was a bold and speculative question, but [Bal92] introduced metric notions of type 2 and cotype 2 and obtained a powerful extension result for maps from spaces of Markov type 2 to spaces of Markov cotype 2. Combined with [NPSS06], this provides a quite satisfactory understanding of the extension component of (18) when the target space is ℓ_p, $1 < p < 2$. However, this understanding is currently confined to the reflexive range, and the question remains a major open problem when the target space is ℓ_1 (see [Kal12, MN13b] for a partial negative answer, and [MM16] for an intriguing algorithmic reformulation).

In contrast to the achievement of [Bal92], Theorem 1.12 demonstrates that there is no way to define notions of type 2 and cotype 2 for metric spaces so that any map from a space of type 2 to a space of cotype 2 factors through Hilbert space and such that ℓ_p has type 2 when $2 < p < \infty$ and cotype 2 when $p = 1$. Though this resolves the factorization question when the target is ℓ_1, it remains a fascinating open problem to see if a factorization theory analogous to [Bal92] can be developed when the target is ℓ_q for $1 < q < 2$.

It is instructive to examine the dual interpretation of Theorem 1.12. Just as the dual formulation of the linear factorization and extension problems was key to [Mau74], duality also plays an important role in the nonlinear theory. The duality lemma that was found in [Bal92] for Lipschitz extension\(^3\) does not shed light on Lipschitz factorization, but

\(^3\)Quoting what [Bal92] says about this crucial duality step: “This lemma is a variant of one used by Maurey. A related lemma was found earlier by Johnson, Lindenstrauss and Schechtman: their result actually characterises extensions which factor through subsets of Hilbert space, a problem much closer to Maurey’s argument. Their lemma provided much of the stimulus for the present work.” Unfortunately, it seems that the work of Johnson, Lindenstrauss and Schechtman that is mentioned in [Bal92] was never published.
Theorem 1.12 yields the first example of a Lipschitz mapping f and its important precursor [Kwa72] using well-known examples.

For any two symmetric stochastic matrices $A = (a_{ij}), B = (b_{ij}) \in M_n(\mathbb{R})$ such that $A - B$ is positive semidefinite satisfy the following quadratic inequality:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} d_Z(f(x_i), f(x_j))^2 \leq \Phi^2 \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} d_X(x_i, x_j)^2.$$ \hspace{1cm} (19)

Theorem 1.12 yields the first example of a Lipschitz mapping $f : \ell_p \to \ell_1$ for $2 < p < \infty$ that fails to satisfy (19) for any $\Phi > 0$, despite the fact that if f were a linear operator, then by [Mau74] it would automatically satisfy (19) with $\Phi \leq p \| f \|_{\text{lip}}$.

Remark 1.13. Another counterexample to the nonlinear version of [Mau74] arises from an embedding of the Laakso graphs into a non-classical Banach space. Let $\{\Lambda_n\}_{n=1}^{\infty}$ be the Laakso graphs [Laa00, Laa02], indexed so that $|\Lambda_n| = n$; these are series-parallel (hence planar) graphs that are $O(1)$–doubling when equipped with their shortest-path metric.

On one hand, the Laakso graphs do not admit a bi-Lipschitz embedding into a Hilbert space. In fact, by [Laa00, LP01], we have $c_\ell(X) \Lambda_n \gtrsim \sqrt{\log n}$ (this is sharp by the general embedding theorem of [Rao99]). Moreover, by [MN08], for every uniformly convex Banach space X we have $\lim_{n \to \infty} c_X(\Lambda_n) = \infty$.

On the other hand, by [GNRS04], we have $\sup_{n \in \mathbb{N}} c_\lambda(\Lambda_n) < \infty$, and by [JS09], we have $\sup_{n \in \mathbb{N}} c_Y(\Lambda_n) < \infty$ when Y is a Banach space that is not reflexive. By considering translates of the images of the embeddings in ℓ_1 that are sufficiently widely spaced, we obtain a doubling subset $\Lambda \subseteq \ell_1$ such that $c_Y(\Lambda) < \infty$ for any nonreflexive Banach space Y and $c_X(\Lambda) = \infty$ for any uniformly convex Banach space X.

By [Jam78], there exists a Banach space J that has type 2, yet J is not reflexive; a different construction of such a Banach space was found in [PX97]. So, Λ embeds bi-Lipschitzly into both the cotype 2 space ℓ_1 and the type 2 space J, yet not into a Hilbert space. This is impossible in the linear setting; by [Kwa72] a Banach space of type 2 and cotype 2 is isomorphic to a Hilbert space (this is a far reaching generalization of the aforementioned consequence of [KP62] that motivates Theorem 1.9). This reasoning also produces a stronger asymptotic estimate than (17), since $c_\ell(\Lambda_n) \gtrsim \sqrt{\log n}$, but it cannot shed light on the ℓ_p setting of (17) because it relies precisely on the non-reflexivity of J (through the use of [JS09]) to deduce that $\sup_{n \in \mathbb{N}} c_\ell(\Lambda_n) < \infty$.

The Laakso graphs also lead to a counterexample to the metric version of [Mau74]. Let $\varphi : \Lambda \to J$ be a bilipschitz embedding. Since Λ is a doubling subset of ℓ_1, one can use [LN05] to construct a Lipschitz map $f : \ell_1 \to J$ that extends φ. As above, f cannot factor through a Hilbert space (or even through any uniformly convex Banach space X) by Lipschitz maps, because such a factorization would produce a bilipschitz embedding of Λ into a Hilbert space (respectively, into X).

This discussion shows that if one is allowed to replace ℓ_p in Theorem 1.9 and Theorem 1.12 by non-classical (indeed, “exotic” and hard to come by) Banach spaces such as J, then it is possible to demonstrate the failure of the metric space version of [Mau74] and its important precursor [Kwa72] using well-known examples.
Part of the impetus for the search for definitions of metric space notions of type 2 and cotype 2 was the hope of obtaining a metric version of the theorem of [Kwa72], but it was well-known to experts that the metric definitions of type 2 and cotype 2 found over the past decades are not suitable for this purpose (see e.g. the discussion in [DLP13]). The above discussion demonstrates conclusively that it is impossible to define metric space notions of type 2 and cotype 2 that are bi-Lipschitz invariant, pass to subsets, coincide for Banach spaces with type 2 and cotype 2, and for which [Kwa72] holds for doubling metric spaces, i.e., any doubling space that has both type 2 and cotype 2 admits a bi-Lipschitz embedding into a Hilbert space (the corresponding statement with Λ replaced by a metric space that is not doubling follows by using [Bou86] instead of the Laakso graphs in the above reasoning; in fact, using the improvement [Bau07] of [Bou86], the infinite binary tree embeds bilipschitzly into both ℓ_1 and J, but not into a Hilbert space). Theorem 1.9 shows that this is so even if one restricts attention to subsets of ℓ_p for $p > 2$.

1.1.3. Dimension reduction. By a highly influential lemma of [JL84], any finite subset S of a Hilbert space embeds with bi-Lipschitz distortion $O(1)$ into a k–dimensional Hilbert space for $k \lesssim \log |S|$; see [Nao18] for an indication of the significance of this statement. The question whether this phenomenon holds with Hilbert space replaced by ℓ_1 was a prominent open problem until it was resolved negatively in [BC05], where it was shown that for arbitrarily large $n \in \mathbb{N}$ there is an n–point subset D_n of ℓ_1 such that if D_n embeds with bi-Lipschitz distortion $O(1)$ into ℓ_k, then necessarily $k \geq n^c$ for some universal constant $c > 0$. In [LMN05] it was shown that D_n can be taken to be $O(1)$–doubling, and in [NPS18] it was shown that ℓ_1 can be replaced by an arbitrary k–dimensional subspace of the Schatten–von Neumann trace class S_1; both of these enhancements hold without changing the conclusion (other than perhaps values of universal constants).

The examples $\{D_n\}_{n=1}^\infty$ of [BC05] are the diamond graphs [NR03], while their aforementioned doubling counterparts in [LMN05] are the Laakso graphs $\{\Lambda_n\}_{n=1}^\infty$ that we discussed in Remark 1.13. By [MN08, JS09] we have $\sup_{n \in \mathbb{N}} c_X(D_n) = \sup_{n \in \mathbb{N}} c_X(\Lambda_n) = \infty$ for every uniformly convex Banach space X. In fact, by [JS09] the converse of this statement holds true (though we do not need it below), namely X admits an equivalent uniformly convex norm if and only if $\sup_{n \in \mathbb{N}} c_X(D_n) = \infty$ or $\sup_{n \in \mathbb{N}} c_X(\Lambda_n) = \infty$. Theorem 1.14 below obtains new examples that demonstrate the failure of dimension reduction in ℓ_1 à la [JL84], which are qualitatively different than the previously known examples, since our examples do admit a bi-Lipschitz embedding into a uniformly convex Banach space (specifically, into ℓ_p for any $p > 2$). At present, this comes with a worse lower bound on the target dimension, but see Remark 1.15 below which explains how Conjecture 1.4 would remedy this (for the very same example that we consider in Theorem 1.14).

Theorem 1.14. There is a universal constant $c > 0$ with the following property. For every $n \in \mathbb{N}$ and $2 < p \leq 4$ there exists a $O(1)$–doubling subset $\mathcal{H}_n = \mathcal{H}_n(p)$ of ℓ_1 with $|\mathcal{H}_n| \leq n$ such that $c_{\ell_q}(\mathcal{H}_n) \lesssim 1$ for all $q \geq p$, and for every $D \geq 1$, if X is a finite-dimensional subspace of the Schatten–von Neumann trace class S_1 for which $c_X(\mathcal{H}_n) \leq D$, then necessarily

$$\dim(X) \geq \exp \left(\frac{c}{D^2} (\log n)^{1-\frac{2}{p}} \right).$$

(20)
In the statement of Theorem 1.14, recall that for \(p \geq 1 \) the Schatten–von Neumann trace class \(S_p \) is the Banach space of all the compact operators \(T : \ell_2 \to \ell_2 \) that satisfy

\[
\| T \|_{S_p} \eqdef \left(\text{Trace} \left(|T^* T|^{\frac{p}{2}} \right) \right)^{\frac{1}{p}} < \infty.
\]

Note that \(\ell_p \) is the subspace of \(S_p \) consisting of the diagonal operators. Thus, the dimension reduction lower bound (20) holds in particular for any subspace \(X \) of \(\ell_1 \).

The proof of Theorem 1.14 is short (modulo previously stated results and the available literature), so we present the quick derivation now instead of postponing it to a later section; it mimics the reasoning of [LN04] while combining it with [LN14b], Theorem 1.7 and Theorem 1.8, as well as structural information on subspaces of \(S_1 \) from [NPS18].

Proof of Theorem 1.14. By (9) we have \(|B_m| = m^4 \) for all \(m \in \mathbb{N} \). So, fix \(m \in \mathbb{N} \) with \(m = \sqrt[4]{n} \) such that \(n \lesssim |B_m| \leq n \). Using the mapping \(\phi_{m, \frac{1}{p}} : \ell_1 \to H \) of Theorem 1.7, define

\[
\mathcal{I}_n \eqdef \phi_{m, \frac{1}{p}}(B_m).
\]

By combining Theorem 1.7 and Theorem 1.8, we indeed have \(c_{r,q}(\mathcal{I}_n) \lesssim 1 \) for all \(q \geq p \).

Let \(X \) be a finite-dimensional subspace of \(S_1 \). Fix \(1 < r \leq 2 \) whose value will be specified later so as to optimize the ensuing reasoning. By [NPS18, Theorem 12], we have\(^4\)

\[
c_{S_r}(X) \leq \text{dim}(X)^{1 - \frac{1}{r}}.
\]

Hence, if \(c_X(\mathcal{I}_n) \leq D \), then, since \(c_{\mathcal{I}_n}(B_m) \lesssim (\log n)^{\frac{1}{p}} \) by Theorem 1.7, we have

\[
c_{S_r}(B_m) \lesssim (\log n)^{\frac{1}{p}} c_{S_r}(\mathcal{I}_n) \leq (\log n)^{\frac{1}{p}} Dc_{S_r}(X) \leq (\log n)^{\frac{1}{p}} D \text{dim}(X)^{1 - \frac{1}{r}}.
\]

At the same time, by [LN14b] we have\(^5\)

\[
c_{S_r}(B_m) \gtrsim \sqrt{(r - 1)} \log n,
\]

so we conclude that

\[
\inf_{1 < r \leq 2} \frac{\text{dim}(X)^{1 - \frac{1}{r}}}{\sqrt{r - 1}} \gtrsim \frac{(\log n)^{\frac{1}{2} - \frac{1}{p}}}{D}.
\]

This gives the desired bound (20) by choosing \(r - 1 \approx 1/\log(\text{dim}(X)) \).

Remark 1.15. By substituting (6) into the reasoning of [LN14b], a positive resolution of Conjecture 1.4 would imply that for every \(r \in (1,2) \) and \(n \in \mathbb{N} \) we have

\[
c_{\ell_r}(B_m) \gtrsim \sqrt{r - 1} \cdot \sqrt{\log n}.
\]

An incorporation of this improved distortion lower bound into the above proof of Theorem 1.14 (while using [LTJ80] in place of [NPS18] since we are in the simpler \(\ell_p \) setting) would imply that for any finite-dimensional subspace \(X \) of \(\ell_1 \), if \(c_X(\mathcal{I}_n(p)) \leq D \), then the following improvement over (20) holds true.

\[
\text{dim}(X) \geq \exp \left(\frac{c}{D^4} (\log n)^{2 - \frac{4}{p}} \right).
\]

\(^4\)If one only wishes to rule out embeddings into low-dimensional subspaces of \(\ell_1 \) rather than of \(S_1 \), then it suffices to use here [LTJ80, Theorem 1.2], which yields an embedding into \(\ell_r \) rather than \(S_r \).

\(^5\)As in the discussion before Conjecture 1.4, the dependence on \(r \) in this estimate is not stated in [LN14b], while it is crucial for us here; a justification why the reasoning in [LN14b] implies this appears in Appendix A.
Notably, for $p = 4$ this would be an improvement from $\dim(X) \geq \exp\left(\frac{c}{4^p} \sqrt{\log n}\right)$ to
\[
\dim(X) \geq n^{\frac{c}{4^p}},
\] (23)namely a power-type dimension reduction lower bound as in [BC05]. Understanding what is the correct behavior as $p \to 2^+$ remains an intriguing open question; some deterioration of the lower bound as in (20) or (22) must occur because by [JL84] logarithmic dimension reduction is possible for finite subsets of a Hilbert space.

Another question that this discussion obviously raises is if (21) could be enhanced to
\[
c_{S_{1}}(B_n) \gtrsim \sqrt{r-1} \cdot \sqrt{\log n}.
\] (24)If so, then (23) would hold when X is a subspace of S_{1} rather than ℓ_{1}. More substantially, this would resolve a difficult open question (see the discussion following Question 13 in [NY18]) by showing that H_{2} does not admit a bi-Lipschitz embedding into S_{1}. In fact, for the latter conclusion it would suffice to establish the weaker property
\[
\lim_{n \to \infty} c_{S_{1}}(B_n, \frac{1}{p_{\ell_{1}}}) = \infty.
\] (25)Indeed, by [NPS18] we have $c_{S_{1}}(B_n) \gtrsim c_{S_{1}}(B_n)$ when $r = 1 + 1/\log n$. Due to its significant consequences, we expect that proving (25), and all the more so its stronger version (24), would require a major and conceptually new idea.

We end this discussion on dimension reduction by noting that [Tao19] shows that one could embed B_n with optimal distortion (up to universal constant factors) into Euclidean space of dimension $O(1)$. Theorem 1.14 shows that this fails badly if one aims for optimal ℓ_{1}–distortion embedding of B_n into a bounded dimensional subspace of ℓ_{1}.

1.1.4. Permanence of compression rates of groups. Suppose that (M, d_M) is a metric and $(X, \| \cdot \|_X)$ is a Banach space. The compression rate of a Lipschitz mapping $f: M \to X$ is the non-decreasing function $\omega_f: [0, \infty) \to [0, \infty)$ that is defined [Gro93] by
\[
\forall s \geq 0, \quad \omega_f(s) \overset{\text{def}}{=} \inf_{x, y \in M \atop d_M(x, y) \geq s} \| f(x) - f(y) \|_X.
\] (26)Equivalently, ω_f is the largest non-decreasing function from $[0, \infty)$ to $[0, \infty)$ such that
\[
\forall x, y \in M, \quad \| f(x) - f(y) \|_X \geq \omega_f(d_M(x, y)).
\]

There is a great deal of interest in determining the largest possible compression rate of 1–Lipschitz mappings from a finitely generated group G (equipped with a word metric that is induced by some finite generating set) to certain Banach spaces, notable and useful examples of which are Hilbert space and L_1. The literature on this topic is too extensive to discuss here, and we only mention that a substantial part of it is devoted to understanding the extent to which compression rates are preserved under various group operations (e.g. various semidirect products). Theorem 1.16 below provides a new example of the lack of such permanence which does not seem to be accessible using previously available methods. It leverages the fact that we establish here a marked difference between the L_1 embeddability of Heisenberg groups of dimension 3 and dimension 5.
Theorem 1.16. There exists a finitely group G that has two finitely generated normal subgroups $H, K \triangleleft G$ such that the following properties hold true.

1. Any $h \in H$ and $k \in K$ commute.
2. $H \cap K$ is the center of G.
3. H and K are isomorphic.
4. H and K are undistorted in G; in fact, they admit generating sets S_H and S_K such that $S_H \cup S_K$ generates G and the word metric on G that is induced by $S_H \cup S_K$ restricts to the word metrics on H and K that are induced by S_H and S_K, respectively.
5. The L_1 compression of G is asymptotically smaller than that of H (hence also of $K \triangleleft H$). Concretely, there exists a Lipschitz mapping $f : H \to \ell_1$ that satisfies

$$\forall s \geq 3, \quad \omega_f(s) \gtrsim \frac{s}{\sqrt{\log s \cdot (\log \log s)^2}};$$

yet for any Lipschitz mapping $F : G \to L_1$ there are arbitrarily large $s \equiv 4$ for which

$$\omega_F(s) \leq \frac{s}{\sqrt{\log s \log \log s}}.$$

Proof. Let $G_\mathbb{R}$ be the 5–dimensional Heisenberg group, i.e., \mathbb{R}^5 with the group operation

$$(x_1, y_1, x_2, y_2, z)(x'_1, y'_1, x'_2, y'_2, z') = \left(x_1 + x'_1, y_1 + y'_1, x_2 + x'_2, y_2 + y'_2, z + z' + \frac{1}{2}(x_1y'_2 + x_2y'_1 - y_1x'_2 - y_2x'_1) \right)$$

for $(x_1, y_1, x_2, y_2, z), (x'_1, y'_1, x'_2, y'_2, z') \in \mathbb{R}^5$. Let G be the 5–dimensional integer Heisenberg group, which is the subgroup $G = \{(x_1, y_1, x_2, y_2, z + (x_1y_1 + x_2y_2)/2) : x_1, x_2, y_1, y_2, z \in \mathbb{Z}\}$. The subgroups H, K are natural copies of $H_\mathbb{Z}$ in G, namely

$H = \{(x_1, y_1, x_2, y_2, z) \in G : x_2 = y_2 = 0\}$ and $K = \{(x_1, y_1, x_2, y_2, z) \in G : x_1 = y_1 = 0\}$.

One directly checks the first four assertions of Theorem 1.16. The bound (27) follows by considering the mapping $f : H_\mathbb{Z} \to \ell_1(\ell_1) \cong \ell_1$ that is given by

$$f \overset{\text{def}}{=} \bigoplus_{n=1}^{\infty} \frac{1}{n^2} \phi_{2^n n^4},$$

where the mappings that are being concatenated are those of Theorem 1.7. The final assertion (28) of Theorem 1.16 follows from [NY18, Theorem 9].

Remark 1.17. The term $\log \log s$ in (27) and (28) can be improved slightly; for (27) this follows by examining the above proof, and for (28) this is explained by [NY18, Theorem 9]. However, some unbounded lower-order correction is necessary in (27) for the specific groups that we used in the proof of Theorem 1.16; see Remark 3.3.

Obviously, Theorem 1.16 raises the question if a similar phenomenon could occur for embeddings into a Hilbert space rather than into L_1. Also, in Theorem 1.16 the compression rate of the subgroups H, K grows roughly (suppressing lower-order factors) like $s/\sqrt{\log s}$ as $s \to \infty$, while the compression rate of G grows slower than $s/\log s$. What are the possible asymptotic profiles of the compression rates that exhibit such phenomena?
1.2. Decomposing surfaces into approximately ruled pieces. In the previous sections, we discussed consequences of Theorem 1.1 (and the refined version of its second part in Theorem 1.7). In this section, we will give an overview of the concepts involved in the proof of Theorem 1.1, especially our main contribution, which is a new way to describe the structure of surfaces in \mathbb{H}.

The statement of Theorem 1.1 is in terms of smooth functions $f : \mathbb{H} \rightarrow \mathbb{R}$, but the main bound (3) has an equivalent formulation in terms of surfaces in \mathbb{H}; see (32) below. We will prove it by showing that surfaces in \mathbb{H} admit a multi-scale hierarchical decomposition into pieces that are close to ruled surfaces (unions of horizontal lines) and that most of these pieces (in a quantitative sense) are long and narrow, giving the decomposition the appearance of a Venetian blind with many narrow slats; see Figure 2 and Figure 3 for examples. For reasons that will be clarified soon, we call the above structure a foliated corona decomposition. This decomposition is conceptually central to this work, and the most involved part of this paper is to formulate this decomposition, prove its existence, and demonstrate its utility for the aforementioned applications (more are forthcoming).

The defining feature of this decomposition is that its pieces, which we call pseudoquads, have widely varying aspect ratios. Each pseudoquad is roughly rectangular, and we define the aspect ratio of a pseudoquad to be its width divided by its height; long, narrow rectangles have large aspect ratios, while tall, skinny rectangles have small aspect ratios. The fact that the pieces of the decomposition (the slats of the Venetian blind) can have unbounded aspect ratios allows the decomposition to have additional symmetries and ultimately leads to the exponent 4 in Theorem 1.1.

Specifically, in order to work with long, narrow pieces, we must prove results on the geometry of \mathbb{H} that are invariant not only under the usual scaling automorphisms, but also under automorphisms that stretch and shear \mathbb{H}. The resulting automorphism-invariant bounds allow us to produce a decomposition that is likewise invariant under rescaling, stretching, and shearing. Furthermore, the overlap of the pieces of our decomposition is controlled by a coercive quantity that scales like the fourth power of the aspect ratio under automorphisms. This leads to a new weighted Carleson packing condition in which overlaps are normalized by the fourth power of the aspect ratio; this condition leads directly to the exponent 4 in the bound (3) of Theorem 1.1.

Proving the optimality of Theorem 1.1 entails finding a surface for which (32) is sharp. Part of the construction of such a surface can be seen in Figure 3. The surface in the figure can be viewed as a surface with a foliated corona decomposition for which the weighted Carleson packing condition is sharp. For this reason, it is pedagogically beneficial to describe that construction after describing foliated corona decompositions. In truth, the general decomposition methodology and the construction that demonstrates its optimality are intertwined: limitations of such a construction indicate what decomposition to look for. We therefore suggest to also consider the alternative route of first examining the construction of the specific (sharp) example prior to considering the task of decomposing general surfaces; the proofs in the rest of this article follow the latter (“reverse”) route as this leads to a more gradual introduction of notations and concepts.
The ensuing considerations belong firmly to the setting of the continuous Heisenberg group and its Carnot–Carathéodory geometry. They therefore assume some familiarity with notions from that setting; the pertinent background appears in Section 2 below.

1.2.1. Fractal Venetian blinds abound. In what follows, for any \(s > 0 \) the Hausdorff measure \(\mathcal{H}^s \) on \(\mathbb{H} \) will be with respect to the Carnot–Carathéodory metric \(d \) on \(\mathbb{H} \). We denote the standard generators of \(\mathbb{H} \) by \(X = (1, 0, 0), Y = (0, 1, 0), \) and \(Z = (0, 0, 1) \).

For \(\Omega \subseteq \mathbb{H} \) and \(a \in \mathbb{R} \), consider the symmetric difference

\[
D_a \Omega \overset{\text{def}}{=} \Omega \triangle \Omega Z^{2^{-3a}} = (\Omega \sim \Omega Z^{2^{-3a}}) \cup (\Omega Z^{2^{-3a}} \sim \Omega)
\]

(29)

If \(\Omega, U \subseteq \mathbb{H} \) are measurable, then, following [LN14b, NY18], we define \(\nu_U(\Omega) : \mathbb{R} \to \mathbb{R} \) by

\[
\forall a \in \mathbb{R}, \quad \nu_U(\Omega)(a) \overset{\text{def}}{=} 2^a \mathcal{H}^4(\Omega \cap D_a \Omega) = 2^a \int_U |1_{\Omega}(h) - 1_{\Omega}(h Z^{2^{-3a}})| \, d\mathcal{H}^4(h).
\]

(30)

Thus, \(\nu_U(\Omega)(a) \) is a (normalized) measurement of the amount that \(\Omega \) changes within \(U \) when translated up and down by the specified (Carnot–Carathéodory) distance \(2^{-a} \).

By [NY18, Lemma 38], in order to prove the first part of Theorem 1.1, namely inequality (3) for any compactly supported smooth function \(f : \mathbb{H} \to \mathbb{R} \), it suffices to prove that every measurable subset \(\Omega \subseteq \mathbb{H} \) satisfies the following isoperimetric-type inequality,

\[
\| \nu_{\Omega}(\Omega) \|_{L^q(\mathbb{R})} \lesssim \mathcal{H}^3(\partial \Omega).
\]

(31)

This amounts in essence to an application of the coarea formula (e.g. [Amb01]).

A central step of [NY18] is a further reduction of (31) to the special case that \(\Omega \) is (a piece of) an intrinsic Lipschitz epigraph. An intrinsic Lipschitz epigraph \(\Gamma^+ \) is a region of \(\mathbb{H} \) that is bounded by an intrinsic Lipschitz graph \(\Gamma \). The notion of an intrinsic Lipschitz graph was introduced in [FSSC06] and all of the relevant background is explained in Section 2.2 below. The intrinsic Lipschitz condition is parametrized by an intrinsic Lipschitz constant \(\lambda \in (0, 1) \). By combining Proposition 55, Theorem 57 and Lemma 58 of [NY18] (see the deduction on page 232 of [NY18]) it follows that to prove (31) it suffices to show that for every \(0 < \lambda < 1 \) the vertical perimeter of any intrinsic \(\lambda \)-Lipschitz epigraph \(\Gamma^+ \subseteq \mathbb{H} \) satisfies the growth bound

\[
\forall r > 0, \quad \| \nu_{B_r(0)}(\Gamma^+) \|_{L^q(\mathbb{R})} \lesssim \lambda r^3,
\]

(32)

where \(B_r(0) \) denotes the (Carnot–Carathéodory) ball of radius \(r \) centered at \(0 = (0, 0, 0) \).

The structural information that underlies the reduction of (31) to (32) is that for any \(0 < \lambda < 1 \), any (sufficiently nice; see [NY18] for precise assumptions) surface in \(\mathbb{H} \) has a multi-scale hierarchical decomposition into pieces that are close to intrinsic \(\lambda \)-Lipschitz graphs, and moreover that decomposition has controlled overlap in the sense that it satisfies a \(O(1) \)--Carleson packing condition. As such, this decomposition is an intrinsic Heisenberg analog of the corona decompositions that were introduced and developed

\[
\text{The exponent 4 is not important here, i.e., [NY18] shows that for any } q \geq 1, \text{ if } \| \nu_{\Omega}(\Omega) \|_{L^q(\mathbb{R})} \lesssim \mathcal{H}^3(\partial \Omega) \text{ holds for every measurable subset } \Omega \subseteq \mathbb{H}, \text{ then } \int_0^\infty (\int_{\mathbb{R}^+} |D_x f(h)| \, dh)^q \, dh^{1/q} \lesssim \int_0^\infty (\int [Xf(h)] + [Yf(h)]) \, dh \text{ holds for every compactly supported smooth function } f : \mathbb{R}^3 \to \mathbb{R}.\]

\[
\text{Also this deduction in [NY18] does not rely on the specific value of the exponent 4. Namely, for any } q \geq 1, \text{ if for every } 0 < \lambda < 1, \text{ every intrinsic } \lambda \text{-Lipschitz epigraph } \Gamma^+ \subseteq \mathbb{H} \text{ satisfies } \| \nu_{B_r(0)}(\Gamma^+) \|_{L^q(\mathbb{R})} \lesssim \lambda r^3 \text{ for every } r > 0, \text{ then } \| \nu_{\Omega}(\Omega) \|_{L^q(\mathbb{R})} \lesssim \mathcal{H}^3(\partial \Omega) \text{ holds for every measurable subset } \Omega \subseteq \mathbb{H}.\]

for subsets of Euclidean space in [DS91] and have since led to a variety of powerful applications in harmonic analysis (see also the monograph [DS93]).

The corona decomposition of [NY18] is in some respects a Heisenberg variant of a “vanilla” corona decomposition. Like corona decompositions in \mathbb{R}^n, it is a hierarchical partition of a surface into pieces of bounded aspect ratio, and the Carleson packing condition governing overlaps of pieces depends only on the diameter of the pieces. Nevertheless, there are key differences, including the fact that the proof in [NY18] relies on a new “stopping rule” (based on the quantitative nonmonotonicity of [CKN11]) that yields, in fact, a different proof of the existence of corona decompositions even in Euclidean space (though, for less general sets than those that [DS91] treats). In addition, while “vanilla” Euclidean corona decompositions cover a surface in \mathbb{R}^n by pieces that are approximately graphs of Lipschitz functions, the approximating graphs in [NY18] are intrinsic Lipschitz, like the surface depicted in Figure 1. While Lipschitz graphs in Euclidean space vary slowly in all directions, intrinsic Lipschitz graphs vary slowly in horizontal directions but can vary quickly in vertical directions and can have Hausdorff dimension 2.5 with respect to the Euclidean metric [KSC04]. This can make these graphs difficult to analyze, and even after the decomposition step of [NY18], the challenge of establishing estimates such as (32) remains.

In [NY18], we addressed this challenge for the 5–dimensional Heisenberg group \mathbb{H}^5, but our techniques do not shed light on the 3–dimensional setting of Theorem 1.1. An intrinsic Lipschitz graph in \mathbb{H}^5 is the intrinsic graph of a function ψ that is defined on a 4–dimensional vertical hyperplane V_0. An inspection of the intrinsic Lipschitz condition shows that the restriction of ψ to any coset of \mathbb{H} that is contained in V_0 is Lipschitz with respect to the Carnot–Carathéodory metric on \mathbb{H}. In [NY18], we applied a representation-theoretic functional inequality of [ANT13] to each of these restrictions, yielding a bound on the vertical variation of ψ. The desired control on the vertical perimeter of intrinsic Lipschitz graphs in \mathbb{H}^5 followed by integrating this bound over the cosets of \mathbb{H} in V_0.

In the 3–dimensional setting of the present work, the intrinsic graph Γ in (32) corresponds to an intrinsic Lipschitz function $\psi : V_0 \to \mathbb{R}$, where V_0 is a 2–dimensional vertical plane in \mathbb{H}. For concreteness, assume in what follows that $V_0 = \{(x, 0, z) : x, z \in \mathbb{R}\}$ is the xz–plane. The reasoning of [NY18] is irrelevant to proving (32): one cannot restrict ψ to cosets of a lower-dimensional Heisenberg group, as there is no such group!

Our strategy here is therefore entirely different from that of [NY18]. We will prove (32) by finding a new structural description of intrinsic Lipschitz graphs in \mathbb{H}. Specifically, we will prove that they admit a hierarchical family of partitions into pieces that are approximately ruled surfaces and bound the total error of these approximations.

We call this description of Γ a foliated corona decomposition. It is a sequence of nested partitions of Γ into approximately rectangular regions, called pseudoquads, of varying heights and widths. On each pseudoquad, Γ is close to a vertical plane, and these vertical planes can be glued together to form a collection of ruled surfaces such that at most locations and scales, Γ is approximated by one of the ruled surfaces; see Remark 7.6. Furthermore, the decomposition satisfies a new weighted variant of the classical Carleson packing condition. Namely, we bound the weighted sum of the measures of the pseudoquads in the decomposition, where the measure of each pseudoquad is...
normalized by the fourth power of its aspect ratio. We will see that the occurrence of
the fourth power here is dictated by the requirement that this decomposition should be
invariant under certain automorphisms of \mathbb{H} (scaling, stretch, and shear automorphisms).

Theorem 1.18. Any intrinsic Lipschitz graph in \mathbb{H} has a foliated corona decomposition.

The above description of foliated corona decompositions and the statement of Theo-
rem 1.18 clearly lack rigorous definitions, but they convey the essence of what is achieved
here. The necessary technical matters are treated in Section 5 below, where a precise
formulation of Theorem 1.18 appears as Theorem 5.2. The justification that Theorem 1.18
can be used to achieve our goal (32) is carried out in Section 6 below; the groundwork
of constructing a foliated corona decomposition makes this deduction quite mechanical.

We will next cover a few technical details necessary to describe foliated corona decom-
positions and the subdivision mechanism that produces them. Recall that $V_0 \subseteq \mathbb{H}$ is the
xz–plane. Fix $0 < \lambda < 1$ and let Γ be an intrinsic λ–Lipschitz graph that is the intrinsic
graph of $\psi : V_0 \to \mathbb{R}$. That is, $\Gamma = \Psi(V_0)$, where $\Psi(v) = v\Psi'(v)$ for all $v \in V_0$. The function
ψ satisfies the intrinsic Lipschitz condition (Definition 2.2); the nonlinear nature of this
condition is the source of subtleties that ensue (and the reason why basic questions on
the rectifiability properties of intrinsic Lipschitz graphs remain open; see e.g. [DFO20]).

For any $p \in \Gamma$, there is a horizontal curve γ contained in Γ that passes through p, so Γ
is the union of all such curves. It is often convenient to work in V_0 instead of Γ. To this
end, let $\Pi : \mathbb{H} \to V_0$ be the projection to V_0, so $\Pi(\Psi(v)) = v$ for $v \in V_0$. The projected curve
$\Pi \circ \gamma$ is a curve in V_0 which we call a characteristic curve; see Section 2.3 for a detailed
discussion. Parametrize γ so that $\Pi(\gamma(t)) = (t, 0, g(t))$ for some continuous function g.
This function is a solution of the differential equation $g'(t) = -\psi(t, 0, g(t))$, and conversely,
each solution gives a characteristic curve. If Γ is a vertical plane, then $\psi(x, 0, z) = ax + b$
for some $a, b \in \mathbb{R}$, in which case the characteristic curves are parallel parabolas.

Since horizontal curves pass through every point of Γ, there is a characteristic curve
through every point of V_0, so one can reconstruct Γ from its set of characteristic curves.
Note that the characteristic curve through p is not necessarily unique: when ψ is not
smooth, these curves can split and rejoin [BCSC15]. When ψ is smooth, the characteristic
curves foliate V_0, so there is a coordinate system on V_0 such that the foliation forms one
set of coordinate lines. However, it is difficult to use this coordinate system to study the
geometry of Γ because the distance between two characteristic curves can vary wildly.
Foliated corona decompositions provide a way to overcome this difficulty.

A pseudoquad for Γ is a region in V_0 that is bounded by characteristic curves above and
below and by vertical line segments on either side. We call a pseudoquad Q rectilinear
if its top and bottom boundaries approximate two parallel parabolas; if the top and
bottom boundaries of Q are exactly two parallel parabolas, we call Q a parabolic rectangle.
Parabolic rectangles are the projections to V_0 of rectangles in \mathbb{H} bounded by two horizontal
line segments and two vertical line segments. The width $\delta_x(Q)$ and height $\delta_z(Q)$ of such
a pseudoquad are defined to be, respectively, the width and height of its approximating
parabolic rectangle; see Section 4. The aspect ratio of Q is $\alpha(Q) = \delta_x(Q)/\sqrt{\delta_z(Q)}$.

Let $Q_0 \subseteq V_0$ be a rectilinear pseudoquad. A foliated corona decomposition for Γ with
root at Q_0 is a sequence of nested partitions of Q_0 into rectilinear pseudoquads. We con-
struct such a decomposition using the following subdivision algorithm which, importantly,
outputs pseudoquads that can be divided into two sets \mathcal{I}_V and \mathcal{I}_H, called, respectively, the \textit{vertically cut} pseudoquads and \textit{horizontally cut} pseudoquads. The algorithm repeatedly cuts pseudoquads into halves. Let Q be a pseudoquad in the decomposition. If $\Psi(Q)$ is a region in Γ that is sufficiently close to a vertical plane V_Q and if the characteristic curves through Q are close to characteristic curves for V_Q, then cut Q in half along one of the characteristic curves of Γ. In this case, say that Q is horizontally cut and add it to \mathcal{I}_H. Otherwise, cut Q in half along a vertical line through its center, say that Q is vertically cut, and add it to \mathcal{I}_V. By applying this procedure iteratively, we obtain a sequence of nested partitions of Q_0; see Figure 2.

A crucial part of the algorithm is the mechanism determining whether to cut the pseudoquad horizontally or vertically. We stated qualitatively how this step depends on the geometry of $\Psi(Q)$, but we implement it quantitatively by introducing a coercive quantity called R–\textit{extended nonmonotonicity}. This is a family of measures $\Omega^P_{\Gamma^+,R}$ on the vertical plane V_0, parametrized by $R > 0$; see Section 8. These are inspired by the quantitative nonmonotonicity of $[\text{CKN}11]$, but there are key differences. For instance, while the nonmonotonicity of Γ on a subset $U \subseteq \mathbb{H}$ measures how lines intersect Γ inside U, the R–extended nonmonotonicity of Γ on a subset $W \subseteq V_0$ measures how lines intersect Γ inside an R–neighborhood of $\Psi(W)$. We refer to Section 8 for the details, in particular to Lemma 9.2 which shows that for any measurable $U \subseteq V_0$,

$$\sum_{i \in \mathbb{Z}} \Omega^P_{\Gamma^+,2^{-i}}(U) \lesssim_\lambda |U|,$$

(33)

where $|U|$ is the area of U and λ is the intrinsic Lipschitz constant of ψ.

Analogously to $[\text{CKN}11]$, extended nonmonotonicity is coercive in the following sense. Let $U = [0, 1] \times [0] \times [0, 1] \subseteq V_0$ and for $r > 0$, let rU be the square of side r concentric with U. There is a universal constant $r > 1$ such that if δ is sufficiently small, R is sufficiently large, $\psi(0)$ is bounded, and $\Omega^P_{\Gamma^+,R}(rU) < \delta$, then $\Psi(U)$ is close to a vertical plane and the characteristic curves that pass through U are close to characteristic curves of that vertical plane (i.e., parabolas). The proof of this geometric statement (whose precise formulation appears as Proposition 7.2) is the most technically involved part of this work; it is outlined in Section 10 and carried out in Section 11 and Section 12.

By translation, rescaling, and applying a shear automorphism, a similar coercive property applies to any pseudoquad of aspect ratio 1, but for the subdivision algorithm, we need a coercive property for pseudoquads of arbitrary aspect ratio. If Q is a pseudoquad of aspect ratio $\alpha(Q)$, the \textit{stretch automorphism} $s(x, y, z) = (\alpha(Q)^{-1}x, \alpha(Q)y, z)$ sends Q to a pseudoquad of aspect ratio 1. The extended nonmonotonicity of $s(Q)$ scales like $\alpha(Q)^4$, so if the extended nonmonotonicity of Γ^+ on Q is at most $\delta |Q|/\alpha(Q)^4$, then $\Psi(Q)$ is close to a vertical plane and the characteristic curves that pass through Q are close to characteristic curves of that vertical plane.

Therefore, in the subdivision algorithm above, there is $\delta > 0$ such that we cut Q horizontally if and only if the extended nonmonotonicity of Γ^+ on Q is at most $\delta |Q|/\alpha(Q)^4$. This criterion, combined with (33), leads to a crucial bound on the total pseudoquads that have been vertically cut by the subdivision algorithm. Specifically, if Q is a pseudoquad of the decomposition and $\mathcal{D}_V(Q)$ is the set of vertically cut pseudoquads Q' in the
Figure 2. Stages in the construction of a foliated corona decomposition for a bump function as in the top row of Figure 3. The aspect ratio of the regions in the decomposition varies widely. On the sides, where the surface is close to a vertical plane, the aspect ratio is large and the regions are short and wide; near the top and bottom, where it is further from a plane, the regions are tall and narrow.
decomposition that are contained in \(Q \), then

\[
\sum_{Q' \in \mathcal{P}(Q)} \frac{|Q'|}{\alpha(Q')^4} \lesssim A |Q|.
\] (34)

The condition (34) is the aforementioned weighted Carleson packing condition, and the \(L_4 \) norm that appears in Theorem 1.1 arises directly from the exponent 4 in (34).

Thus, the \(L_4 \) norm in Theorem 1.1 is ultimately dictated by having to prove a coercive property for intrinsic Lipschitz graphs that is invariant under stretch automorphisms. This stretch-invariance has multiple effects. On one hand, stretch-invariance means that it suffices to prove the coercive property for pseudoquads of aspect ratio 1; indeed, it is enough to consider pseudoquads that approximate the unit square. On the other hand, it induces a substantial complication in the proofs: since the intrinsic Lipschitz constant is not invariant under stretch automorphisms, the coercivity must be independent of the intrinsic Lipschitz constant.

1.2.2. A maximally bumpy surface. The optimality part of Theorem 1.1 corresponds to constructing (in Section 3) an intrinsic Lipschitz graph for which the \(L_4(\mathbb{R}) \) norm in (32) cannot be replaced by the \(L_q(\mathbb{R}) \) norm for any \(0 < q < 4 \). Theorem 1.7 is deduced in Section 3.1 by analyzing this construction; the level sets of the resulting embedding into \(L_1 \) are a superposition of certain random rotations, scalings and translations of this surface.

We will show that for any sufficiently small \(\varepsilon > 0 \), there are intrinsic Lipschitz surfaces in \(\mathbb{H} \) of bounded (Heisenberg) perimeter that are \(\varepsilon \)-far from planes at \(\varepsilon^{-4} \) different scales, many more than the \(\varepsilon^{-2} \) different scales that are possible (by [NY18]) for such surfaces in the 5-dimensional Heisenberg group \(\mathbb{H}^5 \) (or, for that matter, in \(\mathbb{R}^5 \), by the Jones travelling salesman theorem [Jon90] and the higher-dimensional analogues thereof [DS91]).

We construct these surfaces by adding bumps to a vertical plane. While surfaces that demonstrate that the bound of [NY18] for \(\mathbb{H}^5 \) is optimal can be constructed by adding round bumps with equal width and height, it is more natural in \(\mathbb{H} \) to add oblong bumps with width (horizontal size) \(w \), depth \(d \) (size perpendicular to the surface), and height \(h \) (vertical size). The automorphisms of the Heisenberg group preserve the ratio \(d/w \), so we can construct a family of bump functions by applying automorphisms to a prototype bump with \(d = w = h = 1 \). The resulting bumps have \(h = d/w \), and we define the aspect ratio \(\alpha \) of such a bump to be

\[
\alpha = \frac{w}{\sqrt{h}} = \frac{w}{\sqrt{d/w}} = \sqrt{\frac{w}{d}}.
\]

A horizontal curve connecting one side of the bump to its other side has slope roughly \(d/w = \alpha^{-2} \), so adding a layer of bumps with aspect ratio \(\alpha \geq 1 \) to a surface multiplies its perimeter by roughly \(1 + \alpha^{-4} \). Thus, we can start with a unit square, then add \(\varepsilon^{-4} \) layers of bumps of width \(\varepsilon^{-1} r_i \), depth \(\varepsilon r_i \), and height \(r_i^2 \), for \(r_1 \gg \cdots \gg r_{\varepsilon^{-4}} \). These bumps all have aspect ratio \(\varepsilon^{-1} \), so the resulting surface \(\Sigma \) has bounded perimeter, and for any \(x \in \Sigma \), the intersections \(B_{\varepsilon r_i}(x) \cap \Sigma \) are each \(\varepsilon \)-far from any plane. So, \(\Sigma \) is \(\varepsilon \)-far from planes at \(\varepsilon^{-4} \) different scales. The implementation of this strategy in Section 3 is in essence an example of a foliated corona decomposition. At each stage we use the characteristic
FIGURE 3. The first three steps of the construction of a maximally rough surface in \mathbb{H}. The left and right column show the same surface from two different angles. The center column shows a projection of the surface to the plane, with characteristic curves marked. Since the second derivatives of these curves are small, the Heisenberg area of the surface is bounded, but the surface can be made ε–far from a plane at ε^{-4} different scales — much more than what is possible in \mathbb{H}^5.

curves of the surface that was obtained in the previous stage to guide us where to glue the next layer of bumps. Figure 3 shows a sketch of the construction.
It is highly informative to examine why this construction does not work in \mathbb{H}^5. Bumps on a surface in \mathbb{H}^5 have five dimensions, which we denote $w_1, w_2, d_1, d_2,$ and h, so that h is vertical, the other four dimensions are horizontal, and d_2 is normal to the surface. The automorphisms of \mathbb{H}^5 preserve the ratios $d_1 w_1/(d_2 w_2), d_1 w_1/h,$ and $d_2 w_2/h$. If β is a bump with $d_1 w_1 = d_2 w_2 = h$ and $d_2 \ll w_2$, then the slopes of β in the three horizontal directions are roughly $d_2/w_1, d_2/w_2,$ and d_2/d_1. So, adding β to a vertical rectangle with dimensions $w_1 \times w_2 \times d_1 \times h$ increases the volume of the rectangle by a factor of roughly

$$v(w_1, w_2, d_1, d_2, h) \overset{\text{def}}{=} 1 + \max \left\{ \frac{d_2^2}{w_1^2}, \frac{d_2^2}{w_2^2}, \frac{d_2^2}{d_1^2} \right\},$$

and the resulting bump is roughly d_2/\sqrt{h}–far from a 4–dimensional hyperplane at scale \sqrt{h}. If $d_2/\sqrt{h} = \epsilon$, then $d_1 w_1 = h = \epsilon^2 d_2^2$, and

$$v(w_1, w_2, d_1, d_2, h) \geq 1 + \frac{d_2^2}{\max\{d_1^2, w_1^2\}} \geq 1 + \frac{d_2^2}{d_1 w_1} = 1 + \epsilon^2.$$

Hence, this construction results, at best, in a surface that is ϵ–far from planes at ϵ^{-2} different scales. One may also consider bumps where $d_1 w_1, d_2 w_2,$ and h are not proportional, such as bumps with $d_1 = w_1 = w_2 = d_2^{-1} = r \gg 1 = h$. This is more subtle than it might initially seem. Indeed, because the d_1– and w_1–directions do not commute, there are no $r \times r \times r \times r^{-1} \times 1$ boxes in \mathbb{H}^5 that stay close to horizontal. Consequently, a bump of these dimensions behaves similarly to a collection of smaller bumps with $d_1 w_1 = d_2 w_2 = h$, which are governed by the previous reasoning.

1.3. Roadmap. In Section 2, we present notation for working with the Heisenberg group and some definitions and results related to intrinsic graphs and characteristic curves. In Section 3, we construct an intrinsic graph with large vertical perimeter and use it to construct the embeddings used in Theorem 1.7 and its consequences.

The rest of the paper is devoted to defining and constructing foliated corona decompositions and using them to prove equation (32) bounding the vertical perimeter of an intrinsic Lipschitz graph. In Sections 4, we define a rectilinear foliated patchwork, which decomposes an intrinsic Lipschitz graph into rectilinear pseudoquads, and in Section 5, we define the weighted Carleson packing condition required for such a patchwork to be a foliated corona decomposition. Then, in Section 6, we show that an intrinsic Lipschitz graph that admits a foliated corona decomposition satisfies equation (32).

It remains to show that every intrinsic Lipschitz graph admits a foliated corona decomposition. We produce foliated corona decompositions by the subdivision algorithm described in Section 7. The fact that the patchworks produced by this algorithm satisfy the weighted Carleson packing condition relies on careful analysis of a coercive quantity, the extended parametric nonmonotonicity, defined in Section 8. When this coercive quantity is small, the graph satisfies strong geometric bounds, detailed in Proposition 7.2. Assuming Proposition 7.2, we prove the weighted Carleson condition in Section 9. In Section 10, we outline the proof of Proposition 7.2, and in Sections 11–12, we prove it.
2. Preliminaries

Most of this section presents initial facts about the Heisenberg group that will be used throughout what follows. However, we will start by briefly setting notation for measure theoretical boundaries and interiors that are best described in greater generality (though they will be applied below only to either the Heisenberg group or the real line).

Let $\langle \mathbb{M}, d_\mathbb{M}, \mu \rangle$ be a non-degenerate metric measure space, i.e., $\langle \mathbb{M}, d_\mathbb{M} \rangle$ is a metric space and μ is a Borel measure on \mathbb{M} such that $\mu(B_\mathbb{M}(x, r)) > 0$ for all $x \in \mathbb{M}$ and $r > 0$, where

$B_\mathbb{M}(x, r) = \{ y \in \mathbb{M} : d_\mathbb{M}(x, y) < r \}$

is the closed $d_\mathbb{M}$-ball of radius r centered at x.

Given a subset $S \subseteq \mathbb{M}$, we define the measure-theoretic support $\text{supp}_\mu(S)$ of S to be the usual measure-theoretic support of the indicator function $1_S : \mathbb{M} \to \{0, 1\}$, namely

$$\text{supp}_\mu(S) \overset{\text{def}}{=} \bigcap_{r > 0} \{ x \in \mathbb{M} : \mu(B_\mathbb{M}(x, r) \cap S) > 0 \}. \quad (35)$$

The measure-theoretic boundary of S is defined as

$$\partial_\mu S \overset{\text{def}}{=} \text{supp}_\mu(\mathbb{M} \sim S) \cap \text{supp}_\mu(S \sim \mathbb{M}) = \bigcap_{r > 0} \{ x \in \mathbb{M} : 0 < \frac{\mu(B_\mathbb{M}(x, r) \cap S)}{\mu(B_\mathbb{M}(x, r))} < 1 \}. \quad (36)$$

The measure-theoretic interior of S is defined as

$$\text{int}_\mu(S) \overset{\text{def}}{=} \mathbb{M} \sim \text{supp}_\mu(S \sim \mathbb{M}) = \bigcup_{r > 0} \{ x \in \mathbb{M} : \mu(B_\mathbb{M}(x, r) \sim S) = 0 \}. \quad (37)$$

These definitions are nonstandard; other works define the measure-theoretic boundary as the set of points where the density of S is not 0 or 1. The advantage of our definition is that one may check that $\text{int}_\mu(S)$ is open in \mathbb{M} and its (topological) boundary $\partial_\mu S$ is contained in $\partial_\mu S$. The sets $\text{int}_\mu(S)$, $\text{int}_\mu(\mathbb{M} \sim S)$, $\partial_\mu S$ are disjoint and their union is \mathbb{M}, i.e.,

$$\mathbb{M} = \text{int}_\mu(S) \bigcup (\text{int}_\mu(\mathbb{M} \sim S)) \bigcup \partial_\mu S. \quad (38)$$

2.1. The Heisenberg group. Here we summarize basic notation and terminology related to the Heisenberg group.

Throughout what follows, $\| \cdot \| : \mathbb{R}^3 \to \mathbb{R}$ will denote the Euclidean norm on \mathbb{R}^3, namely $\| (a, b, c) \| = \sqrt{a^2 + b^2 + c^2}$ for all $a, b, c \in \mathbb{R}$. Let

$$X \overset{\text{def}}{=} (1, 0, 0), \ Y \overset{\text{def}}{=} (0, 1, 0), \ Z \overset{\text{def}}{=} (0, 0, 1)$$

be the standard basis of \mathbb{R}^3, and let $x, y, z : \mathbb{R}^3 \to \mathbb{R}$ be the coordinate functions. Namely, for $u = (a, b, c) \in \mathbb{R}^3$ we set $x(u) = a$, $y(u) = b$ and $z(u) = c$. With this notation, the Heisenberg group operation (8) can be written as

$$\forall u, v \in \mathbb{H} = \mathbb{R}^3, \quad uv = u + v + \frac{x(u)y(v) - y(u)x(v)}{2} Z. \quad (39)$$

The linear span of a set of vectors $S \subseteq \mathbb{R}^3$ will be denoted $\langle S \rangle$. The plane $\mathbb{H} \overset{\text{def}}{=} \langle X, Y \rangle$ is called the space of horizontal vectors. Let $\pi : \mathbb{R}^3 \to \mathbb{H}$ be the orthogonal projection. A horizontal line in \mathbb{H} is a coset of the form $w(h) \subseteq \mathbb{H}$ for some $w \in \mathbb{H}$ and $h \in \mathbb{H}$.

The union of the horizontal lines passing through a point $u \in \mathbb{H}$ is the plane $u \mathbb{H}$, which we denote \mathbb{H}_u and call the horizontal plane centered at u. Every plane $P \subseteq \mathbb{R}^3$ either contains a coset of $\langle Z \rangle$ (a vertical line), in which case we call P a vertical plane, or can be written $P = \mathbb{H}_u$ for some unique $u \in \mathbb{H}$.
If $I \subseteq \mathbb{R}$ is an interval and $\gamma: I \rightarrow \mathbb{H}$ is a curve such that $x \circ \gamma, y \circ \gamma, z \circ \gamma: I \rightarrow \mathbb{R}$ are Lipschitz, then $\gamma'(t)$ is defined for almost all $t \in I$. One then says that γ is a horizontal curve if γ is tangent to $H_{\gamma(t)}$ at $\gamma(t)$ for almost all $t \in I$, i.e., for almost all $t \in I$ we have

$$\frac{d}{ds} \left(\gamma(t)^{-1} \gamma(s) \right) \bigg|_{s=t} \in \mathbb{H}.$$

Note that horizontality is left-invariant; if γ is a horizontal curve and $g \in \mathbb{H}$, then $g \cdot \gamma$ is also a horizontal curve. If $\gamma(t) = (\gamma_x(t), \gamma_y(t), \gamma_z(t))$, then this requirement is equivalent to the differential equation $2\gamma'_z(t) = \gamma_x(t)\gamma'_y(t) - \gamma_y(t)\gamma'_x(t)$.

Define

$$\ell(\gamma) \overset{\text{def}}{=} \int_0^1 \|\pi(\gamma'(t))\| \, dt.$$

The sub-Riemannian or Carnot–Carathéodory metric $d: \mathbb{H} \times \mathbb{H} \rightarrow [0, \infty)$ is defined by letting $d(v, w)$ be the infimum of $\ell(\gamma)$ over all horizontal curves γ connecting $v \in \mathbb{H}$ to $w \in \mathbb{H}$. This metric is left-invariant, i.e., $d(g \cdot a, g \cdot b) = d(a, b)$ for all $a, b, g \in \mathbb{H}$.

If γ is a horizontal curve connecting v to w, then $\pi \circ \gamma$ is a curve in \mathbb{R}^2 of the same length connecting $\pi(v)$ to $\pi(w)$, so $d(v, w) \geqslant \|\pi(v) - \pi(w)\|$. Consequently, any horizontal line in \mathbb{H} is a geodesic. Also, d satisfies (e.g. [BR96, Gro96, Mon02]) the ball-box inequality

$$\forall h = (x, y, z) \in \mathbb{H}, \quad d(0, h) \leqslant |x| + |y| + 4 \sqrt{|z|} \leqslant 2d(0, h) + 4 \cdot \frac{d(0, h)}{\sqrt{2\pi}} \leqslant 4d(0, h). \quad (40)$$

For $h \in \mathbb{H}$ and $r > 0$ we let $B_r(h) = \{ g \in \mathbb{H} : d(g, h) \leqslant r \} = hB_r(0)$ denote the closed ball of radius r centered at h with respect to the sub-Riemannian metric d on \mathbb{H}. Throughout what follows we will not use this notation for balls with respect to any other metric.

For $\sigma > 0$ denote by \mathcal{H}^σ the σ–dimensional Hausdorff measure that d induces on \mathbb{H}. Thus \mathcal{H}^d is the Lebesgue measure on \mathbb{R}^3, which is also the Haar measure on \mathbb{H}. Given a measurable subset $E \subseteq \mathbb{H}$, the associated perimeter measure that is induced by d will be denoted by $\operatorname{Per}_E(\cdot)$; we refer to [FSSC01] for background on this fundamental notion, noting only that there exists $\eta > 0$ such that if $E \subseteq \mathbb{H}$ has a piecewise smooth boundary, then $\operatorname{Per}_E(U) = \eta \mathcal{H}^3(U \cap \partial E)$ for every open subset $U \subseteq \mathbb{H}$.

It is also beneficial to describe the group operation on \mathbb{H} in terms of a symplectic form. Let $\omega_{\mathbb{R}^2}: \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}$ be the standard symplectic form, i.e.,

$$\forall (a, b), (\alpha, \beta) \in \mathbb{R}^2, \quad \omega_{\mathbb{R}^2}((a, b), (\alpha, \beta)) \overset{\text{def}}{=} a\beta - b\alpha = \det \begin{pmatrix} a & b \\ \alpha & \beta \end{pmatrix}.$$

Under this notation, (39) can be written as follows.

$$\forall u, v \in \mathbb{H}, \quad uv = u + v + \frac{\omega_{\mathbb{R}^2}(\pi(u), \pi(v))}{2} Z. \quad (41)$$

This lets us define automorphisms of \mathbb{H}. Let $A: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be an invertible linear map with determinant $J \in \mathbb{R} \setminus \{0\}$, so that $\omega_{\mathbb{R}^2}(A(v), A(w)) = J\omega_{\mathbb{R}^2}(v, w)$ for any $v, w \in \mathbb{R}^2$. It follows from (41) that the map $\tilde{A}: \mathbb{H} \rightarrow \mathbb{H}$ that is defined by

$$\forall (x, y, z) \in \mathbb{H}, \quad \tilde{A}(x, y, z) \overset{\text{def}}{=} (A(x, y), Jz) \quad (42)$$

is an automorphism of \mathbb{H} which, since $\tilde{A}(H) = H$, sends horizontal curves to horizontal curves and is thus Lipschitz with respect to the sub-Riemannian metric on \mathbb{H}. If A is an
orthogonal matrix, then \tilde{A} is an isometry. As a notable special case, for $a, b > 0$, we define

$$V(x, y, z) \in \mathbb{H}, \quad s_{a,b}(x, y, z) \overset{\text{def}}{=} (ax, by, abz),$$

which we call a stretch map. When $a = b = t$, $s_{t,t}$ is the usual scaling automorphism of \mathbb{H}, which scales the sub-Riemannian metric on \mathbb{H} by a factor of t. For simplicity, in what follows we will sometimes write $s_{t,t} = s_t$.

2.2. Intrinsic graphs and intrinsic Lipschitz graphs

Throughout what follows, we denote the xz–plane by V_0, namely

$$V_0 \overset{\text{def}}{=} \{(x, y, z) \in \mathbb{H}: \ y = 0\} = \mathbb{R} \times \{0\} \times \mathbb{R} \subseteq \mathbb{H}.$$

Note that the restriction of \mathcal{H}^3 to V_0 is proportional to the Lebesgue measure on V_0.

Fix $U \subseteq V_0$. The intrinsic graph of a function $\psi: U \to \mathbb{R}$ is defined in [FSSC06] to be

$$\Gamma_\psi \overset{\text{def}}{=} \{vY^{\psi(v)} : v \in U\} = \{(x(v), \psi(v), z(v) + \frac{1}{2}x(v)\psi(v)) : v \in U\} \subseteq \mathbb{H},$$

where in (44), as well as throughout what follows, it is convenient to use the exponential notation $u^t = tu = (tx(u), ty(u), tz(u))$ for $u \in \mathbb{H}$ and $t \in \mathbb{R}$. Observe that any coset of $\langle Y \rangle$ that passes through U intersects Γ_ψ in exactly one point. We will also use the following notation for the intrinsic epigraph of ψ.

$$\Gamma_\psi^+ \overset{\text{def}}{=} \{vY^t : (v, t) \in U \times (\psi(v), \infty)\}.$$

Suppose that $U \subseteq V_0$ is an open subset of V_0 and that $g: U \to \mathbb{R}$ is smooth. For every $\psi: U \to \mathbb{R}$ define a function $\partial_\psi g: U \to \mathbb{R}$ by

$$\partial_\psi g \overset{\text{def}}{=} \frac{\partial g}{\partial x} - \psi \frac{\partial g}{\partial z}.$$

(45)

If ψ is smooth, then we define the horizontal derivative of ψ to be the function

$$\partial_\psi \psi = \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi}{\partial z}.$$

(46)

Let $v \in U$ and let $p \overset{\text{def}}{=} vY^{\psi(v)} \in \Gamma_\psi$. One can interpret $\partial_\psi \psi$ by considering the horizontal plane H_p. This plane locally intersects Γ_ψ in a curve, and the tangent vector of this curve at p is given by $X + \partial_\psi \psi(v)Y$. The horizontal derivative also determines the slope of the intrinsic tangent plane to Γ_ψ, where the slope of a vertical plane is the slope of its projection to \mathbb{H}. As $r \to 0$, rescalings of the intersections $B_r(p) \cap \Gamma_\psi$ converge to a vertical tangent plane with slope $\partial_\psi \psi(v)$.

The following proposition is part of Theorem 1.2 of [ASCV06]. It expresses the area $\mathcal{H}^3(\Gamma_\psi)$ of Γ_ψ, namely the 3-dimensional Hausdorff measure (with respect to the sub-Riemannian metric) of Γ_ψ, in terms of $\partial_\psi \psi$.

Proposition 2.1 ([ASCV06]). *There exists a constant $c > 0$ such that if $U \subseteq V_0$ is an open set and $\psi: U \to \mathbb{R}$ is smooth, then

$$\mathcal{H}^3(\Gamma_\psi) \asymp \mathcal{H}^3(\Gamma_\psi) = c \int_U \sqrt{1 + (\partial_\psi \psi)^2} \, dw = \mathcal{H}^3(U) + \|\partial_\psi \psi\|_{L_1(U)},$$

(47)

where \mathcal{H}^3 is the 3–dimensional spherical Hausdorff measure on \mathbb{H}.*
Recent work [JNGV20] has shown that the spherical Hausdorff measure and the Hausdorff measure on Γ_ψ are equal up to a multiplicative constant, so the first equivalence in (47) can be replaced with an equality up to a constant factor.

For $\lambda \in (0, 1)$, define the double cone

$$\text{Cone}_\lambda \overset{\text{def}}{=} \{ h \in \mathbb{H} : |y(h)| > \lambda d(0, h) \}. $$

This is a cone centered on the horizontal line $\langle Y \rangle$ which is scale-invariant, i.e.,

$$\forall t > 0, \quad s_{t, t}(\text{Cone}_\lambda) = \text{Cone}_\lambda. $$

The intersection $\mathbb{H} \cap \text{Cone}_\lambda$ is a double cone in \mathbb{H} with angle depending on λ. Specifically,

$$\mathbb{H} \cap \text{Cone}_\lambda = \left\{ (x, y, 0) \in \mathbb{H} : |y| > \lambda \sqrt{x^2 + y^2} \right\} = \left\{ (x, y, 0) \in \mathbb{H} : |y| > \frac{\lambda}{\sqrt{1 - \lambda^2}} |x| \right\}. $$

Definition 2.2. Let $U \subseteq V_0$ and let $\Gamma \subseteq \mathbb{H}$ be an intrinsic graph over U. For any $\lambda \in (0, 1)$, we say that Γ is an intrinsic λ–Lipschitz graph if $(h\text{Cone}_\lambda(V_0)) \cap \Gamma = \emptyset$ for every $h \in \Gamma$. Equivalently, for every $p, q \in \Gamma$,

$$|y(q) - y(p)| \leq \lambda d(p, q). $$

We say that Γ is an intrinsic Lipschitz graph if it is intrinsic λ–Lipschitz for some $\lambda \in (0, 1)$. If $\Gamma = \Gamma_\psi$ for some $\psi : U \to \mathbb{R}$, then we say that ψ is an intrinsic Lipschitz function.

Definition 2.2 gives the same class of intrinsic Lipschitz graphs as the definition introduced in [FSSC06], but it gives different classes of intrinsic λ–Lipschitz graphs; see Section 3.2 of [Rig19] for a proof that the definitions are equivalent.

The following simple bound will be convenient later.

Lemma 2.3. Let $0 \leq \lambda \leq 1$ and let $\Gamma = \Gamma_\psi$ be an intrinsic λ–Lipschitz graph of a function $\psi : U \subseteq V_0 \to \mathbb{R}$. Let $v, w \in U$ and write $p = vY_{\psi(v)} \in \Gamma$ and $q = wY_{\psi(w)} \in \Gamma$. Then

$$|y(p) - y(q)| = |\psi(v) - \psi(w)| \leq \frac{2}{1 - \lambda} d(p, qY). $$

Proof. Denote $m = d(p, wY)$. Let $c \in wY$ be a point such that $d(p, c) = m$. By the intrinsic Lipschitz condition,

$$|y(c) - y(q)| \leq m + |y(p) - y(q)| \leq m + \lambda d(p, q) \leq m + \lambda(m + |y(c) - y(q)|). $$

This simplifies to give

$$|y(c) - y(q)| \leq \frac{1 + \lambda}{1 - \lambda} m. $$

Hence,

$$|y(p) - y(q)| \leq |y(p) - y(c)| + |y(c) - y(q)| \leq \frac{2m}{1 - \lambda}. \quad \square$$

Intrinsic Lipschitz graphs satisfy the following version of Rademacher’s differentiation theorem due to [FSSC11, Theorem 4.29].
Theorem 2.4 ([FSSC11]). Let \(0 < \lambda < 1 \), let \(U \subseteq V_0 \) be an open set and let \(f : U \rightarrow \mathbb{R} \) be a function such that \(\Gamma_\psi \subseteq \mathbb{H} \) is an intrinsic \(\lambda \)-Lipschitz graph. Then for almost every \(p \in U \), \(\Gamma_\psi \) has an intrinsic tangent plane at \(pY^{\psi(p)} \) whose slope satisfies

\[
|\partial_\psi \psi(p)| \leq \frac{\lambda}{\sqrt{1 - \lambda^2}}. \tag{49}
\]

We note that [FSSC11, Theorem 4.29] is concerned with the (almost everywhere) existential statement of horizontal derivatives. The upper bound in (49) follows from (48) and the fact that the intrinsic tangent plane at \(pY^{\psi(p)} \) is disjoint from \(p\text{Cone}_1 \) (see also Lemma 2.7). This bound on the horizontal derivatives of an intrinsic Lipschitz graph leads to a bound on the perimeter measure. The following result follows from Theorem 4.1 of [FSC07], which proves a similar bound on the Hausdorff measure of \(\Gamma \), and the results of [FSSC01], which imply that the Hausdorff measure of \(\Gamma \) and the perimeter measure of \(\Gamma^+ \) differ by at most a multiplicative constant. Let \(\Pi : \mathbb{H} \rightarrow V_0 \) be the natural (nonlinear) projection to \(V_0 \) along cosets of \(\langle Y \rangle \), i.e., \(\Pi(\nu) = \nu Y^{-\psi(\nu)} \) for every \(\nu \in \mathbb{H} \). Equivalently,

\[
\forall (x, y, z) \in \mathbb{H}, \quad \Pi(x, y, z) \overset{\text{def}}{=} \left(x, 0, z - \frac{1}{2}xy \right). \tag{50}
\]

Lemma 2.5 ([FSC07]). Fix \(\lambda \in (0, 1) \). Let \(\psi : V_0 \rightarrow \mathbb{R} \) be \(\lambda \)-intrinsic Lipschitz. The perimeter measure \(\text{Per}_{\Gamma_\psi} \) satisfies the following equivalence for measurable subsets \(A \subseteq \Gamma_\psi \).

\[
\text{Per}_{\Gamma_\psi}(A) \overset{\lambda}{=} |\Pi(A)|,
\]

where here, and henceforth, \(| \cdot | \) denotes the Haar measure on \(V_0 \), normalized to coincide with the usual 2-dimensional area measure in \(\mathbb{R}^3 \).

2.3. Characteristic curves. Let \(U \subseteq V_0 \) be an open set and let \(\psi : U \rightarrow \mathbb{R} \) be a continuous function. The differential operator \(\partial_\psi \) given in (45) defines a vector field on \(V_0 \) that is continuous and has \(x \)-coordinate 1, so by the Peano existence theorem, there is at least one flow line of \(\partial_\psi \) through every point of \(U \), defined on an interval. These flow lines are the graphs of functions \(g : I \rightarrow \mathbb{R} \) satisfying

\[
\forall t \in I, \quad g'(t) + \psi'(t, 0, g(t)) = 0. \tag{51}
\]

We call these flow lines characteristic curves of \(\Gamma_\psi \).

The solution to (51) guaranteed by the Peano existence theorem is only local, but when \(\psi \) is intrinsic Lipschitz, we can define \(g \) on all of \(\mathbb{R} \). Indeed, by the Peano existence theorem, if \(S_r = [-1, 1] \times [0] \times [-r, r] \) and \(\sup_{q \in S_r} |\psi(q)| \leq r \), then there exists a \(g : (-1, 1) \rightarrow [-r, r] \) that solves (51) with initial condition \(g(0) = 0 \). Let \((x, 0, z) \in S_r \). By Lemma 2.3 with \(\nu = 0 \), \(w = (x, 0, z) \), there is some \(C = C_\psi > 0 \) such that

\[
|\psi(x, 0, z)| \leq |\psi(0)| + \frac{2}{1 - \lambda} d \left\{ Y^{\psi(0)}, (x, 0, z) \right\} \leq C + C|x| + C\sqrt{|z|} \leq 2C + C\sqrt{r}.
\]

If \(r \) is sufficiently large, then \(\sup_{q \in S_r} |\psi(q)| \leq r \), so (51) can be solved on \((-1, 1)\). More generally, for any \(x_0, z_0 \), there is a \(g : (x_0 - 1, x_0 + 1) \rightarrow \mathbb{R} \) that solves (51) with initial condition \(g(x_0) = z_0 \). By patching together such solutions, we obtain a global solution to (51).

In this section, we will show that the characteristic curves of \(\Gamma_\psi \) are the projections of horizontal curves in \(\Gamma_\psi \) and use them to describe \(\Gamma_\psi \). In the next section, we will describe
how characteristic curves transform under automorphisms of Γ; later, we will use these curves to describe how horizontal lines intersect an intrinsic Lipschitz graph.

Lemma 2.6. Let $\Gamma = \Gamma_\psi$. The characteristic curves of Γ are exactly the projections (under Π) of horizontal curves ϕ: $I \to \Gamma$ such that $x(\phi(t)) = t$ for every $t \in I$.

Because characteristic curves can branch and rejoin (see [BCSC15] for such examples), there are intrinsic Lipschitz graphs with horizontal curves whose x-coordinate is not monotone. Thus the condition $x(\phi(t)) = t$ of Lemma 2.6 cannot be dropped.

Proof of Lemma 2.6. First, we claim that if ϕ is a horizontal curve in Γ with $x(\phi(t)) = t$, then $\Pi \circ \phi$ is a characteristic curve of Γ. Write $\Gamma = \Gamma_\psi$ and let $\phi: I \to \Gamma$ be a horizontal curve of the form $\phi(t) = X^t Y^f(t) Z^g(t)$. Then f and g are Lipschitz, $\Pi(\phi(t)) = (t, 0, g(t))$, and, since $\phi(t) \in \Gamma$, we have $f(t) = \psi(t, 0, g(t))$. Since ϕ is horizontal,

$$\frac{d}{du} \phi(t)^{-1} \phi(t + u) \bigg|_{u=0} \in H$$

for almost every $t \in I$. Observe that

$$\phi(t)^{-1} \phi(t + u) = \left(X^t Y^f(t) Z^g(t)\right)^{-1} \left(X^{t+u} Y^{f(t+u)} Z^{g(t+u)}\right)$$

$$= X^u Y^{f(t)+uf(t)} Z^{g(t)+ug(t)}.$$

Since f and g are Lipschitz, the following identity holds almost everywhere.

$$\frac{d}{du} \phi(t)^{-1} \phi(t + u) \bigg|_{u=0} = X + f'(t) Y + (g'(t) + f(t)) Z. \quad (52)$$

That is, g satisfies (51).

Conversely, suppose that g is a solution of (51) and let $f(t) = \psi(t, 0, g(t))$. By Theorem 1.1 and Theorem 1.2 of [BCSC15], f is Lipschitz. Therefore, $\phi(t) = X^t Y^f(t) Z^g(t)$ is a Lipschitz curve in Γ such that $\Pi(\phi(t)) = (t, 0, g(t))$ and such that ϕ satisfies (52) almost everywhere. In combination with (51), this implies that ϕ is horizontal.

If ψ is smooth, the characteristic curves of Γ_ψ foliate U. If ψ is merely intrinsic Lipschitz, characteristic curves can branch and rejoin, but if two characteristic curves pass through the same point, then they are tangent at that point; see Figure 1 of [BCSC15] for an example of this phenomenon.

Characteristic curves satisfy bounds based on the intrinsic Lipschitz constant of Γ.

Lemma 2.7. Fix $\lambda \in (0, 1)$ and denote

$$L \overset{\text{def}}{=} \frac{\lambda}{\sqrt{1 - \lambda^2}}.$$

Let $\Gamma = \Gamma_\psi$ be an intrinsic λ–Lipschitz graph over an open set and let $\gamma: I \to V_0$ be a characteristic curve for Γ parametrized so that $x(\gamma(t)) = t$ for all $t \in I$. Then,

$$\forall s, t \in I, \quad |\psi(\gamma(s)) - \psi(\gamma(t))| \leq L|s - t|. \quad (53)$$

Also, if we denote $g(t) = z(\gamma(t))$, then

$$\forall s, t \in I, \quad |g(t) - g(s) - g'(s)(t - s)| \leq L\frac{(t - s)^2}{2}. \quad (54)$$
This implies

By Pansu’s theorem [Pan89], for almost every \(t \in I \), there is a vector \(h_t \in H \) such that

Indeed, \(h_t = (1, m, 0) \), where \(m = (\psi \circ \gamma)'(t) \). Then

By (55) it follows that \(\frac{|m|}{\sqrt{1 + m^2}} \leq \lambda \), so for almost every \(t \in I \),

This implies (53). By (51), \(g'(t) = -\psi'(\gamma(t)) \), so it follows from (56) that \(|g''(t)| \leq L \) for almost every \(t \in I \). The remaining bound (54) is therefore justified as follows.

Since there is a characteristic curve through every point \(p \in U \) and the derivative of such a curve at \(p \) is \(-\psi(p) \), an intrinsic graph \(\Gamma \) can be reconstructed from its characteristic curves. Indeed, one way to construct intrinsic Lipschitz graphs is to construct a foliation of \(V_0 \) by \(C_1 \) curves \(\{z = g_\alpha(x)\}, \alpha \in A \) such that \(\text{Lip}(g'_\alpha) \leq 1 \) for every \(\alpha \in A \). Each such curve lifts to a horizontal curve, and one can show that the union of these lifts is an intrinsic Lipschitz graph. (This is how the graphs in Figure 3 were constructed.)

For illustration, we consider planes in \(\mathbb{H} \). A vertical plane \(V \) that is not orthogonal to \(V_0 \) is an intrinsic graph over \(V_0 \). The horizontal curves in \(V \) are parallel lines; let \(L \) be one such line. The image \(\Pi(L) \) is a parabola in \(V_0 \), and the characteristic curves of \(V \) are the parabolas parallel to \(\Pi(L) \). The second derivative of these parabolas depends on the angle between \(V \) and \(V_0 \).

Let \(v \in \mathbb{H} \). The horizontal plane \(H_v \) centered at \(v \) is not an intrinsic graph, but the horizontal line \(v'(Y) \) divides \(H_v \) into two intrinsic graphs. The horizontal lines in \(H_v \) all pass through \(v \), and their projections to \(V_0 \) are parabolas through \(\Pi(v) \). Since they all intersect at \(v \), their projections are all tangent at \(\Pi(v) \). These parabolas foliate the complement in \(V_0 \) of the vertical line through \(\Pi(v) \). They have unboundedly large second derivatives, so the two halves of \(H_v \) are locally intrinsic Lipschitz graphs, but not globally.

2.4. Automorphisms and characteristic curves. Recall that any invertible linear map \(A : \mathbb{R}^2 \to \mathbb{R}^2 \) induces an automorphism \(\hat{A} \) of \(\mathbb{H} \) as in (42). We are particularly interested in the case that \(Y \) is an eigenvector of \(A \). In this case, \(\hat{A}(\langle Y \rangle) = \langle Y \rangle \), so \(\hat{A} \) sends cosets of \(\langle Y \rangle \) to cosets of \(\langle Y \rangle \). A set \(\Gamma \) is an intrinsic graph if and only if it intersects each coset of \(\langle Y \rangle \) at most once, so \(\hat{A} \) sends intrinsic graphs to intrinsic graphs.

One family of maps with this property are the stretch maps \(s_{a,b}(x, y, z) = (ax, by, abz) \) defined in (43). To construct a second family of maps with the above property, let \(b \in \mathbb{R} \)
and consider the linear map $A_b(x, y) = (x, y + bx)$, which is a shear of the plane \mathbb{R}^2. The induced map \tilde{A}_b is an automorphism of \mathbb{H} given by the formula
\[
\forall (x, y, z) \in \mathbb{H}, \quad \tilde{A}_b(x, y, z) = (x, y + bx, z),
\]
and we call such maps shear maps. (Note that these are different from the shear maps considered in [Xie16].)

Let $\Pi: \mathbb{H} \to V_0$ be as in (50), i.e., the projection to V_0 along cosets of $\langle Y \rangle$. The maps above preserve cosets of $\langle Y \rangle$, so composed with Π they induce maps from V_0 to V_0.

Lemma 2.8. Fix $h = (x_0, y_0, z_0) \in \mathbb{H}$ and $v = (x, 0, z) \in V_0$. For any $a, b, t \in \mathbb{R}$ we have
\[
\Pi(s_{a, b}(vY^t)) = s_{a, b}(v) = (ax, 0, abz),
\]
\[
\Pi(\tilde{A}_b(vY^t)) = (x, 0, z - \frac{1}{2} b^2).
\]
and
\[
\Pi(hvY^t) = (x + x_0, 0, z + z_0 - x_0y_0 - \frac{1}{2} x_0y_0).
\]

Proof. $\Pi(gY^t) = \Pi(g)$ for all $g \in \mathbb{H}$ and $t \in \mathbb{R}$. Since $s_{a, b}$ and \tilde{A}_b are homomorphisms,
\[
\Pi(s_{a, b}(vY^t)) = \Pi(s_{a, b}(v)Y^{bt}) = s_{a, b}(v) = (ax, 0, abz),
\]
and
\[
\Pi(\tilde{A}_b(vY^t)) = \Pi(\tilde{A}_b(v)Y^t) = (x, bx, z)Y^{-bx} = (x, 0, z - \frac{1}{2} b^2).
\]
Finally,
\[
\Pi(hvY^t) = \Pi(hv) = (x_0 + x, y_0, z_0 + z - \frac{1}{2} x_0y_0)Y^{-y_0}
\]
\[
= (x + x_0, 0, z_0 + z - \frac{1}{2} x_0y_0 - \frac{1}{2}(x_0 + x)y_0).
\]

We next describe how these maps affect characteristic curves and intrinsic graphs.

Lemma 2.9. Fix $U \subseteq V_0$ and $\psi: U \to \mathbb{R}$ be a continuous function. Write $\Gamma = \Gamma_{\psi}$. Let $C = \{(x, 0, z) \in V_0 : z = g(x)\}$ be a characteristic curve of Γ. Let $q: \mathbb{H} \to \mathbb{H}$ be a stretch map, shear map, or left translation, and let $\hat{q}: V_0 \to V_0, \hat{q}(v) = \Pi(q(v))$ be the map that q induces on V_0. Then $q(\Gamma)$ is the intrinsic graph of a function $\hat{\psi}: \hat{q}(U) \to \mathbb{R}$ and $\hat{q}(C)$ is a characteristic curve of $q(\Gamma)$. Also,

- If $a, b \in \mathbb{R} \sim \{0\}$ and $q = s_{a, b}$, then $\hat{\psi}(\hat{q}(v)) = b\psi(v)$ for all $v \in U$.
- If $b \in \mathbb{R}$ and $q = \tilde{A}_b$, then $\hat{\psi}(\hat{q}(v)) = \psi(v) + bx(v)$ for all $v \in U$.
- If $h \in \mathbb{H}$ and $q(p) = hp$ for all $p \in \mathbb{H}$, then $\hat{\psi}(\hat{q}(v)) = \psi(v) + y(h)$ for all $v \in U$.

Proof. Any coset of $\langle Y \rangle$ intersects $q(\Gamma)$ at most once, so $q(\Gamma)$ is an intrinsic graph with domain $\Pi(q(\Gamma)) = \hat{q}(\Gamma)$.

Let $\gamma \subseteq \Gamma$ be the horizontal curve such that $\Pi(\gamma) = C$. Then $q(\gamma)$ is a horizontal curve in $q(\Gamma)$. For all $g \in \mathbb{H}$ and $t \in \mathbb{R}$ we have $\Pi(gY^t) = \Pi(g)$. Consequently, we have $\Pi(q(\gamma)) = \Pi(q(\Gamma)) = \hat{q}(C)$, and $\hat{q}(C)$ is characteristic for $q(\Gamma)$.

For any $v \in U$, we have $q(vY^{\psi(v)}) \in q(\Gamma)$, and since $q(\Gamma)$ is an intrinsic graph, we must have $q(vY^{\psi(v)}) = \hat{q}(v)Y^{\hat{\psi}(\hat{q}(v))}$. The claimed expressions for $\hat{\psi}$ follow directly. \qed
Observe that if \(q : \mathbb{H} \to \mathbb{H} \) preserves cosets of \(\langle Y \rangle \), then
\[
q(\Pi(p)) \in q(p\langle Y \rangle) = q(p\langle Y \rangle),
\]
so \(\Pi \circ q = \Pi \circ q \circ \Pi \). In particular, if \(q_1 \) and \(q_2 \) are stretch maps, shear maps, or left translations, then
\[
q_1 \circ q_2 = \Pi \circ q_1 \circ \Pi \circ q_2 = \Pi \circ q_1 \circ q_2 = q_1 \circ q_2.
\]
Consequently, if \(a, b, c \in \mathbb{R} \) and \(q(v) = Y^b Z^c A_{2a}(v) \) for all \(v \in \mathbb{H} \), then \(\hat{q}(x, 0, z) = (x, 0, z - ax^2 - bx - c) \). That is, for any quadratic function \(f \), there is a map \(q : \mathbb{H} \to \mathbb{H} \) so that the characteristic curves of \(q(\Gamma) \) are the characteristic curves of \(\Gamma \) translated by \(f \).

Finally, stretch maps and shear maps send intrinsic Lipschitz graphs to intrinsic Lipschitz graphs (with a possible change in the Lipschitz constant).

Lemma 2.10. Let \(\Gamma \) be an intrinsic Lipschitz graph, and let \(a, b, c \in \mathbb{R} \sim \{0\} \). Then \(s_{a, b}(\Gamma) \) and \(\hat{A}_b(\Gamma) \) are intrinsic Lipschitz graphs, with an intrinsic Lipschitz constant depending on \(a, b \), and the intrinsic Lipschitz constant of \(\Gamma \).

Proof. Let \(q = s_{a, b} \) or \(q = \hat{A}_b \). As \(\Gamma \) is an intrinsic Lipschitz graph, there is a scale-invariant double cone \(C \subseteq \mathbb{H} \) containing a neighborhood of \(Y \) such that \(pC \cap \Gamma = \emptyset \) for all \(p \in \Gamma \). The image \(q(C) \) is a scale-invariant double cone containing a neighborhood of \(Y \). Since
\[
\bigcap_{\lambda \in (0, 1)} \text{Cone}_\lambda = \langle Y \rangle \sim \{0\},
\]
there is a \(0 < \lambda < 1 \) such that \(\text{Cone}_\lambda \subseteq q(C) \). For all \(p \in \Gamma \),
\[
q(p)\text{Cone}_\lambda \cap q(\Gamma) \subseteq q(p)q(C) \cap q(\Gamma) = q(pC \cap \Gamma) = \emptyset,
\]
so \(q(\Gamma) \) is intrinsic \(\lambda \)--Lipschitz. \(\square \)

2.5. Measures on lines and the kinematic formula.

Let \(\mathcal{L} \) be the space of horizontal lines in \(\mathbb{H} \). For \(U \subseteq \mathbb{H} \), denote the set of horizontal lines that intersect \(U \) by
\[
\mathcal{L}(U) \overset{\text{def}}{=} \{ L \in \mathcal{L} : L \cap U \neq \emptyset \}.
\]
Let \(\mathcal{N} \) be the unique (up to constants) measure on \(\mathcal{L} \) that is invariant under the action of the isometry group of \(\mathbb{H} \). Scalings of horizontal lines are horizontal lines, so scaling automorphisms of \(\mathbb{H} \) act on \(\mathcal{L} \), and \(\mathcal{L}(st_t(M)) = r^3 \mathcal{L}(M) \) for all \(t > 0 \). Henceforth \(\mathcal{N} \) will be normalized so that \(\mathcal{N}\left(\mathcal{L}(B_r(x))\right) = r^3 \) for every \(r > 0 \) and \(x \in \mathbb{H} \).

The Heisenberg group satisfies the following kinematic formula, which we record here for ease of later use (see [Mon05] or equation (6.1) in [CKN11]). There exists a constant \(c > 0 \) such that for any finite-perimeter set \(E \subseteq \mathbb{H} \) and any open subset \(U \subseteq \mathbb{H} \),
\[
\text{Per}_E(U) = c \int_{\mathcal{L}} \text{Per}_{E \cap L}(U \cap L) \, d\mathcal{N}(L),
\]
(58)

Consider also the set \(\mathcal{L}^\# \overset{\text{def}}{=} \{(L, p) : L \in \mathcal{L} \land p \in L\} \) of pointed horizontal lines. Associate to each measurable subset \(K \subseteq \mathcal{L}^\# \) the following two quantities.
\[
\int_{\mathcal{L}} \mathcal{H}^1(\{p \in L : (L, p) \in K\}) \, d\mathcal{N}(L),
\]
(59)
and
\[
\int_0^{2\pi} \int_{\mathbb{H}} 1_K\{p(\cos(\theta) X + \sin(\theta) Y), p\} \, d\mathcal{H}^4(p) \, d\theta.
\] (60)

Both of the expressions in (59) and (60) define measures on \(L^g \) that are invariant under the isometry group of \(\mathbb{H} \), which acts transitively on \(L^g \). Therefore, they are proportional, and there is a constant \(C > 0 \) such that for every measurable \(K \subseteq L^g \),
\[
\int_{L^g} \mathcal{H}^1(K_L) \, d\mathcal{N}(L) = C \int_0^{2\pi} \int_{\mathbb{H}} 1_K(L_{p,\theta}(p), p) \, d\mathcal{H}^4(p) \, d\theta,
\] (61)
where we use the following notations for every \(\psi \) as in Lemma 2.9, i.e.,
\[\hat{\psi}(\text{parametric vertical perimeter versus vertical perimeter of epigraph})\]
\[\Gamma_\psi \subseteq \mathcal{H}^1(K_L) \subseteq \mathcal{H}^1(L)\] for every \(L \in L^g \), \(p \in \mathbb{H} \) and \(\theta \in [0, 2\pi] \).
\[K_L \overset{\text{def}}{=} \{p \in L : (L, p) \in K\} \subseteq L \] and \[L_{p,\theta} \overset{\text{def}}{=} p(\cos(\theta) X + \sin(\theta) Y) \in L^g.\] (62)

2.6. **Vertical perimeter and parametric vertical perimeter.** Given a measurable subset \(E \subseteq V_0 \), a measurable function \(\psi : V_0 \to \mathbb{R} \) and (a scale) \(a \in \mathbb{R} \), we define the (normalized) parametric vertical perimeter at scale \(a \) of \(\psi \) on \(E \) by
\[\nabla^P_{E,\psi}(a) \overset{\text{def}}{=} \int_E \left| \psi(v) - \psi(v Z^{-2^{-a}}) \right| \, d\mathcal{H}^3(v).\] (63)
This notion relates to the usual vertical perimeter (30) of the epigraph of \(\psi \) as follows.

Lemma 2.11 (parametric vertical perimeter versus vertical perimeter of epigraph). For any measurable subset \(E \subseteq V_0 \), any measurable function \(\psi : V_0 \to \mathbb{R} \), and any \(a \in \mathbb{R} \),
\[\nabla^P_{E,\psi}(a) = \nabla_{\Pi^{-1}(E)}(\Gamma_\psi^+)(a).\]

Proof. Recalling (29), for \(\Omega \subseteq \mathbb{H} \) and \(a \in \mathbb{R} \) we denote \(D_a \Omega = \Omega \triangle \Omega Z^{-2^{-a}} \). Then
\[D_a \Gamma_\psi^+ = \{v Y^t : v \in V_0 \wedge \psi(v) < t \leq \psi(v Z^{-2^{-a}})\} \cup \{v Y^t : v \in V_0 \wedge \psi(v Z^{-2^{-a}}) < t \leq \psi(v)\},\]
since, by definition, \(\Gamma_\psi^+ Z^{-2^{-a}} = \{v Y^t : v \in V_0 \wedge \psi(v Z^{-2^{-a}}) < t \leq \psi(v)\} \). Therefore,
\[\nabla_{\Pi^{-1}(E)}(\Gamma_\psi^+)(a) = \frac{\mathcal{H}^4(\Pi^{-1}(E) \cap D_a \Gamma_\psi^+)}{2^{-a}} = \frac{\int_E \left| \psi(v) - \psi(v Z^{-2^{-a}}) \right| \, d\mathcal{H}^3(v)}{2^{-a}} = \nabla^P_{E,\psi}(a),\]
where the second equality uses the fact that the map \((x, y, z) \mapsto (x, 0, z) \cdot Y^t = (x, y, z + \frac{xy}{t}) \) has constant Jacobian 1.

An advantage of the parametric vertical perimeter is that it increases or decreases by a constant factor under a stretch map or a shear map, as computed in the following lemma.

Lemma 2.12. Let \(\psi : V_0 \to \mathbb{R} \) and \(E \subseteq V_0 \) be measurable. Let \(q : \mathbb{H} \to \mathbb{H} \), \(\hat{q} : V_0 \to V_0 \), and \(\hat{\psi} : V_0 \to \mathbb{R} \) be as in Lemma 2.9, i.e., \(q \) is a stretch map or a shear map, \(\hat{q} \) is the map induced on \(V_0 \), and \(\hat{\psi} \) is the function such that \(q(\Gamma_\psi) = \Gamma_{\hat{\psi}} \). Then for all \(t \in \mathbb{R} \) we have
- If \(a, b \in \mathbb{R} \setminus \{0\} \) and \(q = s_{a,b} \), then \(\nabla^P_{q(E),\hat{\psi}}(t) = |ab|^\frac{1}{2} \cdot \nabla^P_{E,\psi}(t + \log_2 \sqrt{|ab|}) \).
- If \(b \in \mathbb{R} \setminus \{0\} \) and \(q = \hat{A}_b \), then \(\nabla^P_{\hat{q}(E),\hat{\psi}}(t) = \nabla^P_{E,\psi}(t) \).
Proof. If \(q = s_{a,b} \) for some \(a, b \in \mathbb{R} \setminus \{0\} \), then \(\hat{q}(x,0,z) = (ax,0,abz) \) and \(\hat{\psi}(\hat{q}(v)) = b\psi(v) \) for every \(v = (x,0,z) \in V_0 \). So,

\[
\nabla^P_{\hat{q}(E),\hat{\psi}}(t) = 2^t |b| \int_{\hat{q}(E)} \left| \hat{\psi}(v) - \hat{\psi}(vZ^{-2^{-t-1}}) \right| \, d\mathcal{H}^3(v)
\]

\[
= 2^t a^2 b^2 \int_E \left| \psi(v) - \psi(vZ^{-ab}) \right| \, d\mathcal{H}^3(v)
\]

\[
= |ab| \frac{3}{2} \nabla^P_{E,\psi}(t) \left(t + \log_2 \sqrt{|ab|} \right).
\]

Next, if \(q = \tilde{A}_b \) for some \(b \in \mathbb{R} \setminus \{0\} \), then \(\hat{\psi}(\hat{q}(v)) = \psi(v) + bx(v) \) for all \(v = (x,0,z) \in E \), and by Lemma 2.8 we have

\[
\hat{q}(v) = \Pi(q(x,0,z)) = (x,0,z - \frac{1}{2} bx^2).
\]

So, \(\hat{\psi}(vZ^{-2t}) = \psi(q^{-1}(vZ^{-2t})) + bx(q^{-1}(vZ^{-2t})) = \psi(q^{-1}(vZ^{-2t})) + bx(v) \), and hence

\[
\nabla^P_{\hat{q}(E),\hat{\psi}}(t) = 2^t \int_{\hat{q}(E)} \left| \psi(q^{-1}(v)) - \psi(q^{-1}(v)Z^{-2t}) \right| \, d\mathcal{H}^3(v)
\]

\[
= 2^t \int_E \left| \psi(v) - \psi(vZ^{-2t}) \right| \, d\mathcal{H}^3(v) = \nabla^P_{E,\psi}(t). \quad \square
\]

We end this section by recording a straightforward \textit{a priori} upper bound on \(\nabla^P_{E,\psi}(a) \).

Lemma 2.13. Suppose that \(E \subseteq V_0 \) is measurable and \(\psi : V_0 \to \mathbb{R} \) is smooth. Then

\[
\forall a \in \mathbb{R}, \quad \nabla^P_{E,\psi}(a) \leq \min \left\{ 2^{a+1} \| \psi \|_{L_\infty(V_0)}, 2^{-a} \left\| \frac{\partial \psi}{\partial z} \right\|_{L_\infty(V_0)} \right\} \mathcal{H}^3(E).
\]

Proof. For all \(v = (x,0,z) \in E \), we (trivially) have

\[
\left| \psi(v) - \psi(vZ^{-2a}) \right| = |\psi(x,0,z) - \psi(x,0,z - 2^{-2a})| \leq 2\| \psi \|_{L_\infty(V_0)},
\]

and

\[
\left| \psi(v) - \psi(vZ^{-2a}) \right| = |\psi(x,0,z) - \psi(x,0,z - 2^{-2a})| \leq 2^{-2a} \left\| \frac{\partial \psi}{\partial z} \right\|_{L_\infty(V_0)}.
\]

Recalling the definition (63), we obtain the desired inequality by integrating over \(E \). \(\square \)

3. Constructing Surfaces and Embeddings

In this section, we will prove Proposition 3.4, following the reasoning sketched in Section 1.2.2, to construct surfaces that are \(\alpha \)-far from planes at \(\alpha^{-4} \) different scales. We use these surfaces to prove the following theorem.
Theorem 3.1. For any $k > 1$, there is a left-invariant metric $\Delta = \Delta_k : \mathbb{H} \times \mathbb{H} \to [0, \infty)$ on \mathbb{H} and a measure space (\mathcal{S}, μ) such that (\mathbb{H}, Δ) embeds isometrically in $L_1(\mu)$ and such that for any $h = (a, b, c) \in \mathbb{H}$ we have

$$|a| + |b| \leq \Delta(0, h) \leq |a| + |b| + \frac{\min \{\sqrt{|c|}, k\}}{\sqrt[4]{\log k}}.$$

(64)

If moreover $1 \leq |c| \leq k^2$, then, in fact

$$\Delta(0, h) \asymp |a| + |b| + \frac{\sqrt{|c|}}{\sqrt[4]{\log k}}.$$

(65)

We will prove Theorem 3.1 in Section 3.1 after deriving two of its applications, and stating Proposition 3.4. The first application of Theorem 3.1 is the proof of Theorem 1.7.

Proof of Theorem 1.7 assuming Theorem 3.1. Letting Δ and (\mathcal{S}, μ) be as in Theorem 3.1, fix $\xi : \mathbb{H} \to L_1(\mu)$ such that $\|\xi(g) - \xi(h)\|_{L_1(\mu)} = \Delta(g, h)$ for all $g, h \in \mathbb{H}$. Also, using [Ass83], fix $m \in \mathbb{N}$ and $\varphi : \mathbb{H} \to \mathbb{R}^m$ such that $\|\varphi(g) - \varphi(h)\|_{\ell^1_m} = \Delta(g, h)$ for all $g, h \in \mathbb{H}$.

Suppose that $\theta \geq \frac{1}{4}$. Consider the function $\tau : \mathbb{H} \to L_1(\mu) \oplus \mathbb{R}^2 \oplus \mathbb{R}^m \cong L_1(\nu)$ (for a suitable measure ν) that is given by

$$\tau \overset{\text{def}}{=} \xi \frac{\varphi}{(\log k)^{\theta - 1}} \oplus \pi \varphi \frac{\varphi}{(\log k)^{\theta}}.$$

(66)

Since Δ is left-invariant, every $g = (x, y, z), h = (\chi, w, \zeta) \in \mathbb{H}$ with $1 \leq d(g, h) \leq k$ satisfy

$$\|\tau(g) - \tau(h)\|_{L_1(\nu)} \approx |x - \chi| + |y - w| + \frac{\sqrt{|[2z - 2\zeta - xw + y\chi]|}}{(\log k)^{\theta}},$$

(67)

using (40) and Theorem 3.1. While (67) would hold even without the third component of τ in (66), thanks to that component $\tau(\mathbb{H}_Z)$ is a locally-finite subset of $L_1(\nu)$. Every finite subset of $L_1(\nu)$ embeds with distortion $O(1)$ in ℓ_1 (by approximating by simple functions), so by [Ost12], it follows that $\tau(\mathbb{H}_Z)$ admits a bi-Lipschitz embedding into ℓ_1 of distortion $O(1)$. As the word metric d_W on \mathbb{H}_Z is bounded above and below by universal constant multiples of d, this gives Theorem 1.7 provided k is a large enough universal constant multiple of n.

A second application of Theorem 3.1 is to construct a left-invariant metric on \mathbb{H}_Z with the properties of Theorem 1.9, at the cost of losing an iterated logarithm in the associated distortion bounds that we derived in the proof of Theorem 1.9. While the power of the iterated logarithm can be improved by taking more care in the ensuing reasoning, some unbounded lower-order loss must be incurred here; see Remark 3.3.

Theorem 3.2. For any $2 < p \leq 4$ there is a left-invariant metric $\delta = \delta_p$ on \mathbb{H}_Z that admits a bi-Lipschitz embedding into both ℓ_1 and ℓ_q for all $q \geq p$, yet not into any Banach space whose modulus of uniform convexity has power-type r for $2 \leq r < p$ (in particular, (\mathbb{H}_Z, δ) does not admit a bi-Lipschitz embedding into a Hilbert space or ℓ_s for $1 < s < p$). Moreover, if we denote $\theta = 1/p$, then for every $h = (a, b, c) \in \mathbb{H}_Z$ with $|c| \geq 3$ we have

$$\delta(0, h) \asymp |a| + |b| + \frac{\sqrt{|c|}}{(\log |c|)^{\theta} (\log \log |c|)^2}.$$

(68)
Proof. Define a left-invariant metric \(\delta : \mathbb{H}_\mathbb{Z} \times \mathbb{H}_\mathbb{Z} \rightarrow [0, \infty) \) as a superposition of the metrics \(\{ \Delta_k \}_{k > 0} \) of Theorem 3.1, by setting for every \(h = (a, b, c) \in \mathbb{H}_\mathbb{Z} \),
\[
\delta(0, h) \overset{\text{def}}{=} \sum_{n=1}^\infty \frac{1}{n^2 e^{(4\theta-1)n}} \Delta_{e^n}(0, h).
\] (69)

We will first verify (68), which in particular implies that the sum defining \(\delta \) converges, and hence by Theorem 3.1 we would know that \(\delta \) is indeed a left-invariant metric on \(\mathbb{H}_\mathbb{Z} \), and that \((\mathbb{H}_\mathbb{Z}, \delta) \) admits an isometric embedding into \(\ell_1(L_1(\mu)) \). By [Ost12], it follows from this that \((\mathbb{H}_\mathbb{Z}, \delta) \) also admits a bi-Lipschitz embedding into the sequence space \(\ell_1 \).

Fix \(h = (a, b, c) \in \mathbb{H}_\mathbb{Z} \) with \(|c| \gg e^{e^t} \) and choose \(m = m(c) \in \mathbb{N} \) such that
\[
e^{e^m} \ll \sqrt{|c|} < e^{e^{m+1}}.
\] (70)

Then,
\[
\delta(0, h) \overset{\text{(64)}}{\lesssim} |a| + |b| + \sum_{n=1}^m \min \left\{ \sqrt{|c|}, e^{e^n} \right\} \lesssim |a| + |b| + \sum_{n=1}^m \frac{e^{e^n}}{n^2 e^{4\theta n}} + \sum_{n=m+1}^\infty \frac{\sqrt{|c|}}{n^2 e^{4\theta n}} \lesssim |a| + |b| + \frac{\sqrt{|c|}}{(\log |c|)^{\theta}(\log \log |c|)^2}.
\]

Conversely, since the sum in (69) is at least its summands for \(n = 1 \) and \(n = m + 1 \),
\[
\delta(0, h) \overset{\text{(70)}}{\gtrsim} |a| + |b| + \frac{\sqrt{|c|}}{(m + 1)^2 e^{4\theta(m+1)}} \gtrsim |a| + |b| + \frac{\sqrt{|c|}}{(\log |c|)^{\theta}(\log \log |c|)^2}.
\]

This is (68) if \(|c| \gg e^{e^t} \), but then (68) follows formally in the remaining range \(3 \ll |c| < e^{e^t} \) (simply use the triangle inequality to reduce the upper bound to the case of large enough \(|c| \) that we just proved, and take only the \(n = 1 \) summand in (69) for the lower bound).

By contrasting (68) with (9) we see that for every integer \(n \geq 3 \),
\[
c_{(\mathfrak{B}_n, \delta)}(\mathfrak{B}_n, d_W) \lesssim (\log n)^{\theta} (\log \log n)^2.
\] (71)

At the same time, if \(2 \leq r \leq p \) and \(X \) is a Banach space whose modulus of uniform convexity has power-type \(r \), then by [LN14b] we have
\[
c_X(\mathfrak{B}_n, d_W) \gtrsim_X (\log n)^{\frac{1}{r}}.
\] (72)

By combining (71) and (72) we deduce that
\[
c_X(\mathfrak{B}_n, \delta) \gtrsim_X \frac{(\log n)^{\frac{1}{r} - \theta}}{(\log \log n)^2} = \frac{(\log n)^{\frac{1}{r} - \frac{1}{p}}}{(\log \log n)^2} \xrightarrow{n \to \infty} \infty.
\]

Consequently, \((\mathbb{H}_\mathbb{Z}, \delta) \) does not admit a bi-Lipschitz embedding into \(X \).

It remains to show that \((\mathbb{H}_\mathbb{Z}, \delta) \) admits a bi-Lipschitz embedding into \(\ell_q \) for any \(q \gg p \). As before, finite subsets of \(L_q \) embed with distortion \(O(1) \) in \(\ell_p \) (by approximating by simple functions). Thus, due to [Ost12], since \((\mathbb{H}_\mathbb{Z}, \delta) \) is locally finite, it suffices to show that \((\mathbb{H}_\mathbb{Z}, \delta) \) admits a bi-Lipschitz embedding into \(L_q \). By [LN14a, Lemma 3.1], for any \(0 < \varepsilon < \frac{1}{2} \), there exists a left-invariant metric \(\rho_\varepsilon \) on \(\mathbb{H}_\mathbb{Z} \) such that \((\mathbb{H}_\mathbb{Z}, \rho_\varepsilon) \) embeds isometrically into \(L_q \), and
\[
\forall h = (a, b, c) \in \mathbb{H}_\mathbb{Z}, \quad \rho_\varepsilon(0, h) = |a|^{1-\varepsilon} + |b|^{1-\varepsilon} + \varepsilon \frac{1}{2} |c|^\frac{1}{1-\varepsilon}.
\] (73)
Define a left-invariant metric $\rho : \mathbb{H}_Z \times \mathbb{H}_Z \to [0, \infty)$ by setting for every $h = (a, b, c) \in \mathbb{H}_Z$,
\[
\rho(0, h) \overset{\text{def}}{=} \left(|a|^q + |b|^q + \sum_{n=1}^{\infty} \frac{1}{n^{2q} e^{n(q \theta - 1)}} \theta 2e^{-n} (0, h)^q \right)^{\frac{1}{q}}.
\]

By design, (\mathbb{H}_Z, ρ) embeds isometrically into $\ell_q(L_q)$. So, the proof of Theorem 3.2 will be complete if we show that $\delta(0, h) = \rho(0, h)$ for all $h = (a, b, c) \in \mathbb{H}_Z$ with, say, $|c| \geq 300$. To see this, by combining (68) and (73) it suffices to show that
\[
\left(\sum_{n=1}^{\infty} \frac{1}{n^{2q} e^{nq \theta} |c| |q e^{-n}|} \right)^{\frac{1}{q}} \approx \frac{1}{|\log |c||^\theta (\log \log |c|)^2}.
\]

Fix $s = s(c) \in \mathbb{N}$ such that $2e^s \leq \log |c| < 2e^{s+1}$ (this is possible because $|c| \geq 300$). Then,
\[
\left(\sum_{n=1}^{\infty} \frac{1}{n^{2q} e^{nq \theta} |c| |q e^{-n}|} \right)^{\frac{1}{q}} \lesssim \left(\sum_{k=0}^{s-1} \frac{1}{(s-k)^2 n^{q \theta} |c| |q e^{-n}|} \right)^{\frac{1}{q}} + \left(\sum_{n=s+1}^{\infty} \frac{1}{n^{2q} e^{nq \theta}} \right)^{\frac{1}{q}} \approx \frac{1}{s^2 e^{s \theta}} \approx \frac{1}{(\log |c|)^\theta (\log \log |c|)^2},
\]

where the final step holds by our choice of s, and the penultimate step holds as $|c| e^{-s+1} \geq 2e$ by our choice of s, and therefore the sum in question is dominated by its $k = 0$ summand. This proves half of the equivalence (74), and the remaining direction of (74) follows by bounding from below the sum in the left hand side of (74) by its $n = s$ summand. \(\square\)

Remark 3.3. It is evident from the above proof of Theorem 3.2 that the power 2 of $\log \log |c|$ in (68) can be improved to any fixed power that is strictly larger than 1. However, the lower order term cannot be removed altogether. Specifically, suppose that \mathcal{d} is a left-invariant metric on \mathbb{H}_Z such that every $h = (a, b, c) \in \mathbb{H}_Z$ with $|c| \geq 3$ satisfies
\[
\mathcal{d}(0, h) = |a| + |b| + \frac{\sqrt{|c|}}{\sqrt{\log |c|}}.
\]

We claim that neither ℓ_1 nor ℓ_4 contains a bi-Lipschitz copy of $(\mathbb{H}_Z, \mathcal{d})$. In fact, we will next show that for every integer $n \geq 3$ the word-ball $\mathcal{B}_n \subseteq \mathbb{H}_Z$ satisfies the distortion bounds
\[
\sqrt{\log \log n} \lesssim c_{\ell_1}(\mathcal{B}_n, \mathcal{d}) \lesssim \log \log n,
\]
and,
\[
c_{\ell_4}(\mathcal{B}_n, \mathcal{d}) \approx \sqrt{\log \log n}.
\]

We conjecture that the first inequality in (76) is sharp.

To prove (76), by substituting Theorem 1.1 into [NY18, Lemma 33], and then substituting the resulting inequality into [NY18, Lemma 30], we get that there is a universal constant $\kappa \geq 5$ such that for every integer $n \geq 3$, every function $f : \mathbb{H}_Z \to \ell_1$ satisfies
\[
\left(\sum_{c=1}^{n^2} \frac{1}{c^2} \left(\sum_{h \in \mathcal{B}_n} \|f((hZ)^c) - f(h)\|_{\ell_1}^4 \right)^{\frac{1}{4}} \right) \lesssim \sum_{h \in \mathcal{B}_n} \left(\|f((hX)^c) - f(h)\|_{\ell_1} + \|f((hY)^c) - f(h)\|_{\ell_1} \right).
\]

(78)
Suppose that \(D \geq 1 \) is such that \(\varnothing(g, h) \leq \|f(g) - f(h)\|_{\ell_1} \leq D\varnothing(g, h) \) for all \(g, h \in \mathcal{B}_{2n} \). Then, by (75) and (78) we have
\[
D \gtrsim \left(\sum_{c \in \mathbb{Z}} \frac{1}{c^3} \left(\frac{\sqrt{c}}{\sqrt{\log c}} \right)^4 \right)^{\frac{1}{4}} = \left(\sum_{c \in \mathbb{Z}} \frac{1}{c^3} \right)^{\frac{1}{4}} \gtrsim \sqrt{\log \log n}.
\]
This proves the first inequality in (76). For the second inequality in (76) consider the sum
\[
\varnothing_{1,n} = \sum_{j=0}^{\lfloor 5[\log \log n] \rfloor} \Delta_{2j}
\]
of metrics from Theorem 3.1. Then, by Theorem 3.1 the metric space \((\mathbb{H}_Z, \varnothing_{1,n})\) embeds isometrically into \(\ell_1 \) and \(\varnothing \lesssim \varnothing_{1,n} \lesssim (\log \log n) \varnothing \) on \(\mathcal{B}_n \times \mathcal{B}_n \).

The proof of (77) is analogous. For the lower bound on \(c_{\ell_4}(\mathcal{B}_n, \varnothing) \) use (the case \(q = 4 \) of) Theorem 1.1 in [LN14b] to get the following estimate for any function \(f : \mathbb{H}_Z \to \ell_4 \).
\[
\sum_{c=1}^{n^2} \frac{1}{c^3} \left(\sum_{h \in \mathcal{B}_n} \|f(hZ^c) - f(h)\|_{\ell_4} \right)^4 \lesssim \sum_{h \in \mathcal{B}_n} \left(\|f(hX) - f(h)\|_{\ell_4}^2 + \|f(hY) - f(h)\|_{\ell_4}^4 \right).
\]
With this inequality at hand, the desired lower bound follows as in (79). For the upper bound on \(c_{\ell_4}(\mathcal{B}_n, \varnothing) \), use the following metric on \(\mathbb{H}_Z \) which embeds isometrically into \(\ell_4 \).
\[
\varnothing_{4,n} = \left(\sum_{j=0}^{5[\log \log n]} \Delta_{2j}^4 \right)^{\frac{1}{4}}
\]

The above reasoning also shows mutatis mutandis that an unbounded lower-order factor loss is needed in the compression bound (27) of Theorem 1.16. Specifically, there is no mapping \(f : \mathbb{H}_Z \to \ell_1 \) that is Lipschitz with respect to the word metric on \(\mathbb{H}_Z \) and whose compression rate (recall (26)) satisfies \(\omega_r(s) \gtrsim s \sqrt{\log s} \) when \(s \geq 2 \). It would be worthwhile to obtain a characterization of the possible compression rates of embeddings of \(\mathbb{H}_Z \) into \(\ell_1 \) in the spirit of [NY18, Theorem 9], but this would require more work. Specifically, one would need to replace the use in [NY18] of [Tes08, Corollary 5] by a better embedding of \(\mathbb{H}_Z \) into \(\ell_1 \); we expect that the existence of such an embedding could be deduced using the ideas of the present section, but we did not attempt to carry this out.

The main ingredient in the proof of Theorem 3.1 is the following proposition, which is proved in Section 3.2. It constructs a function \(\psi : V_0 \to \mathbb{R} \) whose intrinsic graph has small horizontal perimeter but large vertical perimeter due to bumps at many different scales. Here and throughout the rest of this section, we denote the unit square in \(V_0 \) by \(U \), i.e.,
\[
U \overset{\text{def}}{=} [0, 1] \times [0] \times [0, 1] \subseteq V_0.
\]

Proposition 3.4. There are universal constants \(\rho, R, r, \rho' \in \mathbb{R} \) with \(R > r \) and \(\rho > 2^{2(R-r)} \) such that for any \(\alpha \in \mathbb{N} \), there is a smooth function \(\psi : V_0 \to \mathbb{R} \) that has the following properties.

1. \(\psi \) is periodic with respect to the integer lattice \(\mathbb{Z} \times [0] \times \mathbb{Z} \) of \(V_0 \).
2. \(\|\partial \psi \|_{L_2(U)} \lesssim 1 \).
3. \(\|\psi\|_{L_\infty(V_0)} \leq \frac{1}{\alpha^2} \).
Without loss of generality, we may take \(\alpha \geq \frac{1}{a} \) for any integer \(0 \leq n < a^4 \) and any \(a \in I + \log_2(\alpha \rho^n) \), where \(I = [r, R] \).

Hence,

\[
\left\| \nabla_{U, \psi}^P \right\|_{L_1([\log_2(\alpha \rho^n) + r, \log_2(\alpha \rho^n) + R])} \geq \frac{1}{a},
\]

(5) For any \(q > 0 \), we have

\[
\left\| \nabla_{U, \psi}^P \right\|_{L_q(\mathbb{R})} \geq \alpha^{\frac{4}{q} - 1}.
\]

(6) \(\nabla_{U, \psi}^P (a) \leq \min \{ \frac{1}{a}, \frac{2^q}{a^q} \} \) for any \(a \in \mathbb{R} \).

By Proposition 2.1, the second assertion of Proposition 3.4 implies that \(\mathcal{H}^3(\partial E) \lesssim 1 \), where \(E \) is the epigraph of the restriction of \(\psi \) to the unit square \(U \subseteq V_0 \). In combination with Proposition 3.4.(5), since \(\rho \) can be arbitrarily large, this shows that the \(L_q(\mathbb{R}) \) norm in (31) cannot be replaced by \(L_q(\mathbb{R}) \) for any \(q \in (0, 4) \); as explained in the introduction, this also implies the optimality of Theorem 1.1. Furthermore, since the \(L_q \)-variant of (31) is a consequence of the \(L_q \)-variant of (32), Proposition 3.4 also implies that for any \(q \in (0, 4) \), there is \(\lambda \in (0, 1) \) such that for any \(c > 0 \), there is an intrinsic \(\lambda \)-Lipschitz graph \(\Gamma \) satisfying

\[
\left\| \nabla_{B_1(0)}(\Gamma^+) \right\|_{L_q(\mathbb{R})} \geq c.
\]

We expect that the construction in Section 3.2 can be modified to produce an intrinsic Lipschitz graph directly (for instance, by stopping the construction early in regions where \(\partial \psi_E \) gets too large), but this is not needed here, so we leave the details to future work.

Proposition 3.4.(5) follows directly from Proposition 3.4.(4). Indeed, since \(\rho > 2^{2(R-r)} \), the intervals \([\log_2(\alpha \rho^n) + r, \log_2(\alpha \rho^n) + R]\) are disjoint. Consequently,

\[
\left\| \nabla_{U, \psi}^P \right\|_{L_q(\mathbb{R})} \geq \sum_{n=0}^{a^4-1} \left\| \nabla_{U, \psi}^P \right\|_{L_q([\log_2(\alpha \rho^n) + r, \log_2(\alpha \rho^n) + R])} \geq \sum_{n=0}^{a^4-1} \frac{1}{(R - r)^q - 1} \left\| \nabla_{U, \psi}^P \right\|_{L_1([\log_2(\alpha \rho^n) + r, \log_2(\alpha \rho^n) + R])} \gtrsim \alpha^{4-q}. \tag{80}
\]

where the penultimate step is an application of Jensen’s inequality and the final step holds because \(R - r > 0 \) is a constant and by Proposition 3.4.(4), each of the summands is at least a universal constant multiple of \(\alpha^{-q} \).

3.1. **Obtaining an embedding from an intrinsic graph.** Here we show how Theorem 3.1 follows from Proposition 3.4. Let \(\rho, r, R > 0 \) be the universal constants of Proposition 3.4. Without loss of generality, we may take \(k > 8 \). Let \(a \in \mathbb{N} \) be the unique integer satisfying

\[
\sqrt[q]{\log_2 \left(\frac{k}{8} \right)} \leq \alpha < 1 + \sqrt[q]{\log_2 \left(\frac{k}{8} \right)}. \tag{81}
\]

Let \(\psi = \psi_a \) be the function produced by Proposition 3.4. Write \(\Gamma = \Gamma_\psi \) and \(\Gamma^+ = \Gamma_\psi^+ \). Denote by \(A \subseteq V_0 \cap \mathbb{H}_2 \) the discrete subgroup that is generated by \(X \) and \(Z \), so that as a subset of \(\mathbb{R}^3 \) we have \(A = Z \times \{0\} \times Z \). For every \(p \in \mathbb{H} \) define

\[
\forall h_1, h_2 \in \mathbb{H}, \quad \lambda_p(h_1, h_2) \overset{\text{def}}{=} |1_{p^{-1}\Gamma^+}(h_1) - 1_{p^{-1}\Gamma^+}(h_2)| = \begin{cases} 1 & \text{if } |\{ph_1, ph_2\} \cap \Gamma^+| = 1, \\ 0 & \text{otherwise}. \end{cases}
\]
By the A-periodicity of ψ we have $a \Gamma = \Gamma$ and $\lambda_{ap}(h_1, h_2) = \lambda_p(h_1, h_2)$ for all $a \in A$ and $p, h_1, h_2 \in \mathbb{H}$. We can therefore define λ_p also when p is an equivalence class in the quotient $A\backslash \mathbb{H}$. Consider the following fundamental domain for A.

$$P \overset{\text{def}}{=} \{X^a Z^c Y^b : a, c \in [0, 1) \text{ and } b \in \mathbb{R}\} = \{(a, b, c + 1/2ab) : (a, b, c) \in [0, 1) \times \mathbb{R} \times [0, 1)\}.$$

We may define $l: \mathbb{H} \times \mathbb{H} \to [0, \infty)$ by

$$l(h_1, h_2) \overset{\text{def}}{=} \int_{A\backslash \mathbb{H}} \lambda_p(h_1, h_2) \cdot d\mathcal{H}^4(p) = \int P \lambda_p(h_1, h_2) \cdot d\mathcal{H}^4(p).$$

Since \mathbb{H} is a unimodular group (namely, one directly checks that the Lebesgue measure \mathcal{H}^4 is a bi-invariant Haar measure on \mathbb{H}, and $\lambda_p(gh_1, gh_2) = \lambda_p(h_1, h_2)$, we have

$$\forall g, h_1, h_2 \in \mathbb{H}, \quad l(gh_1, gh_2) = l(h_1, h_2),$$

i.e., l is a left-invariant semi-metric on \mathbb{H}.

Lemma 3.5. For every $a \in \mathbb{R}$ we have $l(0, Z^{2^{-2a}}) = 2^{-a} \cdot \overline{\nu}_{U, \psi}^p(a)$.

Proof. For $v \in V_0$ and $b \in \mathbb{R}$, we have $v Y^b \in \Gamma^+$ if and only if $b > \psi(v)$. So, for any $c > 0$,

$$\lambda_{v Y^b}(0, Z^c) = \lambda_0(v Y^b, v Z^c Y^b) = \begin{cases} 1 & \psi(v) < b \leq \psi(v Z^c) \text{ or } \psi(\nu Z^c) < b \leq \psi(v), \\ 0 & \text{otherwise}. \end{cases}$$

Consequently,

$$\int_R \lambda_{v Y^b}(0, Z^c) \, db = |\psi(v Z^c) - \psi(v)|.$$

Therefore, fixing $a \in \mathbb{R}$ and denoting $c = 2^{-2a}$, we see that

$$l(0, Z^{2^{-2a}}) = \int P \lambda_p(0, Z^c) \, dp = \int P \lambda_{v Y^b}(0, Z^c) \, dv \, db$$

$$= \int_U |\psi(v Z^c) - \psi(v)| \, dv = 2^{-a} \cdot \overline{\nu}_{U, \psi}^p(a). \quad \square$$

For every $\theta \in [0, 2\pi)$ let $R_\theta: \mathbb{H} \to \mathbb{H}$ be rotation around the z-axis by angle θ. Define the following left-invariant semi-metric on \mathbb{H}, which is also (by design) invariant under the family of $(R_\theta : \theta \in [0, 2\pi])$ automorphisms of \mathbb{H}.

$$\forall h_1, h_2 \in \mathbb{H}, \quad M(h_1, h_2) \overset{\text{def}}{=} \int_0^{2\pi} l(R_\theta(h_1), R_\theta(h_2)) \, d\theta.$$

Lemma 3.6. For every $w \in \mathbb{H}$ we have $M(0, w) \lesssim ||w||$.

Proof. By the rotation-invariance of M, it suffices to show that $M(0, X^t) \lesssim |t|$ for all t. In fact, by the left-invariance of M and the triangle inequality, it suffices to prove that $M(X^t, X^{-t}) \lesssim t$ for $0 < t < \frac{1}{2}$.

Let $L_0 = \langle X \rangle \subseteq \mathbb{H}$ be the x-axis. Recall that $L_{p, \theta} = p R_\theta(L_0)$ for $p \in \mathbb{H}$ and $\theta \in [0, 2\pi)$. The map $(p, \theta) \mapsto (L_{p, \theta}, p)$ is a bijection between $\mathbb{H} \times [0, \pi)$ and the set of pointed lines $\mathcal{L}^p = \{(L, p) : L \in \mathcal{L} \land p \in L\}$.
By the above definitions, we have

\[M(X^{-t}, X^t) = \int_0^{2\pi} \int_P \lambda_p(R_\theta(X^{-t}), R_\theta(X^t)) \, dH^A(p) \, d\theta. \]

Let \(K \subseteq \mathbb{P} \times [0, 2\pi) \) be the set of pairs \((p, \theta)\) such that \(L_{p, \theta} \) intersects \(\Gamma \) transversally, i.e., \(L_{p, \theta} \) crosses the tangent plane of \(\Gamma \) at every intersection. Since \(\Gamma \) is smooth, the complement of \(K \) has measure zero.

Let \(U' = B_\delta(0) \cap V_0 \). Let \((p, \theta) \in K\) be such that \(\lambda_p(R_\theta(X^{-t}), R_\theta(X^t)) \neq 0 \). Then the line segment from \(p R_\theta(X^{-t}) \) to \(p R_\theta(X^t) \) crosses \(\Gamma \) at some point \(g \in \Gamma \); we claim that \(\Pi(g) \in U' \).

By Proposition 3.4.(3), we have \(\|\psi\|_{L_\infty(V_0)} \leq 1 \), so \(|y(g)| \leq 1 \) and \(|y(p)| = |y(g)| + t \leq 2 \). Since \(p \in P \), there are \(a, b, c \in \mathbb{R} \) such that \(p = X^a Y^b \), and these satisfy \(|a| \leq 1 \), \(|c| \leq 1 \), and \(|b| = |y(p)| \leq 2 \). By \((40)\),

\[d(0, g) \leq |a| + 4\sqrt{|c|} + |b| \leq 7 \]

and

\[d(0, \Pi(g)) \leq d(0, g) + |y(g)| \leq 8, \]

so \(\Pi(g) \in U' \).

Let \(\Gamma(U') = \Gamma \cap \Pi^{-1}(U') = \Gamma_{\psi_{|_{\mathbb{R}}}^t} \) and for \(L \in \mathcal{L} \), let

\[I_L = \{ p \in L : d(p, L \cap \Gamma(U')) \leq t \}. \]

We have seen above that if \((p, \theta) \in K \) and \(\lambda_p(R_\theta(X^{-t}), R_\theta(X^t)) \neq 0 \), then there is some \(g \in L_{p, \theta} \cap \Gamma(U') \) such that \(d(p, g) \leq t \). That is, \(p \in I_{L_{p, \theta}} \). Furthermore, if \(L \) intersects \(\Gamma \) transversally, then

\[\mathcal{H}^1(I_L) \leq 2t|L \cap \Gamma(U')| = 2t\operatorname{Per}_{\Gamma \cap L}([\Pi^{-1}(U')]). \]

Hence,

\[M(X^{-t}, X^t) = \int_0^{2\pi} \int_P \lambda_p(R_\theta(X^{-t}), R_\theta(X^t)) \, dH^A(p) \, d\theta \]

\[\overset{(61)}{\leq} \int_\mathcal{L} \mathcal{H}^1(I_L) \, d\mathcal{N}(L) \]

\[\overset{(58)}{\leq} t \int_\mathcal{L} \operatorname{Per}_{\Gamma \cap L}([\Pi^{-1}(U')]) \, d\mathcal{N}(L) \]

\[\overset{(58)}{\leq} t \operatorname{Per}_{\Gamma^{-1}}([\Pi^{-1}(U')]) \leq t. \]

where \(\operatorname{Per}_{\Gamma^{-1}}([\Pi^{-1}(U')]) \leq 1 \) by Proposition 2.1 and Proposition 3.4.(2). \(\square \)

Next, define a left-invariant semi-metric \(\Lambda \) on \(\mathbb{H} \) by

\[\forall h_1, h_2 \in \mathbb{H}, \quad \Lambda(h_1, h_2) \overset{\text{def}}{=} \int_{r - \log_2 \rho}^{r + \log_2 \rho} 2^a M(s_2 \rho(h_1), s_2 \rho(h_2)) \, da. \]

Lemma 3.7. For all \(c > 0 \) we have

\[\Lambda(0, Z^c) = \Lambda(0, Z^{-c}) \overset{\text{def}}{=} \min \left\{ \frac{\sqrt{c}}{\alpha}, \frac{1}{\alpha^2} \right\}. \]
Also, for all $\frac{1}{\alpha^2 \rho^{2\alpha^t}} \leq c \leq \frac{1}{\alpha^2}$ we have

$$\Lambda(0, Z^c) = \Lambda(0, Z^{-c}) \gtrsim \frac{\sqrt{c}}{\alpha}.$$

Proof. Write $c = 2^{-2t}$ for some $t \in \mathbb{R}$. Since Λ is a left-invariant metric, $\Lambda(0, Z^c) = \Lambda(0, Z^{-c})$.

By Lemma 3.5 we have the following identity.

$$\Lambda(0, Z^c) = 2\pi \int_{-\log_2 \rho}^{\log_2 \rho} 2^a \left\| \mathbf{v}_{t, \psi} \right\|_{L_2([0, \log_2(\alpha \rho^n)])} \, da = 2\pi 2^{-t} \int_{-\log_2 \rho}^{\log_2 \rho} \mathbf{v}_{t, \psi}(t + a) \, da. \quad (82)$$

So, $\Lambda(0, Z^c) \lesssim \min \left\{ \frac{\sqrt{c}}{\alpha}, \frac{1}{\alpha^2} \right\}$ for $c \in (0, \infty)$ by (82) and the final assertion of Proposition 3.4.

If $\frac{1}{\alpha^2 \rho^{2\alpha^t}} \leq c \leq \frac{1}{\alpha^2}$, then $t \in [\log_2(\alpha \rho^n), \log_2(\alpha \rho^{n+1})]$ for some integer $0 \leq n < \alpha^4$. Hence,

$$[t - \log_2 \rho + r, t + \log_2 \rho + R] \supseteq [\log_2(\alpha \rho^n) + r, \log_2(\alpha \rho^n) + R],$$

so (82) implies that

$$\Lambda(0, Z^c) \gtrsim 2\pi 2^{-t} \left\| \mathbf{v}_{t, \psi} \right\|_{L_2([\log_2(\alpha \rho^n) + r, \log_2(\alpha \rho^n) + R])} \gtrsim \frac{\sqrt{c}}{\alpha},$$

where the final step is the third assertion of Proposition 3.4 (and the definition of t). \hfill \Box

Lemma 3.8. $\Lambda(h_1, h_2) \lesssim d(h_1, h_2)$ for all $h_1, h_2 \in \mathbb{H}$.

Proof. By Lemma 3.6 we have $M(0, X^t) \lesssim |t|$ for any $t \in \mathbb{R}$, so

$$\Lambda(0, X^t) = \int_{-\log_2 \rho}^{\log_2 \rho} 2^a M(0, X^{2^{-a}t}) \, da \lesssim t(R - r + 2\log_2 \rho) \lesssim |t|.$$

Therefore also $\Lambda(0, Y^t) = \Lambda(0, X^t) \lesssim |t|$, by the rotation-invariance of Λ. Since Λ is left-invariant it suffices to show that $\Lambda(0, h) \lesssim d(0, h)$ for all $h \in \mathbb{H}$. Any $h \in \mathbb{H}$ can be written as $h = X^a Y^b [X^c, Y^c]$ for $a, b, c \in \mathbb{R}$ satisfying $|a|, |b|, |c| \lesssim d(0, h)$, so

$$\Lambda(0, h) \lesssim \Lambda(0, X^a) + \Lambda(0, Y^b) + 2\Lambda(0, X^c) + 2\Lambda(0, Y^c) \lesssim d(0, h). \hfill \Box$$

Proof of Theorem 3.1. Define a semi-metric Δ on \mathbb{H} by setting for every $h_1, h_2 \in \mathbb{H}$,

$$\Delta(h_1, h_2) \overset{\text{def}}{=} k\alpha \Lambda \left[\frac{1}{\alpha} (h_1), \frac{1}{\alpha} (h_2) \right] + \sqrt{\left(x(h_1) - x(h_2) \right)^2 + \left(y(h_1) - y(h_2) \right)^2}. \quad (83)$$

Observe that (\mathbb{H}, Δ) embeds isometrically into L_1 because Λ is an integral of so-called cut semimetrics (see e.g. [DL97, 4.1] for the definition). Such semimetrics embed isometrically into \mathbb{R}, so an integral of cut semimetrics embeds isometrically in L_1. By construction, Λ is both left-invariant and invariant under the rotations $\{ R_\theta : \theta \in [0, 2\pi] \}$.

Suppose that $v = (a, b, c) \in \mathbb{H}$ and let $w = (a, b, 0)$ so that $w \in \mathbb{H}$ and $v = wZ^c$. By Lemma 3.6 and the second part of Lemma 3.7, we have

$$|a| + |b| \lesssim \Delta(0, v) \leq \Delta(0, w) + \Delta(0, Z^c) \lesssim |a| + |b| + \frac{\min \{ \sqrt{|c|}, k \}}{\alpha}. $$

Recalling that $\alpha = \frac{1}{\sqrt{\log k}}$ is given in (81), this establishes (64).
To prove Theorem 3.1, it therefore remains to establish (65), i.e.,

$$1 \leq |c| \leq k^2 \implies \Delta(0, v) \geq |a| + |b| + \frac{\sqrt{|c|}}{\alpha}. \quad (84)$$

By Lemma 3.8, there is $L > 0$ such that $\Delta(h_1, h_2) \leq Ld(h_1, h_2)$ for any $h_1, h_2 \in \mathbb{H}$. By the first part of Lemma 3.7, there is $C > 0$ such that $\Delta(0, Z^c) \geq \frac{C \sqrt{|c}}{\alpha}$ for all $1 \leq c \leq k^2$. On one hand, if $\|w\| \geq \frac{C \sqrt{|c|}}{2L\alpha}$, then $\Delta(0, v) \geq \|w\| = |a| + |b| + \frac{\sqrt{|c|}}{\alpha}$. On the other hand, if $\|w\| < \frac{C \sqrt{|c|}}{2L\alpha}$, then

$$\Delta(0, v) \geq \Delta(0, Z^c) - \Delta(0, w) \geq \frac{C \sqrt{|c|}}{\alpha} - L\|w\| \geq \frac{C \sqrt{|c|}}{2\alpha} \geq |a| + |b| + \frac{\sqrt{|c|}}{\alpha}.$$

In either case, (84) holds. \qed

3.2. Constructing a bumpy intrinsic graph.

In this section, we prove Proposition 3.4. We start with a brief overview of our strategy. As sketched in Section 1.2.2, we will prove Proposition 3.4 by constructing a smooth function $\psi: V_0 \to \mathbb{R}$ whose intrinsic graph is roughly α^{-1}–far from a vertical plane at α^4 different scales. Specifically, for a suitable choice of universal constant $\rho > 1$ we will construct ψ as a sum $\psi = \sum_{i \geq 0} \beta_i$. Each of the summands $\beta_i: V_0 \to \mathbb{R}$ will itself be a sum of smooth bump functions of amplitude $\|\beta_i\|_{L_\infty(V_0)} = \alpha^{-2} \rho^{-i}$ that are supported on regions whose width (x-coordinate) is ρ^{-i} and whose height (z-coordinate) is roughly $\alpha^{-2} \rho^{-2i}$; their aspect ratio is therefore roughly

$$\frac{\rho^{-i}}{\sqrt{\alpha^{-2} \rho^{-2i}}} = \alpha.$$

These regions cover V_0 and have disjoint interiors. We will see that the bumpiness of β_i at scale $\alpha^{-2} \rho^{-2i}$ implies the desired lower bounds on $\|\psi\|_p(t)$ when t is near $\log_2(\alpha \rho^i)$.

In order to ensure that $\|\partial_\psi \psi\|_{L_2(U)}$ is bounded, we construct β_i iteratively. For $i \in \mathbb{N}$, we denote $\psi_i = \sum_{j=0}^{i-1} \beta_j$ and align the long axis of the bump functions making up β_i with the characteristic curves of Γ_{ψ_i}. This ensures that the characteristic curves of Γ_{ψ_i} cross the bumps from left to right. Since $\partial_\psi f$ measures the change in $f: V_0 \to \mathbb{R}$ along the characteristic curves of Γ_{ψ_i} and each bump has amplitude roughly $\alpha^{-2} \rho^{-i}$ and width ρ^{-i}, we have $|\partial_\psi \beta_i| \lesssim \alpha^{-2} \rho^{-i}/\rho^{-i} = \alpha^{-2}$.

This iterative procedure is one of the motivations for the definition of a foliated corona decomposition. A foliated corona decomposition of an arbitrary intrinsic graph Γ can be viewed as a sequence of partitions of V_0 into regions as above, where the pieces of the partition are aligned with the characteristic curves of Γ. One can use these partitions to reconstruct Γ as a sum of perturbations, just as we constructed ψ as a sum of bump functions. Theorem 1.18 then states that any intrinsic Lipschitz graph can be constructed by such a process.

This construction also demonstrates the importance of the aspect ratio. If the construction is modified so that the bump functions making up β_i are supported on regions of aspect ratio α_i, then $\|\partial_\psi \beta_i\|_{L_2(U)} = \alpha_i^{-2}$. If the scales of the bump functions are sufficiently separated, then $|\partial_\psi \beta_i|_{i \geq 0}$ are roughly orthogonal in $L_2(U)$ and

$$\|\partial_\psi \psi\|_{L_2(U)}^2 \approx \sum_{i \geq 0} \|\partial_\psi \beta_i\|_{L_2(U)}^2 \approx \sum_{i \geq 0} \alpha_i^{-4}.$$
For ψ to be intrinsic λ–Lipschitz, we must have $\|\partial_\psi \psi\|_{L^2(U)}^2 \lesssim_\lambda 1$, which necessitates that $\sum_{i} a_i^{-4} \lesssim_\lambda 1$. This motivates the $a(Q)^{-1}$ factor in the weighted Carleson condition (34).

We next set some notation in preparation for the proof of Proposition 3.4. If $\psi: V_0 \to \mathbb{R}$ is smooth, then the vector field

$$M_\psi \overset{\text{def}}{=} \frac{\partial}{\partial x} - \psi \frac{\partial}{\partial z}$$

corresponding to ∂_ψ is smooth (recall the definitions in Section 2.2). The flow lines of M_ψ are the characteristic curves of Γ_ψ, which foliate V_0 (recall the terminology in Section 2.3). For $s \in \mathbb{R}$, let $\Phi(\psi)_s: V_0 \to V_0$ be the flow of M_ψ, so that $\Phi(\psi)_0 = \id_{V_0}$ and such that for any $v \in V_0$, the curve $s \mapsto \Phi(\psi)_s(v)$ is a characteristic curve of Γ_ψ.

Denote $\psi_0 \equiv 0$ and let $\Gamma_0 = \Gamma_{\psi_0} = V_0$. This function and graph are periodic with respect to $\mathbb{Z} \times \{0\} \times \mathbb{Z}$ and ψ_0 is zero on ∂U. Suppose that $i > 0$ and that $\psi_i: V_0 \to \mathbb{R}$ is smooth, periodic with respect to $\mathbb{Z} \times \{0\} \times \mathbb{Z}$, and zero on ∂U. We construct $\psi_{i+1}: V_0 \to \mathbb{R}$ as follows. Let

$$G_i \overset{\text{def}}{=} \{(mp^{-i}, 0, n\alpha^{-2} \rho^{-2i}) : m, n \in \mathbb{Z}\} \subseteq V_0. \quad (85)$$

Label the points in G_i arbitrarily as $v_{i,1}, v_{i,2}, \ldots$ and note that the points $U \cap \{v_{i,1}, v_{i,2}, \ldots\}$ form a $\rho^i \times \alpha^2 \rho^{2i}$ grid in U. For each $j \in \mathbb{N}$ and $s, t \in \mathbb{R}$ define

$$R_{i,j}(s, t) \overset{\text{def}}{=} \Phi(\psi_i)_s(v_{i,j}Z^t) \in V_0. \quad (86)$$

Each $R_{i,j}$ is a diffeomorphism from \mathbb{R}^2 to V_0. For any $s_0, t_0 \in \mathbb{R}$, the image $R_{i,j}(s_0 \times t_0)$ is a vertical line and $R_{i,j}(\mathbb{R} \times t_0)$ is a characteristic curve of Γ_{ψ_i}. Using the terminology of foliated patchworks that we will introduce in Section 4, the map $R_{i,j}$ sends rectangles in V_0 to pseudoquads of Γ_{ψ_i} (regions in V_0 that are bounded by characteristic curves of Γ_{ψ_i} above and below and by vertical line segments on either side). Denote

$$Q_{i,j} \overset{\text{def}}{=} R_{i,j}([0, \rho^{-i}] \times [0, \alpha^{-2} \rho^{-2i}]) \subseteq V_0. \quad (87)$$

Thus, $Q_{i,j}$ is a pseudoquad whose lower-left corner is $v_{i,j}$. The sets $Q_{i,1}, Q_{i,2}, \ldots$ cover V_0 and have disjoint interiors. They are obtained by cutting V_0 into vertical strips of width ρ^{-i}, then cutting each vertical strip along characteristic curves separated by $\alpha^{-2} \rho^{-2i}$.

Since ψ_i is zero on ∂U, the top and bottom edges of U are characteristic curves of Γ_{ψ_i}. The bottom boundary of each $Q_{i,0}$ and the top boundary of $Q_{i,a^2 \rho^{2i-1}}$ thus lie in ∂U, and the $Q_{i,j}$’s partition U (up to overlap on boundaries). In particular, the resulting partition of V_0 is periodic with respect to $\mathbb{Z} \times \{0\} \times \mathbb{Z}$.

Note, however, that the $Q_{i,j}$’s from one step in this construction generally do not partition the $Q_{i,j}$’s from another step. One can modify the construction so that the partitions in each step are nested, as in Figure 2, but it requires some additional care.

Let $\beta: V_0 \to \mathbb{R}$ be a smooth function supported on the unit square U such that β is not identically zero and its partial derivatives of order at most 2 are all in the interval $[-1, 1]$. Fix also $\alpha, \rho \in \mathbb{N}$ with $\rho > 1$. Define $\beta_{i,j}: V_0 \to \mathbb{R}$ by setting it to be 0 on $V_0 \sim Q_{i,j}$, and for all $R_{i,j}(s, t) \in Q_{i,j}$,

$$\beta_{i,j}(R_{i,j}(s, t)) \overset{\text{def}}{=} \alpha^{-2} \rho^{-i} \beta(\rho^i s, 0, \alpha^2 \rho^{2i} t). \quad (88)$$
Thus $\beta_{i,j}$ is a bump function supported on $Q_{i,j}$. Write
\begin{equation}
\beta_i \overset{\text{def}}{=} \sum_{j=1}^{\infty} \beta_{i,j},
\end{equation}
and
\begin{equation}
\psi_{i+1} \overset{\text{def}}{=} \psi_i + \beta_i.
\end{equation}
Since $Q_{i,1}, Q_{i,2}, \ldots$ have disjoint interiors, $\|\psi_{i+1}\|_{L_{\infty}(V_0)} \leq \|\psi_i\|_{L_{\infty}(V_0)} + \alpha^{-2} \rho^{-i}$, so by induction we have
\begin{equation}
\|\psi_i\|_{L_{\infty}(V_0)} \leq \frac{\alpha^{-2}}{\rho - 1} \leq \alpha^{-2}.
\end{equation}
Since the $Q_{i,j}$’s form a periodic partition of V_0, ψ_{i+1} is periodic. Since ∂U is contained in the boundaries of the $Q_{i,j}$, we have $\psi_{i+1}|_{\partial U} = \psi_i|_{\partial U} = 0$.

Thus, by induction, for any integer $i \geq 0$, ψ_i satisfies the first and third assertions (periodicity and L_{∞} boundedness) of Proposition 3.4. We will show that if ρ is large enough (depending only on β), then $\psi = \psi_{\alpha^4}$ satisfies the remaining assertions of Proposition 3.4, namely, the stated upper bounds on $\partial \psi \psi$ and lower bounds on $\nabla^{\alpha}_{y, \psi}(a)$.

3.2.1. The horizontal perimeter of T_{ψ_i}. In this section, we prove the second assertion of Proposition 3.4 by bounding $\|\partial \psi \psi_i\|_{L_2(U)}$. This bound, combined with Proposition 2.1, gives an upper bound on $\mathcal{H}^3(\Gamma_{\psi_i}|_{U})$.

Write for simplicity $\partial_i \overset{\text{def}}{=} \partial \psi_i$, and let $D_i \overset{\text{def}}{=} \partial_{i+1} \psi_{i+1} - \partial_i \psi_i$. For $f, g \in L_2(U)$ we write
\begin{equation}
\langle f, g \rangle_U \overset{\text{def}}{=} \int_U fg \, d\mathcal{H}^3.
\end{equation}

Lemma 3.9. For every $\rho \geq 5$ and $\alpha \geq 1$,
\begin{equation}
\forall i \in \mathbb{N}, \quad \|D_i\|_{L_{\infty}(V_0)} \lesssim \alpha^{-2},
\end{equation}
and
\begin{equation}
\forall m, n \in \mathbb{N}, \quad |\langle D_m, D_n \rangle_U| \lesssim \alpha^{-4} \rho^{m-n}.
\end{equation}

Note that Lemma 3.9 implies that for every $i \in \mathbb{N}$,
\begin{equation}
\|\partial \psi \psi_i\|_{L_2(U)} \lesssim \frac{\sqrt{i}}{\alpha^2}.
\end{equation}
Thus, $\|\partial \psi \psi_i\|_{L_2(U)} \lesssim 1$ for $i \lesssim \alpha^4$, i.e., the second assertion of Proposition 3.4 holds true.

To deduce (92) from Lemma 3.9 write
\begin{equation}
\partial \psi \psi_i = \sum_{n=0}^{i-1} D_n,
\end{equation}
and expand the squares to get
\begin{equation}
\|\partial \psi \psi_i\|_{L_2(U)}^2 = \sum_{n=0}^{i-1} \|D_n\|_{L_2(U)}^2 + 2 \sum_{m=0}^{i-1} \sum_{n=m+1}^{i-1} \langle D_m, D_n \rangle \lesssim \sum_{n=0}^{i-1} \alpha^{-4} + \sum_{m=0}^{i-1} \sum_{k=1}^{\infty} \alpha^{-4} \rho^{-k} \approx i \alpha^{-4},
\end{equation}
where the penultimate step is Lemma 3.9 and the final step holds because $\rho \geq 2$.

FOLIATED CORONA DECOMPOSITIONS 47
We will prove Lemma 3.9 by bounding the terms in the right hand side of (94) separately. To this end, it will be convenient to define as follows a system of \textit{flow coordinates} on $Q_{i,j}$. Fix $i \in \mathbb{N} \cup \{0\}$ and $j \in \mathbb{N}$. Write for simplicity $(x_0,0,z_0) = v_{i,j}$, $Q = Q_{i,j}$ and $R = R_{i,j}$. Denote $R^{-1} = (s,t) : Q \to \mathbb{R}^2$ and let $(x,0,z) : Q \to \mathbb{R}^2$ be the standard coordinate system. Then s and t are functions of x and z and, conversely, x and z are functions of s and t.

Recalling the differential equation (51) for characteristic curves, we have

\[
x = x_0 + s \quad \text{and} \quad z = z_0 + t - \int_0^s \psi_i(R(\sigma,t)) \, d\sigma.
\]

Consequently,

\[
\left(\frac{\partial x}{\partial s}, \frac{\partial x}{\partial t}\right) = \left(1, -\psi_i \right) \left(1 - \int_0^s \frac{\partial \psi_i}{\partial t}(R(\sigma,t)) \, d\sigma\right),
\]

where for $f : \mathbb{R}^2 \to \mathbb{R}$, the partial derivatives $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ denote $\partial_s [f \circ R]$ and $\partial_t [f \circ R]$, respectively. In particular, it follows that $\frac{\partial s}{\partial z} = 0$ and $\frac{\partial z}{\partial t} \frac{\partial t}{\partial z} = 1$. Also,

\[
\frac{\partial}{\partial s} = \frac{\partial}{\partial x} - \psi_i \frac{\partial}{\partial z} = \partial_i,
\]

so $\frac{\partial}{\partial s}$ does not depend on j.

Observe that by the definition of $\hat{\beta}_i$, for all $s, t \in [0, \rho^{-1}] \times [0, \alpha^{-2} \rho^{-2i}]$, we have

\[
\beta_i(R_{i,j}(s,t)) = \alpha^{-2} \rho^{-i} \beta(\rho^i, s, 0, \alpha^2 \rho^{2i} t).
\]

It follows that for any $m,n \in \mathbb{N} \cup \{0\}$, we have

\[
\left\| \frac{\partial^m}{\partial s^m} \frac{\partial^n}{\partial t^n} \beta_i \right\|_{L_{\infty}(Q_{i,j})} = \alpha^{-2} \rho^{-i} \rho^{mi} (\alpha^2 \rho^{2i})^n \left\| \frac{\partial^m}{\partial x^m} \frac{\partial^n}{\partial z^n} \beta \right\|_{L_{\infty}(U)}.
\]

This is especially useful when $m + n < 2$, since in this case $\left\| \frac{\partial^m}{\partial x^m} \frac{\partial^n}{\partial z^n} \beta \right\|_{L_{\infty}(U)} \leq 1$. Thus,

\[
\left\| \frac{\partial \beta_i}{\partial t} \right\|_{L_{\infty}(Q_{i,j})} \leq \rho^i \quad \text{and} \quad \left\| \frac{\partial^2 \beta_i}{\partial t^2} \right\|_{L_{\infty}(Q_{i,j})} \leq \alpha^2 \rho^{3i}.
\]

Furthermore, since $(Q_{i,j})_{j=1}^{\infty}$ cover V_0,

\[
\|\partial_i \beta_i\|_{L_{\infty}(V_0)} = \max_{j \in \mathbb{N}} \|\partial_i \beta_i\|_{L_{\infty}(Q_{i,j})} \overset{(96)}{=} \max_{j \in \mathbb{N}} \left\| \frac{\partial \beta_i}{\partial s} \right\|_{L_{\infty}(Q_{i,j})} \overset{(97)}{=} \alpha^{-2}.
\]

The following lemma obtains bounds on vertical derivatives that will be used later.

Lemma 3.10. If $\rho > 8$, then for all $i \in \mathbb{N} \cup \{0\}$ we have

\[
\left\| \frac{\partial \psi_i}{\partial z} \right\|_{L_{\infty}(V_0)} \leq 2 \rho^{i-1},
\]

and

\[
\left\| \frac{\partial^2 \psi_i}{\partial z^2} \right\|_{L_{\infty}(V_0)} \leq 2 \alpha^2 \rho^{3i-3}.
\]
Furthermore, if (s,t) are the above flow coordinates on $Q_{i,j}$ for some $j \in \mathbb{N}$, then the following bound holds point-wise on $Q_{i,j}$.

$$\frac{3}{4} < e^{-2\rho^{-i}} \leq \frac{\partial t}{\partial z} = \left(\frac{\partial z}{\partial t} \right)^{-1} \leq e^{2\rho^{-i}} < \frac{4}{3}$$ \hfill (102)

Proof. Denote for every integer $i \geq 0$,

$$m_i \overset{\text{def}}{=} \left\| \frac{\partial \psi_i}{\partial z} \right\|_{L^\infty(V_0)} \quad \text{and} \quad \mu_i \overset{\text{def}}{=} \left\| \frac{\partial^2 \psi_i}{\partial z^2} \right\|_{L^\infty(V_0)}.$$ \hfill (103)

Thus $m_0 = \mu_0 = 0$. Fix $j \in \mathbb{N}$ and let (s,t) be the flow coordinates on $Q_{i,j}$. We will first use the above identities to deduce bounds on vertical derivatives of t in terms of m_i, μ_i, and then bootstrap these bounds to deduce the desired bounds on m_i, μ_i themselves.

By (95), the following identity holds point-wise on $Q_{i,j}$.

$$\frac{\partial}{\partial s} \frac{\partial z}{\partial t} = -\frac{\partial \psi_i}{\partial t} = -\frac{\partial \psi_i}{\partial z} \frac{\partial z}{\partial t} - \frac{\partial \psi_i}{\partial x} \frac{\partial x}{\partial t} = -\frac{\partial \psi_i}{\partial z} \frac{\partial z}{\partial t}.$$ \hfill (106)

Consequently,

$$\frac{\partial}{\partial s} \left(\log \frac{\partial z}{\partial t} \right) = -\frac{\partial \psi_i}{\partial z}.$$ \hfill (107)

Since $\frac{\partial z}{\partial t} = 1$ when $s = 0$, we integrate to get the identity

$$\frac{\partial z}{\partial t} = \exp \left(-\int_0^s \frac{\partial \psi_i}{\partial z} (R_{i,j}(\sigma, t)) \, d\sigma \right).$$ \hfill (104)

And, by differentiating (104) we also get

$$\frac{\partial^2 z}{\partial t^2} = -\frac{\partial z}{\partial t} \int_0^s \frac{\partial^2 \psi_i}{\partial z^2} (R_{i,j}(\sigma, t)) \frac{\partial z}{\partial t} (R_{i,j}(\sigma, t)) \, d\sigma.$$ \hfill (105)

For points in $Q_{i,j}$, we have $|s| \leq \rho^{-i}$, so it follows from (104) that $\left| \log \frac{\partial z}{\partial t} \right| \leq \rho^{-i} m_i$, i.e.,

$$e^{-\rho^{-i} m_i} \leq \frac{\partial z}{\partial t} \leq e^{\rho^{-i} m_i}. \hfill (106)$$

By substituting (106) into (105) we deduce that

$$\left| \frac{\partial^2 z}{\partial t^2} \right| \leq \rho^{-i} e^{2\rho^{-i} m_i} \mu_i.$$ \hfill (107)

Since $\frac{\partial z}{\partial t} \cdot \frac{\partial t}{\partial z} = 1$, it follows from (106) that

$$e^{-\rho^{-i} m_i} \leq \frac{\partial t}{\partial z} \leq e^{\rho^{-i} m_i}. \hfill (108)$$

and also

$$\left| \frac{\partial^2 t}{\partial z^2} \right| = -\left(\frac{\partial z}{\partial t} \right)^{-3} \frac{\partial^2 z}{\partial t^2} \leq \rho^{-i} e^{5\rho^{-i} m_i} \mu_i.$$ \hfill (109)

The bounds (108) and (109) on the vertical derivatives of the flow coordinate t are in terms of the bounds m_i, μ_i on the vertical derivatives of ψ_i, but they imply as follows
unconditional bounds on m_i, μ_i (hence also, by (108) and (109) once more, unconditional bounds on the vertical derivatives of t). Firstly, observe that

$$\left\| \frac{\partial \beta_i}{\partial z} \right\|_{L_{\infty}(Q_{i,j})} \leq \left\| \frac{\partial \beta_i}{\partial t} \right\|_{L_{\infty}(Q_{i,j})} \left\| \frac{\partial t}{\partial z} \right\|_{L_{\infty}(Q_{i,j})} \leq \rho \, e^{\rho^{-i} m_i}, \tag*{\text{(98)}}$$

and

$$\left\| \frac{\partial^2 \beta_i}{\partial z^2} \right\|_{L_{\infty}(Q_{i,j})} = \left\| \frac{\partial}{\partial z} \frac{\partial t}{\partial \beta_i} \right\|_{L_{\infty}(Q_{i,j})} \leq \left\| \frac{\partial}{\partial z} \frac{\partial^2 \beta_i}{\partial t \partial z} \right\|_{L_{\infty}(Q_{i,j})} + \left\| \frac{\partial}{\partial z} \frac{\partial t}{\partial z} \frac{\partial^2 \beta_i}{\partial t^2} \right\|_{L_{\infty}(Q_{i,j})} \leq \rho^{-i} e^{5\rho^{-i} m_i} \mu_i \rho^i + e^2 \rho^{-i} m_i \alpha^2 \rho^{3i} = e^{5\rho^{-i} m_i} \mu_i + e^{2 \rho^{-i} m_i} \alpha^2 \rho^{3i}.$$

Since $\{Q_{i,j}\}_{j=1}^{\infty}$ cover V_0, it follows that

$$\left\| \frac{\partial \beta_i}{\partial z} \right\|_{L_{\infty}(V_0)} \leq \rho \, e^{\rho^{-i} m_i} \quad \text{and} \quad \left\| \frac{\partial^2 \beta_i}{\partial z^2} \right\|_{L_{\infty}(V_0)} \leq e^{5\rho^{-i} m_i} \mu_i + e^{2 \rho^{-i} m_i} \alpha^2 \rho^{3i}.$$

Since by (90) we have $\frac{\partial \psi_{i+1}}{\partial z} = \frac{\partial \psi_i}{\partial z} + \frac{\partial \beta_i}{\partial z}$ and $\frac{\partial^2 \psi_{i+1}}{\partial z^2} = \frac{\partial^2 \psi_i}{\partial z^2} + \frac{\partial^2 \beta_i}{\partial z^2}$, we deduce that

$$m_{i+1} \leq m_i + \rho \, e^{\rho^{-i} m_i} \quad \text{and} \quad \mu_{i+1} \leq \mu_i + e^{5\rho^{-i} m_i} \mu_i + e^{2 \rho^{-i} m_i} \alpha^2 \rho^{3i}. \tag*{\text{(110)}}$$

By induction, we suppose that (100) and (101) hold for some integer $i \geq 0$, that is,

$$m_i \leq 2 \rho^{-i-1} \quad \text{and} \quad \mu_i \leq 2 \alpha^2 \rho^{3i-3}. \tag*{\text{(111)}}$$

Since $\rho \geq 8$, it follows that

$$m_{i+1} \leq \rho^{-i} e^{\rho^{-i} m_i} \leq \left(\frac{1}{4} + \sqrt{e} \right) \rho^i \leq 2 \rho^i. \tag*{\text{(110) \& (111)}}$$

Thus (100) holds for all integers $i \geq 0$. Likewise,

$$\mu_{i+1} \leq \left(\frac{2}{\rho^3} + \frac{2 e^{10 \rho^{-1}}}{\rho^3} + e^{4 \rho^{-1}} \right) \alpha^2 \rho^{3i} \leq \left(\frac{2}{8^3} + \frac{2 e^{1/8^3}}{8^3} + \sqrt{e} \right) \alpha^2 \rho^{3i} \leq 2 \alpha^2 \rho^{3i}, \tag*{\text{(110) \& (111)}}$$

so (101) also holds for all integers $i \geq 0$. The remaining assertion (102) follows by substituting the above bound on m_i into (108).

Next, we will use the bounds of Lemma 3.10 to bound $\{D_i\}_{i=0}^{\infty}$ and their derivatives.

Lemma 3.11. Suppose that $\rho \geq 8$. For every integer $i \geq 0$ we have

$$\left\| D_i \right\|_{L_{\infty}(V_0)} \leq 3 \alpha^{-2}, \tag*{\text{(112)}}$$

$$\left\| \frac{\partial D_i}{\partial z} \right\|_{L_{\infty}(V_0)} \leq 6 \rho^i, \tag*{\text{(113)}}$$

$$\left\| \partial_t D_i \right\|_{L_{\infty}(V_0)} = 5 \alpha^{-2} \rho^i. \tag*{\text{(114)}}$$

Proof. Fix $j \in \mathbb{N}$. Let (s, t) be the flow coordinates on $Q_{i,j}$. By (94) and (96), we have

$$D_i = -\beta_i \frac{\partial \psi_{i+1}}{\partial z} + \frac{\partial \beta_i}{\partial z}. \tag*{\text{(115)}}$$

Therefore, by Lemma 3.10 and (97) we have

$$\|D_i\|_{L_{\infty}(Q_{i,j})} \leq \alpha^{-2} \rho^{-i} \cdot 2 \rho^i + \alpha^{-2} = 3 \alpha^{-2}.$$
This proves (112) because \((Q_{i,j})_{j=1}^\infty \) cover \(V_0 \).

Next, we consider \(\frac{\partial D_i}{\partial z} \). By differentiating (115) we see that
\[
\frac{\partial D_i}{\partial z} = \frac{\partial t_i}{\partial z} \psi_i + \frac{\partial \psi_i}{\partial z} + \frac{\partial^2 \psi_i}{\partial z^2} + \frac{\partial t_i}{\partial s \partial t} \beta_i.
\]
Hence, by Lemma 3.10 and (97) we see that
\[
\left\| \frac{\partial D_i}{\partial z} \right\|_{L_\infty(Q_{i,j})} \leq \frac{4}{3} \cdot \rho^i \cdot 2 \rho^j + \alpha^{-2} \rho^{-i} \cdot 2 \alpha^2 \rho_3^j + \frac{4}{3} \cdot \rho_2^j = 6 \rho_2^j.
\]
As before, this proves (113) because \((Q_{i,j})_{j=1}^\infty \) cover \(V_0 \).

Finally, we consider \(\partial_i D_j \). Note first that for any \(m \in \mathbb{N} \),
\[
\left\| \frac{\partial (\partial_m \psi_i)}{\partial z} \right\|_{L_\infty(Q_{i,j})} \leq \sum_{n=0}^{m-1} \left\| \frac{\partial D_n}{\partial z} \right\|_{L_\infty(Q_{i,j})} \leq 6 \rho_2^{m-1} \rho^{-1} \leq 7 \rho_2^{m-2},
\]
where we used the assumption \(\rho \geq 8 \). Recalling (94) and (96), we have
\[
\partial_i D_j = \frac{\partial}{\partial s} \left(-\beta_i \frac{\partial \psi_i + 1}{\partial z} + \frac{\partial \beta_i}{\partial s} \right) - \frac{\partial \beta_i}{\partial s} \frac{\partial \psi_i + 1}{\partial z} - \frac{\partial \psi_i}{\partial s} \frac{\partial \psi_i + 1}{\partial z} \partial_2 \beta_i + \frac{\partial \psi_i}{\partial z} \frac{\partial \psi_i + 1}{\partial z}.
\]
Using Lemma 3.10 and (97), it follows that
\[
\left\| \partial_i D_j \right\|_{L_\infty(Q_{i,j})} \leq 3\alpha^{-2} \rho^i + \alpha^{-2} \rho^{-i} \left\| \frac{\partial \psi_i + 1}{\partial s} \right\|_{L_\infty(Q_{i,j})} \frac{\partial \psi_i}{\partial z} \right\|_{L_\infty(Q_{i,j})}.
\]
To bound the last term in (117), we first calculate the Lie bracket
\[
\frac{\partial}{\partial z} \frac{\partial \psi_i + 1}{\partial s} = -\frac{\partial \psi_i}{\partial z} \frac{\partial}{\partial z}.
\]
This implies that
\[
\frac{\partial \psi_i + 1}{\partial s} \frac{\partial}{\partial z} = \frac{\partial}{\partial z} \left(\frac{\partial \psi_i + 1}{\partial s} \right) + \frac{\partial \psi_i}{\partial z} \frac{\partial \psi_i + 1}{\partial z} = \frac{\partial}{\partial z} \left(\frac{\partial \psi_i + 1}{\partial s} \right) + \frac{\partial \psi_i}{\partial z} \frac{\partial \psi_i + 1}{\partial z}.
\]
Therefore, by Lemma 3.10, (97), (113), and (116), we conclude that (since \(\rho \geq 8 \)),
\[
\left\| \partial_i \psi_i + 1 \right\|_{L_\infty(Q_{i,j})} \leq 7 \rho_2^{2i-2} + \frac{4}{3} \cdot \rho_2^{2i} + 2 \rho_j - 1 \cdot 2 \rho^i \leq 2 \rho_2^j.
\]
Due to (117), this implies the final desired bound (114) of Lemma 3.11.

The first assertion (112) of Lemma 3.11 gives the first assertion of Lemma 3.9. To prove the second assertion of Lemma 3.9, we first bound the variation of \(D_m \) on each of the pseudoquads \((Q_{n,j})_{j=1}^\infty \) when \(n \geq m \).

Lemma 3.12. Fix two integers \(n \geq m \geq 0 \). For any \(j \in \mathbb{N} \) and any \(w, w' \in Q_{n,j} \), we have
\[
|D_m(w) - D_m(w')| \lesssim \alpha^{-2} \rho^{m-n}.
\]
Proof. Let \(R = R_{n,j} \) and let \((s, t), (s', t') \in [0, \rho^{-n}] \times [0, \alpha^{-2}\rho^{-2n}] \) be such that \(R(s, t) = w \) and \(R(s', t') = w' \). With respect to flow coordinates on \(Q_{n,j} \), we have

\[
\frac{\partial D_m}{\partial s} = \partial_n D_m = \partial_m D_m + (\psi_m - \psi_n) \frac{\partial D_m}{\partial z}.
\]

Since \(\| \psi_m - \psi_n \|_{L_\infty(V_0)} = \alpha^{-2}\rho^{-m} + \alpha^{-2}\rho^{-n} \leq 2\alpha^{-2}\rho^{-m} \), using Lemma 3.11 we get that

\[
\left\| \frac{\partial D_m}{\partial s} \right\|_{L_\infty(Q_{n,j})} \leq 5\alpha^{-2}\rho^m + 2\alpha^{-2}\rho^{-m} \cdot 6\rho^2m = 17\alpha^{-2}\rho^m.
\]

Hence, using Lemma 3.10 and Lemma 3.11 we conclude that

\[
|D_m(w) - D_m(w')| \leq \left\| \frac{\partial D_m}{\partial s} \right\|_{L_\infty(Q_{n,j})} |s - s'| + \left\| \frac{\partial D_m}{\partial z} \right\|_{L_\infty(Q_{n,j})} \left\| \frac{\partial z}{\partial t} \right\|_{L_\infty(Q_{n,j})} |t - t'|
\]

\[
\leq 17\alpha^{-2}\rho^{m-n} + 6\rho^2m \cdot \frac{4}{3} \alpha^{-2}\rho^{-2n} \ll \alpha^{-2}\rho^{m-n}. \quad \square
\]

Prior to proving Proposition 3.4, we record a quick consequence of Green’s theorem.

Lemma 3.13. Let \(M \subseteq V_0 \) be a region bounded by a simple piecewise-smooth closed curve and let \(f : V_0 \to \mathbb{R} \) be a smooth function. Then

\[
\int_M \nabla \cdot \left(\frac{f^2}{2} \right) \, dw = \int_{\partial M} \frac{f^2}{2} \, dr.
\]

In particular, if \(g : V_0 \to \mathbb{R} \) is another smooth function such that \(f = g \) on \(\partial M \), then

\[
\int_M \nabla \cdot \left(\frac{f^2}{2} \right) \, dw = \int_M \nabla g \cdot \nabla w.
\]

Proof. Since

\[
\nabla \times \left(\frac{f^2}{2} \right) = \frac{\partial f}{\partial x} - f \frac{\partial f}{\partial z} = \nabla f,
\]

the lemma follows from Green’s Theorem. \(\square \)

Proof of Lemma 3.9. The first assertion of Lemma 3.9 was proved in Lemma 3.11, so here we treat its second assertion, namely that \(|D_n|_{n=0}^{\infty} \) are almost-orthogonal.

Fix \(m, n \in \mathbb{N} \cup \{0\} \) with \(n \geq m \) and \(j \in \mathbb{N} \). Since \(\psi_{n+1} - \psi_n = \beta_n = 0 \) on \(\partial Q_{n,j} \), Lemma 3.13 implies that \(\int_{Q_{n,j}} D_n(w) \, dw = 0 \). So, fixing an arbitrary basepoint \(w_0 \in Q \), we have

\[
\left| \int_{Q_{n,j}} D_m(w) D_n(w) \, dw \right| = \int_{Q_{n,j}} |D_m(w)| D_n(w) \, dw \leq \alpha^{-4} \rho^{m-n} H^3(Q_{n,j}),
\]

where in the final step we used (112) and Lemma 3.12. Hence, \(|\langle D_m, D_n \rangle_U| \) is at most

\[
\sum_{j \in \mathbb{N}} \left| \int_{Q_{n,j}} D_m(w) D_n(w) \, dw \right| \leq \sum_{j \in \mathbb{N}} H^3(Q_{n,j}) \alpha^{-4} \rho^{m-n} \approx \alpha^{-4} \rho^{m-n}. \quad \square
\]
3.2.2. The vertical perimeter of Γ_{ψ}. Here we will complete the proof of Proposition 3.4.

Define $\phi: V_0 \to \mathbb{R}$ to be the A–periodic extension of $\beta|_U$, i.e., $\phi(x,0,z) \overset{\text{def}}{=} \beta([x],0,\{z\})$ for $(x,0,z) \in V_0$, where $\{a\} = a - \lfloor a \rfloor$ is the fractional part of $a \in \mathbb{R}$. Because the function

$$\nabla^p_{U,\phi}: \mathbb{R} \to [0,\infty)$$

is continuous and not identically zero, there exist $\eta, R, r \in \mathbb{R}$ with $r < R$ such that

$$\forall a \in I \overset{\text{def}}{=} [r,R], \quad \nabla^p_{U,\phi}(a) > \eta > 0. \quad (118)$$

We will show that if $\rho \in \mathbb{N}$ is large enough (depending only on the initial choice of bump function β), then the conclusion of Proposition 3.4 holds for the above interval I. To this end, we will first establish the following point-wise bound on the vertical perimeter of each of the perturbations $\{\beta_i\}_{i=0}^{\infty}$ in terms of the vertical perimeter of ϕ.

Lemma 3.14. Suppose that $\rho > 5$. For every $i \in \mathbb{N} \cup \{0\}$ and $a \in \mathbb{R}$ we have

$$\nabla^p_{U,\beta_i}(a) \geq \frac{1}{2a} \nabla^p_{U,\phi}(a - \log_2(\alpha \rho^i)) - \frac{3\rho^{i-1}}{2a}. \quad (119)$$

In particular, if $\rho \geq \frac{12}{2^7 \eta}$ and $a \in I + \log_2(\alpha \rho^i)$, then

$$\nabla^p_{U,\beta_i}(a) \geq \frac{\eta}{2a} - \frac{3\rho^{i-1}}{2^{r+\log_2(\alpha \rho^i)}} \geq \frac{\eta}{4\alpha}. \quad (120)$$

Proof of Proposition 3.4 assuming Lemma 3.14. Fix an integer $\rho \geq \max\{12/(2^r \eta), 8\}$ that will be specified later and let $\psi = \psi_{a\rho}$. The first three assertions of Proposition 3.4 were established in the construction of ψ and in the discussion after Lemma 3.9. We will establish the last three by showing that

$$\forall a \in \mathbb{R}, \quad \nabla^p_{U,\psi}(a) \lesssim \min\left\{\frac{1}{a}, \frac{2^a}{\alpha^2} \right\}, \quad (119)$$

and

$$\forall a \in \bigcup_{n=0}^{4} (I + \log_2(\alpha \rho^n)), \quad \nabla^p_{U,\psi}(a) \gtrsim \frac{1}{\alpha}. \quad (120)$$

For every $i \in \mathbb{N} \cup \{0\}$, by the definition of β_i and by (98) and (102) we have

$$\|\beta_i\|_{L^\infty(V_0)} \leq a^{-2}\rho^{-i} \quad \text{and} \quad \left\|\frac{\partial \beta_i}{\partial z}\right\|_{L^\infty(V_0)} \leq 2\rho^i.$$

Due to Lemma 2.13, for every $a \in \mathbb{R}$ we have

$$\nabla^p_{U,\beta_i}(a) \leq \min\left\{2^{a+1}a^{-2}\rho^{-i}, 2^{-a+1}\rho^i \right\} = 2a^{-1}2^{-\lfloor a-\log_2(\alpha \rho^i)\rfloor}. \quad (121)$$

Consequently,

$$\nabla^p_{U,\psi_{a\rho}}(a) \equiv \nabla^p_{U,\sum_{i=0}^{4} \beta_i}(a) \leq \sum_{i=0}^{4} \nabla^p_{U,\beta_i}(a) \overset{(121)}{\leq} \sum_{i=0}^{\infty} 2a^{-1}2^{-\lfloor a-\log_2(\alpha \rho^i)\rfloor} \lesssim a^{-1}. \quad (121)$$

This proves (119), because by Lemma 2.13 we also have

$$\nabla^p_{U,\psi_{a\rho}}(a) \lesssim 2^a \|\psi_{a\rho}\|_{L^\infty(V_0)} \overset{(91)}{\leq} 2^a \alpha^{-2}. \quad (121)$$
It remains to prove (120), as we saw in (80) that this implies the remaining assertions of Proposition 3.4. Fix \(n \in \{0, \ldots, a^4 - 1\} \) and \(a \in I + \log_2(\alpha \rho^a) \), so that \(\nabla^P_{U, \beta_i}(a) > \eta/(4\alpha) \) by Lemma 3.14. Let \(s = \max\{|r|, |R|\} \), so that \(|a - \log_2(\alpha \rho^a)| \leq s \). It follows from (121) that

\[
\nabla^P_{U, \beta_i}(a) \leq 2a^{-1}2^{-|\log_2(\alpha \rho^a) - \log_2(\alpha \rho^a)| + |a - \log_2(\alpha \rho^a)|} \leq 2a^{-1}\rho^{-|n-i|}2^s
\]

(122)

for any \(i \in \mathbb{N} \cup \{0\} \). Hence, by combining Lemma 3.14 and (122) we conclude that

\[
\nabla^P_{U, w, \beta_i}(a) = \nabla^P_{U, \Sigma_{i=0}^a \beta_i}(a) \geq \nabla^P_{U, \beta_i}(a) - \sum_{i=0}^{n-1} \nabla^P_{U, \beta_i}(a) - \sum_{i=n+1}^{a^4} \nabla^P_{U, \beta_i}(a)
\]

\[
\geq \frac{\eta}{4\alpha} - 2 \sum_{k=1}^{\infty} 2a^{-1} \rho^{-k} 2^s \geq \frac{\eta}{4\alpha} - \frac{5}{\alpha} 2^s.
\]

Choosing \(\rho = \left\lceil \max\{0, \frac{12}{7\eta}, \frac{40}{9} \} \right\rceil \), this completes the proof of Proposition 3.4. \(\square \)

Proof of Lemma 3.14. We will start by introducing some (convenient, though ad hoc) notation and making some preliminary observations. For \(i \in \mathbb{N} \cup \{0\} \) define a (discontinuous in the first variable) map \(\mathcal{S}_i : \mathbb{R}^2 \to \mathbb{R}^2 \) as follows. If \(s \in \mathbb{R} \), then let \(m \in \mathbb{Z} \) be the unique integer such that \(s \in [m \rho^{-i}, (m + 1) \rho^{-i}) \), and set for every \(t \in \mathbb{R} \),

\[
\mathcal{S}_i(s, t) \text{ def } \Phi(s, t)_{s - m \rho^{-i}, (m \rho^{-i}, 0, t),}
\]

where we recall the notation \(\Phi(\cdot, \cdot) \) for characteristic curves that we set at the start of Section 3.2. Note that by design \(x(\mathcal{S}_i(s, t)) = s \). Observe also that the lines \(\mathbb{R} \times \{0\} \times \{0\} \) and \(\mathbb{R} \times \{0\} \times \{1\} \) are characteristic curves for \(\Gamma_{\psi_i} \), since \(\psi_i \) vanishes on those lines. Hence \(\mathcal{S}_i(s, 0) = (s, 0) \) and \(\mathcal{S}_i(s, 1) = (s, 1) \) for all \(s \in [0, 1] \). As \(x(\mathcal{S}(s, t)) = s \) for all \(t \in \mathbb{R} \), by the continuity of \(\mathcal{S}_i \) in the second variable, this implies that \(\mathcal{S}_i(s, [0, 1]) = \{s\} \times [0] \times [0, 1] \). So,

\[
\mathcal{S}_i([0, 1]^2) = U.
\]

(123)

The mapping \(\mathcal{S}_i \) is related as follows to the mappings \(R_{i,1}, R_{i,2}, \ldots \) that are given in (86). Suppose as above that \(s \in [m \rho^{-i}, (m + 1) \rho^{-i}) \) for some \(m \in \mathbb{Z} \), and fix \(t \in \mathbb{R} \) and \(n \in \mathbb{Z} \). Recalling that \(v_{i,1}, v_{i,2}, \ldots \) is an enumeration of the points in the grid \(G_i \) that is given in (85), let \(j \in \mathbb{N} \) be the index for which \(v_{i,j} = (m \rho^{-i}, 0, n \alpha^{-2} \rho^{-2i}) \). Then

\[
\mathcal{S}_i(s, t) = R_{i,j}(s - m \rho^{-i}, t - n \alpha^{-2} \rho^{-2i}).
\]

Recalling the definition (87) of the pseudo-quad \(Q_{i,j} \), this implies that

\[
\mathcal{S}_i([m \rho^{-i}, (m + 1) \rho^{-i}) \times [n \alpha^{-2} \rho^{-2i}, (n + 1) \alpha^{-2} \rho^{-2i}]) = Q_{i,j}.
\]

Also, recalling the definitions (88) and (89), it follows that if we define \(\phi_i : V_0 \to \mathbb{R} \) by

\[
\forall (s, t) \in \mathbb{R}^2, \quad \phi_i(s, 0, t) \text{ def } \alpha^{-2} \rho^{-i} \phi(\rho^s, 0, \alpha^2 \rho^{2i} t),
\]

(124)

then

\[
\forall (s, t) \in \mathbb{R}^2, \quad \beta_i(\mathcal{S}_i(s, t)) = \phi_i(s, 0, t).
\]

(125)

Fix \(i \in \mathbb{N} \cup \{0\} \), \(a \in \mathbb{R} \) and \((x, 0, z) \in U\). Let \(s = s(x, z), t = t(x, z), t' = t'(x, z, a) \in \mathbb{R} \) satisfy

\[
\mathcal{S}_i(s, t) = (x, 0, z) \quad \text{ and } \quad \mathcal{S}_i(s, t') = (x, 0, z - 2^{-2a}).
\]

(126)
Due to (102) we have $e^{-2\rho^{-1}2^{-2a}} \leq t - t' \leq e^{2\rho^{-1}2^{-2a}}$. Hence,
\[
|t' - (t - 2^{-2a})| \leq (e^{2\rho^{-1}} - 1)2^{-2a} \leq 3\rho^{-1}2^{-2a}.
\]
(127)

Now,
\[
|\beta_{i}(x, 0, z) - \beta_{i}(x, 0, z - 2^{-2a})|
\]
\[
\overset{(125)}{=} |\phi_{i}(s, 0, t) - \phi_{i}(s, 0, t - 2^{-2a}) - \phi_{i}(s, 0, t') + \phi_{i}(s, 0, t - 2^{-2a})|
\]
\[
\overset{(124)}{\geq} |\phi_{i}(s, 0, t) - \phi_{i}(s, 0, t - 2^{-2a})| - |\phi_{i}(s, 0, t') - \phi_{i}(s, 0, t - 2^{-2a})|
\]
\[
\overset{(127)}{\geq} |\phi_{i}(s, 0, t) - \phi_{i}(s, 0, t - 2^{-2a})| - 3\rho^{-1}2^{-2a}.
\]

In other words, we established the following point-wise estimate for the vertical difference quotients that occur in the definition (63) of (parameterized) vertical perimeter.
\[
\frac{|\beta_{i}(x, 0, z) - \beta_{i}(x, 0, z - 2^{-2a})|}{2^{-a}} \leq \frac{|\phi_{i}(s, 0, t) - \phi_{i}(s, 0, t - 2^{-2a})|}{2^{-a}} - \frac{3\rho^{-1}}{2a}.
\]

By integrating this inequality over U we get
\[
\nu^{p}_{U, \beta_{i}}(a) \overset{(63)}{=} \int_{0}^{1} \int_{0}^{1} \frac{|\phi_{i}(s, 0, t) - \phi_{i}(s, 0, t - 2^{-2a})|}{2^{-a}} dx \, dz - \frac{3\rho^{-1}}{2a}
\]
\[
\overset{(125)}{=} \int_{\Gamma_{i}^{-1}(U)} \frac{|\phi_{i}(s, 0, t) - \phi_{i}(s, 0, t - 2^{-2a})|}{2^{-a}} \left| \frac{\partial z}{\partial t}(s, t) \right| ds \, dt - \frac{3\rho^{-1}}{2a}
\]
\[
\overset{(102)}{\geq} \frac{1}{2} \int_{0}^{1} \int_{0}^{1} \frac{|\phi_{i}(s, 0, t) - \phi_{i}(s, 0, t - 2^{-2a})|}{2^{-a}} ds \, dt - \frac{3\rho^{-1}}{2a}.
\]
(128)

It therefore remains to note the following identity.
\[
\int_{0}^{1} \int_{0}^{1} |\phi_{i}(s, 0, t) - \phi_{i}(s, 0, t - 2^{-2a})| \frac{ds \, dt}{2^{-a}}
\]
\[
= \int_{0}^{1} \int_{0}^{1} |\phi_{i}(-\rho^{-1}2^{-2a}) - \phi_{i}(0, \sigma) - \phi(\sigma, 0, \tau - \alpha^2 \rho^{-1}2^{-2a})| \frac{d\sigma \, dr}{2^{-a}}
\]
(129)
\[
= \frac{1}{a} \int_{U} |\phi(v) - \phi(v Z^{-\rho^{-1}2^{-2a}})| \frac{dv}{\rho^2 a}
\]
(130)
\[
= \frac{1}{a} \nu^{p}_{U, \phi}(a - \log_{2}(a \rho^i)),
\]
(131)

where (129) uses the definition (124) and the change of variables $(s, t) = (\rho^{-1} \sigma, \alpha^{-2} \rho^{-1} \tau)$, (130) holds by the periodicity of ϕ, and (131) is a restatement of the definition (63).

4. PSEUDOQUADS AND FOLIATED PATCHWORKS

Let Γ be the intrinsic Lipschitz graph of $f : V_{0} \to \mathbb{R}$. A pseudoquad Q is a region of V_{0} bounded by two vertical lines and two characteristic curves of Γ, i.e., a region of the form
\[
Q = \{(x, 0, z) \in V_{0} : x \in I \text{ and } g_{1}(x) \leq z \leq g_{2}(x)\},
\]
where $I = [a, b] \subseteq \mathbb{R}$ is a closed, bounded interval and $g_1, g_2 : \mathbb{R} \rightarrow \mathbb{R}$ are functions whose graphs are characteristic. We say that I is the base of Q and we call g_1 and g_2 the lower and upper bounds of Q, respectively. The width of the pseudoquad Q is just the length $\ell(I) = b - a$ of its base $I = [a, b]$. But, the height of Q is not always well-behaved, since characteristic curves can join and split. We therefore introduce rectilinear pseudoquads, which approximate projections of rectangles in vertical planes. If Γ is a vertical plane, its characteristic curves are a family of parallel parabolas; conversely, any pseudoquad bounded by two parallel parabolas is the projection of a rectangle in \mathbb{H} (a loop composed of two parallel horizontal lines and two vertical lines) to V_0. Thus, if

$$R = \{(x, 0, z) \in V_0 : x \in I \text{ and } h_1(x) \leq z \leq h_2(x)\}$$

where $h_1, h_2 : \mathbb{R} \rightarrow \mathbb{R}$ are quadratic functions that differ by a constant, then we call R a parabolic rectangle with width

$$\delta_x(R) \overset{\text{def}}{=} \ell(I)$$

and height

$$\delta_z(R) \overset{\text{def}}{=} h_2 - h_1.$$

For $r > 0$ and an interval I, let rI be the scaling of I around its center by a factor of r, i.e.,

$$rI \overset{\text{def}}{=} \left[\frac{a + b}{2} - \frac{r\ell(I)}{2}, \frac{a + b}{2} + \frac{r\ell(I)}{2}\right].$$

For $\rho > 0$, let

$$\rho R = \{(x, 0, z) \in V_0 : x \in \rho I \text{ and } z \in \rho^2[h_1(x), h_2(x)]\}$$

$$= \{(x, 0, z) \in V_0 : x \in \rho I \text{ and } \left|z - \frac{h_1(x) + h_2(x)}{2}\right| \leq \rho^2\delta_z(R)\}.$$ \hfill (132)

For $0 < \mu \leq \frac{1}{32}$, a μ-rectilinear pseudoquad is a pair (Q, R), where Q is a pseudoquad and R is a parabolic rectangle with the same base I as Q such that, if g_1 and g_2 (respectively h_1 and h_2) are the lower and upper bounds of Q (respectively R), then

$$\max\{|g_1 - h_1|_{L_\infty(I)}, |g_2 - h_2|_{L_\infty(I)}\} \leq \mu\delta_z(R).$$ \hfill (133)

We will frequently refer to a μ-rectilinear pseudoquad (Q, R) as simply Q, but we define its width and height to be the width and height of the associated parabolic rectangle, i.e., $\delta_x(Q) = \delta_x(R)$ and $\delta_z(Q) = \delta_z(R)$. Likewise, for $\rho \geq 1$, we define $\rho Q = \rho R$. Note that Q need not be contained in $1Q = R$, but the following lemma holds.

Lemma 4.1. Let Q be a μ-rectilinear pseudoquad. Then $Q \subseteq 2Q$. In fact, for every $t \in \mathbb{R}$,

$$QZ^{t\delta_z(Q)} \subseteq \sqrt{2|t| + 2} \cdot Q.$$

Proof. Let R, g_1, g_2, h_1, h_2 be as above. Let $m_g = \frac{g_1 + g_2}{2}$ and $m_h = \frac{h_1 + h_2}{2}$. Fix $(x, 0, z) \in Q$, so that $g_1(x) \leq z \leq g_2(x)$. For $I \in (1, 2)$, we have

$$|m_h(x) - g_i(x)| \leq |m_h(x) - h_j(x)| + |h_i(x) - g_i(x)| \leq \frac{\delta_z(Q)}{2} + \mu\delta_z(Q) \leq \delta_z(Q),$$

so

$$|m_h(x) - (z + t\delta_z(Q))| \leq (1 + |t|)\delta_z(Q).$$

Therefore, $(x, 0, z + \delta_z(Q)) \in \sqrt{2|t| + 2} \cdot Q$. \qed
Continuing with the above notation, define the aspect ratio of \(Q \) to be
\[
\alpha(Q) \overset{\text{def}}{=} \frac{\delta_x(Q)}{\sqrt{\delta_z(Q)}}. \tag{134}
\]
We use a square root here because the distance in the Heisenberg metric between the top and bottom of \(Q \) is proportional to \(\sqrt{\delta_z(Q)} \); thus this aspect ratio is invariant under the Heisenberg scaling. Let \(|Q| \) be the Lebesgue measure of \(Q \) as a subset of \(V_0 \equiv \mathbb{R}^2 \).

The following lemma is a direct consequence of Lemma 2.9.

Lemma 4.2. Let \(a, b \in \mathbb{R} \sim \{0\} \) and let \(g = q \circ \rho_h \circ s_{a,b} : \mathbb{H} \to \mathbb{H} \) be a composition of a shear map \(q \), a left-translation by \(h \in \mathbb{H} \), and a stretch map \(s_{a,b} \). Let \(\hat{g} : V_0 \to V_0 \) be the map induced on \(V_0 \), i.e., \(\hat{g}(x) = \Pi(g(x)) \) for all \(x \in V_0 \). Suppose that \((Q,R)\) is a \(\mu\)-rectilinear pseudoquad for an intrinsic graph \(\Gamma \). Then \((\hat{Q}, \hat{R}) = (\hat{g}(Q), \hat{g}(R)) \) is a \(\mu\)-rectilinear pseudoquad for the intrinsic graph \(\hat{\Gamma} \), with the following parameters.

\[
\delta_x(\hat{Q}) = |a|\delta_x(Q), \quad \delta_z(\hat{Q}) = |ab|\delta_z(Q), \quad |\hat{Q}| = |a^2b| \cdot |Q|, \quad \alpha(\hat{Q}) = \sqrt{|a|/|b|} \cdot \alpha(Q).
\]

Remark 4.3. For any \(\mu\)-rectilinear pseudoquad \((Q,R)\), there is a transformation of \(\mathbb{H} \) that sends \(R \) to a square in \(V_0 \) and \(Q \) to an approximation of the square. That is, if \(a, b, c, d, x_0, w \in \mathbb{R} \) are such that
\[
R = \{(x,0,z) : |x - x_0| \leq w \land |ax^2 + bx + c - z| \leq d\},
\]
and \(\hat{h} = \Pi \circ h \), then, by the remarks after Lemma 2.9, \(\hat{h}(R) = [-1,1] \times \{0\} \times [-1,1] \).

By Lemma 4.2, \((\hat{h}(Q), \hat{h}(R))\) is \(\mu\)-rectilinear, so if \(\hat{g}_1 \) and \(\hat{g}_2 \) are the lower and upper bounds of \(\hat{h}(Q) \), then \(|\hat{g}_1(t) + 1| < 2\mu \) and \(|\hat{g}_2(t) - 1| < 2\mu \) for all \(t \in [-4,4] \).

We will prove Theorem 1.18 by constructing a collection of nested partitions of \(V_0 \) into pseudoquads. We will describe these partitions by associating a rectilinear pseudoquad to each vertex of a rooted tree. Let \((T, v_0)\) be a rooted tree with vertex set \(\mathcal{V}(T) \). For \(v \in \mathcal{V}(T) \), we let \(\mathcal{C}(v) = \mathcal{C}^1(v) \) denote the set of children of \(v \) and inductively for \(n \geq 2 \) let
\[
\mathcal{C}^n(v) = \bigcup_{w \in \mathcal{C}^{n-1}(v)} \mathcal{C}(w)
\]
be the set of \(n \)th generation descendants of \(v \). Let \(\mathcal{D}(v) = \bigcup_{n=0}^{\infty} \mathcal{C}^n(v) \) where \(\mathcal{C}^0(v) = \{v\} \). For \(v \in \mathcal{V}(T) \sim \{v_0\} \), there is a unique parent vertex \(w \) such that \(v \in \mathcal{C}(w) \), and we denote this vertex by \(\mathcal{D}(v) \). If \(w \in \mathcal{D}(v) \), we say that \(w \) is a descendant of \(v \) or that \(v \) is an ancestor of \(w \) and write \(w \leq v \). This is a partial order with maximal element \(v_0 \).

Definition 4.4 (rectilinear foliated patchwork). If \(Q \) is a \(\mu\)-rectilinear pseudoquad, a \(\mu\)-rectilinear foliated patchwork for \(Q \) is a complete rooted binary tree \((\Delta, v_0)\) (i.e., every vertex has exactly two children) such that every vertex \(v \in \mathcal{V}(\Delta) \) is associated to a \(\mu\)-rectilinear pseudoquad \((Q_v, R_v)\) with \(Q_{v_0} = Q \). Each vertex \(v \in \mathcal{V}(\Delta) \) is either vertically cut or horizontally cut in the following sense.

Let \(w \) and \(w' \) be the children of \(v \), let \(I = [a,b] \) be the base of \(Q_v \), and let \(g_1 \) and \(g_2 \) (respectively \(h_1 \) and \(h_2 \)) be the lower and upper bounds of \(Q_v \) (respectively \(R_v \)).
(1) If \(v \) is vertically cut, then \(Q_w \) and \(Q_{w'} \) are the left and right halves of \(Q_v \), separated by the vertical line \(x = \frac{a+b}{2} \). That is,
\[
Q_w = \left\{ (x,0,z) \in V_0 : a \leq x \leq \frac{a+b}{2} \text{ and } g_1(x) \leq z \leq g_2(x) \right\},
\]
and
\[
Q_{w'} = \left\{ (x,0,z) \in V_0 : \frac{a+b}{2} \leq x \leq b \text{ and } g_1(x) \leq z \leq g_2(x) \right\}.
\]

Similarly,
\[
R_w = \left(\left[a, \frac{a+b}{2} \right] \times \{0\} \times \mathbb{R} \right) \cap R_v \quad \text{and} \quad R_{w'} = \left(\left[\frac{a+b}{2}, b \right] \times \{0\} \times \mathbb{R} \right) \cap R_v.
\]

We therefore have \(\delta_x(Q_w) = \delta_x(Q_{w'}) = \frac{\delta_x(Q_v)}{2} \) and \(\delta_z(Q_w) = \delta_z(Q_{w'}) = \delta_z(Q_v) \).

(2) If \(v \) is horizontally cut, then \(Q_w \) and \(Q_{w'} \) are the top and bottom halves of \(Q_v \), separated by a characteristic curve. That is, there is a function \(c : \mathbb{R} \to \mathbb{R} \) whose graph is characteristic, a quadratic function \(k : \mathbb{R} \to \mathbb{R} \), and \(d \in (0,\infty) \) such that
\[
Q_w = \left\{ (x,0,z) \in V_0 : a \leq x \leq b \text{ and } g_1(x) \leq z \leq c(x) \right\},
\]
\[
Q_{w'} = \left\{ (x,0,z) \in V_0 : a \leq x \leq b \text{ and } c(x) \leq z \leq g_2(x) \right\},
\]
\[
R_w = \left\{ (x,0,z) \in V_0 : a \leq x \leq b \text{ and } k(x) - d \leq z \leq k(x) \right\},
\]
\[
R_{w'} = \left\{ (x,0,z) \in V_0 : a \leq x \leq b \text{ and } k(x) \leq z \leq k(x) + d \right\}.
\]

Then \(\delta_x(Q_w) = \delta_x(Q_{w'}) = \delta_x(Q_v) \) and \(\delta_z(Q_w) = \delta_z(Q_{w'}) = d \). Furthermore, \(Q_w \) and \(Q_{w'} \) are assumed to be \(\mu \)-rectilinear; thus
\[
\max \left\{ \|k-d\|_{L_\infty(4)}, \|k-c\|_{L_\infty(4)}, \|(k+d) - g_2\|_{L_\infty(4)} \right\} \leq \mu d. \quad (135)
\]

In either case, \(Q_v = Q_w \cup Q_{w'} \) and \(Q_w, Q_{w'} \) have disjoint interiors. Let \(\overline{V}_v(\Delta) \subseteq V(\Delta) \) be the set of vertically cut vertices and let \(\overline{V}_h(\Delta) \subseteq V(\Delta) \) be the set of horizontally cut vertices.

It follows from the above definition that \(v \not\equiv w \) if and only if \(Q_v \not\subseteq Q_w \). Furthermore, if the interior of \(Q_v \) intersects \(Q_w \), then either \(v \equiv w \) or \(w \equiv v \).

Lemma 4.5. For every \(\varepsilon > 0 \) there exists \(0 < \mu = \mu(\varepsilon) \leq \frac{1}{32} \) such that if \(Q \) is a \(\mu \)-rectilinear pseudoquad, then
\[
(1-\varepsilon)\delta_x(Q)\delta_z(Q) \leq |Q| \leq (1+\varepsilon)\delta_x(Q)\delta_z(Q). \quad (136)
\]

If \(Q \) is horizontally or vertically cut as in Definition 4.4 and \(Q' \) is a child of \(Q \), then
\[
\left(\frac{1}{2} - \varepsilon \right) |Q| \leq |Q'| \leq \left(\frac{1}{2} + \varepsilon \right) |Q|. \quad (137)
\]

If \(Q \) is vertically cut, then \(\delta_x(Q') = \frac{\delta_z(Q)}{2}, \delta_z(Q') = \delta_z(Q), \) and \(\alpha(Q') = \frac{\alpha(Q)}{2} \). If \(Q \) is horizontally cut, then \(\delta_x(Q') = \delta_x(Q), \) and
\[
\left(\frac{1}{2} - 2\mu \right) \delta_z(Q) \leq \delta_z(Q') \leq \left(\frac{1}{2} + 2\mu \right) \delta_z(Q). \quad (138)
\]

Finally,
\[
\left(\sqrt{2} - \varepsilon \right) \alpha(Q) \leq \alpha(Q') \leq \left(\sqrt{2} + \varepsilon \right) \alpha(Q). \quad (139)
\]
When $\varepsilon = \frac{1}{4}$ we can take here $\mu = \frac{1}{32}$.

Proof. Suppose that $\mu \leq \frac{\varepsilon}{5}$. Let (Q, R) be a μ–rectilinear pseudoquad. Suppose that g_1 and g_2 (respectively h_1 and h_2) be the lower and upper bounds of Q (respectively R) and let I be the base of Q. Then $|R| = \delta_x(Q)\delta_z(Q)$ and

$$\|Q| - \delta_x(Q)\delta_z(Q)| = |Q| - |R| \leq \int_I g_1 - h_1| \, dx + \int_I |g_2 - h_2| \, dx \leq 2\mu\delta_x(Q)\delta_z(Q),$$

so (136) is satisfied.

Let Q' be a child of Q. If Q is vertically cut, then the formulas for $\delta_x(Q')$, $\delta_z(Q')$, and $\alpha(Q')$ follow from Definition 4.4. As Q' is μ–rectilinear, (140) implies that

$$\left|\frac{1}{2} - \frac{|Q|}{2}\right| \leq |Q' - \delta_x(Q')\delta_z(Q')| + \frac{1}{2}\delta_x(Q)\delta_z(Q) - |Q| \leq 2\mu\delta_x(Q)\delta_z(Q) \leq 4\mu|Q|,$$

so Q satisfies (137) if Q is vertically cut.

If Q is horizontally cut, then $\delta_x(Q') = \delta_x(Q)$ by Definition 4.4. Let $c, k, d = \delta_z(Q')$ be as in Definition 4.4 and let $t \in I$. As $\|g_i - h_i\|_{L_\infty(I)} \leq \mu\delta_z(Q)$ for $i \in \{1, 2\}$ and $\delta_z(Q) = h_2 - h_1$,

$$(1 - 2\mu)\delta_z(Q) \leq g_2(t) - g_1(t) \leq (1 + 2\mu)\delta_z(Q).$$

By (135),

$$(1 - \mu) \cdot 2d \leq g_2(t) - g_1(t) \leq (1 + \mu) \cdot 2d.$$

Then $d \leq \frac{1 + 2\mu}{2(2\mu)}\delta_z(Q) < \delta_z(Q)$, so

$$|2d - \delta_z(Q)| \leq |2d - (g_2(t) - g_1(t))| + |(g_2(t) - g_1(t)) - \delta_z(Q)| \leq 4\mu\delta_z(Q),$$

proving (138). This directly implies Equation (139), and the horizontally cut case of (137) follows from the above calculation and (140).

The following two lemmas will be helpful later.

Lemma 4.6. For any quadratic function $q : \mathbb{R} \to \mathbb{R}$ and any $t \in \mathbb{R}$,

$$|q(t)| \leq (1 + t + 2t^2)\|q\|_{L_\infty([-1, 1])}.$$

Proof. One only needs to note that, since q is quadratic, for any $t \in \mathbb{R}$ we have

$$q(t) = q(0) + t \cdot \frac{q(1) - q(-1)}{2} + t^2 \cdot \frac{q(-1) - 2q(0) + q(1)}{2}.$$

Lemma 4.7. For every $r \geq 2$ there is $\mu = \mu(r) > 0$ such that if Δ is a μ–rectilinear foliated patchwork and $v, w \in V(\Delta)$ satisfy $w \leq v$, then $rQ_w \subseteq rQ_v$.

Proof. It suffices to consider the case that $w \in \mathcal{C}(v)$. If v is vertically cut, this holds vacuously, so suppose that v is horizontally cut. Let g_1 and g_2 (respectively h_1 and h_2) be the lower and upper bounds of Q_v (respectively R_v) and let I be their base. Denote $m_v = (h_1 + h_2)/2$. Then R_v is bounded by $m_v \pm r^2\delta_z(Q_v)/2$.

Let $c, k, d = \delta_z(Q_w)$ be as in Definition 4.4. By Lemma 4.5, we have $d \leq \frac{3}{4}\delta_z(Q_v)$. Then

$$\|(k - d) - h_1\|_{L_\infty(I)} \leq \|k - d - g_1\|_{L_\infty(I)} + \|g_1 - h_1\|_{L_\infty(I)} \leq \mu d + \mu\delta_z(Q_v) \leq 2\mu\delta_z(Q_v).$$
Likewise, \(\|k + d\|_{L^\infty(A)} - h_2 \|_{L^\infty(A)} \leq 2\mu \delta_z(Q_v) \). By Lemma 4.6, since \(k, h_1, h_2 \) are quadratic functions, if \(\mu \) is at most a sufficiently small universal constant multiple of \(r^{-2} \), then
\[
\max \|k - d\|_{L^\infty(A)} \leq \frac{\delta_z(Q_v)}{16}.
\]
By the triangle inequality,
\[
\|k - m_w\|_{L^\infty(A)} \leq \frac{\delta_z(Q_v)}{16}.
\]
Suppose that \(Q_w \) is the lower half of \(Q_v \), so that \(Q_w \) is bounded by \(g_1 \) and \(c \) and \(R_w \) is bounded by \(k - d \) and \(k \). Let \(m_w = k - \frac{d}{2} \) so that \(rQ_w \) is bounded by \(m_w \pm \frac{r^2 d}{2} \). For \(x \in rI \),
\[
|m_v(x) - m_w(x)| \leq \frac{\delta_z(Q_v)}{16} + \frac{d}{2} \leq \frac{7}{16} \delta_z(Q_v) \leq \frac{r^2 \delta_z(Q_v)}{2} - \frac{r^2 d}{2},
\]
so
\[
\left| m_w(x) - \frac{r^2 d}{2}, m_w(x) + \frac{r^2 d}{2} \right| \leq \left| m_v(x) - \frac{r^2 \delta_z(Q_v)}{2}, m_v(x) + \frac{r^2 \delta_z(Q_v)}{2} \right|.
\]
That is, \(rQ_w \subseteq rQ_v \). The case that \(Q_w \) is the upper half of \(Q_v \) is treated analogously.

Let \(\Delta \) be a \(\mu \)–rectilinear foliated patchwork for a \(\mu \)–rectilinear pseudoquad \(Q \). For every subset of vertices \(S \subseteq V(\Delta) \), define the weight of \(S \) to be
\[
W(S) \overset{\text{def}}{=} \sum_{w \in S} \frac{|Q_w|}{\alpha(Q_w)^4} = \sum_{w \in S} \frac{\delta_z(Q_w)^2}{\delta_x(Q_w)^4} |Q_w|.
\]
We will use this to define a weighted Carleson condition which is a variant of the Carleson packing condition that is used in the theory of uniform rectifiability [DS93].

Definition 4.8 (weighted Carleson packing condition). Suppose that \(\Delta \) is a \(\mu \)–rectilinear foliated patchwork for a \(\mu \)–rectilinear pseudoquad \(Q \). We say that \(\Delta \) satisfies a weighted Carleson packing condition if there exist constants \(C \in (0, \infty) \) such that every \(v \in V(\Delta) \) satisfies
\[
W(\mathcal{D}(v) \cap \mathcal{F}(\Delta)) \leq C|Q_v|,
\]
where we recall that \(\mathcal{D}(v) \) are the descendants of \(v \) and \(\mathcal{F}(\Delta) \) are the vertically cut vertices.

Remark 4.9. Vertical cuts increase \(W \) and horizontal cuts decrease it. More precisely, suppose that \(v, w \in V(\Delta) \) and \(w \) is a child of \(v \). If \(v \) is vertically cut, then by Lemma 4.5 (with \(\varepsilon = \frac{1}{4} \)),
\[
W(|w|) = \alpha(Q_w)^{-4} |Q_w| = 16 \alpha(Q_v)^{-4} |Q_w| \geq 16 \alpha(Q_v)^{-4} \left(\frac{1}{2} - \varepsilon \right) |Q_v| \geq 4W(|v|).
\]
When \(\varepsilon \to 0^+ \), \(W(|w|) \) approaches \(8W(|v|) \). If \(v \) is horizontally cut, then by Lemma 4.5 (with \(\varepsilon = \frac{1}{4} \)),
\[
W(|w|) = \alpha(Q_w)^{-4} |Q_w| \leq \left(\sqrt{2} - \varepsilon \right)^{-4} \left(\frac{1}{2} + \varepsilon \right) W(|v|) \leq \frac{3}{7} W(|v|),
\]
and \(W(|w|) \) approaches \(\frac{1}{6} W(|v|) \) when \(\varepsilon \to 0^+ \).

The next lemma implies that even though only \(\mathcal{F}(\Delta) \) appears in (142), this condition formally implies bounds on \(\mathcal{F}(\Delta) \) as well.
Lemma 4.10. Let Δ be a $\frac{1}{32}$–rectilinear foliated patchwork for Q with $W(\mathcal{K}_v(\Delta)) < \infty$, and let v_0 be the root of Δ. Then
\[
W(\mathcal{K}_v(\Delta)) \lesssim W(\mathcal{K}_\mathcal{V}(\Delta)) \lesssim W(\mathcal{K}_\mathcal{V}(\Delta)) + \alpha(Q)^{-4}|Q|.
\]

Proof. Let $\mathcal{T}_\mathcal{H}$ (respectively $\mathcal{T}_\mathcal{V}$) be the set of connected components of the subgraph of Δ spanned by $\mathcal{K}_\mathcal{H}(\Delta)$ (respectively $\mathcal{K}_\mathcal{V}(\Delta)$). Let $T \in \mathcal{T}_\mathcal{H}$ and let $M(T)$ be the maximal vertex of T. Each vertex of T is horizontally cut, so by (144), we have $W(\mathcal{C}(v)) \lesssim \frac{6}{7} W(\{v\})$ for all $v \in \mathcal{V}(T)$. Therefore, $W(\mathcal{V}(T)) = W(\{M(T)\})$, because
\[
W(\mathcal{V}(T)) = \sum_{n=0}^{\infty} W(\mathcal{C}(n)(M(T)) \cap \mathcal{V}(T)) \lesssim \sum_{n=0}^{\infty} \left(\frac{6}{7}\right)^n W(\{M(T)\}) \lesssim W(\{M(T)\}).
\]

Hence, if we denote $S_M = \{M(T) : T \in \mathcal{T}_\mathcal{H}\}$, then $W(\mathcal{K}_\mathcal{H}(\Delta)) = W(S_M)$.

Now, take $T \in \mathcal{T}_\mathcal{V}$. By (143), we have $W(\{w\}) \geq 4W(\{v\})$ for all $v \in \mathcal{V}(T)$ and $w \in \mathcal{C}(v)$. As $W(\mathcal{V}(T)) < \infty$, it follows that T must be finite. Let $m(T) = \{w \in \mathcal{V}(T) : \mathcal{C}(w) \not\supseteq \mathcal{V}(T)\}$ be the lower boundary of T and let $S_m = \cup_{T \in \mathcal{T}_\mathcal{V}} m(T)$.

For all $v \in \mathcal{V}(T)$, let $A(v) = \{w \in \mathcal{V}(T) : w \supseteq v\}$ be the set of ancestors of v in T. By (143),
\[
W(A(v)) \leq \sum_{n=0}^{\lfloor A(v)\rfloor - 1} 4^{-n} W(\{v\}) \leq 2W(\{v\}).
\]

Every vertex of T is an ancestor of a leaf, so it follows that
\[
W(\mathcal{V}(T)) \leq W\left(\bigcup_{v \in m(T)} A(v)\right) \leq \sum_{v \in m(T)} W(A(v)) \leq 2W(m(T)) \leq 2W(\mathcal{V}(T)).
\]

Therefore, $W(\mathcal{K}_\mathcal{V}(\Delta)) = W(S_m)$.

If $v \in S_M$ and $v \neq v_0$, then $\mathcal{P}(v)$ is horizontally cut and has a vertically cut child, so $\mathcal{P}(v) \in S_m$. In fact, $\mathcal{P}(S_M \sim \{v_0\}) = S_m$. Since $W(\{v\}) = W(\{\mathcal{P}(v)\})$ for all v and since \mathcal{P} is a two-to-one map, it follows that $W(S_M \sim \{v_0\}) = W(S_m)$. Therefore,
\[
W(\mathcal{K}_\mathcal{H}(\Delta)) = W(S_M) \lesssim W(S_m) + W(\{v_0\}) = W(\mathcal{K}_\mathcal{V}(\Delta)) + \alpha(Q)^{-4}|Q|,
\]
and
\[
W(\mathcal{K}_\mathcal{V}(\Delta)) = W(S_m) = W(S_M \sim \{v_0\}) \lesssim W(S_M).
\]

Suppose that $\Delta = (Q_v)_{v \in \mathcal{V}(\Delta)}$ is a μ–rectilinear foliated patchwork for $\Gamma = \Gamma_f$. For $\sigma > 0$, a set of σ–approximating planes for Δ is a collection of vertical planes $(P_v)_{v \in \mathcal{K}_\mathcal{V}(\Delta)}$ such that for every $v \in \mathcal{K}_\mathcal{V}(\Delta)$, if $f_v : \mathcal{V} \to \mathbb{R}$ is the affine function such that $\Gamma_{f_v} = P_v$, then
\[
\frac{\|f_v - f\|_{L_1(10Q_v)}}{|Q_v|} \lesssim \sigma \frac{\delta_{\varepsilon}(Q_v)}{\delta_{\varepsilon}(Q_v)}.
\]

The following lemma verifies that the choice of right-hand side in (145) produces a condition that is invariant under stretch automorphisms and shear automorphisms.

Lemma 4.11. Let $\Delta = (Q_v)_{v \in \mathcal{V}(\Delta)}$ be a μ–rectilinear foliated patchwork for an intrinsic Lipschitz graph $\Gamma = \Gamma_f$ with a set $(P_v)_{v \in \mathcal{K}_\mathcal{V}(\Delta)}$ of σ–approximating planes and let $r : \mathbb{H} \to \mathbb{H}$ be a left translation, a stretch automorphism, or a shear map. Let $\hat{r} = \Pi \circ r : \mathcal{V}_0 \to \mathcal{V}_0$ be the map induced on \mathcal{V}_0. Then $\Delta' = ((\hat{r}(Q_v), f(\hat{r}(Q_v))))_{v \in \mathcal{V}(\Delta)}$ is a μ–rectilinear foliated patchwork for $r(\Gamma)$ and $(r(P_v))_{v \in \mathcal{K}_\mathcal{V}(\Delta)}$ is a set of σ–approximating planes for Δ'.

Proof. By Lemma 2.10 and Lemma 4.2, \(r(\Gamma) \) is an intrinsic Lipschitz graph and the elements of \(\Delta' \) are \(\mu \)-rectilinear pseudoquads for \(r(\Gamma) \). It is straightforward to check that Definition 4.4 holds for \(\Delta' \). Let \(v \in \mathcal{H}_4(\Delta) \) and let \(f_v : V_0 \to \mathbb{R} \) be the affine function such that \(P_v = \Gamma f_v \). By Lemma 2.9, there are functions \(\hat{f} \) and \(f_v \) such that \(r(\Gamma) = \Gamma \hat{f} \) and \(r(P_v) = \Gamma f_v \).

If \(r \) is a left translation or a shear map and \(w \in 10Q_v \), then \(\hat{f}(w) \in 10\hat{f}(Q_v) \) and

\[
|\hat{f}(\hat{f}(w)) - \hat{f}_v(\hat{f}(w))| = |f(w) - f_v(w)|.
\]

In this case, \(\delta_A(Q_v) = \delta_A(\hat{f}(Q_v)) \) and \(\delta_B(Q_v) = \delta_B(\hat{f}(Q_v)) \), so if \(P_v \) is a \(\sigma \)-approximating plane for \(Q_v \), then \(r(P_v) \) is a \(\sigma \)-approximating plane for \(\hat{f}(Q_v) \).

If \(r = s_{a,b} \) for some \(a, b \in \mathbb{R} \setminus \{0\} \), then \(\hat{f} = r|_{V_0} : 10Q_v \to 10\hat{f}(Q_v) \), and for any \(w \in 10Q_v \),

\[
|\hat{f}(\hat{f}(w)) - \hat{f}_v(\hat{f}(w))| = |b| \cdot |f'(w) - f'_v(w)|.
\]

In this case, \(\delta_A(\hat{f}(Q_v)) = |a| \delta_A(Q_v) \) and \(\delta_B(\hat{f}(Q_v)) = |ab| \delta_B(Q_v) \), so by (145),

\[
\frac{\|\hat{f}_v - \hat{f}\|_{L^1(10Q_v)}}{|\hat{f}(Q_v)|} = \frac{|a^2b^2\|f_v - f\|_{L^1(10Q_v)}}{|a^2b^2|Q_v|} \leq |b| \sigma \frac{\delta_A(Q_v)}{\delta_A(\hat{f}(Q_v))} = \sigma \frac{\delta_A(\hat{f}(Q_v))}{\delta_B(\hat{f}(Q_v))}. \quad \square
\]

5. Foliated Corona Decompositions

An intrinsic graph that admits rectilinear foliated patchworks that satisfy a weighted Carleson condition and have approximating planes is said to have a foliated corona decomposition.

Definition 5.1. Fix \(0 < \mu_0 \leq \frac{1}{32} \) and \(D : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+ \). We say that an intrinsic Lipschitz graph \(\Gamma \) has a \((D, \mu_0)\)-foliated corona decomposition if for every \(0 < \mu \leq \mu_0 \), every \(\sigma > 0 \) and every \(\mu \)-rectilinear pseudoquad \(Q \subseteq V_0 \), there is a \(\mu \)-rectilinear foliated patchwork \(\Delta \) for \(Q \) such that \(\Delta \) is \(D(\mu, \sigma) \)-weighted-Carleson and has a set of \(\sigma \)-approximating planes.

The following theorem is a more precise formulation of Theorem 1.18.

Theorem 5.2. For every \(0 < \lambda < 1 \) there is a function \(D_\lambda : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+ \) such that for any \(0 < \mu_0 \leq \frac{1}{32} \), any intrinsic \(\lambda \)-Lipschitz graph has a \((D \lambda, \mu_0)\)-foliated corona decomposition.

Definition 5.1 requires the root of the foliated patchwork to be \(\mu \)-rectilinear; the next lemma shows that intrinsic Lipschitz graphs have many \(\mu \)-rectilinear pseudoquads.

Lemma 5.3. Let \(\mu_0 > 0 \), let \(0 < \lambda < 1 \), and let \(\Gamma = \Gamma f \) be an intrinsic \(\lambda \)-Lipschitz graph. There is an \(\alpha_0 > 0 \) with the following property. Let \(Q \) be a pseudoquad for \(\Gamma \), let \(v \) be a point in the lower boundary of \(Q \) and suppose that \(vZ^2 \) is in the upper boundary. Let \(r = \delta_x(Q) \) and \(\frac{r}{v^3} \leq \alpha_0 \). Then there is a parabolic rectangle \(R \) such that \((Q, R)\) is \(\mu_0 \)-rectilinear.

Proof. Denote

\[
L \overset{\text{def}}{=} \frac{\lambda}{\sqrt{1 - \lambda^2}} \quad \text{and} \quad \alpha_0 \overset{\text{def}}{=} \min \left\{ \sqrt{\frac{16L}{\mu_0}}, \frac{\mu_0(1 - \lambda)}{24} \right\}.
\]

Let \(g_1, g_2 : \mathbb{R} \to \mathbb{R} \) be the lower and upper bounds of \(Q \) and let \(I \) be its base. After a translation, we may suppose that \(v = 0 \) and \(f(v) = 0 \). Then \(I \subseteq [−r, r] \), \(g_1(0) = 0 \), \(g_2(0) = s \), and \(g_1'(0) = -f'(0) = 0 \). Let \(R = I \times [0, s] \); we claim that \((Q, R)\) is a \(\mu_0 \)-rectilinear pseudoquad.
We will construct a rectilinear foliated patchwork for \(F_0 \). Note that for any \(\Delta \) patchworks, we obtain a rectilinear foliated patchwork and a set of \(\sigma \)–pseudoquads \(P \). By Corollary 5.4, each \(P \)–rectilinear pseudoquad \(Q \) such that \(| \Delta | = | \epsilon \). Let \(v \) be in the lower boundary of \(Q \). Then there is an \(s \geq (1 - \frac{1}{10}) \delta_z(Q) \) such that \(vZ^s \) is in the upper boundary. If \(\alpha(Q) \leq \frac{a_0}{2} \), then

\[
\delta_z(Q) \leq \frac{a_0}{2} \sqrt{\delta_z(Q)} \leq a_0 \sqrt{s},
\]

so Lemma 5.3 implies that \(Q \) is \(\mu_0 \)–rectilinear.

The following lemma shows that the choice of \(\mu_0 \) is not important; we can increase \(\mu_0 \) at the cost of an increase in \(D \).

Lemma 5.5. For any \(\lambda > 0 \) and \(0 < \mu_0 < \mu'_0 \leq \frac{1}{32} \), and any \(D : \mathbb{R}^+ \times \mathbb{R}^+ \rightarrow \mathbb{R}^+ \), there exists \(D' : \mathbb{R}^+ \times \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) such that if \(\Gamma \) is an intrinsic \(\lambda \)–Lipschitz graph that has a \((D, \mu_0) \)–foliated corona decomposition, then \(\Gamma \) also has a \((D', \mu'_0) \)–foliated corona decomposition.

Proof. Fix \(0 < \mu < \mu'_0 \) and \(0 < \sigma < 1 \). Let \(a_0 > 0 \) be as in Lemma 5.3. Suppose that we are given a \(\mu \)–rectilinear pseudoquad \(Q \). We wish to construct a rectilinear foliated patchwork for \(Q \) with a set of \(\sigma \)–approximating planes. If \(\alpha(Q) \leq \frac{a_0}{2} \), then by Corollary 5.4, \(Q \) is \(\mu_0 \)–rectilinear, and since \(\Gamma \) admits a \((D, \mu_0) \)–foliated corona decomposition, the desired patchwork and set of approximating planes for \(Q \) exist.

We thus suppose that \(\alpha(Q) \geq \frac{a_0}{2} \) and denote

\[
i_0 = \left\lfloor \log_2 \frac{\alpha(Q)}{a_0} \right\rfloor + 1.
\]

We will construct a rectilinear foliated patchwork for \(Q \) by first cutting \(Q \) vertically \(i_0 \) times into pseudoquads \(P_1, \ldots, P_{2^i_0} \) of width \(2^{-i_0} \delta_z(Q_0) \), height \(\delta_z(Q) \), and aspect ratio

\[
\alpha(P_i) = \frac{\delta_z(P_i)}{\sqrt{\delta_z(P_i)}} = 2^{-i_0} \alpha(Q) < \frac{a_0}{2}.
\]

By Corollary 5.4, each \(P_i \) is \(\mu_0 \)–rectilinear and thus admits a \((D, \sigma) \)–weighted Carleson rectilinear foliated patchwork and a set of \(\sigma \)–approximating planes. Combining these patchworks, we obtain a rectilinear foliated patchwork \(\Delta' \) for \(Q_0 \). Let \(v_0 \) be its root vertex. Note that for any \(0 \leq m \leq i_0 \) and any \(w \in \mathcal{C}^m(v_0) \), we have \(\alpha(Q_w) = 2^{-m} \alpha(Q_0) \).
It remains to check that Δ' is weighted Carleson. Let $p_1, \ldots, p_{2^6} \in V(\Delta')$ be the vertices such that $P_j = Q_{p_j}$. If $v \in V(\Delta')$ and $v \leq p_j$ for some j, then Q_v satisfies the weighted Carleson condition (142) with constant at most $D(\mu, \sigma)$.

Otherwise, v is an ancestor of some p_j and $Q_v = P_a \cup \cdots \cup P_b$ for some $a \leq b$. For each $w \in V(\Delta')$, let $A(w)$ be the set of ancestors of w. Every ancestor of p_j except possibly p_j itself is vertically cut, so by (143), the weight of $\mathcal{P}^k(p_j)$ decays exponentially. Thus

$$W(A(p_j)) = \sum_{k=0}^{i_0} W(\mathcal{P}^k(p_j)) \leq \sum_{k=0}^{i_2} 4^{-k} W(|p_j|) \leq 2W(|p_j|).$$

For each $w \in V(\Delta')$, let $\mathcal{D}_v(w) = \mathcal{D}(w) \cap \mathcal{V}(\Delta')$ be the set of vertically cut descendants of w. As every element of $\mathcal{D}_v(w)$ is a descendant or an ancestor of some p_j with $a \leq j \leq b$,

$$W(\mathcal{D}_v(w)) \leq \sum_{j=a}^{b} [W(\mathcal{D}_v(p_j)) + W(A(p_j))] \leq \sum_{j=a}^{b} [D(\mu, \sigma)|P_j| + 2W(|p_j|)]$$

$$= D(\mu, \sigma)|Q_v| + 2 \cdot \alpha(P_a)^{-4}|Q_v| \leq D(\mu, \sigma)|Q_v| + a_0^{-4}|Q_v|.$$

Therefore, Δ' is $(D(\mu, \sigma) + a_0^{-4})$–weighted Carleson.

6. Vertical perimeter and foliated corona decompositions

In this section we will assume Theorem 5.2 and prove the following theorem, which bounds the vertical perimeter of half-spaces bounded by intrinsic Lipschitz graphs.

Theorem 6.1. For any $0 < \lambda < 1$ and $r > 0$, if Γ is an intrinsic λ–Lipschitz graph, then

$$\|\nabla_{\mathbb{R}^d} f(\Gamma)\|_{L^4(\mathbb{R})} \lesssim \lambda r^3.$$

This coincides with the bound (32) needed in Section 1.2.1. Combined with the reduction from arbitrary sets to intrinsic Lipschitz graphs described in that section, this completes the proof of Theorem 1.1.

6.1. Vertical perimeter for graphs with foliated corona decompositions. **Theorem 6.1** is a consequence of the following lemma.

Lemma 6.2. Suppose that $f : V_0 \to \Gamma$ is intrinsic Lipschitz and denote $\Gamma = \Gamma_f$. Fix $\sigma > 0$. Let $Q \subseteq V_0$ be a $\frac{1}{32}$–rectilinear pseudoquad. Let Δ be a $\frac{1}{32}$–rectilinear foliated patchwork for Q and let $(P_v)_{v \in \mathcal{V}_f(\Delta)}$ be a set of σ–approximating planes. Denoting $t_0 = -\log_4 \delta_\zeta(Q)$, we have

$$\|\nabla_{\mathbb{R}^d} f\|_{L^4([t_0, \infty))} \lesssim \sigma|Q|^\frac{1}{2} W(\mathcal{Y}(\Delta))^\frac{1}{2}. \quad (146)$$

Note that while the intrinsic Lipschitz constant of f appears in Theorem 6.1, it does not appear in (146). Indeed, this bound is invariant under scalings and stretch automorphisms; if Γ, Q, and $(\Delta, (P_v)_{v \in \mathcal{V}(\Delta)})$ are as in Lemma 6.2, $a, b > 0$, and $s = \Pi \circ s|_{V_0} = s|_{V_0}$, then, by Lemma 4.11, $s(Q)$ is a pseudoquad in $s(\Gamma) = \Gamma_f$, where $f = bf \circ \tilde{s}^{-1}$. Furthermore, $\Delta' = (s(Q_v))_{v \in \mathcal{V}(\Delta)}$ is a foliated patchwork for $s(Q)$ and $(s(P_v))_{v \in \mathcal{V}_f(\Delta)}$ is a set of σ–approximating planes.
By Lemma 4.2, \(\alpha(\delta(Q_v)) = \sqrt{\frac{2}{\pi}} \alpha(Q_v) \) and \(|\delta(Q_v)| = a^2 b|Q_v| \), so \(W(V(\Delta')) = b^3 W(V(\Delta)) \) and
\[
|\delta(Q)|^3 W(V(\Delta))^{\frac{1}{3}} = (a^2 b)^{\frac{3}{2}} |Q|^3 b^3 W(V(\Delta)) \frac{1}{3} = (ab)^{\frac{3}{2}} |Q|^3 W(V(\Delta))^{\frac{1}{3}}.
\]

If (146) holds for \(f \) and \(Q \), then, by Lemma 2.12,
\[
\|\nabla^P \delta(Q,f)\|_{L_4([t_0-\log_4(ab),\infty))} = (ab)^{\frac{3}{2}} \|\nabla^P \delta(Q,f)\|_{L_4([t_0,\infty))} \lesssim (ab)^{\frac{3}{2}} |Q|^3 W(V(\Delta))^{\frac{1}{3}}.
\]

That is, (146) holds for \(\hat{f} \) and \(s(Q) \).

To prove Lemma 6.2, we will need some lemmas on partitions and coherent sets. A collection \(\{Q_1, \ldots, Q_n\} \) of pseudoquads is a partition of \(Q \) if \(Q = \bigcup_{i=1}^{n} Q_i \) and if the \(Q_i \) overlap only along their boundaries. A coherent subtree of \(T \) is a connected subtree such that for every \(v \in T \), either all children of \(v \) are contained in \(T \) or none of them are. A coherent subset of \(V(\Delta) \) is the vertex set of a coherent subtree.

Lemma 6.3. Let \(\Delta \) be a rectilinear foliated patchwork for \(Q \) and suppose that \(S \subseteq V(\Delta) \) is coherent. Let \(M = \max S \) be the maximal element of \(S \) and let \(\min S \) be the set of minimal elements of \(S \). Denote
\[
F_1 = F_1(S) \overset{\text{def}}{=} \{ p \in Q_M : \text{there are infinitely many } v \in S \text{ such that } p \in Q_v \}.
\]

Then
\[
Q_M = F_1 \bigcup \left\{ \bigcup_{w \in \min S} Q_w \right\}.
\]

The interiors of \(\{Q_w : w \in \min S\} \) are pairwise disjoint and disjoint from \(F_1 \). If \(S \) is finite, then \(\min S \) is a partition of \(Q_M \).

Proof. Let \(v \in \min S \) and let \(p \in \text{int } Q_v \). If \(u \in S \) and \(p \in Q_u \), then either \(u < v \) or \(v < u \). The first is impossible by the minimality of \(v \), so \(v \leq u \). It follows that there are only finitely many \(w \in S \) such that \(p \in Q_w \) and no such \(w \) is minimal except \(v \). That is, \(\text{int } Q_v \) is disjoint from \(F_1 \) and if \(u \in \min S \) and \(u \neq v \), then \(\text{int } Q_v \) is disjoint from \(\text{int } Q_u \).

If \(p \in Q_M \sim F_1 \), then the set \(\{ v \in S : p \in Q_v \} \) is finite and thus has a minimal element \(v_0 \). Let \(w \) be a child of \(v_0 \) such that \(p \in Q_w \). The minimality of \(v_0 \) implies that \(w \not\in S \), so \(v \in \min(S) \) by the coherence of \(S \). This implies (147).

Lemma 6.4. Fix \(0 < \mu < \frac{1}{32} \) and let \((\Delta,(Q_v)_{v \in \Delta}) \) be a \(\mu \)-rectilinear foliated patchwork for \(Q \) with \(W(V(\Delta)) < \infty \). For any \(0 < \sigma \leq \delta_x(Q) \), denote \(S_\sigma = \{ v \in V(\Delta) : \delta_x(Q_v) \geq \sigma \} \) and let \(F_\sigma = \min S_\sigma \). Then \(\{Q_v\}_{v \in F_\sigma} \) is a partition of \(Q \) into horizontally cut pseudoquads such that \(\sigma \leq \delta_x(Q_v) < 4\sigma \) for all \(v \in F_\sigma \).

Proof. By Definition 4.4 and Lemma 4.5, the height of every pseudoquad of \(\Delta \) is equal to the height of its sibling and at most the height of its parent. Therefore, \(S_\sigma \) is coherent. If \(v \in S_\sigma \), then
\[
W(\{v\}) = \alpha(Q_v)^{-4}|Q_v| \geq \delta_x(Q_v)^3 \delta_x(Q_v)^{-3} \geq \sigma^3 \delta_x(Q)^{-3},
\]
which is bounded away from 0, so Lemma 4.10 implies that \(S_\sigma \) is finite. By Lemma 6.3, \(F_\sigma \) partitions \(Q \).
Suppose $\nu \in F_\gamma$ and let $w \in \mathcal{C}(\nu)$. By the minimality of ν, we have $\nu \in S_\sigma$ and $w \not\in S_\sigma$, so $\delta_z(Q_\nu) \geq \sigma \geq \delta_z(Q_w)$. Since $\delta_z(Q_w) < \delta_z(Q_\nu)$, ν is horizontally cut. Furthermore, by Lemma 4.5, $\sigma > \delta_z(Q_w) \geq \frac{1}{4}\delta_z(Q_\nu)$, so ν is a horizontally cut pseudoquad such that $\sigma \leq \delta_z(Q_\nu) < 4\sigma$, as desired. \hfill \square

We will use these partitions to decompose the parametric vertical perimeter of f and prove Lemma 6.2.

Proof of Lemma 6.2. By the remarks after Lemma 6.2, condition (146) is invariant under scaling, so we may rescale so that $\delta_z(Q) = 1$. Let Δ be a $\frac{1}{32}$–rectilinear foliated patchwork for Q and let $(P_\nu)_{\nu \in \mathcal{H}(\Delta)}$ be a set of σ–approximating planes. Without loss of generality, we suppose that $W(\mathcal{V}(\Delta)) < \infty$. For each $\nu \in \mathcal{H}(\Delta)$, let $f_\nu : V_0 \to \mathbb{R}$ be the affine function such that $\Gamma_{f_\nu} = P_\nu$. For $i \in \mathbb{N} \cup \{0\}$ let $C_i = 2^{-2i-1} \subseteq \mathcal{H}(\Delta)$ be as in Lemma 6.4, so that $\{Q_\nu\}_{\nu \in C_i}$ is a partition of Q into horizontally-cut pseudoquads with heights in $[2^{-2i-1}, 2^{-2i+1}]$. No vertex of Δ appears in more than one of the C_i’s.

We start by bounding $\overline{\nu}_{Q,f}(t)$ from above for each $\nu \in C_i$ for a fixed $i \in \mathbb{N} \cup \{0\}$. Then we have $2^{-2i} \leq 2\delta_z(Q_\nu)$, so Lemma 4.1 implies that $Z^{-2^{-2i}} Q_\nu \subseteq 10Q_\nu$ for any $t \in [i, i+1]$. Therefore, since f_ν is constant on vertical lines,

$$
\overline{\nu}_{Q,f}(t) = 2^t \int_{Q_\nu} |f(w) - f(wZ^{-2^{-2i}})| \, dw \\
\leq 2^t \int_{Q_\nu} \left(|f(w) - f_\nu(w)| + |f_\nu(wZ^{-2^{-2i}}) - f(wZ^{-2^{-2i}})| \right) \, dw \\
= 2^t \left(\|f - f_\nu\|_{L_1(Q_\nu)} + \|f_\nu(wZ^{-2^{-2i}}) - f(wZ^{-2^{-2i}})\|_{L_1(Q_\nu)} \right) \\
\leq 2^{t+1} |Q_\nu| \|\delta_z(Q_\nu)\|_{L_4(Q_\nu)} \leq \sigma a(Q_\nu)^{-1} |Q_\nu|.
$$

Since $\{Q_\nu\}_{\nu \in C_i}$ is a partition of Q, we have $\overline{\nu}_{Q,f}(t) = \sum_{\nu \in C_i} \overline{\nu}_{Q_\nu,f}(t)$ for all $t \in \mathbb{R}$. Thus

$$
\left\| \overline{\nu}_{Q,f} \right\|_{L_4([i,i+1])} \leq \sum_{\nu \in C_i} \left\| \overline{\nu}_{Q_\nu,f} \right\|_{L_4([i,i+1])} \leq \sum_{\nu \in C_i} \sigma a(Q_\nu)^{-1} |Q_\nu|.
$$

Consequently,

$$
\left\| \overline{\nu}_{Q,f} \right\|_{L_4([0,\infty))}^4 = \sum_{i=0}^{\infty} \left\| \overline{\nu}_{Q,f} \right\|_{L_4([i,i+1])}^4 \leq \sigma^4 \sum_{i=0}^{\infty} \left(\sum_{\nu \in C_i} a(Q_\nu)^{-1} |Q_\nu| \right)^4 \\
\leq \sigma^4 \sum_{i=0}^{\infty} \left(\sum_{\nu \in C_i} |Q_\nu| \right)^3 \left(\sum_{\nu \in C_i} a(Q_\nu)^{-1} |Q_\nu| \right) \leq \sigma^4 |Q|^3 \sum_{i=0}^{\infty} W(C_i) \leq \sigma^4 |Q|^3 W(\mathcal{V}(\Delta)),
$$

where the third step is an application of Hölder’s inequality. \hfill \square

Finally, we use Lemma 2.11 and Lemma 2.12 to prove Theorem 6.1.

Proof of Theorem 6.1. After scaling, it suffices to prove the theorem in the case that $r = 1$, i.e., that if Γ is the intrinsic graph of an intrinsic λ–Lipschitz function $f : V_0 \to \mathbb{R}$, then

$$
\left\| \overline{\nu}_{\Gamma^+} \right\|_{L_4(\mathbb{R})} \lesssim 1.
$$

(149)
By the definition (30),
\[
\forall t \in \mathbb{R}, \quad \tilde{v}_{B_1}(t) = 2^t |B_1 \cap (\Gamma^+ \Delta \Gamma^{2^{-t}})| \leq 2^t |B_1| \lesssim 2^t.
\]
Hence,
\[
\forall a \in \mathbb{R}, \quad \|\tilde{v}_{B_1}(\Gamma^+)\|_{L_4((-\infty, a])} = \left(\int_{-\infty}^a \tilde{v}_{B_1}(t) \frac{dt}{t^4} \right)^{\frac{1}{2}} \lesssim \left(\int_0^a 2^{4t} \frac{dt}{t^4} \right)^{\frac{1}{2}} \lesssim 2^a,
\]
and therefore we have the following simple a priori bound.
\[
\forall a \in \mathbb{R}, \quad \|\tilde{v}_{B_1}(\Gamma^+)\|_{L_4((a, \infty))} \lesssim 2^a + \|\tilde{v}_{B_1}(\Gamma^+)\|_{L_4((a, \infty))}.
\tag{150}
\]

We will first treat the (trivial) case $B_5 \cap \Gamma = \emptyset$, so that either $B_5 \subseteq \Gamma^+$ or $B_5 \subseteq \Gamma^-$. Without loss of generality, suppose that $B_5 \subseteq \Gamma^+$. This implies that $B_1 \subseteq \Gamma^+ \cap \Gamma^{2^{-t}} \Gamma^+$ for any $t > 0$, so $\tilde{v}_{B_1}(\Gamma^+) = 0$, and therefore in this case (149) follows from the case $a = 0$ of (150).

We may thus suppose from now on that $B_5 \cap \Gamma \neq \emptyset$. Fix any point $p \in B_5 \cap \Gamma$. Then $d(p, \langle Y \rangle) \leq 5$ and $p = vYf(v)$ for some $v \in V_0$ with $|f(v)| \leq 5$, so by Lemma 2.3, we have
\[
|f(0)| \leq |f(v)| + |f(v) - f(0)| \leq 5 + \frac{2}{1 - \lambda} d(p, \langle Y \rangle) \lesssim \frac{1}{1 - \lambda}.
\]
Likewise, for any $t \in \mathbb{R}$,
\[
|f(Z^t)| \leq |f(0)| + \frac{2}{1 - \lambda} d(0, Z^t) \lesssim 1 + \frac{\sqrt{|t|}}{1 - \lambda}.
\]
For $t \in \mathbb{R}$, let $g_t: \mathbb{R} \to \mathbb{R}$ be a function such that $g_t(0) = t$ and the graph of g_t is characteristic for f. By (51), $g_t(0) = -f(Z^t)$, so by Lemma 2.7 and the estimate above,
\[
\max_{x \in [-1, 1]} |g_t(x) - t| \leq |g_t(0)| + \frac{\lambda}{2\sqrt{1 - \lambda^2}} = |f(Z^t)| + \frac{\lambda}{2\sqrt{1 - \lambda^2}} \lesssim 1 + \sqrt{|t|}.
\tag{151}
\]
The right hand side of (151) grows slower than $|t|$ as $|t| \to \infty$, so there is $t_0 = t_0(\lambda) > 1$ such that the pseudoquad Q that is bounded by the lines $x = \pm 1$ and $z = g_{t_0}(x)$ is $\frac{1}{32}$-rectilinear and contains the projection $\Pi(B_1)$.

Theorem 5.2 applied with the choice of parameters $\mu_0 = \frac{1}{32}$ and $\sigma = 1$ shows that Q has a foliated patchwork Δ and a set of 1-approximating planes that satisfy
\[
W(\mathcal{V}(\Delta)) \lesssim \lambda |Q| \lesssim 1.
\]
By Lemma 4.10, this implies that
\[
W(\mathcal{V}(\Delta)) \lesssim W(\mathcal{V}(\Delta)) + \alpha(\lambda)^{-4} |Q| \lesssim 1.
\tag{152}
\]
By Lemma 2.11 and Lemma 6.2, we conclude as follows.
\[
\|\tilde{v}_{B_1}(\Gamma^+)\|_{L_4(\mathbb{R})} \lesssim \frac{1}{\sqrt{\delta_z(Q)}} + \|\tilde{v}_{B_1}(\Gamma^+)\|_{L_4([-\log_4 \delta_z(Q), \infty))} \leq \frac{1}{\sqrt{\delta_z(Q)}} + \|\tilde{v}_{Q,f}\|_{L_4([-\log_4 \delta_z(Q), \infty))} \lesssim \frac{1}{\sqrt{\delta_z(Q)}} + |Q|^{\frac{1}{2}} W(\mathcal{V}(\Delta))^{\frac{1}{2}} \lesssim 1,
\]
where the first step is an application of (150) with $a = -\log_4 \delta_z(Q)$, the second step is an application of Lemma 2.11 because $Q \supseteq \Pi(B_1)$, the third step is an application of Lemma 6.2, and the final step holds due to (152) and because $|Q| \approx \delta_z(Q) \approx 1$. \square
7. THE SUBDIVISION ALGORITHM: CONSTRUCTING A FOLIATED CORONA DECOMPOSITION

In this section, we will formulate an iterative subdivision algorithm (Lemma 7.3 below) and prove that, given certain propositions on the geometry of pseudoquads, this algorithm produces a foliated corona decomposition. In the following sections, we will prove these geometric propositions. Together, these arguments establish Theorem 5.2.

Fix $\lambda, \sigma \in (0, 1)$. Let $f : V_0 \to R$, and suppose that $\Gamma = \Gamma_f$ is an intrinsic λ–Lipschitz graph. Let $0 < \mu \leq \frac{1}{32}$. To show that Γ admits a foliated corona decomposition, we must show that for any μ–rectilinear pseudoquad Q, there is a μ–rectilinear foliated patchwork Δ for Q which has a set of σ–approximating planes and such that Δ is weighted-Carleson.

In order to describe the subdivision algorithm that produces Δ, we will introduce the R–extended parametric normalized nonmonotonicity of Γ, denoted by $\Omega^P_{\Gamma^+, R}$, which is a measure on V_0 with density based on how horizontal line segments of length at most $R > 0$ intersect Γ. If Γ is a plane, for instance, then $\Omega^P_{\Gamma^+, R} = 0$, while $\Omega^P_{\Gamma^+, R}$ has positive density when Γ is bumpy at scale R.

This is in the spirit of the quantitative nonmonotonicity used in [CKN11] and [NY18], but it counts different segments, and, like the parametric vertical perimeter, it is defined in terms of the function f. We will give a full definition in Section 8 and discuss the relationship between extended nonmonotonicity and quantitative nonmonotonicity in Remarks 8.4 and 10.2. In Section 9, we will show that there is $c > 0$ depending on the intrinsic Lipschitz constant of Γ such that the following kinematic formula (inequality) holds for every measurable subset $U \subseteq V_0$.

$$\sum_{i \in Z} \Omega^P_{\Gamma^+, 2^{-i}}(U) \leq c|U|.$$

Definition 7.1. Suppose that $\eta, r, R > 0$ and Q is a $\frac{1}{4}$–rectilinear pseudoquad. We say that Γ is (η, R)–paramonotone on rQ if it satisfies the following bound.

$$\frac{\Omega^P_{\Gamma^+, R\delta_x(Q)}(rQ)}{|Q|} \leq \frac{\eta}{\alpha(Q)^4}.$$

(153)

This condition is invariant under scalings, stretch maps, and shear maps; see the discussion immediately after the proof of Lemma 8.8 below.

One of the main results of [CKN11] was that for small $\eta > 0$, any η–monotone set is close to a plane in H; this is a “stability version” of the characterization of monotone sets in [CK10b]. The following proposition, which we will prove in Sections 10–12, states not only that paramonotone pseudoquads are close to vertical planes in H, but also that their characteristic curves are close to the characteristic curves of their approximating planes.

Proposition 7.2. There is a universal constant $r > 1$ such that for any $\sigma > 0$ and $0 < \zeta \leq \frac{1}{32}$, there are $\eta, R > 0$ such that if $\Gamma = \Gamma_f$ is the intrinsic Lipschitz graph of $f : V_0 \to R$, and if Q is a $\frac{1}{32}$–rectilinear pseudoquad for Γ such that Γ is (η, R)–paramonotone on rQ, then

(1) There is a vertical plane $P \subseteq H$ (a σ–approximating plane) and an affine function $F : V_0 \to R$ such that P is the intrinsic graph of F and

$$\frac{\|F - f\|_{L^1(Q)}}{|Q|} \leq \sigma \frac{\delta_x(Q)}{\delta_x(Q)}.$$

(154)
(2) Let \(u \in 4Q \) and let \(g_\Gamma, g_P: \mathbb{R} \to \mathbb{R} \) be such that \(\{z = g_\Gamma(x)\} \) (respectively \(\{z = g_P(x)\} \)) is a characteristic curve for \(\Gamma \) (respectively \(P \)) that passes through \(u \). Then

\[
\|g_P - g_\Gamma\|_{L_\infty(4I)} \leq \zeta \delta_z(Q).
\]

It is important to observe that the bounds in Proposition 7.2 do not depend on the intrinsic Lipschitz constant of \(f \). Indeed, this proposition holds when \(\Gamma \) is merely the intrinsic graph of a continuous function. This is important because paramonotonicity is invariant under stretch automorphisms; a bound that depended on the intrinsic Lipschitz constant of \(\Gamma \) would not be invariant.

Proposition 7.2 allows us to construct a \(\mu \)-rectilinear foliated patchwork and a collection of \(\sigma \)-approximating planes by recursively subdividing \(Q \) according to a greedy algorithm.

Lemma 7.3. Let \(r \) be as in Proposition 7.2. Fix \(0 < \mu \leq \frac{1}{32} \) and \(\sigma > 0 \). There are \(\eta, R > 0 \) with the following property. Let \(\Gamma \) be an intrinsic Lipschitz graph and let \(Q \) be a \(\mu \)-rectilinear pseudoquad. There is a \(\mu \)-rectilinear foliated patchwork \(\Delta \) for \(Q \), such that for all \(v \in V(\Delta) \), \(Q_v \) is horizontally cut if and only if \(\Gamma \) is \((\eta, R) \)-paramonotone on \(rQ \), and \(\Delta \) admits a set of \(\sigma \)-approximating planes.

Proof. Let \(r, \eta, \) and \(R \) be positive constants so that Proposition 7.2 is satisfied with \(\zeta = \frac{\mu}{4} \).

We construct \(\Delta \) by a greedy algorithm. Denote the root vertex of \(\Delta \) by \(v_0 \) and let \(Q_{v_0} = Q \); by assumption, it is \(\mu \)-rectilinear. Suppose by induction that we have already constructed a \(\mu \)-rectilinear pseudoquad \((Q_v, R_v) \). Let \(v \in V(\Delta) \) be a vertex with children \(w \) and \(w' \). Let \(I = [a, b] \) be the base of \(Q_v \) and let \(g_1, g_2: \mathbb{R} \to \mathbb{R} \) be its lower and upper bounds, respectively.

Suppose that \(\Gamma \) is not \((\eta, R) \)-paramonotone on \(rQ_v \). The vertical line \(x = \frac{a + b}{2} \) cuts \(Q_v \) and \(R_v \) vertically into two halves. Let \(Q_w \) and \(Q_w' \) be the halves of \(Q_v \) and let \(R_w \) and \(R_w' \) be the halves of \(R_v \). Since \((Q_v, R_v) \) is \(\mu \)-rectilinear, \((Q_w, R_w) \) and \((Q_w', R_w') \) are both \(\mu \)-rectilinear.

Now suppose that \(\Gamma \) is \((\eta, R) \)-paramonotone on \(rQ_v \). Proposition 7.2 states that there is a \(\sigma \)-approximating plane \(P \) for \(Q_v \) such that for every \(u \in 4Q_v \), any characteristic curve of \(\Gamma \) that passes through \(u \) is \(\zeta \delta_z(Q) \)-close to the characteristic curve of \(P \) that passes through \(u \). For \(i \in \{1, 2\} \), let \(u_i = (\frac{a + b}{2}, g_i(\frac{a + b}{2})) \), and let \(m \) be the midpoint of \(u_1 \) and \(u_2 \).

Let \(g_3: \mathbb{R} \to \mathbb{R} \) be a function whose graph is a characteristic curve for \(\Gamma \) that passes through \(m \). Let \(Q_w \) and \(Q_w' \) be the pseudoquads with base \(I \) that are bounded by the graphs of \(g_1, g_3, \) and \(g_2 \).

The characteristic curves of \(P \) that pass through \(u_1, u_2, \) and \(m \) are parallel evenly-spaced parabolas; let \(h_1, h_2, h_3: V_0 \to \mathbb{R} \) be the corresponding quadratic functions and let \(d = h_2 - h_3 = h_3 - h_1 \) be the constant distance between them. Let \(R_w \) and \(R_w' \) be the parabolic rectangles with base \(I \) that are bounded by these three parabolas. By Proposition 7.2, we have \(\|g_i - h_i\|_{L_\infty(4I)} \leq \zeta \delta_z(Q) \) for \(i \in \{1, 2, 3\} \). In particular, every \(x \in I \) satisfies

\[
|\delta_z(Q) - 2d| \leq |\delta_z(Q) - (g_2(x) - g_1(x))| + |g_2(x) - g_3(x) - d| + |g_3(x) - g_1(x) - d| \leq 3\zeta \delta_z(Q),
\]
Theorem 7.5. For every vertical planes together to approximate an intrinsic Lipschitz graph by ruled surfaces. Let
\[\text{Proof of Theorem 5.2 assuming Proposition 7.2 and Proposition 7.4.} \]
and the bounding these pseudoquads can be approximated by parabolas, denoted \(h_0, \ldots, h_k \), and the \(\mu \)-rectilinearity of \(\Delta \) implies that these parabolas do not intersect inside \(Q_{v_F} \).

Pseudoquads that are not paramonotone contribute to the nonmonotonicity of \(\Gamma \), so, as in [NY18], the total number and size of these pseudoquads is bounded by the measure of \(\Gamma \). In Section 9, we will use an argument based on the Vitali Covering Lemma to prove that rectilinear foliated patchworks constructed using Lemma 7.3 satisfy a weighted Carleson condition, as stated in the following proposition.

Proposition 7.4. Let \(r > 1 \) and let \(0 < \mu \leq \frac{1}{32r^2} \). Let \(\eta, R > 0 \) and let \(0 < \lambda < 1 \). Let \(\Gamma \) be an intrinsic \(\lambda \)-Lipschitz graph, let \(\Delta \) be a \(\mu \)-rectilinear foliated patchwork for \(\Gamma \), and suppose that for all \(v \in \mathcal{V}(\Delta) \), the pseudoquad \(Q_v \) is horizontally cut if and only if \(\Gamma \) is \((\eta, R)\)-paramonotone on \(rQ_v \). Let \(W : 2^{\Gamma}(\Delta) \to [0, \infty) \) be as in (141). Then for any \(v \in \mathcal{V}(\Delta) \),
\[
W\left(\{ w \in \mathcal{V}(\Delta) : w \leq v \} \right) \lesssim_{\eta, r, R, \lambda} |Q_v|.
\] (155)

With these tools at hand, Theorem 5.2 follows directly.

Proof of Theorem 5.2 assuming Proposition 7.2 and Proposition 7.4. Let \(r \) be as in Proposition 7.2 and write \(\mu_0 = \frac{1}{32r^2} \). Fix \(0 < \mu \leq \mu_0 \) and \(\sigma > 0 \), and let \(\eta, R \) be as in Lemma 7.3. Since \(\Gamma \) is an intrinsic \(\lambda \)-Lipschitz graph, Lemma 7.3 produces a \(\mu \)-rectilinear foliated patchwork \(\Delta \) rooted at \(Q \) with a set of \(\sigma \)-approximating planes. By Proposition 7.4, this patchwork is weighted–Carleson with a constant depending on \(\eta, r, R, \sigma \), and \(\lambda \). Since \(r > 1 \) is universal and \(\eta, R \) depend only on \(\mu, \sigma \), we obtain Theorem 5.2 by using Lemma 5.5 to increase \(\mu_0 = \frac{1}{32r^2} \) to \(\mu_0 = \frac{1}{32r^2} \).
see the proof of Lemma 9.5. We can then construct a foliation of Q_{v_F} by parabolas by linearly interpolating between the h_i's. Since any parabola is the projection of a horizontal line to V_0, this foliation is the set of characteristic curves of a ruled surface $\Sigma \subseteq \mathbb{H}$. By passing to a limit, one can construct a ruled surface corresponding to any coherent subset of horizontally cut vertices. This procedure is roughly analogous to the method used in [DS91] to approximate stopping-time regions in uniformly rectifiable sets in \mathbb{R}^n by Lipschitz graphs. In our setting, we can use linear interpolation instead of using a partition of unity as in [DS91] or [NY18].

By Proposition 7.2, Σ approximates Γ and the characteristic curves of Σ approximate the characteristic curves of Σ inside Q_{v_F} (with accuracy depending on the heights of the Q_i's). In fact, if $v \in V_H(\Delta)$ is a vertex such that every descendant of v is horizontally cut (i.e., $\mathcal{O}(v) \subseteq \mathcal{T}_H(\Delta)$), then Σ coincides with Γ over Q_v. We omit the details of these approximations because they are not needed in the current work, but complete details will be given in forthcoming work of the second named author where they will be used to analyze intrinsic Lipschitz functions.

We will prove Proposition 7.2 and Proposition 7.4 in the following sections. Specifically, in Section 8, we will define extended nonmonotonicity and extended parametric normalized nonmonotonicity and prove some of their basic properties. In Section 9, we will prove that Proposition 7.2 implies Proposition 7.4. Finally, in Sections 10–12, we will prove Proposition 7.2.

8. Extended nonmonotonicity

8.1. Extended nonmonotonicity in \mathbb{R}. In this section, we define the extended nonmonotonicity and extended parameterized nonmonotonicity of a set $E \subseteq \mathbb{H}$. Like the quantitative nonmonotonicity that was defined in [CKN11] and the horizontal width that was defined in [FOR20], these measure how horizontal lines intersect ∂E.

We first define these quantities on subsets of lines, then define them on subsets of \mathbb{H} by integrating over the space of horizontal lines. Let L be the space of horizontal lines in \mathbb{H}. Let N be the Haar measure on L, normalized so that the measure of the set of lines that intersect the ball of radius r is equal to r^3.

Recall that a measurable subset $S \subseteq \mathbb{R}$ is monotone [CK10b] if its indicator function is a monotone function (i.e., S is equal to either \emptyset, \mathbb{R}, or some ray). For a measurable set $U \subseteq \mathbb{R}$, we define the nonmonotonicity of S on U by

$$\text{NM}_S(U) \equiv \inf \{ \mathcal{H}^1(U \cap (M \Delta S)) : M \text{ is monotone} \},$$

where, as usual, $M \Delta S = (M \sim S) \cup (S \sim M)$ is the symmetric difference of M and S.

For $S \subseteq \mathbb{R}$, we say that S has finite perimeter if $\partial_{\mathcal{H}^1} S$ is a finite set, where we recall the notation (36) for measure theoretical boundary, which in the present setting becomes

$$\partial_{\mathcal{H}^1} S \equiv \{ x \in \mathbb{R} : 0 < \mathcal{H}^1((x - \varepsilon, x + \varepsilon) \cap S) < 2\varepsilon \text{ for all } \varepsilon > 0 \}.$$

If $S \subseteq \mathbb{R}$ is a set of finite perimeter, then there is a unique collection of disjoint closed intervals of positive length $\mathcal{I}(S) = \{ I_1(S), I_2(S), \ldots \}$ such that $S \Delta \bigcup \mathcal{I}(S)$ has measure zero.
For any $R > 0$, we define as follows a point measure $\omega_{S,R}$ supported on the boundaries of the intervals in $\mathcal{I}(S)$ of length at most R.

$$\omega_{S,R} \stackrel{\text{def}}{=} \sum_{I \in \mathcal{I}(S)} \mathcal{H}^1(I) \cdot (\delta_{\min I} + \delta_{\max I}).$$

Let

$$\hat{\omega}_{S,R} = \frac{\omega_{S,R} + \omega_{R \setminus S,R}}{2}.$$

These measures are inspired by analogous measures $\{\hat{w}_i\}_{i \in \mathbb{Z}}$ used in [CKN11]. It was shown in [CKN11] that if $\delta > 0$ is sufficiently small, then the nonmonotonicity of S at scale δ^i is bounded in terms of a measure \hat{w}_i that counts the set of endpoints of intervals in S or $\mathbb{R} \setminus S$ of length between δ^i and δ^{i+1}. The main difference between \hat{w}_i and $\hat{\omega}_{S,\delta^i}$ is that \hat{w}_i ignores intervals of length less than δ^{i+1}, but $\hat{\omega}_{S,\delta^i}$ weights them by their lengths.

For $U \subseteq \mathbb{R}$, we call $\hat{\omega}_{S,R}(U)$ the R-extended nonmonotonicity of S on U. (We will typically use this notation when $R > \text{diam } U$.) We use the term “extended” here because it depends not only on $S \cap U$, but also on the behavior of S outside U. For example, let $U = [a, b]$ and suppose that $S \subseteq \mathbb{R}$ is a set with locally finite perimeter. If $\hat{\omega}_{S,R}(U) = 0$ for all $R > 0$, then there can be no finite-length interval in $\mathcal{I}(S)$ or $\mathcal{I}(\mathbb{R} \setminus S)$ with a boundary point in U. That is, $U \cap \partial_{\mathcal{H}^1} S$ is empty or, up to a measure-zero set, $S = [c, \infty)$ or $S = (-\infty, c]$ for some $c \in [a, b]$. Similarly, when $S = [a, b]$ and $R > b - a$, if $\hat{\omega}_{S,R}(U)$ is much smaller than $b - a$, then either $U \cap \partial_{\mathcal{H}^1} S$ is almost empty or U is almost monotone on an R-neighborhood of S. This follows from the following two lemmas. The first lemma is based on the bounds in Proposition 4.25 of [CKN11] and Lemma 3.4 of [FOR20].

Lemma 8.1. Let $a, b \in \mathbb{R}$, let $U \subseteq [a, b]$, and let $R \geq b - a$. For any finite-perimeter set $S \subseteq \mathbb{R}$,

$$\text{NM}_S(U) \leq \text{diam}(\{(a, b) \cap \partial_{\mathcal{H}^1} S\} \subseteq \hat{\omega}_{S,R}((a, b)).$$

Proof. Let $\delta = \text{diam}(\{(a, b) \cap \partial_{\mathcal{H}^1} S\}$. Consider the following set of closed intervals.

$$J \stackrel{\text{def}}{=} \{I \in \mathcal{I}(S) \cup \mathcal{I}(\mathbb{R} \setminus S) : I \cap (a, b) \neq \emptyset\}.$$

This set is finite, so we may label its elements J_1, \ldots, J_n in increasing order. After changing S on a measure-zero subset, the interiors of the J_i’s are alternately contained in S and disjoint from S. If $n = 1$, then $\text{NM}_S(U) = 0$ and $\delta = 0$, so we suppose that $n \geq 2$. Then

$$\delta = \min(J_n) - \max(J_1) \leq \sum_{i=2}^{n-1} \mathcal{H}^1(J_i)$$

and

$$\hat{\omega}_{S,R}((a, b)) \geq 2 \sum_{m=2}^{n-1} \mathcal{H}^1(J_m) \geq \delta.$$

Regardless of whether J_1 and J_n are in or out of S, there is a monotone subset $M \subseteq \mathbb{R}$ such that 1_M agrees with 1_S on J_1 and J_n. Then

$$\text{NM}_S(U) \leq \mathcal{H}^1(\{U \cap (S \Delta M)\} \leq \mathcal{H}^1([a, b] \setminus (J_1 \cup J_n)) = \delta. \quad \square$$

A similar reasoning gives the following lower bound. Recall that $\text{supp}_{\mathcal{H}^1}$ and $\text{int}_{\mathcal{H}^1}$ denote measure-theoretic support and interior, see (35)–(37).
Lemma 8.2. Fix $R, a, b \in \mathbb{R}$ with $a < b$ and $R > b - a$. Let $S \subseteq \mathbb{R}$ have locally finite perimeter such that $a, b \in \text{supp}_{\mathcal{H}^1}(\mathbb{R} \sim S)$. For any closed interval $I \subseteq [a, b]$, either $I \subseteq \text{int}_{\mathcal{H}^1} S$ or
\[
\widehat{\omega}_{S,R}(I) \geq \frac{\mathcal{H}^1(S \cap I)}{2}.
\]

Proof. Suppose that $I \not\subseteq \text{int}_{\mathcal{H}^1} S$. Let I_1, \ldots, I_n be the intervals in $\mathcal{I}(S)$ that intersect I. By assumption, each of the intervals I_1, \ldots, I_n has at least one endpoint in I. Furthermore, since $a, b \in \text{supp}_{\mathcal{H}^1}(\mathbb{R} \sim S)$, we have $I_j \subseteq [a, b]$ for all $j \in \{1, \ldots, n\}$. In particular, $\max_{j \in \{1, \ldots, n\}} |I_j| \leq R$. Up to a null set, we have $S \cap I \subseteq \bigcup_{j=1}^n I_j$, so
\[
\widehat{\omega}_{S,R}(I) \geq \sum_{j=1}^n \frac{\mathcal{H}^1(I_j)}{2} \geq \frac{\mathcal{H}^1(S \cap I)}{2}. \tag{157}
\]

These lemmas yield the following description of sets with small extended nonmonotonicity, which states that points in their measure theoretic boundary must be either very close to each other, or very far from each other.

Proposition 8.3. Let $S \subseteq \mathbb{R}$ be a set with locally finite perimeter and fix $c, d \in \mathbb{R}$ with $c < d$. Let $R \geq d - c$ and suppose that $0 < \varepsilon < \frac{R}{8}$ and $\widehat{\omega}_{S,R}((c, d)) < \varepsilon$. Then,
\[
\forall t \in [c + 4\varepsilon, d - 4\varepsilon] \cap \partial_{\mathcal{H}^1} S, \quad \text{diam}\left((t - R, t + R) \cap \partial_{\mathcal{H}^1} S\right) < \varepsilon. \tag{156}
\]

Proof. Fix $t \in [c + 4\varepsilon, d - 4\varepsilon] \cap \partial_{\mathcal{H}^1} S$. We will prove that this implies that
\[
(t - R, t + R) \cap \partial_{\mathcal{H}^1} S \subseteq (c, d). \tag{157}
\]

Equation (156) is a consequence of the inclusion (157), since by Lemma 8.1,
\[
\text{diam}\left((t - R, t + R) \cap \partial_{\mathcal{H}^1} S\right) \leq \text{diam}\left((c, d) \cap \partial_{\mathcal{H}^1} S\right) \leq \widehat{\omega}_{S,R}((c, d)) < \varepsilon.
\]

Suppose by way of contradiction that (157) fails. So, there is $u \in (t - R, t + R) \cap \partial_{\mathcal{H}^1} S$ with $u \geq d$ or $u \leq c$. We will treat only the case $u \geq d$ since the case $u \leq c$ is analogous. Lemma 8.2 applied with $[a, b] = [t, u]$ and $I = [t, d]$, gives
\[
\frac{\mathcal{H}^1(S \cap [t, d])}{2} \leq \widehat{\omega}_{S,R}([t, d]) < \varepsilon.
\]

If we replace S by $\mathbb{R} \sim S$, the Lemma 8.2 gives
\[
\frac{\mathcal{H}^1([t, d] \sim S)}{2} \leq \widehat{\omega}_{S,R}([t, d]) < \varepsilon.
\]

So $d - t < 4\varepsilon$, which contradicts the choice of t. \hfill \Box

Remark 8.4. Despite the name “extended nonmonotonicity,” there is no direct comparison between the extended nonmonotonicity of S on U and the nonmonotonicity of S on a neighborhood of U. For example, if $R > 0$, $0 < \varepsilon < 1$, and $S = [-\varepsilon, \varepsilon] \cup [R, \infty)$, then $\text{NM}_S(\mathbb{R}) = 4\varepsilon$, but $\widehat{\omega}_{S,R}$ is the point measure
\[
\widehat{\omega}_{S,R} = \varepsilon \delta_{-\varepsilon} + \left(\frac{\varepsilon}{2} + \frac{R}{2}\right) \delta_{\varepsilon} + \frac{R}{2} \delta_R,
\]
so $\widehat{\omega}_{S,R}([-1, 1])$ is large despite S having small nonmonotonicity. Conversely, for any $T \subseteq \mathbb{R}$ that contains $[-1, 1]$, the boundary $\partial_{\mathcal{H}^1} T$ is disjoint from $(-1, 1)$, so $\widehat{\omega}_{T,R}((-1, 1)) = 0$ regardless of the behavior of T on the rest of \mathbb{R}.
8.2. Extended nonmonotonicity in \mathbb{H}. We have defined NM and $\hat{\omega}$ for subsets of \mathbb{R}, but the same definitions are valid for subsets of any line $L \in \mathcal{L}$. This lets us define the nonmonotonicity of a subset of \mathbb{H} by integrating over horizontal lines.

When $U, E \subseteq \mathbb{H}$ are measurable sets, we define the nonmonotonicity of E on U by

$$\text{NM}_E(U) \overset{\text{def}}{=} \int_{\mathcal{L}} \text{NM}_{E \cap L}(U \cap L) \, d\mathcal{N}(L).$$

(Note that this definition differs from the definition in [CKN11]. Specifically, in [CKN11], this was only defined in the case that $U = B_r(x)$ for some $r \in (0, \infty)$ and $x \in \mathbb{H}$, and was normalized by a factor of r^{-3} to make it scale-invariant.)

Definition 8.5. Fix $R > 0$. Let $E \subseteq \mathbb{H}$ be a set with finite perimeter. By the kinematic formula (Section 2.5), for almost every $L \in \mathcal{L}$, the intersection $E \cap L$ is a set with finite perimeter, and we define for $U \subseteq \mathbb{H}$,

$$\hat{\omega}_{E,R}(U, L) \overset{\text{def}}{=} \hat{\omega}_{E \cap L,R}(U \cap L).$$

We then define a measure $\text{ENM}_{E,R}$ on \mathbb{H} by setting

$$\text{ENM}_{E,R}(U) \overset{\text{def}}{=} \int_{\mathcal{L}} \hat{\omega}_{E,R}(U, L) \, d\mathcal{N}(L).$$

We call $\text{ENM}_{E,R}(U)$ the R–extended nonmonotonicity of E on U, and for $\nu > 0$ we say that E is (ν, R)–extended monotone on U if $\text{ENM}_{E,R}(U) \leq \nu$. Like $\hat{\omega}_{S,R}(\cdot)$, $\text{ENM}_{E,R}(U)$ depends on the behavior of E in an R–neighborhood of U. If $R \leq R'$, then $\text{ENM}_{E,R} \leq \text{ENM}_{E,R'}$.

When we say that a subset $U \subseteq \mathbb{H}$ is convex, we will always mean that it is convex as a subset of the vector space \mathbb{R}^3. For every $g \in \mathbb{H}$, the map $\nu \mapsto g \nu$ is an affine map from \mathbb{H} to itself, so convexity is preserved by left multiplication.

Lemma 8.6. Let $U \subseteq \mathbb{H}$ be a measurable bounded set and let $K \subseteq U$ be convex. Let $E \subseteq \mathbb{H}$ be a finite-perimeter set. Then, for every $R > \text{diam } U$ we have

$$\text{NM}_E(K) \leq \text{ENM}_{E,R}(U).$$

Proof. Let $L \in \mathcal{L}$ be a horizontal line. By convexity, the intersection $I = L \cap K$ is an interval and $\ell(I) \leq \text{diam } U$. By Lemma 8.1,

$$\text{NM}_{E \cap L}(I) \leq \hat{\omega}_{E \cap L,R}(I) \leq \hat{\omega}_{E,R}(U, L).$$

Integrating both sides of this inequality with respect to \mathcal{N} yields the desired bound. \square

We will also define a parametric version of extended nonmonotonicity that is better adapted to intrinsic Lipschitz graphs. This is based on a different measure on the space of horizontal lines, denoted \mathcal{N}_p, which we next describe.

Let $W_0 = \{x = 0\}$ be the yz–plane and let \mathcal{L}_p be the set of horizontal lines that are not parallel to W_0. Each $L \in \mathcal{L}_p$ intersects W_0 in a single point $w(L)$, called the intercept of L, and has a unique slope $m(L) \in \mathbb{R}$ such that $L = w(L) \cdot (X + m(L)Y)$.

The map $(m, w) : \mathcal{L}_p \to \mathbb{R} \times W_0$ is a bijection, and we define \mathcal{N}_p to be the pullback of the Lebesgue measure on $\mathbb{R} \times W_0$ under this bijection. This measure is preserved by shear
maps and translations. If \(a,b > 0\) and if \(L_{(0,y,z),m}\) is the line with slope \(m\) and intercept \((0,y,z)\), then \(s_{a,b}(L_{(0,y,z),m}) = L_{(0,by,abz),m^b}\), so for any measurable set \(A \subseteq \mathcal{L}_P\),

\[
\mathcal{N}_P(s_{a,b}(A)) = b^3 \mathcal{N}_P(A).
\]

Let \(E \subseteq \mathbb{H}\). For any \(R > 0\), any \(U \subseteq V_0\), and any \(L \in \mathcal{L}_P\), we define

\[
\hat{\omega}_{E,R}^P(U,L) \overset{\text{def}}{=} \frac{1}{R} \int_0^R \hat{\omega}_{E,R}^P(U,L) \, d\mathcal{N}_P(L).
\]

This is similar to \(\hat{\omega}_{E,R}(\Pi^{-1}(U),L)\) in (158), but the projection to the \(x\)--coordinate that appears in (160) changes the measures and lengths involved by a constant factor.

When \(E\) is a finite-perimeter subset of \(\mathbb{H}\), we define a measure \(\Omega_{E,R}^P\) on \(V_0\) by setting for any measurable subset \(U \subseteq V_0\),

\[
\Omega_{E,R}^P(U) \overset{\text{def}}{=} \frac{1}{R} \int_0^R \hat{\omega}_{E,R}^P(U,L) \, d\mathcal{N}_P(L).
\]

We call \(\Omega_{E,R}^P(U)\) the \(R\)--extended parametric normalized nonmonotonicity of \(E\) on \(U\). Note that the definition (161) includes an \(R^{-1}\) factor that does not appear in Definition 8.5; we will see that this normalization allows for the kinematic formula (33) to hold.

In general, the measure \(\Omega_{E,R}^P\) is not necessarily locally finite. Indeed, if \(B \subseteq \mathbb{H}\) is a ball, then the set of lines that pass through \(B\) has infinite \(\mathcal{N}_P\)--measure. But when \(\Gamma\) is an intrinsic \(\lambda\)--Lipschitz graph, any line with sufficiently large slope intersects \(\Gamma\) exactly once. If \(E = \Gamma^+\) and \(L \in \mathcal{L}_P\) is a line such that \(L \cap E\) is nonmonotone, then \(L\) has bounded slope; it follows that \(\Omega_{E,R}^P(K)\) is finite for any compact \(K \subseteq V_0\). Furthermore, \(\Omega_{E,R}^P\) is bounded below by \(ENM_{\Gamma^+}R\).

Lemma 8.7. Let \(R > 0\) and let \(x \in \mathbb{H}\). Suppose that \(E\) is a finite-perimeter subset of \(\mathbb{H}\) and let \(U \subseteq \mathbb{H}\) be measurable. Then

\[
ENM_{E,R}(U) \lesssim R \Omega_{E,R}^P(\Pi(U)).
\]

Proof. Let \(L \in \mathcal{L}_P\) and let \(m = m(L)\) be the slope of \(L\), so that the restriction \(x|_L\) shrinks lengths by a factor of \(\phi(m) = \sqrt{1 + m^2}\). Then

\[
\hat{\omega}_{E,R}^P(\Pi(U),L) = \frac{\hat{\omega}_{E,\phi(m)R}(\Pi^{-1}(\Pi(U)),L)}{\phi(m)} \geq \frac{\hat{\omega}_{E,R}(U,L)}{\phi(m)}.
\]

For \(w \in W_0\) and \(m \in \mathbb{R}\), let \(L_{w,m}\) be the line \(L_{w,m} = w \cdot (X + mY) \in \mathcal{L}_P\). Then it follows that

\[
R \Omega_{E,R}^P(\Pi(U)) = \int_{W_0} \int_{\mathbb{R}} \hat{\omega}_{E,R}^P(\Pi(U),L_{w,m}) \, dm \, dw \geq \int_{W_0} \int_{\mathbb{R}} \frac{\hat{\omega}_{E,R}(U,L_{w,m})}{\sqrt{1 + m^2}} \, dm \, dw.
\]

For \(\theta \in \mathbb{R}\), let \(R_\theta : \mathbb{H} \rightarrow \mathbb{H}\) be the rotation by angle \(\theta\) around the \(z\)--axis. Since \(\mathcal{N}\) is invariant under translations and rotations, there is \(c > 0\) such that for any measurable \(f : \mathcal{L} \rightarrow \mathbb{R}\),

\[
\int_{\mathcal{L}} f(M) \, d\mathcal{N}(M) = c \int_{W_0} \int_{\mathbb{R}} f(R_\theta(L_{g,0})) \, d\theta \, dg.
\]

Any line in \(\mathcal{L}_P\) can be written as \(R_\theta(L_{g,0})\) for some \(\theta \in \mathbb{R}\) and \(g \in W_0\). Specifically, for \(w \in W_0\) and \(m \in \mathbb{R}\), let \(\theta(m) = \arctan m\) and let \(g_m(w)\) be the \(W_0\)--intercept of \(R_{-\theta(m)}(L_{w,m})\).
so that $L_{u,m} = R_{\theta(m)}(L_{g_m}(w), 0)$. Writing g_m in coordinates as $g_m = (0, b_m, c_m)$, its Jacobian is

$$J_{g_m}(y, z) = \det \begin{pmatrix} \frac{db_m}{dy} & \frac{db_m}{dz} & 0 \\ \frac{dc_m}{dy} & \frac{dc_m}{dz} & 1 \end{pmatrix} = \det \begin{pmatrix} \cos(\arctan m) & 0 \\ \frac{dc_m}{dy} & 1 \end{pmatrix} = \frac{1}{\sqrt{1 + m^2}}.$$ Consequently,

$$\int_{W_0} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(R_\theta(L_{g_R}(w))) \, d\theta \, dg = \int_{W_0} \int_{R} f(L_{w,m}) \frac{dg}{dm} J_{g_m}(w) \, dm \, dw$$

$$= \int_{W_0} \int_{R} f(L_{w,m}) \, dm \, dw.$$

Thus

$$\text{ENM}_{E,R}(U) = \int_{\mathcal{L}} \hat{\omega}_{E,R}(U, L) \, d\mathcal{N}(L) = c \int_{W_0} \int_{R} \hat{\omega}_{E,R}(U, L_{w,m}) \, dm \, dw \leq cR\Omega_{E,R}^P(\Pi(U)),$$

as desired. \qed

One advantage of Ω^P over ENM is that Ω^P scales nicely under automorphisms.

Lemma 8.8. Fix $a, b \in \mathbb{R} \setminus \{0\}$ and let $g = q \circ \rho_h \circ s_{a,b} : \mathbb{H} \to \mathbb{H}$ be a composition of a shear map q, a left-translation by $h \in \mathbb{H}$, and a stretch map $s_{a,b}$. Let $\hat{g} : V_0 \to V_0$ be the map induced on V_0, i.e., $\hat{g}(x) = \Pi(g(x))$ for all $x \in V_0$. Let $E \subseteq \mathbb{H}$ be a set with finite perimeter. For any measurable $U \subseteq V_0$ and any $R > 0$, if $\Omega_{E,R}^P(U)$ is finite, then

$$\Omega_{g(E),|a|R}^P(\hat{g}(U)) = |b|^3 \Omega_{E,R}^P(U),$$

(162)

and

$$\frac{\Omega_{g(E),|a|R}^P(\hat{g}(U))}{|\hat{g}(U)|} = \frac{b^2}{a^2} \cdot \frac{\Omega_{E,R}^P(U)}{|U|}.$$ (163)

In particular, if g is a composition of a scaling, shear, and translation, i.e., when $a = b$ above, then g preserves the density of $\Omega_{E,R}^P$.

Proof. The identity (162) is verified by computing as follows, using (159).

$$\Omega_{g(E),|a|R}^P(\hat{g}(U)) = \frac{1}{|a|R} \int_{\mathcal{L}_p} \hat{\omega}_{g(E),|a|R}^P(\hat{g}(U), L) \, d\mathcal{N}(L)$$

$$= \frac{|b|^3}{|a|R} \int_{\mathcal{L}_p} \hat{\omega}_{E,R}^P(\hat{g}(U), g(L)) \, d\mathcal{N}(L)$$

$$= \frac{|b|^3}{|a|R} \int_{\mathcal{L}_p} |a| \hat{\omega}_{E,R}^P(U, L) \, d\mathcal{N}(L)$$

$$= |b|^3 \Omega_{E,R}^P(U),$$

By Lemma 2.8 we have $|\hat{g}(U)| = a^2 |b| \cdot |U|$, which implies (163). \qed
Suppose that Q is a pseudoquad for an intrinsic Lipschitz graph $\Gamma \subseteq \mathbb{H}$ and that g is as in Lemma 8.8. If Γ is (η, R)–paramonotone on $r Q$ as in Definition 7.1, then the density of $\Omega_{\Gamma^+, R\delta_x(Q)}^P$ is bounded as follows:

$$\frac{\Omega_{\Gamma^+, R\delta_x(Q)}^P(r Q)}{|Q|} \leq \frac{\eta}{a(Q)^4}.$$

Let $\hat{Q} = \hat{g}(Q)$ and $\hat{\Gamma} = g(\Gamma)$. Then (163) and Lemma 4.2 imply that

$$\frac{\Omega_{\Gamma^+, R\delta_x(\hat{Q})}^P(r \hat{Q})}{|\hat{Q}|} \leq \frac{\eta b^2}{a^2 a(Q)^4} = \frac{\eta}{a(\hat{Q})^4},$$

so $\hat{\Gamma}$ is (η, R)–paramonotone on $r \hat{Q}$ if and only if Γ is (η, R)–paramonotone on $r Q$.

In particular, it follows from Lemma 8.7 that if Γ is (η, R)–paramonotone on $r Q$, then

$$\text{ENM}_{\Gamma^+, R\delta_x(Q)}(\Pi^{-1}(r Q)) \lesssim R\delta_x(Q)\Omega_{\Gamma^+, R\delta_x(Q)}^P(r Q) \leq \frac{\delta_x(Q) |Q|}{a(Q)^4} \eta R \approx_Q \eta R. \quad (164)$$

9. The Kinematic Formula and the Proof of Proposition 7.4

In this section, we prove Proposition 7.4 using two lemmas. The first bounds the total weight of the vertically cut descendants of a vertex $v \in V(\Delta)$ in terms of Ω^P.

Lemma 9.1. Let $r, \eta, R, \lambda, \Gamma,$ and Δ be as in Proposition 7.4. Then for any $v \in V(\Delta)$,

$$W(\{w \in K_\Delta : w \leq v\}) \lesssim_{\eta, \lambda_0} \sum_{i=0}^{\infty} \Omega_{\Gamma^+, 2^{-i} R \delta_x(Q_v)}^P(r Q_v). \quad (165)$$

The second is a kinematic formula bounding Ω^P in terms of Lebesgue measure on V_0.

Lemma 9.2. Let $0 < \lambda < 1$ and let Γ be an intrinsic λ–Lipschitz graph. For any measurable set $U \subseteq V_0$,

$$\sum_{i \in \mathbb{Z}} \Omega_{\Gamma^+, 2^{-i}}^P(U) \lesssim_\lambda |U|. \quad (166)$$

Proposition 7.4 follows from Lemma 9.1 and Lemma 9.2.

Proof of Proposition 7.4 assuming Lemma 9.1 and Lemma 9.2. Fix $v \in V(\Delta)$ and denote $\delta = \delta_x(Q_v)$. Due to Lemma 9.1,

$$W(\{w \in K_\Delta : w \leq v\}) \lesssim_{\eta, \lambda_0} \sum_{i=0}^{\infty} \Omega_{\Gamma^+, 2^{-i} R \delta}^P(r Q_v).$$

Let k be the integer such that $2^{k-1} \leq R \delta < 2^k$. Then

$$\sum_{i=0}^{\infty} \Omega_{\Gamma^+, 2^{-i} R \delta}^P(r Q_v) \lesssim \sum_{i=0}^{\infty} 2 \Omega_{\Gamma^+, 2^{-i+k}}^P(r Q_v) \lesssim_{\lambda} |r Q_v|. \quad (166)$$

Thus, $W(\{w \in K_\Delta : w \leq v\}) \lesssim_{\eta, \lambda} |Q_v|$. \hfill \Box

We first establish Lemma 9.1, which we prove using an argument based on the Vitali Covering Lemma. The first step is to construct partitions of Q into pseudoquads with dyadic widths. As in Lemma 6.4, we construct these partitions from coherent subtrees.
Lemma 9.3. Let $0 < \mu \leq \frac{1}{32}$ and let $(\Delta, (Q_v)_{v \in \Delta})$ be a μ–rectilinear foliated patchwork for a μ–rectilinear pseudoquad Q. Fix $j \in \mathbb{N} \cup \{0\}$. For $v \in \mathcal{V}(\Delta)$, let $\mathcal{D}_V(v) \subseteq \mathcal{V}(\Delta)$ denote the set of vertically cut descendants of v, and let

$$F_j(v) \overset{\text{def}}{=} \left\{ w \in \mathcal{D}_V(v) : \delta_x(Q_w) = 2^{-j} \delta_x(Q) \right\}.$$

Then, for any $w, w' \in F_j(v)$, if $w \neq w'$, then Q_w and $Q_{w'}$ have disjoint interiors.

Proof. Let $\mathcal{D}(v)$ be the set of descendants of v and let

$$R_j = \left\{ w \in \mathcal{D}(v) : \delta_x(Q_w) \geq 2^{-j} \delta_x(Q) \right\}.$$

By Lemma 4.5, this is a coherent set and $F_j(v) = \min R_j$, so Lemma 6.3 implies that $F_j(v)$ consists of pseudoquads with disjoint interiors.

Let v_0 be the root of Δ (so $Q = Q_{v_0}$). For each $j \in \mathbb{N} \cup \{0\}$ we write $F_j = F_j(v_0)$. Denote $I = x(Q)$ and $I_j = 2^{-j} \ell(I) = 2^{-j} \delta_x(Q)$. Let $I_{j,1}, \ldots, I_{j,2^j}$ be the partition of I into 2^j intervals of length I_j, so that for any $v \in \mathcal{V}(\Delta)$, there are $j, m \in \mathbb{N} \cup \{0\}$ such that $x(Q_v) = I_{j,m}$. We partition F_j into columns as follows.

$$\forall m \in \{1, \ldots, 2^j\}, \quad F_{j,m} \overset{\text{def}}{=} \{ w \in F_j : x(Q_w) = I_{j,m} \}. \quad (167)$$

Each column satisfies the following version of the Vitali Covering Lemma.

Lemma 9.4. For each $j \in \mathbb{N} \cup \{0\}$ and $m \in \{1, \ldots, 2^j\}$, there is a (possibly finite) sequence of vertices $D_{j,m} = \{v_1, v_2, \ldots\} \subseteq F_{j,m}$ such that $r Q_{v_1}, r Q_{v_2}, \ldots$ are pairwise disjoint and

$$W(D_{j,m}) \equiv W(F_{j,m}).$$

We prove Lemma 9.4 using the following expansion property.

Lemma 9.5. Let $r > 1$ and $0 < \mu \leq \frac{1}{32r}$. Let Δ be a μ–rectilinear foliated patchwork. Let $v, w \in \mathcal{V}(\Delta)$ be vertices such that $x(Q_v) = x(Q_w)$ and suppose that $r Q_v \cap r Q_w$ is nonempty. If $\delta_z(Q_v) \geq \delta_z(Q_w)$, then $Q_w \subseteq 3r Q_v$, and if $\delta_z(Q_w) \geq \delta_z(Q_v)$, then $Q_w \subseteq 3r Q_v$.

Proof. Write $I = [-1, 1]$. By rescaling and translating, we may suppose without loss of generality that $x(Q_v) = x(Q_w) = I$. Also, we may suppose that Q_v is vertically below Q_w. We first construct a stack of pseudoquads of width at least 2 that connects Q_v and Q_w.

For $u \in \mathcal{V}(\Delta)$, let $A(u) = \{ t \in \mathcal{V}(\Delta) : t \geq u \}$ be the set of ancestors of u. If $u \neq v_0$, let $S(u)$ be the sibling of u and let $P(u)$ be the parent of u. Let

$$J = A(v) \cup A(w) \cup S(A(v) \cup A(w)).$$

Since $A(v) \cup A(w)$ spans a connected subtree of Δ, so does J, and J is a coherent subset of $\mathcal{V}(\Delta)$. Furthermore, J is finite, so $K = \min J$ is a partition of Q.

If $u \in K$, then u is either an ancestor of v or w or a sibling of such an ancestor. In either case, $\delta_x(Q_u) \geq 2$, and the base of Q_u either contains I or its interior is disjoint from J. Let $K' = \{ u \in K : I \subseteq x(Q_u) \}$. For each $u \in K'$, Q_u intersects the z–axis in an interval. We denote the elements of K' by u_1, \ldots, u_n, in order of increasing z–coordinate. These pseudoquads form a stack; each pseudoquad Q_{u_i} is vertically adjacent to $Q_{u_{i+1}}$. We suppose that $u_a = v$ and $u_b = w$, with $a < b$.
Rectilinearity implies that the boundaries of the \(Q_i\)'s have similar slopes. For each \(i \in \{1, \ldots, n\}\), let \(g_i\) be the lower bound of \(Q_i\), and let \(g_{i+1}\) be its upper bound. These may be defined on different domains, but all of their domains contain \(I\). For each \(i \in \{1, \ldots, n\}\), let \(R_i\) be the parabolic rectangle associated to \(Q_i\) and let \(d_i = \delta_z(Q_i)\), so that there are quadratic functions \(h_i : \mathbb{R} \to \mathbb{R}\) satisfying

\[
\left\| g_i - \left(h_i - \frac{d_i}{2} \right) \right\|_{L_m(I)} \leq \mu d_i \quad \text{and} \quad \left\| g_{i+1} - \left(h_i + \frac{d_i}{2} \right) \right\|_{L_m(I)} \leq \mu d_i.
\]

Then

\[
\left\| \left(h_{i+1} - \frac{d_{i+1}}{2} \right) - \left(h_i + \frac{d_i}{2} \right) \right\|_{L_m(I)} \leq \mu (d_i + d_{i+1}). \tag{168}
\]

Hence, for any \(i, j \in \{1, \ldots, n\}\) with \(i < j\),

\[
\left\| h_j - h_i - \sum_{k=i}^{j-1} \frac{d_k + d_{k+1}}{2} \right\|_{L_m([-r, r])} \leq \mu \sum_{k=i}^{j-1} (d_k + d_{k+1}) \leq \sum_{k=i}^{j-1} \frac{d_i + d_{i+1}}{2}.
\]

Denoting

\[
D = \sum_{k=a}^{b-1} \frac{d_k + d_{k+1}}{2},
\]

it follows that for all \(x \in [-r, r]\) we have

\[
\frac{3}{4} D \leq h_b(x) - h_a(x) \leq \frac{5}{4} D. \tag{169}
\]

Suppose that \(\delta_z(Q_w) \leq \delta_z(Q_v)\). For each \(i \in \{1, \ldots, n\}\), the definition (132) of \(r Q\) states

\[
r Q_i = \left\{ (x, z) \in V_0 : x \in [-r, r] \text{ and } |z - h_i(x)| \leq \frac{r^2 d_i}{2} \right\}.
\]

Since \(\delta_z(Q_w) \leq \delta_z(Q_v)\) and \(r Q_v\) intersects \(r Q_w\), there is \(t \in [-r, r]\) such that

\[
h_b(t) - h_a(t) \leq \frac{r^2 (d_b + d_a)}{2} = \frac{r^2 (\delta_z(Q_v) + \delta_z(Q_w))}{2} \leq r^2 \delta_z(Q_v),
\]

and thus by (169) we have \(D \leq \frac{4}{3} r^2 \delta_z(Q_v)\).

Let \((x, z) \in Q_w\). By (168),

\[
z \in [g_b(x), g_{b+1}(x)] \subseteq \left[h_b(x) - \frac{3}{4} \delta_z(Q_w), h_b(x) + \frac{3}{4} \delta_z(Q_w) \right],
\]

so

\[
|h_a(x) - z| \leq |h_a(x) - h_b(x)| + |h_b(x) - z| \leq \frac{5}{4} D + \frac{3}{4} \delta_z(Q_w) \leq \frac{(3r)^2 \delta_z(Q_v)}{2},
\]

where the penultimate step uses (169) and the final step uses the upper bound on \(D\) that we derived above and the assumption \(\delta_z(Q_w) \leq \delta_z(Q_v)\). It follows that \((x, z) \in 3r Q_v\) and thus \(Q_w \subseteq 3r Q_v\). If \(\delta_z(Q_v) \leq \delta_z(Q_w)\), then the analogous reasoning shows that \(Q_v \subseteq 3r Q_w\). \(\square\)
Proof of Lemma 9.4. Similarly to the proof of the Vitali covering lemma, we define inductively a sequence S_0, S_1, \ldots of subsets of $F_{j,m}$ as follows. Let $S_0 = \emptyset$. For each $i \in \mathbb{N}$, let v_i be an element of $F_{j,m} \setminus \bigcup_{k=0}^{i-1} S_k$ that maximizes $\delta_z(Q_{v_i})$. Define

$$S_i = \left\{ u \in F_{j,m} : rQ_{v_i} \cap rQ_u \neq \emptyset \right\}.$$

If $\bigcup_{k=1}^{j} S_k = F_{j,m}$, we stop. By construction, $rQ_{v_1}, rQ_{v_2}, \ldots$ are disjoint. We will show that the set $D_{j,m} = \{v_1, v_2, \ldots \} \subseteq F_{j,m}$ satisfies the desired properties.

We first claim that $F_{j,m} = S_1 \cup S_2 \cup \ldots$, where this holds by construction if there are only finitely many v_i's. So, suppose that there are infinitely many v_i's and let $u \in F_{j,m}$. There are only finitely many elements of $F_{j,m}$ with height greater than $\delta_z(Q_w)$, so there is $i \in \mathbb{N}$ such that $\delta_z(Q_{v_i}) < \delta_z(Q_u)$. By the maximality of $\delta_z(Q_{v_i})$, this implies that $u \in S_1 \cup \ldots \cup S_{i-1}$.

We next show that $W(D_{j,m}) \asymp_r W(F_{j,m})$. As $D_{j,m} \subseteq F_{j,m}$, we have $W(D_{j,m}) \leq W(F_{j,m})$. Conversely, if $u \in S_i$, then rQ_u intersects rQ_{v_i} and $\delta_z(Q_u) \leq \delta_z(Q_{v_i})$, so Lemma 9.5 implies that $Q_w \leq 3rQ_{v_i}$. Since the elements of $F_{j,m}$ are pairwise disjoint (Lemma 9.3) pseudquads of the same width, we have $\alpha(Q_w) \geq \alpha(Q_{v_i})$ and

$$W(S_i) = \sum_{u \in S_i} \alpha(Q_u)^{-4}|Q_u| \leq \alpha(Q_{v_i})^{-4} \sum_{u \in S_i} |Q_u| = \alpha(Q_{v_i})^{-4} \left| \bigcup_{u \in S_i} Q_u \right| \leq \alpha(Q_{v_i})^{-4} |3rQ_{v_i}| = r^3 W(\{v_i\}).$$

By summing this bound over i, we conclude

$$W(F_{j,m}) = W(S_1) + W(S_2) + \ldots \lesssim r^3 (W(\{v_1\}) + W(\{v_2\}) + \ldots) = r^3 W(D_{j,m}). \quad \square$$

We are now ready to prove Lemma 9.1.

Proof of Lemma 9.1. It suffices to treat the case where v is the root of Δ, so $Q_v = Q$. Fix $j \in \mathbb{N} \cup \{0\}$ and $m \in \{1, \ldots, 2^j\}$. Let $F_{j,m}$ and $D_{j,m}$ be as in Lemma 9.4.

Since, by definition, $F_{j,m}$ consists only of vertices that are vertically cut, by hypothesis, Γ is not (η, R)-paramonotone on Q for each $u \in F_{j,m}$, i.e.,

$$\forall u \in F_{j,m}, \quad \Omega^P_{\Gamma^+, R_l} (rQ_u) > \eta \alpha(Q_u)^{-4} |Q_u| = \eta W(\{u\}).$$

Let $S_m = rI_{j,m} \times [0, \infty) \subseteq V_0$. The sets $(rQ_w)_{w \in D_{j,m}}$ are disjoint subsets of $S_m \cap rQ$, so

$$W(F_{j,m}) \asymp_r W(D_{j,m}) \leq \eta^{-1} \sum_{w \in D_{j,m}} \Omega^P_{\Gamma^+, R_l} (rQ_w) \leq \eta^{-1} \Omega^P_{\Gamma^+, R_l} (S_m \cap rQ).$$

By summing this bound over $m \in \{1, \ldots, 2^j\}$ we get

$$W(F_j) \lesssim r \sum_{m=1}^{2^j} \eta^{-1} \Omega^P_{\Gamma^+, R_l} (S_m \cap rQ) \lesssim r \eta^{-1} \Omega^P_{\Gamma^+, R_l} (rQ),$$

where the last step holds because the scaled intervals $rI_{j,1}, \ldots, rI_{j,2^j}$ have bounded overlap (depending on r). By summing this bound over j, we conclude as follows.

$$W(\mathcal{K}_V(\Delta)) = \sum_{j=0}^{\infty} W(F_j) \lesssim r \eta^{-1} \sum_{j=0}^{\infty} \Omega^P_{\Gamma^+, R_2, \delta_z(Q)} (rQ). \quad \square$$
Next, we prove Lemma 9.2 using the following kinematic formula for intrinsic Lipschitz graphs. Recall (Section 2.1) that for a measurable subset $E \subseteq \mathbb{H}$, we let Per_E denote the perimeter measure of E; this measure is supported on ∂E, and when E is bounded by an intrinsic Lipschitz graph, it differs from 3–dimensional Hausdorff measure on ∂E by at most a multiplicative constant. For any horizontal line $L \in \mathcal{L}$, let $\partial_{\mathcal{N}^1} E$ be the measure-theoretic boundary of E in L and let $\text{Per}_{E,L}$ be the counting measure on $\partial_{\mathcal{N}^1} E$.

Lemma 9.6. Fix $0 < \lambda < 1$. Let $\psi : V_0 \to \mathbb{R}$ be intrinsic λ–Lipschitz and let $\Gamma = \Gamma_\psi$ be its intrinsic graph. Let $U \subseteq V_0$ be a measurable set. For almost every $L \in \mathcal{L}_p$, the intersection $L \cap \Gamma^+$ has locally finite perimeter. If $\mathcal{M} \subseteq \mathcal{L}_p$ is the set of lines that intersect Γ at least twice, then

$$\int_{\mathcal{M}} \text{Per}_{\Gamma^+,L}(\Pi^{-1}(U)) \, d\mathcal{N}_p(L) \lesssim_\lambda |U|. \quad (170)$$

Proof. The measures \mathcal{N}_p and \mathcal{N} are absolutely continuous with respect to each other. Indeed, for each $m > 0$, if $D \subseteq \mathcal{L}_p$ is a set of lines with slopes that lie in $[-m,m]$, then $\mathcal{N}_p(D) \approx_m \mathcal{N}(D)$. By (58), there is $c > 0$ such that for any measurable $A \subseteq \mathbb{H}$,

$$\text{Per}_{\Gamma^+,L}(A) = c \int_{\mathcal{M}} \text{Per}_{\Gamma^+,L}(A) \, d\mathcal{N}(L).$$

Since Γ^+ has locally finite perimeter, this implies that for almost every line $L \in \mathcal{L}_p$, the intersection $L \cap \Gamma^+$ has locally finite perimeter. For $L \in \mathcal{L}_p$ let $m(L)$ be the slope of L as in Section 8. Suppose that $p \in L \cap \Gamma$. By (48), if $|m(L)| > \lambda/\sqrt{1-\lambda^2}$, then $L \subseteq p \cdot \text{Cone}_1$ and thus L intersects Γ exactly once. Consequently, $|m(M)| \leqslant \lambda/\sqrt{1-\lambda^2}$ for every $M \in \mathcal{M}$, and hence $\mathcal{N}_p(D) \approx_\lambda \mathcal{N}_p(D)$ for every measurable $D \subseteq \mathcal{M}$. So, by (58) and Lemma 2.5,

$$\int_{\mathcal{M}} \text{Per}_{\Gamma^+,L}(\Pi^{-1}(U)) \, d\mathcal{N}_p(L) \lesssim_\lambda \text{Per}_{\Gamma^+} (\Pi^{-1}(U)) \approx_\lambda |U|. \quad \square$$

Proof of Lemma 9.2. For a finite-perimeter set $S \subseteq \mathbb{R}$ and $R > 0$, let $\mathcal{F}(S)$ and $\tilde{\omega}_{S,R} = \frac{\omega_{S,R} + \omega_{R-S,R}}{2}$ be as in Section 8.1. Divide $\mathcal{F}(S)$ according to the length of the intervals as follows.

$$\forall \ j \in \mathbb{Z}, \quad C_j(S) \overset{\text{def}}{=} \left\{ I \in \mathcal{F}(S) : 2^{-j-1} < |I| \leqslant 2^{-j} \right\}.$$

Let $\mathcal{E}_j(S) \subseteq \mathbb{R}$ be the set of endpoints of the intervals in $C_j(S)$. Let $\lambda_{S,j}$ be the counting measure on $\mathcal{E}_j(S)$ and let $\hat{\lambda}_{S,j} \overset{\text{def}}{=} \frac{\lambda_{S,j} + \lambda_{R-S,j}}{2}.$

Then $\sum_{j \in \mathbb{Z}} \hat{\lambda}_{S,j} \leqslant \text{Per}_S$. (This isn't necessarily an equality as the left hand side is influenced only by bounded intervals while the right hand side could have a contribution from rays.) For each $k \in \mathbb{Z}$, the measure $\hat{\omega}_{S,2^{-k}}$ is a point measure supported on the set

$$\bigcup_{j=k}^{\infty} (\mathcal{E}_j(S) \cup \mathcal{E}_j(\mathbb{R} \sim S)),$$

that weighs each point according to the lengths of the intervals it bounds. In particular,

$$\text{supp} (\hat{\omega}_{S,2^{-k}} - \hat{\omega}_{S,2^{-k-1}}) \subseteq \mathcal{E}_k(S) \cup \mathcal{E}_k(\mathbb{R} \sim S),$$
and
\[\forall p \in \mathcal{E}_k(S) \cup \mathcal{E}_k(\mathbb{R} \sim S), \quad 2^{-k-2} \leq \bar{\omega}_{S,2^{-k}}(p) - \bar{\omega}_{S,2^{-k-1}}(p) \leq 2^{-k}. \]
Consequently, if we denote
\[\tilde{\lambda}_{S,k} \overset{\text{def}}{=} 2^k (\bar{\omega}_{S,2^{-k}} - \bar{\omega}_{S,2^{-k-1}}), \]
then \(\tilde{\lambda}_{S,j} \) and
\[\sum_{j \in \mathbb{Z}} \tilde{\lambda}_{S,j} = \sum_{j \in \mathbb{Z}} 2^{j+1} \bar{\omega}_{S,2^{-j}} - \sum_{j \in \mathbb{Z}} 2^j \bar{\omega}_{S,2^{-j}} + \sum_{j \in \mathbb{Z}} 2^j \bar{\omega}_{S,2^{-j}}. \]
It follows that
\[\sum_{j \in \mathbb{Z}} 2^j \bar{\omega}_{S,2^{-j}} \approx \sum_{j \in \mathbb{Z}} \tilde{\lambda}_{S,j} \leq \text{Per}_S. \quad (171) \]
For every measurable \(E \subseteq \mathbb{H} \) and \(U \subseteq V_0 \), and every \(L \in \mathcal{L}_p \), we have
\[\sum_{j \in \mathbb{Z}} 2^j \bar{\omega}_{E,2^{-j}}^P(U, L) \overset{(160) \land (171)}{\lesssim} \text{Per}_E(\text{E} \cap L) \left(x(\Pi^{-1}(U) \cap L) \right) = \text{Per}_{E, L}(\Pi^{-1}(U)). \quad (172) \]
Let \(\mathcal{M} \subseteq \mathcal{L}_p \) be the set of lines that intersect \(\Gamma \) at least twice. If \(L \in \mathcal{L}_p \sim \mathcal{M} \), then \(\mathcal{J}(L \cap \Gamma^+) \) consists of infinite rays, so \(\tilde{\omega}_{\Gamma^+, R}(U, L) = 0 \) for any \(U \subseteq V_0 \). Thus,
\[\sum_{j \in \mathbb{Z}} \Omega_{\Gamma^+, 2^{-j}}^P(U) \overset{(161)}{=} \sum_{j \in \mathbb{Z}} \int_{\mathcal{M}} 2^j \bar{\omega}_{\Gamma^+, 2^{-j}}^P(U, L) \mathcal{N}_P(L) \overset{(172)}{\lesssim} \int_{\mathcal{M}} \text{Per}_{\Gamma^+, L}(\Pi^{-1}(U)) \mathcal{N}_P(L) \overset{(170)}{\lesssim} \lambda |U|. \square \]

10. OUTLINE OF PROOF OF PROPOSITION 7.2

The rest of this paper is dedicated to the proof of Proposition 7.2. This is the longest part of the proof of Theorem 5.2, and we will divide it into two pieces.

In the first step (Section 11), we prove the following Proposition 10.1, which is a stability result for extended-monotone sets (Definition 8.5). For every \(r > 0 \) and \(h \in \mathbb{H} \), let \(\overline{B}_r(h) \subseteq \mathbb{H} \) be the convex hull of \(B_r(h) \) (as a subset of \(\mathbb{R}^3 \)); when \(h \) is omitted, we take it to be \(0 \). The convex hull of \(B_r \) with respect to the horizontal lines or with respect to all lines in \(\mathbb{R}^3 \) is the same, and \(\overline{B}_r \subseteq B_{2r} \).

Proposition 10.1. Let \(E \subseteq \mathbb{H} \) be a measurable set. For any \(\varepsilon > 0 \), there are \(v, R > 0 \) such that if \(E \subseteq \mathbb{H} \) is \((v', R')\)-extended monotone on \(\overline{B}_1 \) for some \(v', R' > 0 \) that satisfy \(R' \geq R \) and \(v'R' \leq vR \), then there is a plane \(P \subseteq \mathbb{H} \) such that
\[|\overline{B}_1 \cap (P^+ \Delta E)| < \varepsilon. \]
If \(\Gamma \) is an intrinsic Lipschitz graph and \(E = \Gamma^+ \), then we can take \(P \) to be a vertical plane.

Proposition 10.1 is in the spirit of the stability theorem for monotone sets that was proved in [CKN11], though here we do not need to obtain an explicit dependence of \(v, R \) on \(\varepsilon \) (in [CKN11] it was important to get power-type dependence). The lack of explicit dependence lets us use a compactness argument that was not available in the context of [CKN11]. At the same time, Theorem 4.3 of [CKN11] states that if the nonmonotonicity
of \(E \) is small on the unit ball \(B_1 \), then there is a smaller ball \(B_{c_3} \) on which \(E \) is \(O(\varepsilon) \)-close to a plane, while Proposition 10.1 assumes a stronger hypothesis, namely that \(\text{ENM}_{E,R}(\overline{B_1}) < \nu \), and obtains the stronger conclusion that \(E \) is close to a plane on the same ball \(\overline{B_1} \).

Remark 10.2. The stronger conclusion above is crucial for the covering argument that we used in Section 9 because of the delicacy of the Vitali-type argument used in Lemma 9.4. We use Lemma 9.4 to show that if \(\Delta \) is a \(\mu \)-rectilinear foliated patchwork, \(0 < \mu < \frac{1}{32\pi^2} \), and \(F \subseteq V(\Delta) \) is a collection of vertices corresponding to pseudoquads of the same width, then there is a large subset \(G \) of these pseudoquads such that if \(Q, Q' \in G \), then \(rQ \) is disjoint from \(rQ' \). Lemma 9.4 only holds when \(\mu = O(r^{-2}) \). If \(\mu r^2 \) is too large, then a \(\mu \)-rectilinear foliated patchwork could contain arbitrarily many vertically cut pseudoquads \(Q_1, Q_2, \ldots, Q_n \) of equal height and width such that \(rQ_1, \ldots, rQ_n \) all intersect.

We do not see how a modified subdivision algorithm that uses monotonicity instead of paramonotonicity can ensure that the conditions of Lemma 9.4 are satisfied. For example, consider a modification of the subdivision algorithm in Section 7 that produces a patchwork \(\Delta \) by cutting a pseudoquad \(Q \) horizontally or vertically depending on whether \(\Gamma \) is \(\eta \)-monotone (rather than paramonotone) on \(rQ \) for some \(r > 0 \). Theorem 4.3 of [CKN11] implies that if \(\Gamma \) is sufficiently monotone on \(rQ \), then \(\Gamma \) is \(O(r^{-\frac{1}{2}}) \)-close to a plane on \(Q \). Indeed, there are sets that have zero nonmonotonicity on \(rQ \), but are only \(\varepsilon(r) \)-close to a plane on \(Q \), where \(\varepsilon(r) \to 0 \) as \(r \to \infty \). It follows that this modified algorithm can, at best, produce \(\mu(r) \)-rectilinear foliated patchworks, where \(\mu(r) \to 0 \) as \(r \to \infty \). In particular, since \(\mu(r) \) depends on \(r \), we cannot choose \(\mu \) so that \(\mu < \frac{1}{32\pi^2} \).

Consequently, we cannot prove the weighted Carleson condition for this modified algorithm. The weighted Carleson condition bounds the number of vertically cut pseudoquads based on the total nonmonotonicity of \(\Gamma \), but without Lemma 9.4, a small amount of nonmonotonicity can lead to many vertically cut pseudoquads. That is, if \(Q_1, \ldots, Q_n \) are pseudoquads in the patchwork such that \(rQ_1, \ldots, rQ_n \) all intersect, then nonmonotonicity on the intersection \(rQ_1 \cap \cdots \cap rQ_n \) could force the algorithm to cut all of the \(Q_i \) vertically.

Using extended nonmonotonicity rather than nonmonotonicity lets us avoid this problem. The fact that \(r \) is a universal constant in Proposition 7.2 means that for any \(\mu \), there is a subdivision algorithm that produces a \(\mu \)-rectilinear foliated patchwork by cutting each pseudoquad \(Q \) based on whether \(\Gamma \) is \((\eta(\mu), R(\mu)) \)-paramonotone on \(rQ \). In particular, we can choose \(\mu < \frac{1}{32\pi^2} \) so that Lemma 9.4 applies.

In the second step, we prove parts 1 and 2 of Proposition 7.2. By Remark 4.3, after a stretch, shear, and translation, we may suppose that \(Q \) is a rectilinear pseudoquad for \(\Gamma \) that is close to \([-1,1]^2 \) and \(\Gamma \) is \((\eta, R) \)-paramonotone on \(rQ \). For any given \(c \), if \(R \) is sufficiently large, \(\eta \) is sufficiently small, and \(\Pi(\overline{B_c}) \subseteq rQ \), then, by Lemma 8.7, \(\Gamma^+ \) has small extended nonmonotonicity on \(\overline{B_c} \), so \(\Gamma^+ \) is close to a half-space \(P^+ \) on \(\overline{B_c} \).

Note that even though \(\Gamma^+ \) is close to a half-space \(P^+ \) on \(\overline{B_c} \), it does not immediately follow that the corresponding intrinsic Lipschitz function \(f \) is \(L_1 \)-close to an affine function. Using Remark 4.3 to normalize \(Q \) stretches \(\Gamma \) and changes its intrinsic Lipschitz constant. Consequently, even though \(f \) is close to an affine function on most of \(Q \), it may still take
We will show that a sequence of sets with nonmonotonicity going to zero on F we will show that if f but, as an illustration, we consider the case that remaining points, T in this case, g has an approximate tangent subgroup in the sense of MSSC10. At the intersection points, the slope of $\Pi(L)$ is less than the slope of the boundary, so the corresponding points of L lie in Γ^+. If $\Gamma^+ \cap L$ is close to monotone, then most of the interval between these points lies in Γ^+ and therefore, f is bounded on $Q \cap \Pi(L)$. By integrating over a family of lines that all cross the top and bottom boundaries, we obtain the desired L_1 bound. Similar arguments based on characteristic curves lead to part 2 of Proposition 7.2, which completes the proof of Proposition 7.2.

11. Extended-Monotone Sets Are Close to Half-Spaces

In this section, we will prove Proposition 10.1 by studying limits of (ε, R)-extended monotone sets. Let $U \subseteq \mathbb{H}$ be measurable and let $E_1, E_2, \ldots \subseteq \mathbb{H}$ be a sequence of measurable sets such that E_i is $(\frac{1}{i}, i)$-extended monotone on U. By passing to a subsequence, we may suppose that 1_{E_i} converges weakly to a function $f \in L_\infty(\mathbb{H})$ taking values in $[0, 1]$. We call f a U–LEM (limit of extended monotones) function.

One difficulty of studying f is that it need not take values only in $[0, 1]$. Indeed, the extended monotonicity $\text{ENM}_{E_i,i}(B_1)$ only depends on the intersection of E_i with lines that pass through B_1. These lines do not cover all of \mathbb{H}, so there are regions of \mathbb{H} where f can take on arbitrary values.

Nevertheless, in Section 11.1, we will show that, after changing f on a measure-zero set, $f(B_1) \subseteq [0, 1)$. This will follow from the fact that, by Lemma 8.6,

$$\lim_{i \to \infty} \text{NM}_{E_i}(B_1) = 0.$$

We will show that a sequence of sets with nonmonotonicity going to zero on B_1 converges to a subset which is monotone on B_1. If U is an open set, a subset $E \subseteq \mathbb{H}$ is said to be monotone on U if $\text{NM}_E(U) = 0$.

Then, in Section 11.2, we will use techniques from [CK10b] and [CKN11] to characterize sets such that $\text{NM}_F(B_1) = 0$. A set that is monotone on B_1 need not be a half-space, but we will show that if F is such a set, then the measure-theoretic boundary $\partial_{\text{Haus}} F$ is a union of horizontal lines that has an approximate tangent plane at every point. That is, for any $g \in \partial_{\text{Haus}} F$, the blowups $g \cdot s_{n,n}(g^{-1}\partial_{\text{Haus}} F)$ converge in the Hausdorff metric to a plane T_g as $n \to \infty$. In fact, at all but countably many points $g \in \partial_{\text{Haus}} F$, there is a unique horizontal line L_g through g that is contained in $\partial_{\text{Haus}} F$, and T_g is the vertical plane containing L_g; in this case, g has an approximate tangent subgroup in the sense of [MSSC10]. At the remaining points, T_g is the horizontal plane centered at g.

Finally, in Section 11.3, we prove Proposition 10.1. The proof is somewhat involved, but, as an illustration, we consider the case that $f = 1_E$, where E is precisely ∞-extended
monotone on \overline{B}_1. That is, for every line L, either $\overline{B}_1 \cap \partial (L \cap E) = \emptyset$ or $L \cap E$ is a monotone subset of L.

We first claim that for every point $b \in \overline{B}_1 \cap \partial \mathcal{J}^a E$, if the approximate tangent plane T_b is vertical and H_b is the horizontal plane centered at b, then $H_b \cap \partial \mathcal{J}^a E = H_b \cap T_b$. Let T^\pm_b be the two half-spaces bounded by T_b, labeled so that $T^+_b \cap B_r(b)$ approximates $E \cap B_r(b)$ at small scales. Let $L_b = H_b \cap T_b$ be the horizontal line in $\partial \mathcal{J}^a E$ that passes through b and let L be a line through b that intersects T_b transversally. Then $E \cap L$ is a monotone set with $b \in \partial \mathcal{J}^a (E \cap L)$, so $T^+_b \cap L \subseteq E \cap L$ and $T^-_b \cap L \subseteq L \sim E$. This holds for every horizontal line through b except L_b, so L_b cuts H_b into two half-planes $P_\pm = T^\pm_b \cap H_b$ such that $P_\pm \subseteq E$ and $P_- \subseteq H_b \sim E$.

When $b' \in L_b$ is close to b, the plane $H_{b'}$ intersects H_b along L_b and the angle between the two planes is small. As above, there are two half-planes $P'_\pm = T^\pm_{b'} \cap H_{b'}$ such that $P'_\pm \subseteq E$ and $P'_- \subseteq H_{b'} \sim E$. As b' varies over points close to b, the half-plane P'_+ varies over half-planes close to P_+. Therefore P_+ is in the interior of E, P_- is in the exterior, and $H_b \cap \partial \mathcal{J}^a E = L_b$.

Suppose that L_1 and L_2 are two lines in $\partial \mathcal{J}^a E$ that intersect \overline{B}_1, and suppose by way of contradiction that they are not coplanar. By the hyperboloid lemma [CK10b, Lemma 2.4] (see Lemma 11.1), for any point $q \in L_1$ except possibly a single point, there is a horizontal line M that connects q to a point r in L_2. Then $r \in H_q \cap \partial \mathcal{J}^a E = L_1$, so L_1 and L_2 intersect and are thus coplanar; this is a contradiction. It follows that $\overline{B}_1 \cap \partial \mathcal{J}^a E$ is contained in a plane. The proof of Proposition 10.1 runs along the same lines, but it takes some further technical work to apply the weaker hypothesis that f is merely an LEM function.

One of the key tools in the proof is the following “hyperboloid lemma,” which is stated as Lemma 2.4 in [CK10b]. A pair of horizontal lines $L_1, L_2 \in \mathcal{L}$ are said to be skew if L_1 and L_2 are disjoint and the projections $\pi(L_1), \pi(L_2) \subseteq H \cong \mathbb{R}^2$ are not parallel.

Lemma 11.1 (Cheeger–Kleiner hyperboloid lemma [CK10b]). **For any** $L_1, L_2 \in \mathcal{L}$ **we have**

1. Suppose that the projections $\pi(L_1), \pi(L_2)$ are parallel but $\pi(L_1) \neq \pi(L_2)$. Then every point in L_1 can be joined to L_2 by a unique line. In fact, there is a unique fiber $\pi^{-1}(p)$ such that every line joining L_1 to L_2 passes through $\pi^{-1}(p)$. Conversely, for every $a \in \pi^{-1}(p)$, there is a unique line joining L_1 to L_2 that passes through a.

2. If L_1, L_2 are skew, then there is a hyperbola $S \subseteq H$ with asymptotes $\pi(L_1)$ and $\pi(L_2)$ such that every tangent line of S has a unique horizontal lift that intersects L_1 and L_2. If $p \in H$ is the intersection between $\pi(L_1)$ and $\pi(L_2)$ and $a \in L_1$ is such that $\pi(a) \neq p$, then there is a unique horizontal line that connects a to a point in L_2.

11.1. Stability of locally monotone sets

We begin the proof of Proposition 10.1 by using a compactness argument to prove the following lemma. Throughout what follows, given a measure space $(\mathcal{S}, \Sigma, \mu)$ and a measurable subset $\Omega \in \Sigma$ with $\mu(\Omega) > 0$, we use the (standard) notation \hat{f}_Ω to denote the averaging operator on Ω, i.e.,

$$\forall f \in L_1(\Omega, \mu), \quad \hat{f}_\Omega \overset{\text{def}}{=} \frac{1}{\mu(\Omega)} \int_{\Omega} f \, d\mu.$$
Lemma 11.2. Let $U \subseteq \mathbb{H}$ be a bounded open set and let $E_1, E_2, \ldots \subseteq \mathbb{H}$ be a sequence of measurable sets such that $NM_{E_i}(U) < \frac{1}{i}$ for every $i \in \mathbb{N}$. There is a subsequence $(E_{i_j})_{j \in \mathbb{N}}$ and a set $F \subseteq U$ that is monotone on U such that $\lim_{j \to \infty} (|E_{i_j} \cap U| \Delta F) = 0$.

It follows that for any $\varepsilon > 0$, there is a $\delta > 0$ such that if $E \subseteq \mathbb{H}$ is a measurable set and $NM_E(U) < \delta$, then there is a set $F \subseteq U$ such that $|(E \cap U) \Delta F| < \varepsilon$ and F is monotone on U.

Proof. After passing to a subsequence, we may suppose that the characteristic functions 1_{E_i} converge weakly to a function $f \in L_\infty(U)$ taking values in $[0,1]$. We claim that f is a characteristic function.

By Theorem 4.3 of [CKN11] (see also [NY18, Theorem 63]), for every $\varepsilon > 0$, there are $c(\varepsilon) > 0$ and $\delta(\varepsilon) > 0$ such that if $p \in \mathbb{H}$, $\alpha > 0$, and $NM_E(B_\alpha(p)) < \delta(\varepsilon)\alpha^{-3}$, then there is a half-space P^+ such that

\[
\int_{B_{\varepsilon(\varepsilon)}(p)} |1_{P^+} - 1_E(h)| \, d\mathcal{H}^4(h) < \varepsilon.
\]

(The hypothesis in [CKN11] is that $NM_E(B_\alpha(p)) < \delta(\varepsilon)$, but our definition of $NM_E(B_\alpha(p))$ differs from the definition in [CKN11] by a normalization factor.)

By the Lebesgue density theorem, for almost every point $p \in U$, we have

\[
\lim_{s \to 0} \int_{B_s(p)} |f(h) - f(p)| \, d\mathcal{H}^4(h) = 0.
\]

Let p be such a point and let $r > 0$ be such that $B_r(p) \subseteq U$. By (173), for any $0 < s < r$, any $\varepsilon > 0$, and any sufficiently large $i \in \mathbb{N}$ (depending on s, ε), there is a half-space Q^+_i with

\[
\int_{B_{\varepsilon(i)}(p)} |1_{Q^+_i} - 1_{E_i}(h)| \, d\mathcal{H}^4(h) < \varepsilon.
\]

Choose a half-space Q^+ such that for infinitely many $i \in \mathbb{N}$ we have

\[
\int_{B_{\varepsilon(i)}(p)} |1_{Q^+} - 1_{E_i}(h)| \, d\mathcal{H}^4(h) < 2\varepsilon.
\]

Then

\[
\int_{B_{\varepsilon(i)}(p)} |1_{Q^+} - f(h)| \, d\mathcal{H}^4(h) < 3\varepsilon.
\]

Since the function $(x \in [0,1]) \mapsto x(1-x)$ is nonnegative and 1-Lipschitz,

\[
\int_{B_{\varepsilon(i)}(p)} f(h)[1 - f(h)] \, d\mathcal{H}^4(h) \leq 3\varepsilon + \int_{B_{\varepsilon(i)}(p)} 1_{Q^+}(h)[1 - 1_{Q^+}(h)] \, d\mathcal{H}^4(h) = 3\varepsilon.
\]

This holds for all $0 < s < r$, so

\[
\lim_{s \to 0} \int_{B_s(p)} f(h)(1 - f(h)) \, d\mathcal{H}^4(h) = 0.
\]

By (174), this implies $f(p)(1 - f(p)) = 0$ and thus $f(p) \in \{0,1\}$.

Thus f is equivalent to a characteristic function on U. Let $F = f^{-1}(1)$. By weak convergence, $\lim_{i \to \infty} |U \cap (E_i \Delta F)| = 0$. For any $i \in \mathbb{N}$,

$$\text{NM}_F(U) = \int_{\mathcal{L}} \text{NM}_{F \cap L}(U \cap L) \, d\mathcal{N}(L) \leq \int_{\mathcal{L}} \left(\text{NM}_{E_i \cap L}(U \cap L) + \mathcal{H}^1 \left(U \cap L \cap (E_i \Delta F) \right) \right) \, d\mathcal{N}(L) \leq \text{NM}_{E_i}(U) + |U \cap (E_i \Delta F)|.$$

Both terms on the right go to zero as $i \to \infty$, so $\text{NM}_F(U) = 0$, i.e., F is monotone on U.

Corollary 11.3. Let $U \subseteq \mathbb{H}$ be a convex bounded open set and let $f : \mathbb{H} \to [0,1]$ be a U–LEM function. There is a monotone set $E \subseteq U$ such that $f|_U = 1_E$ up to a measure-zero set.

Proof. Suppose that $E_1, E_2, \ldots \subseteq \mathbb{H}$ are measurable, E_i is $(\frac{1}{i}, i)$–extended monotone on U for all $i \in \mathbb{N}$, and 1_{E_i} converges weakly to f. By Lemma 8.6, for $i > \text{diam}U$ we have

$$\text{NM}_{E_i}(U) \leq \text{ENM}_{E_i}(U) \leq \frac{1}{i}.$$

So, by Lemma 11.2, $f|_U = 1_F$ for some set $F \subseteq U$ that is monotone on U.

11.2. Locally monotone sets are bounded by rectifiable ruled surfaces.

Here we will describe sets that are monotone on an open subset of \mathbb{H}, which we call **locally monotone sets**. Note that a locally monotone set need not be a half-space; see Example 9.1 of [CKN11]. Regardless, we use the techniques developed in [CK10b] and [CKN11] to describe such sets.

Proposition 11.4. Let $E \subseteq \mathbb{H}$ be a measurable set that is monotone on a convex open set $U \subseteq \mathbb{H}$.

1. $U \cap \partial_{\mathcal{H}^d} E$ has empty interior.
2. For every $p \in U \cap \partial_{\mathcal{H}^d} E$, there is a horizontal line L through p with $U \cap L \subseteq \partial_{\mathcal{H}^d} E$. If this line is not unique, then $U \cap H_p \subseteq \partial_{\mathcal{H}^d} E$, and we call p a characteristic point.
3. $\partial_{\mathcal{H}^d} E$ has an approximate tangent plane T_p at every $p \in U \cap \partial_{\mathcal{H}^d} E$. The plane T_p is horizontal if and only if p is a characteristic point, and there are only countably many characteristic points in U.
4. If T_p is vertical, then it divides \mathbb{H} into two half-spaces T^+_p and T^-_p such that the following holds. For $\varepsilon, t > 0$, let

$$W^\pm_{\varepsilon,t} = \{ v \in T^+_p \cap B_\varepsilon(p) : d(v, T_p) > \varepsilon t \}$$

For any $0 < \varepsilon < \frac{1}{10}$, there is $r > 0$ such that if $0 < \alpha < r$, then

$$W^+_{\varepsilon,\alpha} \subseteq \text{int}_{\mathcal{H}^d}(E) \quad \text{and} \quad W^-_{\varepsilon,\alpha} \subseteq \text{int}_{\mathcal{H}^d}(\mathbb{H} \setminus E).$$

We rely on the following proposition and lemmas, which adapt results from [CK10b].

Proposition 11.5 (generalization of [CK10b, Proposition 5.8]). Let $E \subseteq \mathbb{H}$ be a measurable set that is monotone on a convex open set $U \subseteq \mathbb{H}$. Let L be a horizontal line and let $p, q \in L$ be points such that $p \neq q$ and the segment $[p, q] \subseteq L$ is contained in U. We choose the linear order on L so that $p < q$. Suppose that $q \in \text{int}_{\mathcal{H}^d}(E)$.

1. If $p \in \text{supp}_{\mathcal{H}^d}(E)$ and $r \in L \cap U$ satisfies $p < r < q$, then $r \in \text{int}_{\mathcal{H}^d}(E)$.

(2) If \(p \in \text{supp}_{\mathcal{H}}(\mathbb{H} \sim E) \) and \(r \in \mathbb{L} \cap U \) satisfies \(p < q < r \), then \(r \in \text{int}_{\mathcal{H}}(E) \).

Proof. Proposition 5.8 of [CK10b] proves this result in the case that \(U = \mathbb{H} \), generalizing Proposition 4.6 of [CK10b], which proves it when \(E \) is precisely monotone (i.e., \(M \cap E \) and \(M \cap E^c \) are connected sets for every horizontal line \(M \)). The reasoning in Proposition 5.8 of [CK10b] only uses the fact that for almost every line segment \(S \) in a small neighborhood of \([p, \text{max}(q, r)]\), the intersection \(S \cap E \) is monotone. This holds here, so the conclusion of Proposition 5.8 holds here as well. For completeness, we will sketch the argument of [CK10b].

For any \(x \in \mathbb{H} \), \(v_1, v_2 \in \mathbb{H} \), let \(\gamma_{x,v_1,v_2} : [0,2] \to \mathbb{H} \) be the broken geodesic

\[
\gamma_{x,v_1,v_2}(t) = \begin{cases}
 x v_1^t & t \in [0,1] \\
 x v_1 v_2^{-t} & t \in [1,2].
\end{cases}
\]

In case (1), we have \(p < q < r \) with \(p \in \text{supp}_{\mathcal{H}}(E) \) and \(q \in \text{int}_{\mathcal{H}}(E) \). Given an \(\varepsilon > 0 \), one considers the paths \(\gamma_{x,v_1,v_2} \) where \(x \in B_{E}(p) \cap E \) and \(v_1, v_2 \in \mathbb{H} \) satisfy \(\|v_{1} - (p^{-1} r)^4\| < \varepsilon \). Then \(\gamma_{x,v_1,v_2}(0) \) is close to \(p \), \(\gamma_{x,v_1,v_2}(2) \) is close to \(r \), and \(\gamma_{x,v_1,v_2} \) lies in a small neighborhood of \([p, q]\). Further, for any \(x \), we can vary \(v_1 \) and \(v_2 \) so that \(\gamma_{x,v_1,v_2}(2) = x v_1 v_2 \) covers a neighborhood of \(r \).

Suppose that \(E \) is precisely monotone and \(q \in \text{int}_{\mathcal{H}}(E) \), but the reasoning above still holds for almost every triple \((x, v_1, v_2)\). Since \(\mathcal{H}^4(B_{E}(p) \cap E) > 0 \), there is an \(x \in B_{E}(p) \cap E \) such that \(x v_1 v_2 \in E \) for almost every pair \((v_1, v_2)\). Therefore, \(r \in \text{int}_{\mathcal{H}}(E) \).

In case (2), we have \(p < q < r \) with \(p \in \text{supp}_{\mathcal{H}}(\mathbb{H} \sim E) \) and \(q \in \text{int}_{\mathcal{H}}(E) \). Let \(s \in \mathbb{L} \cap U \) be such that \(p < q < r < s \) and consider \(\gamma_{x,v_1,v_2} \) such that \(x \in B_{E}(p) \sim E \), \(\|v_{1} - p^{-1} s\| < \varepsilon \), and \(\|v_{2} - s^{-1} r\| < \varepsilon \). That is, \(\gamma_{x,v_1,v_2} \) is a path from a neighborhood of \(p \) to a neighborhood of \(s \) to a neighborhood of \(r \). Again, for any \(x \), we can vary \(v_1 \) and \(v_2 \) so that \(\gamma_{x,v_1,v_2}(2) = x v_1 v_2 \) covers a neighborhood of \(r \). If \(\varepsilon \) is sufficiently small, we have \(\gamma_{x,v_1,v_2}([0,2]) \subseteq U \).

Suppose again that \(E \) is precisely monotone and that \(q \in \text{int}(E) \). Let \(\lambda_{1}(t) = x v_1^t \) and \(\lambda_{2}(t) = x v_1 v_2^t \). Since \(\lambda_{1} \) and \(\lambda_{2} \) are both close to \(L \), if \(\varepsilon \) is sufficiently small, there are \(t_1 \in (0,1) \) and \(t_2 > 1 \) such that \(\lambda_{1}(t_1) \) is close to \(q \) and \(\lambda_{1}(t_1) \in E \). Since \(\lambda_{1}(0) = x \notin E \) and \(\lambda_{1}(t_1) \in E \), we have \(\lambda_{1}(1) \in E \), and since \(\lambda_{2}(0) = \lambda_{1}(1) \in E \) and \(\lambda_{2}(t_2) \in E \), we have \(\lambda_{2}(1) = x v_1 v_2 \in E \). For any fixed \(x \), as \(v_1 \) and \(v_2 \) vary, \(x v_1 v_2 \) covers a neighborhood of \(r \).

Again, when \(E \) is not precisely monotone and \(q \in \text{int}_{\mathcal{H}}(E) \), the reasoning above fails for a null set of triples \((x, v_1, v_2)\). Since \(p \in \text{supp}_{\mathcal{H}}(\mathbb{H} \sim E) \), there is an \(x \in B_{E}(p) \subset (\mathbb{H} \sim E) \) such that \(x v_1 v_2 \in E \) for all but a measure zero set of pairs \((v_1, v_2)\), so \(r \in \text{int}_{\mathcal{H}}(E) \).

By Proposition 11.5 and the proof of [CK10b, Lemma 4.8], we get the following lemma.

Lemma 11.6 (generalization of [CK10b, Lemma 4.8]). Let \(E \subseteq \mathbb{H} \) be a measurable set that is monotone on a convex open set \(U \subseteq \mathbb{H} \). If \(L \) is a horizontal line such that \(\mathbb{L} \cap U \) contains at least two points of \(\partial_{\mathcal{H}}E \), then \(\mathbb{L} \cap U \subseteq \partial_{\mathcal{H}}E \).
Proof. Let $I = L \cap U$. Let $p, q \in I \cap \partial_{X^4} E$ be distinct points. Choose the linear order on L so that $p < q$. Let $r \in I$ be such that $q < r$. By part (1) of Proposition 11.5, if $r \in \text{int}_{X^4}(E)$, then $q \in \text{int}_{X^4}(E)$, which is a contradiction. Likewise, if $r \in \text{int}_{X^4}(\mathbb{H} \sim E)$, then $q \in \text{int}_{X^4}(\mathbb{H} \sim E)$, which is a contradiction, so $r \in \partial_{X^4} E$. Thus $(q, \infty) \cap I \subseteq \partial_{X^4} E$. By symmetry, $I \sim (p, q) = I \cap ((-\infty, p) \cup (q, \infty)) \subseteq \partial_{X^4} E$ for any distinct points $p, q \in I \cap \partial_{X^4} E$. Let $r, s \in I \cap (q, \infty)$ be such that $r < s$. Then $r, s \in I \cap \partial_{X^4} E$, so $I \sim (r, s) \subseteq \partial_{X^4} E$. Since (r, s) and (p, q) are disjoint, $I \subseteq \partial_{X^4} E$. \hfill \square

Likewise, the following lemma is based on the proof of Lemma 4.9 of [CK10b].

Lemma 11.7 (generalization of [CK10b, Lemma 4.9]). Let $E \subseteq \mathbb{H}$ be a measurable set that is monotone on a convex open set $U \subseteq \mathbb{H}$. For every $p \in U \cap \partial_{X^4} E$, there is a horizontal line L such that $p \in L$ and $L \cap U \subseteq \partial_{X^4} E$.

Proof. Let $B \subseteq U$ be a ball centered at p and let H_p be the horizontal plane centered at p. Let $B' = B \setminus \{p\}$. Suppose by way of contradiction that $H_p \cap B' \cap \partial_{X^4} E = \emptyset$. Since $H_p \cap B'$ is connected, we have $H_p \cap B' \subseteq \text{int}_{X^4}(E)$ or $H_p \cap B' \subseteq \text{int}_{X^4}(\mathbb{H} \sim E)$. Without loss of generality, we assume that $H_p \cap B' \subseteq \text{int}_{X^4}(E)$.

Let M be a line through p and let $q, r \in M \cap B$ be two points on opposite sides of p. Then $q, r \in \text{int}_{X^4}(E)$, so by part (1) of Proposition 11.5, we have $p \in \text{int}_{X^4}(E)$. This is a contradiction, so there exists some point q lying in $H_p \cap B' \cap \partial_{X^4} E$. Let L be the line containing p and q; then by Lemma 11.6, $L \cap U \subseteq \partial_{X^4} E$, as desired. \hfill \square

The fact that $U \cap \partial_{X^4} E$ has empty interior also follows from the techniques of [CK10b].

Lemma 11.8. If E and U are as in Lemma 11.7, then $U \cap \partial_{X^4} E$ has empty interior.

Proof. The measure-theoretic version of Lemma 4.12 of [CK10b], whose proof appears in (part 4) of the proof of Theorem 5.1 of [CK10b], asserts that if $F \subseteq \mathbb{H}$ is monotone on \mathbb{H}, then $\partial_{X^4} F \neq \mathbb{H}$. That proof relies on the monotonicity of a configuration of line segments, and it directly shows that there is a large enough universal constant $r > 0$ such that this configuration lies in the ball $B_r(0)$. Consequently, if $B_r(0) \subseteq U$, then there is a point $p \in B_r(0)$ such that $p \notin \partial_{X^4} E$. By rescaling and translation, this is true with $B_r(0)$ replaced by an arbitrary ball, and thus $\text{int}_{X^4}(E) \cup \text{int}(\mathbb{R} \sim E)$ is dense in U. \hfill \square

Lemma 11.8 proves part (1) of Proposition 11.4. Lemma 11.6 and Lemma 11.7 imply the first half of part (2) of Proposition 11.4. Before proving the rest of Proposition 11.4, we make the following definition.

Definition 11.9. Let $U \subseteq \mathbb{H}$ be a convex open set and let $A \subseteq \mathbb{H}$. We say that A is U–ruled if for all $L \in \mathcal{L}$, if $L \cap U$ intersects A in two points, then $L \cap U \subseteq A$. We call such a line L a U–ruling of A.

Lemmas 11.6–11.8 imply that $U \cap \partial_{X^4} E$ is U–ruled and has empty interior. We will prove the rest of Proposition 11.4 by studying lines in the boundary of such a set. The following lemma is based on Step B3 in Section 8.2 of [CKN11], which shows that the boundary of a monotone set cannot contain skew lines.

Lemma 11.10. Let M_1 be the line (X) and let M_2 be the line $Z(Y)$. There exists $r_0 > 1$ such that any B_{r_0}–ruled set containing $(M_1 \cup M_2) \cap \overline{B_{r_0}}$ has nonempty interior.
Proof. Let \(r_0 \) be large enough that \([-2,2]^3 \subseteq \overline{B}_{r_0} \). Let \(E \) be a \(\overline{B}_{r_0} \)-ruled set with \(\overline{B}_{r_0} \)-ruled set \(M_1, M_2 \in \mathcal{L} \). By Lemma 11.1, there is a hyperbola \(S \subseteq \mathcal{H} \), asymptotic to the \(x \)-axis and the \(y \)-axis, such that every tangent line of \(S \) has a unique horizontal lift that intersects \(M_1 \) and \(M_2 \). Indeed, for every \(t \neq 0 \), the points \(X^t \in M_1 \) and \(ZY^{2t} \in M_2 \) are connected by a horizontal line

\[
\forall u \in \mathbb{R}, \quad L_t(u) \overset{\text{def}}{=} X^t \left(-t, \frac{2}{t}, 0 \right) u = (1-u) t, \frac{2u}{t}, u \right).
\]

For \(t \in [-2, -1) \cup [1, 2] \) and \(u \in [0,1] \), the point \(L_t(u) \) lies on a horizontal line segment connecting two points in \(E \), so \(L_t(u) \in E \). The resulting family of points

\[
S \overset{\text{def}}{=} \{ L_t(u) : t \in [-2, -1) \cup [1, 2], u \in [0,1] \} \subseteq E
\]

consists of two disjoint embedded surfaces.

Let

\[
w \overset{\text{def}}{=} L_{\sqrt{2}} \left(\frac{1}{2} \right) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2} \right)
\]

and let \(w' = s_{-1,-1}(w) = L_{-\sqrt{2}} \left(\frac{1}{2} \right) \). Let \(M \) be the horizontal line from \(w \) to \(w' \). Then \(M \) intersects \(S \) twice, at \(w \) and \(w' \), so \(M \cap \overline{B}_{r_0} \subseteq E \). One calculates

\[
\frac{d}{dt} L_t(u) \big|_{(t,u) = (0, \frac{1}{2})} = (1-u, -2u, 0) \big|_{(t,u) = (0, \frac{1}{2})} = \left(\frac{1}{2}, -\frac{1}{2}, 0 \right)
\]

and

\[
\frac{d}{du} L_t(u) \big|_{(t,u) = (0, \frac{1}{2})} = (-t, 2t, 1) \big|_{(t,u) = (0, \frac{1}{2})} = (-\sqrt{2}, \sqrt{2}, 1),
\]

so \(M \) intersects \(S \) transversally at \(w \) and \(w' \). By transversality, any horizontal line \(M' \) close to \(M \) intersects \(S \) near \(w \) and \(w' \), so \(M' \cap \overline{B}_{r_0} \subseteq E \). These lines cover a neighborhood of \(M \), so \(E \) contains a nonempty open set.

As shown in the next lemma, for any pair of skew lines, there is an automorphism of \(\mathbb{H} \) that sends them to \(M_1 \) and \(M_2 \). The next lemma uses this fact to show that nearby skew lines in \(\partial_{\mathbb{H}} E \) must have nearly parallel projections. For \(\phi \in \mathbb{R} \), let \(R_\phi : \mathbb{H} \to \mathbb{H} \) be the rotation by angle \(\phi \) around the \(x \)-axis.

Lemma 11.11. Let \(r_0 \) be as in Lemma 11.10. Let \(L_1, L_2 \in \mathcal{L} \) be skew lines and let \(p \in \mathbb{H} \) be the intersection of \(\pi(L_1) \) and \(\pi(L_2) \). Suppose that the angle between \(\pi(L_1) \) and \(\pi(L_2) \) is \(\theta \in (0, \frac{\pi}{2}) \). For \(i \in \{1,2\} \), let \(q_i \in \mathbb{H} \) be the point where \(\pi^{-1}(p) \) intersects \(L_i \). Suppose that

\[
d(q_1, q_2) \leq \frac{\sqrt{\theta}}{r_0 \sqrt{2}}. \tag{176}
\]

If \(L_1, L_2 \in \mathcal{L} \) are \(\overline{B}_1(q_1) \)-ruled lines of an \(\overline{B}_1(q_1) \)-ruled set \(S \), then \(S \) has nonempty interior.

Proof. After applying a translation and rotation and possibly replacing \(S \) with \(s_{1,-1}(S) \), we may suppose that \(q_1 = 0, q_2 = Z^h \) for some \(h > 0 \) and that \(\pi(L_1) \) and \(\pi(L_2) \) form angles of \(\frac{\theta}{2} \) with the \(x \)-axis. (We cannot control which line forms a positive angle with the \(x \)-axis and which line forms a negative angle.) Let \(t = \tan \frac{\theta}{2} \in (0,1) \) so that the lines

\[
\pi \left(s_{-\sqrt{\frac{\theta}{2}}} L_1 \right) \quad \text{and} \quad \pi \left(s_{\sqrt{\frac{\theta}{2}}} L_2 \right)
\]
are perpendicular. There is an angle $\phi = \pm \frac{\pi}{4}$ such that if

$$ f \overset{\text{def}}{=} R_\phi \circ S_{\sqrt{\tan \phi}} \circ S_{\sqrt{\frac{1}{\tan \phi}}} $$

then $f(L_1) = M_1$ and $f(L_2) = M_2$, where M_1, M_2 are the lines in Lemma 11.10. Now, by the ball-box inequality and our hypothesis on $d(q_1, q_2)$,

$$ \text{Lip}(f^{-1}) = \frac{\sqrt{b}}{\sqrt{t}} \overset{(40)}{\leq} \frac{d(q_1, q_2)}{\sqrt{\tan \theta/2}} \overset{(176)}{\leq} \frac{d(q_1, q_2)}{\sqrt{\theta/2}} \overset{r_0}{\leq} \frac{1}{r_0}. $$

Thus, $f^{-1}(\overline{B}_{r_0}) \subseteq \overline{B}_{r_0} \text{Lip}(f^{-1}) \subseteq \overline{B}_1$, or $\overline{B}_{r_0} \subseteq f(\overline{B}_1)$. Since $f(S)$ is a $f(\overline{B}_1)$–ruled set and M_1 and M_2 are $f(\overline{B}_1)$–ruled set of $f(S)$, by Lemma 11.10, $f(S)$ has nonempty interior and thus S has nonempty interior.

It follows from Lemma 11.8 and Lemma 11.11 that two lines in $\partial \mathcal{F}^E$ with different angles must either intersect or stay at least a definite distance apart. In the terminology of [CKN11], every pair of rulings of $\partial \mathcal{F}^E$ must form a degenerate initial condition.

Lemma 11.12. For any $\varepsilon > 0$, there is $\delta > 0$ such that if S is a \overline{B}_1–ruled set with empty interior and L_1, L_2 are \overline{B}_1–ruled of S that intersect \overline{B}_δ and such that $\angle(\pi(L_1), \pi(L_2)) > \varepsilon$, then L_1 and L_2 intersect.

Proof. We suppose that $0 < \varepsilon < 1$ and take $\delta = \frac{\varepsilon^2}{100r_0} < \frac{1}{100}$, where r_0 is as in Lemma 11.10.

Let $p \in H$ be the intersection of the projections $\pi(L_1)$ and $\pi(L_2)$. Since $\pi(\overline{B}_\delta)$ is the ball B_δ^H of radius δ in H, the projections intersect B_δ^H and form an angle of at least ε, so

$$ \|p\| = \frac{\delta}{\sin \frac{\varepsilon}{2}} \leq \frac{4\delta}{\varepsilon} < \frac{1}{4}. $$

For $i \in \{1, 2\}$, let $q_i = \pi^{-1}(p) \cap L_i$. By assumption, L_1 and L_2 intersect $\overline{B}_\delta \subseteq B_{2\delta}$, so if $b_i \in L_i \cap \overline{B}_\delta$, then

$$ d(0, q_i) = d(0, b_i) + d(b_i, q_i) = d(0, b_i) + \|\pi(b_i) - \pi(q_i)\| \leq d(0, b_i) + \|\pi(b_i)\| + \|p\| \leq 3\delta + \|p\|. $$

In particular, $d(0, q_i) \leq \frac{1}{2}$. Hence $\overline{B}_{\frac{1}{2}}(q_i) \subseteq B_1$, so S is a $\overline{B}_{\frac{1}{2}}$–ruled set. Further,

$$ d(q_1, q_2) \leq 2\|p\| + 6\delta < \frac{20\delta}{\varepsilon} \leq \frac{\sqrt{\varepsilon}}{5r_0}. $$

Because and must therefore intersect.

The next lemma completes the proof of part (2) of Proposition 11.4.

Lemma 11.13. Suppose that U is a convex open set and that $E \subseteq H$ is monotone on U. Let $p \in U$, and let L_1 and L_2 be two distinct U–ruled of $\partial \mathcal{F}^E$ that intersect at p. Then $U \cap H_p \subseteq \partial \mathcal{F}^E$, and there is a neighborhood A containing p such that $A \cap \partial \mathcal{F}^E = A \cap H_p$, where we recall that H_p denotes the horizontal plane through p.
Proof. Since U is convex, $\partial_{\mathbb{R}^4} E$ is U–ruled. After translating and applying an automorphism, we may suppose that $p = 0$ and that L_1 and L_2 are the x–axis and y–axis, respectively. Set $\epsilon = \frac{1}{10}$ and let $\delta > 0$ satisfy Lemma 11.12. Suppose that $\overline{B_\delta} \subseteq U$.

Fix $q \in B_{\frac{\epsilon}{2}} \cap \partial_{\mathbb{R}^4} E$. By Lemma 11.7, $\partial_{\mathbb{R}^4} E$ has a U–ruling M_q that passes through q. We will show that M_q intersects both L_1 and L_2 and that any such line passes through p.

For any horizontal line L, let $\overline{L} = \pi(L)$. Either $\angle(\overline{L_1}, \overline{M_q}) \geq \frac{\pi}{4}$ or $\angle(\overline{L_2}, \overline{M_q}) \geq \frac{\pi}{4}$. Therefore, by Lemma 11.12, M_q intersects either L_1 or L_2. Suppose by way of contradiction that M_q intersects L_2 but not L_1. By Lemma 11.12, this implies that $\angle(\overline{L_1}, \overline{M_q}) \leq \epsilon$. Let r be the intersection of $\overline{M_q}$ with $\overline{L_2}$ and let $t = d(p, r) > 0$ (see Figure 4). Straightforward trigonometry shows that $t < \frac{\epsilon}{4}$.

Figure 4. If line M_q intersects the y–axis L_2 but not the x–axis L_1, there must be a line N intersecting L_1 and M_q as seen above. Lines above are projected to \mathbb{H} by π.

Let $a = pX^{-t} \in L_1$. By Lemma 11.1, there is a unique point $b \in M_q$ such that there is a horizontal line N that passes through a and b. Indeed, since r, p, a, and b are the vertices of a quadrilateral Q in \mathbb{H} whose sides are horizontal lines, the projection $\pi(Q)$ has zero signed area. Since the triangle $\Delta \pi(p) \pi(r) \pi(a)$ has area $\frac{\epsilon^2}{2}$, the triangle $\Delta \pi(b) \pi(r) \pi(a)$ must also have area $\frac{\epsilon^2}{2}$, so $\pi(b)$ is the intersection of $\overline{M_q}$ with the line $\langle X + Y \rangle$. Because $\overline{M_q}$ has slope between $-\epsilon$ and ϵ, this implies that $|\pi(b) - (t, t)| \leq 4\epsilon t \leq \frac{\epsilon^2}{10}$. In particular, $d(r, b) = |\pi(r) - \pi(b)| \leq 2t$, $\angle(\overline{L_1}, \overline{N}) > \epsilon$, and $\angle(\overline{L_2}, \overline{N}) > \epsilon$. Then $d(p, b) \leq d(p, r) + d(r, b) \leq 3t < \delta$, so $b \in \overline{B_\delta}$.

Since $a, b \in U \cap \partial_{\mathbb{R}^4} E$, N is a U–ruling of $\partial_{\mathbb{R}^4} E$. By Lemma 11.12 and the fact that $\angle(\overline{L_2}, \overline{N}) > \epsilon$, N intersects L_2. That is, L_1, L_2, and N are three distinct lines in \mathbb{H} that intersect pairwise. If three distinct lines intersect pairwise, then they must all intersect at the same point. Otherwise, their projections to \mathbb{H} would contain a non-degenerate triangle that lifts to a horizontal closed curve in \mathbb{H}, but this is impossible since the signed area of the projection of a horizontal closed curve must vanish. But L_1 intersects N at a and intersects L_2 at p, where $d(p, a) = t > 0$ by construction. This is a contradiction, so M_q intersects L_1 and L_2. Since M_q, L_1, and L_2 are distinct lines that intersect pairwise, M_q must intersect L_1 and L_2 at p.
Hence, every point \(q \in B_{\frac{1}{2}} \cap \partial_{\mathcal{F}^1}E \) lies on the horizontal plane \(H_p \) through \(p \). The measure-theoretic boundary of \(E \) disconnects \(B_{\frac{1}{2}} \), so \(B_{\frac{1}{2}} \cap \partial_{\mathcal{F}^1}E = B_{\frac{1}{2}} \cap H_p \).

Consequently, any line \(L \) through \(p \) intersects \(U \cap \partial_{\mathcal{F}^1}E \) in at least two points, so \(U \cap L \subseteq \partial_{\mathcal{F}^1}E \). The union of all such lines is \(H_p \), so \(U \cap H_p \subseteq \partial_{\mathcal{F}^1}E \). \(\square \)

Finally, we prove parts (3) and (4) of Proposition 11.4.

Proof of parts (3) and (4) of Proposition 11.4. Due to Lemma 11.13, if \(p \) is a characteristic point, then \(\partial_{\mathcal{F}^1}E \) has a horizontal approximate tangent plane at \(p \). Lemma 11.13 also implies that if \(p \) is a characteristic point, then there is a ball \(B \) such that \(B \) contains no characteristic points other than \(p \). That is, the characteristic points form a discrete subset of \(\mathbb{H} \); since \(\mathbb{H} \) is separable, there are only countably many characteristic points.

Let \(p \in U \cap \partial_{\mathcal{F}^1}E \) be a non-characteristic point, so that there is a unique line \(L \) through \(p \). Let \(V \) be the vertical plane that contains \(L \). Fix \(0 < \varepsilon < \frac{1}{10} \). We claim that there is \(r > 0 \) such that if \(0 < \alpha \leq r \), then \(\overline{B}_\alpha(p) \cap \partial_{\mathcal{F}^1}E \) is contained in the \(\varepsilon \alpha \)-neighborhood of \(V \).

We translate, rotate, and rescale so that \(p = 0 \), \(L \) is the \(x \)-axis, and \(\overline{B}_1 \) is a subset of \(U \) that contains no characteristic points. Then \(V = V_0 \) is the \(xz \)-plane. Let \(\Pi : \mathbb{H} \to V_0 \) be the projection to \(V_0 \) along cosets of \(\langle Y \rangle \), as in Section 2.2, so that \(\Pi(x, y, z) = (x, 0, z - \frac{xy}{2}) \).

For each point \(s \in \overline{B}_1 \cap \partial_{\mathcal{F}^1}E \), there is a unique \(U \)-ruling \(M_s \) passing through \(s \). By Lemma 11.12, there is \(\delta \in (0, 1) \) such that \(\angle(M_s, L) < \frac{\varepsilon^2}{200} \) for every \(s \in \overline{B}_\delta \cap \partial_{\mathcal{F}^1}E \). Let \(r = \min \{ \delta, \frac{\varepsilon}{100} \} \) and let \(0 < \alpha \leq r \). Let \(q \in \overline{B}_\alpha \cap \partial_{\mu}E \) and suppose by way of contradiction that \(d(q, V_0) = |\gamma(q)| > \varepsilon \alpha \). Without loss of generality, we may suppose that \(Y(q) > \varepsilon \alpha \).

Let \(m \in \mathbb{R} \) be the slope of \(\pi(M_q) \), so that \(M_q = q \cdot \langle X + mY \rangle \). Let \(\gamma(t) = q \cdot \langle X + mY \rangle \) parametrize \(M_q \). Then

\[
|m| = |\sin \angle(M_s, L)| < \frac{\varepsilon^2}{200}.
\]

Since \(q \in \overline{B}_\alpha \subseteq B_{2\alpha} \), we have \(\Pi(q) \in B_{4\alpha} \) and thus \(|z(\Pi(q))| < 16\alpha^2 \). By (51), for all \(t \in \mathbb{R} \),

\[
\frac{d}{dt} z(\Pi(\gamma(t))) = -y(\gamma(t)) = -y(q) - mt.
\]

Consequently,

\[
z(\Pi(\gamma(t))) = z(q) - y(q) t - m \frac{t^2}{2}.
\]

Letting \(s = \frac{20\alpha}{t} \), it follows that

\[
z\left(\Pi(\gamma(s)) \right) \leq 16\alpha^2 - \alpha \varepsilon s + \frac{\varepsilon^2}{200} \cdot \frac{s^2}{2} \leq -3\alpha^2
\]

and

\[
z\left(\Pi(\gamma(-s)) \right) \geq -16\alpha^2 + \alpha \varepsilon s - \frac{\varepsilon^2}{200} \cdot \frac{s^2}{2} \geq 3\alpha^2.
\]

So, there is \(t \) with \(|t| < s \leq \frac{1}{4} \) and \(z(\Pi(\gamma(t))) = 0 \), i.e., \(\Pi(\gamma(t)) \in L \). The coset \(N = \gamma(t)(Y) \) is thus a horizontal line that intersects \(M_q \) at \(\gamma(t) \) and intersects \(L \) at \(\Pi(\gamma(t)) \). Since

\[
d(0, \gamma(t)) \leq d(0, q) + |t| \leq 2\alpha + \frac{1}{4} \leq \frac{1}{2},
\]

FOLIATED CORONA DECOMPOSITIONS 93
\[d\left(\mathbf{0}, \Pi(\gamma(t)) \right) \leq 2d(\mathbf{0}, \gamma(t)) \leq 1, \]

\(\gamma(t) \) and \(\Pi(\gamma(t)) \) belong to \(\overline{B}_1 \cap \partial \mathcal{A}' E \), so \(N \cap \overline{B}_1 \subseteq \partial \mathcal{A}' E \). Then \(M,q \) and \(N \) are distinct \(U \)-rulings of \(\partial \mathcal{A}' E \) passing through \(\gamma(t) \), which contradicts the fact that there are no characteristic points in \(\overline{B}_1 \). Therefore, \(d(q, V_0) \leq \epsilon a \) for all \(q \in \overline{B}_a \cap \partial \mathcal{A}' E \).

Let \(T_p = V_0 \) and let \(T_p^+ \) and \(T_p^- \) be the corresponding half-spaces. The argument above shows that for any \(0 < \alpha < r \), the sets \(W_{\epsilon, \alpha}^+ \) are disjoint from \(\partial \mathcal{A}' E \), so each set is contained in either \(\text{int} \mathcal{A}' E \) or \(\text{int} \mathcal{A}' (\mathbb{H} \sim E) \).

Consider \(W_{\epsilon, r}^+ \) and \(W_{\epsilon, r}^- \). Every line sufficiently close to the \(y \)-axis intersects both of these sets, so if both are contained in \(\text{int} \mathcal{A}' E \), then by Proposition 11.5, \(p \in \text{int} \mathcal{A}' E \) as well. Likewise, if both are contained in \(\text{int} \mathcal{A}' (\mathbb{H} \sim E) \), then \(p \in \text{int} \mathcal{A}' (\mathbb{H} \sim E) \). Either of these conclusions is a contradiction, so one of \(W_{\epsilon, r}^+ \), \(W_{\epsilon, r}^- \) is contained in \(\text{int} \mathcal{A}' E \) and the other is contained in \(\text{int} \mathcal{A}' (\mathbb{H} \sim E) \). If necessary, we switch \(T_p^+ \) and \(T_p^- \) so that \(W_{\epsilon, r}^+ \subseteq \text{int} \mathcal{A}' E \).

We claim that \(W_{\epsilon, \alpha}^+ \subseteq \text{int} \mathcal{A}' E \) for every \(\alpha \in (0, r] \). Fix \(0 < \beta \leq r \) with \(\frac{\beta}{2} < \alpha < \beta \). Then \(W_{\epsilon, \alpha}^+ \) intersects \(W_{\epsilon, \beta}^+ \), so if \(W_{\epsilon, \beta}^+ \subseteq \text{int} \mathcal{A}' E \), then \(W_{\epsilon, \alpha}^+ \subseteq \text{int} \mathcal{A}' E \) as well. By induction, \(W_{\epsilon, \alpha}^+ \subseteq \text{int} \mathcal{A}' E \) for all \(0 < \alpha < r \). Likewise, \(W_{\epsilon, \alpha}^- \subseteq \text{int} \mathcal{A}' (\mathbb{H} \sim E) \) for all \(0 < \alpha < r \). □

11.3. Stability of extended monotone sets. Here we prove Proposition 10.1. We show that there are \(v > 0 \) and \(R > 0 \) such that if \(E \) is a set that is \((v, R) \)-extended monotone on \(\overline{B}_1 \), then \(E \) is close to a half-space on \(\overline{B}_1 \). If \(R' \gg R \) and \(v' R' \leq v R \), then \((v', R') \)-extended monotonicity implies \((v, R) \)-extended monotonicity, so this implies the full proposition.

To prove this, it suffices to show that if \(f \) is a \(\overline{B}_1 \)-LEM function, then \(f|_{\overline{B}_1} \) is the characteristic function of a half-space. Suppose that \(f \) is a weak limit of a sequence \((1_{E_i})_i \), where \(E_1, E_2, \ldots \subseteq \mathbb{H} \) are sets such that \(E_i \) is \((\frac{1}{i}, 1) \)-extended monotone on \(\overline{B}_1 \). By Corollary 11.3, \(f|_{\overline{B}_1} \) is the characteristic function of a locally monotone subset \(F \subseteq \overline{B}_1 \), but this result only uses the fact that each \(E_i \) is \(\frac{1}{i} \)-monotone on \(\overline{B}_1 \). In this section, we improve Corollary 11.3 by using the stronger hypothesis that the \(E_i \) are extended monotone sets.

The first issue is that \(\text{ENM}_{E_i, R}(\overline{B}_1) \) only depends on the intersection of \(E_i \) with lines through \(\overline{B}_1 \). These lines don't cover all of \(\mathbb{H} \), so a \(\overline{B}_1 \)-LEM function need not take values in \([0, 1] \) outside \(\overline{B}_1 \). The following lemma shows that it is takes values in \([0, 1] \) on lines that intersect the boundary of \(F \) transversally. For \(p \in \mathbb{H} \) and \(V \in \mathbb{H} \) a horizontal vector, the coset \(p(V) \) is a horizontal line. Let \(p(V)^+ = \{ p(V)^+ : t > 0 \} \) and let \(p(V)^- = \{ p(V)^- : t < 0 \} \).

Lemma 11.14. Let \(f \) be a \(\overline{B}_1 \)-LEM function and let \(F = f^{-1}(1) \cap \overline{B}_1 \) be the corresponding locally monotone set. Let \(p \in \overline{B}_1 \cap \partial \mathcal{A}' F \) be a point with a vertical approximate tangent plane \(T_p \) and let \(V \in \mathbb{H} \) be a horizontal vector pointing into \(T_p^+ \). Then,

\[p(V)^+ \subseteq \text{int} \mathcal{A}' \left(f^{-1}(1) \right) \quad \text{and} \quad p(V)^- \subseteq \text{int} \mathcal{A}' \left(f^{-1}(0) \right). \]

Proof. Let \(E_i \subseteq \mathbb{H} \) be a sequence of sets such that \(E_i \) is \((\frac{1}{i}, 1) \)-monotone on \(\overline{B}_1 \) and \(1_{E_i} \) converges weakly to \(f \). Let \(L = p(V), L^+ = p(V)^+ \) and let \(\theta = \angle(V, T_p) \). Let \(\epsilon = \frac{\theta}{20} \) and let \(W_{\epsilon, t}^\pm \) be as in Proposition 11.4. For \(t > 0, L^\pm \) intersects \(W_{\epsilon, t}^\pm \) in an interval of length at least \(\frac{\epsilon}{2} \).

Fix \(t > 0 \) and let \(q = p(V)^t \). For the first inclusion in (177), the goal is to demonstrate that \(q \in \text{int} \mathcal{A}'(f^{-1}(1)) \). Let \(0 < \alpha < \frac{1}{2} \) be a radius such that \(\overline{B}_a(p) \subseteq \overline{B}_1, W_{\epsilon, \alpha}^\pm \subseteq F \) up to a null
set, and $W_{\varepsilon,\alpha} \subseteq \mathbb{H} \sim F$ up to a null set. For any $\delta > 0$, let $\mathcal{K}_\delta \subseteq \mathcal{L}$ be the set of lines of the form $q' \langle V' \rangle$ where $q' \in \overline{B}_\delta(q)$ and $V' \in \mathcal{H}$ is a horizontal vector such that $\angle(V, V') < \delta$. For $K \in \mathcal{K}_\delta$, let $K^\pm = K \cap T^\pm_\delta$.

Since the lines \mathcal{K}_δ are all close to L, there is a δ depending on θ and α such that $0 < \delta < \min\{\varepsilon, \alpha\}$ and every line $K \in \mathcal{K}_\delta$ intersects both $W_{\varepsilon,\alpha}$ and $W_{\varepsilon,\alpha}$ in intervals of length at least $\frac{\alpha}{4}$. We claim that

$$\lim_{i \to \infty} \mathcal{H}^4([\mathbb{H} \sim E_i] \cap \overline{B}_\delta(q)) = 0,$$

and thus that $f = 1$ almost everywhere on $\overline{B}_\delta(q)$.

For each $i \in \mathbb{N}$ define

$$\mathcal{F}_i \overset{\text{def}}{=} \{ K \in \mathcal{K}_\delta : \mathcal{H}^1(K \cap \overline{B}_1 \cap (E_i \triangle F)) < \frac{\alpha}{8} \}.$$

By Fubini’s theorem, for any measurable subset $A \subseteq \mathbb{H}$ and any horizontal vector $M \in \mathcal{H}$ that is not parallel to T_p, we have

$$\int_{T_p} \mathcal{H}^1(b(M) \cap A) \sin(\angle(M, T_p)) \, d\mathcal{H}^3(b) = \mathcal{H}^4(A). \tag{178}$$

Therefore, $\lim_{i \to \infty} \mathcal{N}(\mathcal{F}_i) = \mathcal{N}(\mathcal{K}_\delta)$, and for almost every $K \in \mathcal{F}_i$,

$$\mathcal{H}^1(K^+ \cap F \cap \overline{B}_\alpha(p)) = 1 \mathcal{H}^1(K^+ \cap W_{\varepsilon,\alpha}) > \frac{\alpha}{4}.$$

By the definition of \mathcal{F}_i, this implies that

$$\mathcal{H}^1(K^+ \cap E_i \cap \overline{B}_\alpha(p)) > \frac{\alpha}{8}, \tag{179}$$

and likewise,

$$\mathcal{H}^1(K^- \cap E_i^c \cap \overline{B}_\alpha(p)) > \frac{\alpha}{8}. \tag{180}$$

Let

$$\mathcal{I}_i \overset{\text{def}}{=} \{ K \in \mathcal{F}_i : \mathcal{H}^1(K \cap \overline{B}_\delta(q) \cap (\mathbb{H} \sim E_i)) > 0 \}.$$

Suppose that $i \geq d(p, q) + 2\delta + 2\alpha$ and $K \in \mathcal{I}_i$. By (179), (180), and the definition of \mathcal{I}_i, there are disjoint intervals $I_1 = K^- \cap \overline{B}_\alpha(p)$, $I_2 = K^+ \cap \overline{B}_\alpha(p)$, and $I_3 = K \cap \overline{B}_\delta(q)$ such that: I_2 is between I_1 and I_3; $I_1 \cup I_2 \cup I_3$ has diameter at most i; $\mathcal{H}^1(I_1 \cap (\mathbb{H} \sim E_i)) > \frac{\alpha}{8}$; $\mathcal{H}^1(I_2 \cap E_i) > \frac{\alpha}{8}$; and $\mathcal{H}^1(I_3 \cap (\mathbb{H} \sim E_i)) > 0$. Lemma 8.2 implies that

$$\frac{\alpha}{16} \mathcal{N}(\mathcal{I}_i) \leq \int_{\mathcal{I}_i} \omega_{E_i, I}(\overline{B}_1, K) \, d\mathcal{N}(K) = \mathcal{H}(E_i \cap I_2) \geq \frac{\mathcal{H}(E_i \cap I_2)}{2} \geq \frac{\alpha}{16}.$$

Hence,

$$\frac{\alpha}{16} \mathcal{N}(\mathcal{I}_i) \leq \int_{\mathcal{I}_i} \omega_{E_i, I}(\overline{B}_1, K) \, d\mathcal{N}(K) = \mathcal{H}(E_i \cap I_2) \geq \frac{\alpha}{16},$$

so $\lim_{i \to \infty} \mathcal{N}(\mathcal{I}_i) = 0$.

Let

$$\mathcal{R}_i \overset{\text{def}}{=} \{ K \in \mathcal{K}_\delta : \mathcal{H}^1(K \cap \overline{B}_\delta(q) \cap (\mathbb{H} \sim E_i)) > 0 \}.$$

Then $\mathcal{N}(\mathcal{R}_i) \subseteq \mathcal{N}(\mathcal{I}_i) + \mathcal{N}(\mathcal{K}_\delta \sim \mathcal{F}_i)$, and so $\lim_{i \to \infty} \mathcal{N}(\mathcal{R}_i) = 0$. By (178),

$$\mathcal{H}^4(\overline{B}_\delta(q) \cap (\mathbb{H} \sim E_i)) \geq \int_{\mathcal{K}_\delta} \mathcal{H}^4(K \cap \overline{B}_\delta(q) \cap (\mathbb{H} \sim E_i)) \, d\mathcal{N}(K) \leq \int_{\mathcal{F}_i} 2\delta \, d\mathcal{N}(K),$$

and thus that $f = 1$ almost everywhere on $\overline{B}_\delta(q)$.

where the last inequality follows from the fact that $\mathcal{H}^1(K \cap \overline{B}_\delta(q)) \leq 2\delta$ for any horizontal line K. We therefore conclude as follows.

$$\lim_{i \to \infty} \mathcal{H}^4(\overline{B}_\delta(q) \cap (\mathbb{H} \sim E_i)) \leq \lim_{i \to \infty} 2\delta \mathcal{N}(\mathcal{H}_i) = 0.$$

By Lemma 11.7, $\overline{B}_1 \cap \partial_{\mathcal{H}^4} F$ is a union of line segments. Extended monotonicity implies that these line segments can be extended to lines.

Lemma 11.15. Let f be a \overline{B}_1–LEM function and let $F = f^{-1}(1) \cap \overline{B}_1$ be the corresponding locally monotone set. Let L be a horizontal line. If an open subinterval $I \subseteq L$ is contained in $\overline{B}_1 \cap \partial_{\mathcal{H}^4} F$, then $L \subseteq \partial_{\mathcal{H}^4} F$.

Proof. By Proposition 11.4, $\partial_{\mathcal{H}^4} F$ has at most countably many characteristic points. Let $p \in I$ be non-characteristic. Then the vertical plane T_p containing L is the approximate tangent plane to $\partial_{\mathcal{H}^4} F$ at p. Recalling that H_p is the horizontal plane centered at p, every horizontal line through p, other than L, intersects $\partial_{\mathcal{H}^4} F$ transversally at p, so by Lemma 11.14, we have $T_p^+ \cap H_p \subseteq \text{int}_{\mathcal{H}^4}(F)$ and $T_p^- \cap H_p \subseteq \text{int}_{\mathcal{H}^4} (\mathbb{H} \sim F)$. Since L lies in the closures of $T_p^+ \cap H_p$ and $T_p^- \cap H_p$, we have $L \subseteq \text{supp}_{\mathcal{H}^4}(F) \cap \text{supp}_{\mathcal{H}^4} (\mathbb{H} \sim F) = \partial_{\mathcal{H}^4} F$. \square

Finally, we show that if $\overline{B}_1 \cap \partial_{\mathcal{H}^4} F$ is non-planar, then we can construct an arrangement of lines that leads to a contradiction.

Lemma 11.16. Let f be a \overline{B}_1–LEM function. There is a plane $Q \subseteq \mathbb{H}$ such that $f|_{\overline{B}_1} = 1_{Q^c}$ outside a null set. In fact, the same holds true in a larger set. Let

$$S \overset{\text{def}}{=} (Q \cap \overline{B}_1) \mathbb{H}$$

be the union of the horizontal lines intersecting $Q \cap \overline{B}_1$. Then $f|_S = 1_{Q^c}$ outside a null set.

Proof. Let $F = f^{-1}(1) \cap \overline{B}_1$ be the locally monotone set corresponding to f and suppose by way of contradiction that $\overline{B}_1 \cap \partial_{\mathcal{H}^4} F$ is non-planar. By part (2) of Proposition 11.4 and by Lemma 11.15, for every point $p \in \overline{B}_1 \cap \partial_{\mathcal{H}^4} F$, there is a horizontal line M_p through p such that $M_p \subseteq \partial_{\mathcal{H}^4} F$.

Reasoning as in Lemma 4.11 of [CK10b] shows that there are two \overline{B}_1–rulings of F that satisfy one of the cases of Lemma 11.1, i.e., they are a pair of skew lines or a pair of lines with distinct parallel projections. Indeed, suppose that J and K are \overline{B}_1–rulings of F with parallel projections. If $\pi(J) \neq \pi(K)$, we are done; otherwise, J and K are contained in a vertical plane V. Let L be a \overline{B}_1–ruling of F not in V, which exists by the assumed non-planarity. Then L is skew to J or K or parallel to V with a distinct projection. It remains to treat the case when any two \overline{B}_1–rulings of F have nonparallel projections. Let J and K be two such rulings. If J and K are disjoint, we are done, so we suppose J and K intersect at a point p and are thus contained in the horizontal plane H_p centered at p. If L is a \overline{B}_1–ruling of F that is not contained in H_p (it exists by assumed non-planarity), then L intersects H_p at a single point other than p, so L is skew to either J or K, as desired.

This shows that there are two \overline{B}_1–rulings L_1 and L_2 of F that are skew or have distinct parallel projections. Let $I = L_1 \cap \overline{B}_1$ and let $p \in I$ be a noncharacteristic point such that $\pi(p) \notin \pi(L_2)$. By Lemma 11.1, there is a horizontal line M that goes through p and intersects L_2 at q. This line is not equal to L_1, so it intersects $\partial_{\mathcal{H}^4} F$ transversally at p. By
Lemma 11.14, this implies that $q \in \text{int}_H(f^{-1}(0))$ or $q \in \text{int}_H(f^{-1}(1))$, but $q \in L_2 \subseteq \partial H F$, which is a contradiction. Therefore, $\overline{B}_1 \cap \partial H F$ is planar and there is a plane Q such that $F \cap \overline{B}_1 = Q_+ \cap \overline{B}_1$ up to a null set. Since f takes values in $[0, 1]$ inside \overline{B}_1, this implies the first part of Lemma 11.16.

With S as in (181), take $w \in Q^+ \cap S$. Then w lies on a horizontal line that intersects $Q \cap \overline{B}_1$ transversally, and Lemma 11.14 implies that $w \in \text{int}_H(f^{-1}(1))$. It follows that $f = 1$ almost everywhere in $Q^+ \cap S$ and likewise that $f = 0$ almost everywhere in $Q^- \cap S$. \[\square\]

The second part of Proposition 10.1 states that extended monotone intrinsic graphs are close to vertical planes. This follows from the fact that neighborhoods of the center of a horizontal plane cannot be approximated by intrinsic graphs.

Lemma 11.17. Let V_0 be the xz–plane and let $E_1, E_2, \ldots \subseteq H$ be a sequence of intrinsic graphs over V_0 such that E_i^+ is $(1, i)$–extended monotone on \overline{B}_1 and $1_{E_i^+}$ converges weakly to a function $f \in L_\infty(H)$ as $i \to \infty$. There is a vertical plane $Q \subseteq H$ such that $f|_{\partial H} = 1_{Q^+}$ outside a null set. Furthermore, if S is as in (181), then $f|_S = 1_{Q^-}$ outside a null set.

Proof. For any intrinsic graph Γ and any $g \in \Gamma^+$, we have $g Y^t \in \Gamma^+$ for every $t > 0$. Since H^A is right-invariant, this implies that for any measurable set $U \subseteq \mathbb{N}$ and any $i \in \mathbb{N}$,

$$\mathcal{H}^A(U \cap E_i^+) \leq \mathcal{H}^A(U \cap E_i^+ Y^t).$$

Therefore,

$$\int_U f \, d\mathcal{H}^A \leq \int_{U Y^t} f \, d\mathcal{H}^A.$$

Consequently,

$$f(g) \leq f(g Y^t) \quad \text{for almost every } (g, t) \in H \times (0, \infty). \quad (182)$$

If f is almost-surely constant on \overline{B}_1, we can take Q to be a vertical plane that does not intersect \overline{B}_1. We thus suppose that $f|_{\overline{B}_1}$ is not almost-surely constant. By Lemma 11.16, there is a plane Q that satisfies $f|_S = 1_{Q^-}$ outside a null set, where S is given in (181).

Suppose for contradiction that Q is horizontal. Let $c \in H$ be such that $Q = H_c = cH$ and let $p \in Q \cap \text{int}(\overline{B}_1)$ be such that $x(p) \neq x(c)$. Let L be the horizontal line from c to p and let $V = (x_V, y_V, 0)$ be the horizontal vector such that $p = cV$. Set $q = c V^{-1} = c(-x_V, -y_V, 0)$. We claim that there is $\varepsilon > 0$ such that $[p Y^t, q Y^t] \subseteq S$. Choose $\varepsilon > 0$ so that $p Y^t \in \overline{B}_1$ and $r_t = c(x_V, y_V + t, 0) \in \overline{B}_1 \cap Q$ for all $t \in [-2\varepsilon, 2\varepsilon]$. Then

$$r_t \left(-2x_V, -2y_V - \frac{3t}{2}, 0\right) = c(x_V, y_V + t, 0) \left(-2x_V, -2y_V - \frac{3t}{2}, 0\right) = c \left(-x_V, -y_V - \frac{t}{2}, \frac{x_V t}{4}\right) = q Y^{-\frac{t}{2}}.$$

It follows that $q Y^{-\frac{t}{2}} \in r_t H \subseteq S$. In particular, $q Y^t \in S$. At the same time, $p Y^\varepsilon$ and $p Y^{-\varepsilon}$ are on opposite sides of Q; equation (182) implies that $p Y^\varepsilon \in Q^+$ and $p Y^{-\varepsilon} \in Q^-$. Likewise, $q Y^t \in Q^+$. But since c is between p and q, the points $p Y^\varepsilon$ and $q Y^t$ are on opposite sides of Q, which is a contradiction. Therefore, Q is a vertical plane. \[\square\]
Proof of Proposition 10.1. If the first part of the proposition were false, then there would exist \(\epsilon > 0 \) and a sequence of measurable sets \((E_i)_{i=1}^{\infty}\) such that for any \(i \in \mathbb{N} \), the set \(E_i \) is \((\frac{1}{i}, i)\)-extended monotone on \(B_1 \) and \(|B_1 \cap (P^+ \Delta E_i)| > \epsilon \) for every plane \(P \subseteq \mathbb{H} \). There is a subsequence \((E_i)_{i=1}^{\infty}\) whose characteristic functions converge weakly to a \(\overline{B}_1 \)-LEM function \(f \). By Lemma 11.16, there is a plane \(Q \subseteq \mathbb{H} \) such that \(f = 1_{Q^+} \) almost everywhere on \(B_1 \). Then \(\lim_{j \to \infty} |B_1 \cap (Q^+ \Delta E_{i(j)})| = 0 \), which is a contradiction.

Similarly, if the second part of the proposition were false, then there would exist \(\epsilon > 0 \) and a sequence of intrinsic graphs \((E_i)_{i=1}^{\infty}\) over \(V_0 \) such that for any \(i \in \mathbb{N} \), the epigraph \(E_i^+ \) is \((\frac{1}{i}, i)\)-extended monotone on \(B_1 \) and \(|B_1 \cap (P^+ \Delta E_i^+)| > \epsilon \) for every vertical plane \(P \subseteq \mathbb{H} \). Passing to a subsequence, we may suppose that the indicators \(1_{E_i} \) converge weakly to a \(\overline{B}_1 \)-LEM function \(f \). By Lemma 11.17, there is a vertical plane \(Q \subseteq \mathbb{H} \) such that \(f = 1_{Q^+} \) almost everywhere on \(B_1 \). Then \(\lim_{i \to \infty} |B_1 \cap (Q^+ \Delta E_i)| = 0 \), which is a contradiction. \(\square \)

12. \(L_1 \) Bounds and Characteristic Curves on Monotone Intrinsic Graphs

Here we complete the proof of Proposition 7.2, which obtains \(L_1 \) bounds for paramonotone pseudoquads and bounds their characteristic curves.

Fix \(0 < \mu \leq \frac{1}{27} \) and a \(\mu \)-rectilinear pseudoquad \(Q \) in an intrinsic Lipschitz graph \(\Gamma = \gamma_f \). Suppose that \(\Gamma \) is \((\eta, R)\)-paramonotone on \(rQ \). By Remark 4.3, we can normalize \(Q \) and \(\Gamma \) so that the corresponding parabolic rectangle is the square \([-1, 1] \times \{0\} \times [-1, 1] \); by Lemma 8.8 and the discussion immediately after its proof, the normalized pseudoquad remains paramonotone. So, it suffices to prove Proposition 7.2 for such pseudoquads.

For \(t > 0 \), denote \(D_t = [-t, t] \times \{0\} \times [-t^2, t^2] \subseteq V_0 \). By our choice of normalization, we have \(tQ = D_t \). Furthermore, \(D_t \subseteq B_{5t} \) and \(\Pi(\overline{B}_t) \subseteq D_t \). We will proceed in several steps.

1. First, we will prove in Lemma 12.2 that there is a universal constant \(\kappa > 0 \) such that \(\|f\|_{L^1(Q)} \leq \kappa \) when \(\eta \) is sufficiently small. This relies on Lemma 12.1 that bounds the tails of \(f \) in regions that are bounded above and below by supercharacteristic curves (projections of horizontal curves in \(\Gamma \cup \Gamma^+ \)).

2. Next, we will show that \(\Gamma \) is close to a plane on a ball around the origin. Since \(\|f\|_{L^1(Q)} \leq \kappa \), the intersections \(\Gamma^+ \cap B_{\kappa} \) and \(\Gamma^- \cap B_{\kappa} \) both have positive measure. For any \(r > 0 \), we have \(\Pi(\overline{B}_r) \subseteq rQ \), so \(\text{ENM}_{\Gamma^+, R}(\overline{B}_r) \lesssim \eta R \). When \(\eta R \) is sufficiently small and \(r \) and \(R \) are sufficiently large, Proposition 10.1 implies that there is a vertical plane \(P \) that intersects \(B_{\kappa} \) and approximates \(\Gamma \) on \(B_r \), i.e.,

\[
\mathcal{H}^4 \left((\Gamma^+ \triangle P^+) \cap \overline{B}_r \right) \leq \epsilon.
\]

Furthermore, since \(\|f\|_{L^1(Q)} \leq \kappa \), the slope and \(y \)-intercept of \(\pi(P) \) are both at most some universal constant.

We then apply an automorphism that sends \(P \) to \(V_0 \). Since the slope and \(y \)-intercept of \(P \) are bounded, there is a universal constant \(c > 0 \) and a map \(q : \mathbb{H} \to \mathbb{H} \) (a composition of a left translation in the \(y \)-direction and a shear) such that \(q(P) = V_0 \) and \(B_{c^+s-c} \subseteq q(B_s) \subseteq B_{cs+c} \) for all \(s > c^2 \). We let \(\hat{q} = q(\Gamma) \), \(\hat{Q} = \hat{q}(Q) = \Pi(q(Q)) \), and let \(\hat{f} \) be such that \(\hat{f} = \Gamma \). Since \(q \) preserves \(\mathcal{H}^4 \),

\[
\mathcal{H}^4 \left((\hat{\Gamma}^+ \triangle \hat{V}_0^+) \cap \overline{B}_{c^+r-c} \right) \leq \epsilon.
\] (183)
This inequality controls \hat{f} on $V_0 \cap \overline{B}_{e^{-1}r,e^{-1}}$, and we choose r large enough that $11\hat{Q} \subseteq \overline{B}_{e^{-1}r,e^{-1}}$.

(3) By (183),
\[
\int_{10\hat{Q}} \min\{1, |\hat{f}(p)|\} \, d\mathcal{H}^3(p) \leq \varepsilon,
\]
so a bound on the tails of \hat{f} would lead to a bound on $\|\hat{f}\|_{L^1(10\hat{Q})}$. We bound the tails in Lemma 12.4, by finding supercharacteristic curves above and below $10\hat{Q}$, then applying Lemma 12.1 again. This implies that $\|\hat{f}\|_{L^1(10\hat{Q})} \lesssim \varepsilon$ when η is sufficiently small, which proves the first part of Proposition 7.2.

(4) Finally, we bound the characteristic curves of \hat{f} in Lemma 12.6, by showing that if $\hat{\Gamma}$ contains characteristic curves that are not nearly parallel to the x-axis, then either $\|\hat{f}\|_{L^1}$ is bounded away from zero or $\Omega^{P}_{\hat{\Gamma}, R}$ is bounded away from zero. This completes the proof of Proposition 7.2.

We will use the following notation for horizontal lines. Every horizontal line in L_p can be written uniquely as follows for some for some $w = (0, y_0, z_0) \in \mathbb{H}$ and $m \in \mathbb{R}$.
\[
L_{w,m} \overset{\text{def}}{=} w(X + mY).
\]
Let $\rho_{L_{w,m}} : \mathbb{R} \to L_{w,m}$ be the following parametrization, so that $x(\rho_{L}(t)) = t$ for all $t \in \mathbb{R}$.
\[
\forall \ t \in \mathbb{R}, \quad \rho_{L_{w,m}}(t) \overset{\text{def}}{=} w(X + mY)^t.
\]
For every $x \in \mathbb{R}$ define
\[
g_{L_{w,m}}(x) \overset{\text{def}}{=} z\left(\Pi\left(\rho_{L_{w,m}}(x)\right)\right) = -\frac{m}{2}x^2 - y_0x + z_0.
\]

Note that since $L_{w,m}$ is horizontal, we have $y(\rho_{L_{w,m}}(x)) = -g'_{L_{w,m}}(x)$.

12.1. **Bounding the tails of f.** We start by showing that if Q is a rectilinear pseudoquad for $\Gamma = \Gamma_f$ such that $\Gamma^+ = (\eta, R)_{\text{paramonotone}}$ on rQ, as in Proposition 7.2, and Q is normalized so that the corresponding parabolic rectangle is a 2×2 square, as in Remark 4.3, then there is a universal constant κ such that $\|f\|_{L^1(Q)} \leq \kappa$ when r and R are sufficiently large and η is sufficiently small.

This step relies on the following lemma, which will also be used in step 3. A **supercharacteristic curve** (respectively **subcharacteristic curve**) for Γ is the projection $\Pi(\gamma)$ of a horizontal curve $\gamma : I \to \mathbb{H}$ such that $x(\gamma(t)) = t$ for all $t \in I$ and $\gamma(I) \subseteq \Gamma \cup \Gamma^+$ (respectively $\gamma(I) \subseteq \Gamma \cup \Gamma^-$).

Such a curve can be written as a graph of the form $(z = g(x)) \subseteq V_0$. By the argument of Lemma 2.6, g is differentiable almost everywhere and satisfies $g'(x) = y(\gamma(x))$ for almost every $x \in I$. Since g is locally Lipschitz, $g(x) = g(x_0) + \int_{x_0}^{x} g'(t) \, dt = g(x_0) + \int_{x_0}^{x} y(\gamma(t)) \, dt$ for all $x, x_0 \in I$, and therefore $g'(x) = y(\gamma(x))$ for every $x \in I$. In particular, $g'(x) \leq -f(x, 0, g(x))$ for all $x \in I$. We then say that g is a function with supercharacteristic graph.

Lemma 12.1. Let $g_1, g_2 : [-2, 2] \to \mathbb{R}$ be functions with supercharacteristic graphs such that $\sup g_1([-2, 2]) < \inf g_2([-2, 2])$. For $0 \leq r \leq 2$, let
\[
U_r = \{(x, 0, z) \in V_0 : |x| \leq r \text{ and } g_1(x) \leq z \leq g_2(x)\}.
\]
Denoting $H = \max\{\|g_1\|_{L^\infty([-2,2])}, \|g_2\|_{L^\infty([-2,2])}\}$, for any $t \geq 8H$ we have

$$\left|\{v \in U_1 : f(v) \geq t\}\right| \lesssim \frac{1}{t^2} \Omega^p_{\Gamma^+,A}(U_2).$$

(185)

Likewise, if $g_1, g_2 : [-2,2] \to \mathbb{R}$ have subcharacteristic graphs and U_r and H are as above, then for any $t \geq 8H$ we have

$$\left|\{v \in U_1 : f(v) \leq -t\}\right| \lesssim \frac{1}{t^2} \Omega^p_{\Gamma^+,A}(U_2).$$

Once we prove Lemma 12.1, we will apply it to the case that Q approximates $[-1,1]^2$ and g_1 and g_2 are the lower and upper bounds of Q.

Proof. Fix $t \geq 8H$ and $y_0, m, z_0 \in \mathbb{R}$ such that $|y_0 - \frac{t}{2}| < \frac{t}{12}$ and $|m| < \frac{t}{12}$. Let $L = L(y_0, m, z_0)$.

For any $s \in [-2,2]$ we have

$$\left|g_L'(s) + \frac{t}{2}\right| = \left|y\left(\rho_L(s)\right) - \frac{t}{2}\right| < \frac{t}{4},$$

(186)

so $-\frac{3}{4}t < g_L'(s) < -\frac{1}{4}t$ on $[-2,2]$.

We claim that for any almost every such L we have

$$\hat{\omega}^{P}_{\Gamma^+,A}(U_2, L) \geq \frac{1}{2} \mathcal{H}^1\left(x(\Gamma^- \cap L \cap \Pi^{-1}(U_1))\right).$$

(187)

By (186), we have

$$g_L(-2) = g_L(s) - \int_{-2}^{s} g_L'(u) \, du > -H + (s + 2) \frac{t}{4} \geq -H + 2H = H,$$

and

$$g_L(2) = g_L(s) + \int_{s}^{2} g_L'(u) \, du < H - (2 - s) \frac{t}{4} \leq H - 2H = -H.$$

Hence, $\Pi(L)$ crosses U_2 negatively (from top to bottom), as depicted in Figure 12.1. The curve $\Pi(L)$ only intersects the top and bottom of U_2, not the sides, so we say that $\Pi(L)$ is transverse to the boundary of U_2 if $\Pi(L)$ intersects the top and bottom boundaries transversally; that is, if $g_L(u) = g_i(u)$ for some $u \in [-2,2]$ and $i = 1, 2$, then $g_L'(u) \neq g_i'(u)$.

Suppose that $\Pi(L)$ is transverse to the boundary of U_2 and that $L \cap \Gamma^+$ has finite perimeter; these are true for almost every L. If $\Pi(L)$ does not intersect U_1, then the right side of (187) is 0 and the inequality holds trivially. We thus suppose in addition that L intersects U_1. In this case, there is some $s \in [-1,1]$ such that $|g_L(s)| \leq H$.

Fix $i \in \{1,2\}$ and suppose that $\Pi(L)$ crosses the graph of g_i negatively at $(u,0,g_i(u))$. Let $v = \rho_L(u)$ be the point on L over the intersection. Then $g_L(u) = g_i(u)$ and $g_L'(u) < g_i'(u)$.

Since the graph of g_i is supercharacteristic, $f(u,0,g_i(u)) \leq -g_i'(u)$, and therefore

$$y(v) = -g_i'(u) > -g_i'(u) \geq f(u,0,g_i(u)) = f(\Pi(v)).$$

That is, $v \in \Gamma^+$.

Since $\Pi(L)$ is transverse to the boundary of U_2, the intersection $\Pi(L) \cap U_2$ consists of a collection of intervals. Let $[a_1, b_1], \ldots, [a_n, b_n] \subseteq \mathbb{R}$ be the disjoint intervals such that

$$x(\Pi(L) \cap U_2) = [a_1, b_1] \cup \cdots \cup [a_n, b_n],$$

and
and these intervals are in ascending order. The projection \(\Pi(L) \) does not intersect the left or right boundary of \(U_2 \), so \(\Pi(L) \) crosses the graph of \(g_1 \) or \(g_2 \) at each \(a_i \) or \(b_i \). Since \(g_L \) is decreasing and \(\sup g_1([-2,2]) < \inf g_2([-2,2]) \), the crossings of \(g_2 \) all have smaller \(x \)-coordinate than the crossings of \(g_1 \).

Consider \(S = x(L \cap \Gamma^+) \). Since \(\Pi(L) \) crosses the graph of \(g_2 \) negatively at \(a_1 \) and crosses the graph of \(g_1 \) negatively at \(b_n \), the argument above implies that \(a_1, b_n \in S \). Furthermore, for each \(i \in \{1, \ldots, n\} \), one of three cases holds.

1. \(\Pi(L) \) crosses the graph of \(g_2 \) negatively at \(a_i \) and positively (from bottom to top) at \(b_i \).
2. \(\Pi(L) \) crosses the graph of \(g_2 \) negatively at \(a_i \) and crosses the graph of \(g_1 \) negatively at \(b_i \).
3. \(\Pi(L) \) crosses the graph of \(g_1 \) positively at \(a_i \) and negatively at \(b_i \).

In each case, \(a_i \in S \) or \(b_i \in S \). By Lemma 8.2 (applied with \([a, b] = [a_i, b_i] \)),

\[
\hat{\omega}_{S,A}([a_i, b_i]) = \hat{\omega}_{R-S,A}([a_i, b_i]) \geq \frac{1}{2} \mathcal{H}^1 \left(x(\Gamma^- \cap L) \cap [a_i, b_i] \right).
\]

Summing over \(i \in \{1, \ldots, n\} \), we find that

\[
\hat{\omega}_{S,A} \left(\bigcup_{i=1}^{n} [a_i, b_i] \right) = \hat{\omega}_{R-S,A}(U_2, L) \geq \frac{1}{2} \mathcal{H}^1 \left(x(\Gamma^- \cap L \cap \Pi^{-1}(U_2)) \right). \tag{188}
\]

This proves (187).

Next, let \(A = U_1 \cap f^{-1}([t, \infty)) \). By (186), \(y(\rho_L(s)) < t \) for all \(s \in [-2, 2] \), so if \(\Pi(\rho_L(s)) \in A \), then \(\rho_L(s) \in \Gamma^- \). Therefore, by (187),

\[
\frac{1}{2} \mathcal{H}^1 \left(x(\Pi(L) \cap A) \right) \leq \frac{1}{2} \mathcal{H}^1 \left(x(\Gamma^- \cap L \cap \Pi^{-1}(U_1)) \right) \leq \hat{\omega}_{G,A}^P(U_2, L).
\]
By Fubini’s Theorem, for any y_0 and m as above,
\[
\frac{1}{2} |A| = \frac{1}{2} \int_{\mathbb{R}} \mathcal{H}^1 (x(L(0,y_0,z_0),m \cap A)) \, dz_0 \leq \int_{\mathbb{R}} \Theta_{\Gamma^+,A}^P (U_2,L(0,y_0,z_0),m) \, dz_0.
\]

Therefore, recalling the definition (161) of Ω^P, we have
\[
\Omega_{\Gamma^+,A}^P (U_2) = \frac{1}{4} \int_{\mathcal{L}} \Theta_{\Gamma^+,A}^P (U_2,L) \, d\mathcal{N}_P (L)
\]
\[
\geq \frac{1}{4} \int_{-\frac{t}{\pi}}^{\frac{t}{\pi}} \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} \Theta_{\Gamma^+,A}^P (U_2,L(0,y_0,z_0),m) \, dz_0 \, dy_0 \, dm
\]
\[
\geq \frac{1}{8} \int_{-\frac{t}{\pi}}^{\frac{t}{\pi}} \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} |A| \, dy_0 \, dm
\]
\[
= \frac{t^2}{288} |A|.
\]

That is,
\[
|\{ v \in U_1 : f(v) \geq t \}| \lesssim \frac{1}{t^2} \Omega_{\Gamma^+,A}^P (U_2).
\]

This proves (185).

We can show that
\[
|\{ v \in U_1 : f(v) \leq -t \}| \lesssim \frac{1}{t^2} \Omega_{\Gamma^+,A}^P (U_2).
\]
when g_1, g_2 have subcharacteristic graphs by either applying a similar argument or by replacing Γ, U_r, etc. by $s_{1,-1}(\Gamma)$, $s_{1,-1}(U_r)$, etc.

The desired bound on $\| f \|_{L_1(Q)}$ follows by integrating (185) with respect to t.

Lemma 12.2. Let $f : V_0 \rightarrow \mathbb{R}$ be a continuous function and let Γ be its intrinsic graph. Let $(Q, [-1,1] \times [0] \times [-1,1])$ be a $\frac{1}{32}$-rectilinear pseudoquad for Γ. Suppose that $\Omega_{\Gamma^+,A}^P (2Q) \leq 1$. There is a universal constant $\kappa > 0$ such that $\| f \|_{L_1(Q)} \leq \kappa$.

Proof. Let g_1 and g_2 be the lower and upper bounds of Q and for $0 \leq r \leq 2$, let U_r be as in Lemma 12.1. Then $Q = U_1$ and $U_2 \subseteq 2Q$. Let $H = 2$. Since the graphs of g_1 and g_2 are supercharacteristic and $U_2 \subseteq 2Q$, Lemma 12.1 implies that for any $t \geq 16$,
\[
|\{ v \in Q : f(v) \geq t \}| \lesssim t^{-2} \Omega_{\Gamma^+,A}^P (U_2) \leq t^{-2} \Omega_{\Gamma^+,A}^P (2Q) \leq t^{-2}.
\]

Since the graphs of g_1 and g_2 are also subcharacteristic, for any $t \geq 16$ we also have
\[
|\{ v \in U_1 : f(v) \leq -t \}| \lesssim t^{-2}.
\]

Then
\[
\| f \|_{L_1(Q)} = \int_0^\infty |\{ v \in Q : |f(v)| \geq t \}| \, dt \lesssim 16|Q| + \int_1^\infty t^{-2} \, dt \lesssim 1.
\]
12.2. **Constructing the approximating plane.** Now we will use Lemma 12.2 and the results of Section 11 to show that if Q is a paramonotone pseudoquad for Γ_f, then f is close on Q to an affine function with bounded coefficients.

Lemma 12.3. Let $\kappa > 0$ be the constant in Lemma 12.2, and let $C = 4\kappa$. For any $0 < \epsilon < 1$ and $r \geq 2\kappa + 6$, there are $0 < \eta < \frac{1}{2}$ and $R > 0$ with the following property:

Let $\Gamma = \Gamma_f$ be an intrinsic graph such that $(Q, [-1, 1] \times \{0\} \times [-1, 1])$ is a $\frac{1}{32}$-rectilinear pseudoquad for Γ. Let g_1 and g_2 be the lower and upper bounds of Q, respectively. If Q is (η, R)-paramonotone on rQ, then there is a vertical plane $P \subseteq \mathbb{H}$ such that

$$\mathcal{H}^4\left(\overline{B_r} \cap (P^+ \Delta P^+)\right) < \epsilon.$$

Moreover, P is the graph of an affine function F: $V_0 \rightarrow \mathbb{R}$ of the form $F(w) = a + bw(w)$, whose coefficients satisfy $\max\{|a|, |b|\} \leq C$.

Proof. We have $\delta_x(Q) = 2$ and $a(Q) = \sqrt{2}$. Also, $2 \leq |Q| \leq 6$. Hence, recalling (153), if Γ is (η, R)-paramonotone on rQ, then assuming $R \geq 2$ and $\eta R < 1$ we have

$$\Omega^{P_2}_4(2Q) \leq \frac{R}{2} \Omega^{P_2}_4(rQ) \leq \frac{R}{2} \eta a(Q)^{-\lambda} |Q| \leq R \eta < 1,$$

so by Lemma 12.2 we have $\|f\|_{L^1(Q)} < \kappa$.

Since $\Pi(\overline{B_r}) \subseteq rQ$, (164) implies that

$$\text{ENM}_{\Gamma^{+}, 2R}(\overline{B_r}) \lesssim \eta R.$$

By Proposition 10.1, when R is sufficiently large and ηR is sufficiently small, there is a half-space P^+ bounded by a vertical plane such that

$$\mathcal{H}^4\left(\overline{B_r} \cap (P^+ \Delta P^+)\right) < \epsilon.$$

If necessary, we may rotate P infinitesimally around the z-axis so that it is not perpendicular to V_0. Then P is the graph of an affine function F: $V_0 \rightarrow \mathbb{R}$. Let $a, b \in \mathbb{R}$ be such that $F(w) = a + bw(w)$ for all $w \in V_0$.

For all $w \in V_0$, let $\tilde{f}(w)$ (respectively $\tilde{F}(w)$) be the element of $[-2\kappa, 2\kappa]$ that is closest to $f(w)$ (respectively $F(w)$). Since $r \geq 2\kappa + 6$, the intrinsic graphs of \tilde{F} and \tilde{f} over Q both lie in $\overline{B_r}$. Therefore,

$$\|\tilde{F} - \tilde{f}\|_{L^1(Q)} \leq \mathcal{H}^4\left(\overline{B_r} \cap (\Gamma^+_f \Delta \Gamma^+_\tilde{F})\right) \leq \mathcal{H}^4\left(\overline{B_r} \cap (\Gamma^+_f \Delta \Gamma^+_\tilde{F})\right) \leq \epsilon,$$

and thus

$$\|\tilde{F}\|_{L^1(Q)} \leq \epsilon + \|\tilde{f}\|_{L^1(Q)} \leq \epsilon + \|f\|_{L^1(Q)} \leq 2\kappa.$$

(190)

The map F is affine, and $[-1, 1] \times \{0\} \times [-\frac{1}{2}, \frac{1}{2}] \subseteq Q$, so $||q \in Q : |F(q)| > 2\kappa|| > 1$ if $|a| > 2\kappa$ or $|b| > 4\kappa$, which implies that $\|\tilde{F}\|_{L^1(Q)} > 2\kappa$ in contradiction to (190). So, $\max\{|a|, |b|\} \leq 4\kappa$.

We will next use Lemma 12.3 to construct a new intrinsic Lipschitz graph \hat{f} that is close to V_0 on a ball around 0. Let $0 < \epsilon < 1$ and $r > 0$ be numbers to be chosen later. Let η, R, C, Γ, F, Q be as in Lemma 12.3, so that there is a vertical plane P approximating Q that is the graph of an affine function $F(w) = a + bx(w)$ with $\max\{|a|, |b|\} \leq C$.

Let \(q = q_{a,b} : \mathbb{H} \rightarrow \mathbb{H} \) be the map given by
\[
\forall (x, y, z) \in \mathbb{H}, \quad q(x, y, z) \overset{\text{def}}{=} y^{-a}(x, y - bx, z) = \left(x, y - a - bx, z + \frac{ax}{2} \right).
\]
This is a shear map that preserves the \(x \)-coordinate and sends \(P \) to \(V_0 \). Let \(\hat{q} : \mathbb{H} \rightarrow \mathbb{H} \) be the map that \(q \) induces on \(\mathbb{H} \), i.e.,
\[
\forall x, z \in \mathbb{R}, \quad \hat{q}(x, 0, z) = \Pi(q(x, 0, z)) = \left(x, 0, z + a(x + b) \right).
\] (191)

Let \(\hat{\Gamma} = q(\Gamma) \) and \(\hat{Q} = q(Q) \). By Lemma 2.9, \(\hat{Q} \) is a pseudoquadr for \(\hat{\Gamma} \) that contains \(\hat{0} \) and \(\hat{\Gamma} = \Gamma_f \), where
\[
\hat{f}(v) = f(\hat{q}^{-1}(v)) - a - bx(v) = f(\hat{q}^{-1}(v)) - F(\hat{q}^{-1}(v)).
\]
Since \(a, b \in [-C, C] \), there is a universal constant \(c > 0 \) such that for all \(s > c^2 \),
\[
D_{c^{-1}s-c} \subseteq \hat{q}(D_s) = s\hat{Q} \subseteq D_{c+s+\epsilon},
\] (192)
where we recall \(D_s = [-s, s] \times [0] \times [-s^2, s^2] \), and
\[
B_{c^{-1}s-c} \subseteq q(B_s) \subseteq B_{c+s+\epsilon}.
\] (193)

Bounds on \(\Gamma \) and \(Q \) correspond directly to bounds on \(\hat{\Gamma} \) and \(\hat{Q} \). For example, shear maps preserve \(\mathcal{H}^4 \), so
\[
\mathcal{H}^4(B_{c^{-1}s-c} \cap (V_0^+ \Delta \hat{\Gamma}^+)) \leq \mathcal{H}^4(q(B_r) \cap (V_0^+ \Delta \hat{\Gamma}^+)) = \mathcal{H}^4(B_r \cap (P^+ \Delta \Gamma^+)) < \epsilon.
\] (194)
In particular, when \(r \) is sufficiently large,
\[
\| \min(\|f - F\|_{L^1(Q)}, \frac{r}{2}) \|_{L^1(10Q)} \leq \mathcal{H}^4(B_r \cap (P^+ \Delta \Gamma^+)) < \epsilon.
\] (195)
Maps induced by shears preserve the Lebesgue measure \(\mathcal{H}^3 \) on \(V_0 \), so by (192),
\[
\| f - F \|_{L^1(10Q)} \equiv \| \hat{f} \|_{L^1(10Q)} \leq \| \hat{f} \|_{L^1(D_{11r})},
\] (196)
and by Lemma 8.8, \(\hat{\Gamma} \) is \((\eta, R) \)--paramonotone on \(r\hat{Q} \).

12.3. Bounding \(\| f - F \|_{L^1(10Q)} \). Next, we bound \(\| f - F \|_{L^1(10Q)} \). Lemma 12.2, Lemma 12.3, and (195) imply that \(\| f - F \|_{L^1(10Q)} \) and that \(\| \min(\|f - F\|_{L^1(10Q)}, \frac{r}{2}) \|_{L^1(10Q)} \) can be made arbitrarily small. It remains to show that \(\| f - F \| \) does not have large tails on \(10Q \). We previously used Lemma 12.1 to bound the tails of \(f \) on \(Q \), but this used the fact that \(Q \) is bounded above and below by characteristic curves. We will have to do more work to find supercharacteristic curves above and below \(10Q \). In fact, we will show the following bound on \(\hat{f} \), then use (196) to show a similar bound on \(|f - F| \).

Lemma 12.4. For any \(\delta > 0 \), there is \(\beta = \beta(\delta) > 0 \) with the following property. Let \(\hat{\Gamma} = \Gamma_f \) be an intrinsic Lipschitz graph. Let \(\tau > 0 \) and suppose that
\[
\mathcal{H}^4(B_{144\tau} \cap (\hat{\Gamma}^+ \Delta V_0^+)) < \beta \tau^4,
\] (197)
and that the density of \(\Omega_{F^+, A_{48\tau}}^P \) on \(D_{24\tau} \) is bounded by
\[
\tau^{-3} \Omega_{F^+, A_{48\tau}}^P(D_{24\tau}) < \beta.
\]
Then \(\| \hat{f} \|_{L^1(D_{11r})} \leq \delta \tau^4 \).
We claim that almost every $L \in U$ is supercharacteristic above D_8. A similar construction will produce a second supercharacteristic curve below D_8, so we can use Lemma 12.1 to bound \hat{f} from above.

We clip \hat{f} between -24 and 24 and call the result h; that is, for all $w \in V_0$, let $h(w)$ be the element of $[-24, 24]$ that is closest to $\hat{f}(w)$. For $L \in \mathcal{L}_P$ and $t \in \mathbb{R}$, let $h_L(t) = h(\Pi(\rho_L(t)))$.

Define

$$
\mathcal{U}_1 \overset{\text{def}}{=} \left\{ L \in \mathcal{U} : \Pi(\rho_L([-16, 16])) \text{ is supercharacteristic} \right\},
$$

$$
\mathcal{U}_2 \overset{\text{def}}{=} \left\{ L \in \mathcal{U} : \int_{-24}^{24} |h_L(t)| \, dt > \frac{1}{24} \right\},
$$

$$
\mathcal{U}_3 \overset{\text{def}}{=} \left\{ L \in \mathcal{U} : h_L(0) \in \left[-\frac{2}{24}, 0 \right) \right\}.
$$

We claim that almost every $L \in \mathcal{U}$ is contained in $\mathcal{U}_1 \cup \mathcal{U}_2 \cup \mathcal{U}_3$.

Let $L \in \mathcal{U}$ and suppose that $x(L \cap \hat{f}^+)$ is a subset of \mathbb{R} with locally finite perimeter. This is true for almost every L. Suppose that $L \notin \mathcal{U}_1 \cup \mathcal{U}_2$. Then $\Pi(\rho_L([-16, 16]))$ is not supercharacteristic, so there is some $a \in [-16, 16]$ such that $\rho_L(a) \in \hat{f}^-$. Let p be the intersection point of L with V_0; by our choice of parameters, $x(p) \in [20, 21]$. Also, since $m < -\frac{1}{24}$, we have $y(\rho_L(t)) > \frac{1}{24}$ for $t \in [-19, 19]$. Since $L \notin \mathcal{U}_2$, there are $b_1 \in [16, 17]$ and $b_2 \in [18, 19]$ such that for $i \in \{1, 2\}$ we have $h_L(b_i) \leq \frac{1}{24} < y(\rho_L(b_i))$ and $\rho_L(b_i) \in \hat{f}^+$. Similarly, $y(\rho_L(t)) < -\frac{1}{24}$ for all $t \gg 22$, so there is $c \in [22, 23]$ such that $h_L(c) > y(\rho_L(c))$ and $\rho_L(c) \in \hat{f}^-$. There is an element of \mathcal{U}_3, $x(L \cap \hat{f}^+)$ in (a, b_1) and another in (b_2, c). Since $a, b_1, b_2, c \in [-24, 24]$, Lemma 8.1 implies that $h_L(0) \in \left[-\frac{2}{24}, 0 \right)$, and thus $L \notin \mathcal{U}_3$.

Therefore, $\mathcal{U}_1 \cup \mathcal{U}_2 \cup \mathcal{U}_3$ contains all of \mathcal{U} except a null set. We will next show that $\mathcal{N}_P(\mathcal{U}_2)$ and $\mathcal{N}_P(\mathcal{U}_3)$ are bounded by multiples of β.

Suppose $L = L(0, y_0, z_0, m)$. As in (184), let $g_L(t) = z(\Pi(\rho_L(t))) = -\frac{m}{2} t^2 - y_0 t + z_0$. For every $t \in [-24, 24]$, we have

$$
|g_L(t) - 200| \leq 1 + \frac{m}{2} t^2 + y_0 |t| \leq 1 + \frac{24^2}{20} + 48 \leq 100,
$$

so $\Pi(\rho_L([-24, 24])) \subseteq D_{24}$. Furthermore, $D_{24} \subseteq B_{120}$, so for all $\nu \in D_{24}$ and $t \in [-24, 24]$, we have $\nu Y' \in B_{144}$. Thus

$$
\nu Y' \in B_{144} \cap (\hat{f}^+ \Delta V_0^-) < \beta.
$$

Therefore, for any $y_0 \in [1, 2]$ and $m \in \left[-\frac{y_0}{20}, -\frac{y_0}{27} \right]$,

$$
\int_{-24}^{24} |h_L(t)| \, dt \, dz_0 \leq \| h_L(D_{24}) \| < \beta.
$$
It follows that \(\{ z_0 \in [200,201] : L_{(0,y_0,z_0),m} \in \mathcal{U}_2 \} \) has measure at most \(24\beta \) and thus \[\mathcal{N}_P(\mathcal{U}_2) \leq \int_1^2 \int_{-\frac{23}{24}}^{-\frac{25}{24}} 24\beta \, dm \, dy_0 \leq 24\beta. \]

To bound \(\mathcal{N}_P(\mathcal{U}_3) \), observe that
\[
\mathcal{N}_P(\mathcal{U}_3) \leq \int_{\mathcal{S}_P} \hat{\omega}_P^{\Gamma_1} (D_{24}, L) \, d\mathcal{N}_P(L) = 48 \Omega_P^{\Gamma_1,48} (D_{24}) < 48\beta.
\]
It follows that if \(\beta \) is sufficiently small, then
\[\mathcal{N}_P(\mathcal{U}_1) \geq \mathcal{N}_P(\mathcal{U}) - \mathcal{N}_P(\mathcal{U}_2) - \mathcal{N}_P(\mathcal{U}_3) > 0. \]
Therefore \(\mathcal{U}_1 \) is nonempty. That is, there exists a line \(L \in \mathcal{U} \) with parametrization \(\rho_L \) such that \(\mathcal{S}_2 = \Pi(L) \cap [-16 \leq x \leq 16] \) is a supercharacteristic curve. By (198), \(\mathcal{S}_2 \) is above \(D_8 \) and \(S_2 \subseteq D_{24} \). By symmetry, there also exists a line \(L' \) and a supercharacteristic curve \(\mathcal{S}_1 = \Pi(L') \cap [-16 \leq x \leq 16] \) that lies below \(D_8 \) and satisfies \(\mathcal{S}_1 \subseteq D_{24} \).

By Lemma 12.1 applied to a rescaling of \(\hat{\Gamma} \), there is some \(C > 24 \) such that for any \(t > C \),
\[||\{ v \in D_8 : \hat{f}(v) \geq t \}|| \lesssim t^{-2} \Omega_{\hat{\Gamma},48}^{P} (D_{24}) \lesssim t^{-2} \beta. \]
Applying another symmetry, the analogous reasoning shows that for any \(t > C \),
\[||\{ v \in D_8 : \hat{f}(v) \leq -t \}|| \lesssim t^{-2} \beta. \]
Then, for all sufficiently small \(\beta \),
\[
\| \hat{f} \|_{L_1(D_{24})} = \| h \|_{L_1(D_{24})} + \int_{24}^{\infty} | \{ v \in D_8 : |\hat{f}(v)| \geq t \} | \, dt \\
\lesssim \| h \|_{L_1(D_{24})} + C \left(\| \{ v \in D_8 : |\hat{f}(v)| \geq 24 \} \| + \int_C^\infty t^{-2} \beta \, dt \right) \\
\leq \beta + C \left(\| \{ v \in D_8 : |\hat{f}(v)| \geq 24 \} \| + \beta \right),
\]
where we use the fact \(C > 24 \) to go from the first line to the second. But
\[\| \{ v \in D_8 : |\hat{f}(v)| \geq 24 \} \| = \| \{ v \in D_8 : |h(v)| = 24 \} \| \lesssim \frac{\| h \|_{L_1(D_{24})}}{24} \lesssim \frac{\beta}{24}, \]
so \(\| \hat{f} \|_{L_1(D_{24})} \lesssim \beta \). This proves Lemma 12.4, for \(\beta \) at most a constant multiple of \(\delta \). \(\square \)

We will use the following corollary in the proof of Proposition 7.2.

Corollary 12.5. Let \(c \) be the universal constant in (192)–(196) and let \(\kappa \) be the universal constant in Lemma 12.2. Denote
\[\tau \overset{\text{def}}{=} \frac{1}{8} \max\{100,11c\} \quad \text{and} \quad r \overset{\text{def}}{=} \max\{2 \kappa + 6, 144 c \tau + c^2 \}. \]
For any \(\lambda > 0 \), there are \(\eta, R > 0 \) with the following property. Let \(\Gamma = \Gamma_f \) be an intrinsic Lipschitz graph and \((Q, [-1,1] \times \{0 \} \times [-1,1]) \) a \(\frac{1}{32} \)-rectilinear pseudotquad for \(\Gamma \). Suppose that \(\Gamma \) is \((\eta, R) \)-paramonotone on \(rQ \), and \(P, F, F \) and \(\Gamma = \Gamma_f \) are as in Lemma 12.3 and the remarks immediately after its proof. Then
\[\| F - f \|_{L_1(Q)} \leq \lambda |Q| \quad \text{and} \quad \| \hat{f} \|_{L_1(D_{100})} \leq \lambda. \]
Proof. Set $\delta = \lambda \tau^{-4}$. Let $\beta = \beta(\delta)$ be as in Lemma 12.4. By Lemma 12.3, there are η_0, R_0 such that if Γ is (η_0, R_0)–paramonotone on rQ, then

$$\mathcal{H}^A \left(\overline{B}_{144\tau^4 + c^2} \cap (P^+ \Delta \Gamma^+) \right) < \beta \tau^4.$$

By (194), this implies that

$$\mathcal{H}^A \left(\overline{B}_{144 \tau} \cap (V_0^+ \Delta \hat{\Gamma}^+) \right) < \beta \tau^4.$$

We take $R > R_0$ and $\eta R < \eta_0 R_0$, so that (η, R)–paramonotonicity implies (η_0, R_0)–paramonotonicity. Then, by (192) and the paramonotonicity of Q,

$$\Omega_{\hat{\Gamma}}^p (D_{24\tau}) \leq \frac{R \delta_x (\hat{Q})}{48 \tau} \Omega_{\hat{\Gamma}} (D_{24\tau}) \leq \frac{R}{24 \tau} \Omega_{\hat{\Gamma}} (D_{24\tau} + c^2) = \frac{R}{24 \tau} \left| Q \right| \eta \alpha (Q)^{-4} \approx \eta.$$

If η is sufficiently small, then Lemma 12.4 implies that

$$\| \hat{f} \|_{L^1(D_{\max (100, 11c)})} < \lambda.$$

By (196), this implies that $\| F - \hat{f} \|_{L^1(Q)} \leq \lambda |Q|$. \hfill \square

12.4 Characteristic curves are close to lines. Finally, in this section we will show that the characteristic curves of $\hat{\Gamma}$ are close to horizontal lines and prove Proposition 7.2. The key argument is that when characteristic curves fail to be horizontal, configurations like those in Figure 6 produce nonmonotonicity.

![Figure 6](image)

Figure 6. A characteristic curve γ and a horizontal line L, projected to V_0. The projection of L crosses γ positively at p, so L passes behind $\hat{\Gamma}$ at p, and L intersects V_0 (shown as parallel horizontal lines) at q. If \hat{f} is zero away from γ, then L intersects $\hat{\Gamma}$ at least three times (twice near p and once at q) and the contribution to $\hat{\omega}^P$ is at least $\frac{x(q) - x(p)}{2}$.

Lemma 12.6. For any $A > 0$, there are $\delta = \delta(A), \theta = \theta(A) > 0$ with the following property. Let $\hat{\Gamma} = \Gamma_j$ be an intrinsic Lipschitz graph. Suppose that

$$\Omega_{\Gamma_j}^P (D_{8}) < \theta \quad \text{and} \quad \| \hat{f} \|_{L^1(D_8)} < \delta.$$
Let $\gamma : \mathbb{R} \to V_0$ be a characteristic curve through 0 and write $\gamma(t) = (t, 0, g(t))$ for $t \in \mathbb{R}$. Then $|g(t)| < A$ for all $t \in [-1, 1]$.

Proof. We may suppose that $0 < A < 1$. Choose $\delta = \frac{A^2}{96}$ and $\theta = \frac{A^2}{105}$. Our goal is to show that if $\|f\|_{L_1(D_0)} < \delta$ and if there is $t_0 \in [-1, 1]$ with $|g(t_0)| > A$, then $\Omega^P_{\Gamma^1,16}(D_0) \geq \theta$. After applying a symmetry, we may suppose that $t_0 > 0$ and that $g(t_0) < -A$, as in Figure 6.

Take $z_0 \in \left(\frac{A}{2}, 0\right)$, $y_0 \in \left(\frac{A}{4}, \frac{A}{2}\right)$, $m \in \left[-\frac{y_0}{4}, -\frac{y_0}{8}\right)$, and $w = (0, y_0, z_0)$. Let $L = L_{w,m}$. Suppose that $\Pi(L)$ and γ intersect transversally and $L \cap \hat{\Gamma}^-$ has finite perimeter; these hold for almost every tuple (y_0, z_0, m). We will show that if

$$\int_0^6 |\hat{f}(t, 0, g_L(t))| \, dt < \frac{A}{24},$$

(200)

then $\hat{\omega}^P_{\Gamma^1,16}(D_B, L) \geq 1$, where $g_L = z(\Pi(\rho_L))$.

Suppose that (200) holds. For $t \in [-8, 8]$, we have

$$|g_L(t)| \leq |z_0| + \frac{|m|}{2} t^2 + |y_0| t < 1 + \frac{64}{20} + 4 < 64,$$

so $\Pi(\rho_L([-8, 8])) \subseteq D_B$. The graphs of g_L and g intersect as depicted in Figure 6. That is, $g_L(0) = z_0 < g(0)$, g_L is decreasing on $[0, 5]$, and $g_L(0) - g_L(1) = \frac{m}{2} + y_0 < \frac{A}{2}$, so $g_L(t_0) \geq g_L(1) > g_L(0) - \frac{A}{2} > -A \geq g(t_0)$.

It follows that the graph of g_L crosses γ positively at some point $p = (a, 0, g(a))$, where $a \in [0, t_0]$. Since g is characteristic,

$$\hat{f}(a, 0, g(a)) = -g'(a) > -g_L'(a) = y(\rho_L(a)),$$

so $\rho_L(a) \in \hat{\Gamma}^+$. Let q be the point where L intersects V_0. Then $x(q) = -\frac{y_0}{m} \in [5, 6]$. Since $m \leq -\frac{A}{24}$, we have $y(\rho_L(t)) \geq \frac{A}{24}$ for $t \leq 4$ and $y(\rho_L(t)) \leq -\frac{A}{24}$ for $t \geq 7$. By (200), there are $b_1 \in [1, 2]$ and $b_2 \in [3, 4]$ such that

$$\hat{f}(b_1, 0, g_L(b_1)) < \frac{A}{24} \leq y(\rho_L(b_1)).$$

This implies $\rho_L(b_1) \in \hat{\Gamma}^+$. Similarly, there is $c \in [7, 8]$ such that $y(\rho_L(c)) < \hat{f}(c, 0, g_L(c))$ and thus $\rho_L(c) \in \hat{\Gamma}^-$. There is an element of $\partial_{\hat{\mathcal{F}}} \left(\chi(L \cap \hat{\Gamma}^+)\right)$ in (a, b_1) and another in (b_2, c), and by Lemma 8.1,

$$\hat{\omega}^P_{\Gamma^1,16}(D_B, L) \geq b_2 - b_1 \geq 1,$$

as desired.

Therefore, for almost every (m, y_0, z_0) as above, regardless of whether (200) holds,

$$\hat{\omega}^P_{\Gamma^1,16}(D_B, L) + \frac{24}{A} \int_0^6 |\hat{f}(t, 0, g_L(t))| \, dt \geq 1,$$

(201)

since we showed that at least one of the summands on the left hand side of (201) is at least 1. By integrating (201) with respect to z_0, we see that for almost every (m, y_0) that
satisfy \(y_0 \in \left[\frac{A}{4}, \frac{A}{2} \right] \) and \(m \in \left[-\frac{m_0}{5}, -\frac{m_0}{6} \right] \), we have

\[
\int_{-\frac{1}{2}}^{0} \hat{\omega}_{\Gamma^+,16}^P(D_8,L) \, dz_0 \geq \frac{A}{2} - \frac{24}{A} \int_{-\frac{1}{2}}^{0} \int_{0}^{8} |\hat{f}(x,0,g_L(x))| \, dx \, dz_0 \\
\geq \frac{A}{2} - \frac{24}{A} \| \hat{f} \|_{L_1(D_8)} \geq \frac{A}{2} - \frac{24\delta}{A} = \frac{A}{4}.
\]

By integrating this bound over \(m \) and \(y_0 \) as above, we conclude as follows.

\[
\Omega_{\Gamma^+,16}^P(D_8) \geq \frac{1}{16} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{m_0}{3}}^{\frac{m_0}{3}} \int_{-\frac{1}{2}}^{0} \hat{\omega}_{\Gamma^+,16}^P(D_8,L) \, dz_0 \, dm \, dy_0 \geq \frac{A^3}{10^3}. \quad \square
\]

Part 2 of Proposition 7.2 follows from Lemma 12.6.

Corollary 12.7. For every \(0 < \zeta < 1 \) there are \(\delta = \delta(\zeta) > 0 \) and \(\theta = \theta(\zeta) > 0 \) with the following property. Let \(\hat{\Gamma} = \Gamma_j \) be an intrinsic Lipschitz graph such that

\[
\Omega_{\Gamma^+,128}^P(D_{100}) < \theta \quad \text{and} \quad \| \hat{f} \|_{L_1(D_{100})} < \delta.
\]

Let \(\hat{Q} \) be a pseudoquad for \(\hat{\Gamma} \) with \(x(\hat{Q}) = [-1,1] \) such that \(0 \in \hat{Q} \) and \(\delta_x(\hat{Q}) = 2 \). For \(u \in 4\hat{Q} \), if \(g_u : \mathbb{R} \to \mathbb{R} \) is such that \((z = g_u(x)) \) is a characteristic curve for \(\hat{\Gamma} \) that passes through \(u \), then \(\| g - z(u) \|_{L_\infty([-4,4])} \leq \zeta \). That is, \(\hat{Q} \) satisfies part 2 of Proposition 7.2 for \(P = V_0 \).

Proof. For \(p \in V_0 \) and \(t > 0 \), denote \(D_t(p) = pD_t \). Let \(A = \frac{\zeta}{64} \) and let \(\delta, \theta > 0 \) be constants satisfying Lemma 12.6 for this choice of \(A \).

Let \(p \in D_{36} \) so that \(D_{64}(p) \subseteq D_{100} \). Then \(\Omega_{\Gamma^+,8}^P(D_8^2(p)) < \theta \) and \(\| \hat{f} \|_{L_1(D_{64}(p))} < \delta \), so by Lemma 8.8, the rescaling \(s_{1/8,1/8}(p^{-1}\hat{\Gamma}) \) satisfies Lemma 12.6. Hence, if \(\gamma = \{z = g_p(x)\} \) is a characteristic curve for \(\hat{\Gamma} \) that passes through \(p \), then

\[
\| g_p - z(p) \|_{L_\infty((x(p)-8,x(p)+8))] \leq 64 A = \zeta.
\]

Let \(g_1 \) and \(g_2 \) be the lower and upper bounds of \(\hat{Q} \), respectively. Then \(g_1(0) \in [-3,0] \) and \(g_2(0) \in [0,3] \), so \(g_1 - g_1(0) \|_{L_\infty([-3,0])} \leq \zeta \) and \(g_2 - g_2(0) \|_{L_\infty([0,3])} \leq \zeta \). Therefore, \(4\hat{Q} \subseteq D_{36} \). Let \(u \in 4\hat{Q} \) and \(\{ z = g_u(x) \} \) is a characteristic curve, then

\[
\| g_u - z(u) \|_{L_\infty([-4,4])} \leq \zeta.
\]

Finally, we combine the results of this section to prove Proposition 7.2.

Proof of Proposition 7.2. By Lemma 2.9 and Lemma 8.8, if \(Q \) is a pseudoquad of \(\Gamma \) and \(h \) is a composition of a shear map, a translation, and a stretch map, then \(Q \) and \(\Gamma \) satisfy Proposition 7.2 if and only if \(h(Q) = \Pi(h(Q)) \) and \(h(\Gamma) \) do. So, by Remark 4.3, it suffices to prove Proposition 7.2 for rectilinear pseudoquads of the form \((Q, \{ -1,1 \} \times \{ 0 \} \times [-1,1]) \).

Let \(r \) be as in Corollary 12.5; we may suppose \(r > 100 \). Let \(\delta = \delta(\zeta), \theta = \theta(\zeta) > 0 \) as in Corollary 12.7. Then we can choose \(R_0 = R_0(\lambda, \zeta) > 0 \) and \(\eta_0 = \eta_0(\lambda, \zeta) > 0 \) so that if \(\Gamma \) is \((\eta_0, R_0) \)-paramonotone on \(rQ \) and \(P, F \), and \(\hat{\Gamma} = \Gamma_j \) are as above, then

\[
\| F - \hat{f} \|_{L_1(10Q)} \leq A|Q| \quad \text{and} \quad \| \hat{f} \|_{L_1(D_{100})} \leq \delta. \quad (202)
\]
Denote $R = \max\{R_0, 128\}$ and $\eta = \min\{\frac{\theta}{R}, \eta_0, \frac{R_0}{R}\}$. Since $R \geq R_0$, $\eta R \leq \eta_0 R_0$, and Γ is (η, R)–paramonotone on rQ, it is also (η, R)–paramonotone, so Q satisfies (202), which implies part 1 of Proposition 7.2. Furthermore,

$$\Omega^P_{128} \left(D_{100}\right) \leq \frac{R}{128} \Omega^P_r \left(rQ\right) \leq \frac{R}{128} \left|Q\right| \left(\alpha\left(Q\right)\right)^{-1} \eta < \theta.$$

Thus $\hat{\Gamma}$ satisfies the hypotheses of Corollary 12.7, so \hat{Q} satisfies part 2 of Proposition 7.2. As \hat{Q} is the image of Q under a shear map, part 2 of Proposition 7.2 holds for Q as well. □

Acknowledgements. We thank Alexandros Eskenazis for a discussion that led to Remark 1.13. We are also grateful to the anonymous referees for their careful reading of this article and their many helpful corrections and suggestions. Our former colleague Louis Nirenberg passed away as this project was being completed. Over the years, he made significant efforts (partially in collaboration with A. N.) to answer the question that we resolve here, though in hindsight those attempts were doomed to fail because they aimed to prove (4) with $p = 2$, which we now know does not hold. His deep mathematical insights, his contagious joie de vivre, and his kindness are dearly missed.

REFERENCES

A version of Theorem 1.3 was stated in [LN14b] with an implicit dependence on the exponent p. In this section, we explain how the arguments in [LN14b] can be used to derive the explicit dependence on p that we needed in Section 1.1.3.

Let $(E, \| \cdot \|_E)$ be a Banach space and fix $q \in [2, \infty]$. The q–uniform convexity constant of X, denoted $K_q(E)$, is defined [Bal92, BCL94] as the infimum over $K \in (0, \infty]$ such that

$$\forall x, y \in E, \quad \left(\|x\|_E^q + \frac{1}{Kq} \|y\|_E^q \right)^\frac{1}{q} \leq \left(\frac{1}{2} \|x + y\|_E^q + \frac{1}{2} \|x - y\|_E^q \right)^\frac{1}{q}. \quad (203)$$

Setting $x = 0$ in (203) shows that necessarily $K \geq 1$. By convexity, (203) always holds when $K = \infty$ or when $q = \infty$ and $K = 1$. Thus, (203) quantifies the extent to which the
norm \(\| \cdot \|_E \) is strictly convex. An equivalent (but somewhat less convenient to work with) formulation of this fact (see [Fig76, BCL94]) is that \(K_q(E) \) is bounded above and below by universal constant multiples of the infimum over those \(C > 0 \) such that the sharpened triangle inequality \(\| u + v \|_E \leq 2 - C^{-q} \| u - v \|_E^q \) holds for any two vectors \(u, v \in E \).

Theorem 1.3 is the special case \(E = \mathbb{R}, \) \(q = 2 \) and \(1 < p \leq 2 \) of the following theorem.

Theorem A.1. For any \(p > 1 \) and \(q \geq 2, \) if \((E, \| \cdot \|_E) \) is a Banach space with \(K_q(E) < \infty, \) then every smooth and compactly supported function \(f : \mathbb{H} \rightarrow E \) satisfies

\[
\left(\int_0^\infty \| D_t f \|_{L^p(E^q; E)}^q \frac{dt}{t} \right)^{1/q} \lesssim \max \left\{ (p-1)^{-1/2}, K_q(E) \right\} \| \nabla_t f \|_{L^p(E^q; E^q; (E))},
\]

where we use the (standard) notation \(\nabla_t \defeq (Xf, Yf) \in E \times E \) for the horizontal gradient.

Theorem A.1 is due to [LN14b], except that it is stated there with a factor that depends in an unspecified way on \(p, q, E \) in place of the quantity \(\max(K_q(E), 1/(p-1)^{1/2}) \). This is because the proof of [LN14b] uses the vector-valued Littlewood–Paley–Stein inequality of [MTX06], for which explicit bounds on the relevant constants were not available in the literature at the time when [LN14b] was written. However, such bounds were subsequently derived in [HN19] (using in part an argument of [LN14b] itself), so we will next briefly explain how to obtain Theorem A.1 by incorporating this input into [LN14b].

Let \(\{h_t\}_{t>0} \) and \(\{p_t\}_{t>0} \) be the heat and Poisson kernels on \(\mathbb{R}, \) respectively, i.e.,

\[
\forall s > 0, \quad h_t(s) \defeq \frac{1}{2\sqrt{\pi t}} e^{-\frac{1}{2} \frac{s^2}{t}} \quad \text{and} \quad p_t(s) \defeq \frac{t}{\pi(s^2 + t^2)}.
\]

It will be convenient to denote the time derivatives \(\frac{\partial}{\partial t} h_t, \frac{\partial}{\partial t} p; \) by \(\dot{h}_t, \dot{p}_t, \) respectively, i.e.,

\[
\forall s > 0, \quad \dot{h}_t(s) = \frac{s^2 - 2t}{8\sqrt{\pi t^3}} e^{-\frac{1}{2} \frac{s^2}{t}} \quad \text{and} \quad \dot{p}_t(s) = \frac{s^2 - t^2}{\pi(s^2 + t^2)^2}.
\]

By a straightforward evaluation of the integral in (205) below, one checks the following standard identity (semigroup subordination; see e.g. [Boc55, Section 4.4]).

\[
\forall s > 0, \quad \dot{p}_t(s) = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{e^{-\frac{u^2}{2\pi}}}{\sqrt{u}} \dot{h}_u(s) \, du.
\]

(205)

Fix \(\phi \in L_q(\mathbb{R}; E) \) and \(p \geq 1. \) The following bound holds for any \(t > 0.\)

\[
\left\| t \dot{p}_t \ast \phi \right\|_{L^q(\mathbb{R}; E)}^p = 2^p \left\| \int_0^\infty \frac{te^{-\frac{u^2}{2\pi \sqrt{u}}}}{2u^{1/2}\sqrt{\pi}} u \dot{h}_u \ast \phi \, du \right\|_{L^q(\mathbb{R}; E)}^p \leq \frac{2^{p-1}t}{\sqrt{\pi}} \int_0^\infty u^{-\frac{3}{2}} e^{-\frac{u^2}{2\pi}} \| u \dot{h}_u \ast \phi \|_{L^q(\mathbb{R}; E)}^p \, du.
\]

(206)
The first step of (206) is the representation (205), and the second step of (206) is Jensen's inequality, because \(\int_0^\infty t \exp(-t^2/(4u))/\sqrt{\pi u} \, du = 1 \). Integration of (206) gives

\[
\int_0^\infty \| t \hat{h}_t \ast \phi \|^p_{L^q([\mathbb{R};E])} \frac{dt}{t} \leq 2^{p-1} \sqrt{\pi} \int_0^\infty \left(\int_0^\infty e^{-\frac{t^2}{4u}} \, dt \right) u^{-\frac{3}{2}} \| u \hat{h}_u \ast \phi \|^p_{L^q([\mathbb{R};E])} \, du
\]

\[= 2^{p-1} \int_0^\infty \| u \hat{h}_u \ast \phi \|^p_{L^q([\mathbb{R};E])} \frac{du}{u}. \tag{207}\]

Now, if \(q \geq 2 \) and \(K_q(E) < \infty \), then it was proved\(^8\) in [HN19] that

\[(\int_0^\infty \| t \hat{h}_t \ast \phi \|^q_{L^q([\mathbb{R};E])} \frac{dt}{t})^{\frac{1}{q}} \lesssim K_q(E) \| \phi \|_{L^q([\mathbb{R};E])}. \tag{208}\]

In combination with (207) we therefore see that also

\[(\int_0^\infty \| t \hat{h}_t \ast \phi \|^q_{L^q([\mathbb{R};E])} \frac{dt}{t})^{\frac{1}{q}} \lesssim K_q(E) \| \phi \|_{L^q([\mathbb{R};E])}. \tag{209}\]

Remark A.2. The reason why we passed from the vector-valued Littlewood–Paley–Stein inequality (208) for the heat semigroup to its counterpart (209) for the Poisson semigroup is that at the time when [LN14a] was written this was known (with \(K_q(E) \) in (209) replaced by an unspecified constant factor) for the Poisson semigroup due to [MTX06], while the validity of (208) was an open question. For this reason, [LN14a] worked with the Poisson semigroup, so it is simplest to use (209) when we refer below to steps in [LN14a]. However, one could repeat the reasoning of [LN14a] mutatis mutandis while working directly with the heat semigroup and using (208). The above subordination argument is standard, but we included the quick derivation to verify that the constants are universal.

The case \(p = q \) of Theorem A.1 follows by substituting (209) into [LN14b]. Specifically, we are asserting that the implicit constant in [LN14b, Theorem 2.1] is \(O(K_q(E)) \) when \(p = q \). To check this, note that in the proof of [LN14b, Theorem 2.1] the only loss of a factor that is not a universal constant occurs in [LN14b, equation (18)], which is an instantiation of [LN14b, inequality (15)]; the latter inequality is the same as (209) when \(p = q \), except that the constant factor in the right hand side is now specified to be \(O(K_q(E)) \).

The case \(p > q \) of Theorem A.1 follows from the case \(p = q \). When \(p > q \), we have \(K_{q}(E) \gtrapprox K_{p}(E) \) (for justification of this monotonicity, see [BCL94] or [MN14, Section 6.2]).

\(^8\) [HN19] states (208) with the factor \(K_q(E) \) in the right hand side replaced by a parameter \(m_q(E) \) that is called [Pis86b] the martingale cotype \(q \) constant of \(E \). There is no need to state the definition of \(m_q(E) \) here because it will not have a role in the ensuing discussion; it suffices to recall that by the martingale inequality of [Pis75] we have \(m_q(E) \lesssim K_q(E) \). So, (207) is a formal consequence of [HN19], but the above formulation is essentially (namely, up to \(O(1) \)-renorming) equivalent to that of [HN19]. For the reverse direction use the fact that there is a norm \(\| \cdot \|_E \) on \(E \) that satisfies \(\| x \|_E = \| x \|_E \) for all \(x \in E \) and such that \(K_q(E), \| \cdot \| \lesssim m_q(E) \). This renorming statement is essentially due to the deep work [Pis75], except that it is derived in [Pis75] with the weaker property \(\| x \|_E \leq \| x \|_E \leq m_q(E) \| x \|_E \). The existence of such a norm which is \(O(1) \)-equivalent to \(\| \cdot \|_E \) follows by combining [LNP09] and [MN13a], though we checked (details omitted) that one could adapt the reasoning in [Pis75] so as to obtain a proof of this fact which avoids any reference to the nonlinear considerations of [LNP09, MN13a]. Alternatively, Gilles Pisier has recently showed us (private communication) a derivation of this \(O(1) \)-renorming result from the statement of [Pis75, Theorem 3.1].
and \((p-1)^{1-1/q} \leq (p-1)^{1-1/p}\) (since \(p > q \geq 2\)), so the constant on the right hand side of (204) increases as \(q\) decreases. We thus suppose from now that \(1 < p < q\).

For \(M > 1\), let \(\beta_M : \mathbb{H} \to [0, 1]\) be a smooth bump function that is \(O(1)\)-Lipschitz (with respect to the Carnot–Carathéodory metric \(d\)), satisfies \(\beta_M(h) = 1\) for all \(h \in B_M\), and has \(\text{supp}(\beta_M) \subseteq B_{M+1}\).

For a smooth compactly supported \(f : \mathbb{H} \to E\), consider \(F_M : \mathbb{H} \to L_p(\mathcal{H}^4; E)\) given by

\[
\forall g, h \in \mathbb{H}, \quad F_M(h)(g) \overset{\text{def}}{=} \beta_M(h) f(g h).
\]

We have \((q-1)^{\frac{1}{q}-1} \leq K_q(E)\), so the case \(p = q\) of Theorem A.1 with \(E\) replaced by \(L_p(\mathcal{H}^4; E)\) gives

\[
\left(\int_0^\infty \| \partial_t^i F_M \|_{L_q(\mathcal{H}^4; L_p(\mathcal{H}^4; E))} \frac{dt}{t} \right)^{\frac{1}{q}} \lesssim K_q(L_p(\mathcal{H}^4; E)) \| \nabla_{\mathbb{H}} F_M \|_{L_q(\mathcal{H}^4; \ell_q^2(L_p(\mathcal{H}^4; E)))} \lesssim \max\left\{ (p-1)^{\frac{1}{q}-1}, K_q(E) \right\} \| \nabla_{\mathbb{H}} F_M \|_{L_q(\mathcal{H}^4; \ell_q^2(L_p(\mathcal{H}^4; E)))},
\]

where the last step uses the fact that, by inequality (4.4) in [Nao14], we have

\[
K_q(L_p(\mathcal{H}^4; E)) \lesssim \max\left\{ (p-1)^{\frac{1}{q}-1}, K_q(E) \right\}.
\]

To bound the final term in (211) from above, note that by the left invariance of \(\nabla_{\mathbb{H}}\),

\[
\nabla_{\mathbb{H}} F_M(h)(g) = (X_\beta_M(h) f(g h), Y_\beta_M(h) f(g h)) + \beta_M(h) \nabla_{\mathbb{H}} f(g h).
\]

Hence, for all \(h \in \mathbb{H},\)

\[
\| \nabla_{\mathbb{H}} F_M(h) \|_{\ell_q^2(L_p(\mathcal{H}^4; E))} \lesssim \| f \|_{L_\infty(\mathcal{H}^4; E)} 1_{B_{M+1}(0) \smallsetminus B_M(0)}(h) + \| \nabla_{\mathbb{H}} f \|_{L_p(\mathcal{H}^4; E)} 1_{B_{M+1}(0)}(h).
\]

So

\[
\| \nabla_{\mathbb{H}} F_M \|_{L_q(\mathcal{H}^4; \ell_q^2(L_p(\mathcal{H}^4; E)))} \lesssim M^{\frac{3}{4}} \| f \|_{L_\infty(\mathcal{H}^4; E)} + M^{\frac{1}{4}} \| \nabla_{\mathbb{H}} f \|_{L_p(\mathcal{H}^4; E)}.
\]

In order to bound the left hand side of (211) from below, note that by (40), if \(0 < t < \frac{M^2}{16}\) and \(h \in B_{M-4\sqrt{t}}(0)\), then \(hZ' \in B_M\), and therefore \(\beta(h) = \beta(hZ') = 1\). Hence,

\[
\forall h \in B_{M-4\sqrt{t}}(0), \quad \| \partial_t^i F_M(h) \|_{L_p(\mathcal{H}^4; E)} = \| \partial_t^i f \|_{L_p(\mathcal{H}^4; E)}.
\]

Consequently,

\[
\| \partial_t^i F_M \|_{L_q(\mathcal{H}^4; L_p(\mathcal{H}^4; E))} \geq \mathcal{H}^4(B_{M-4\sqrt{t}}(0))^{\frac{1}{q}} \| \partial_t^i f \|_{L_p(\mathcal{H}^4; E)} \approx \left(M - 4\sqrt{t} \right)^{\frac{1}{q}} \| \partial_t^i f \|_{L_p(\mathcal{H}^4; E)}.
\]

Hence, for every \(0 < T < \frac{M}{4}\) we have

\[
\left(\int_0^T \| \partial_t^i F_M \|_{L_q(\mathcal{H}^4; L_p(\mathcal{H}^4; E))} \frac{dt}{t} \right)^{\frac{1}{q}} \gtrsim (M - 4T)^{\frac{1}{q}} \left(\int_0^T \| \partial_t^i f \|_{L_p(\mathcal{H}^4; E)} \frac{dt}{t} \right)^{\frac{1}{q}}.
\]

Combining this with (211) and (213), letting \(M \to \infty\) and then \(T \to \infty\), gives Theorem A.1.

\[\text{Formally, [Nao14, inequality (4.4)] is the dual of (212); see [BCL94, Lemma 5] for the relevant duality.}\]
Remark A.3. In the setting of the proof of Theorem A.1, the Hardy–Littlewood–Stein (Poisson semigroup) G–function of a function $\phi \in L_q(\mathbb{R}; E)$ is the function $G_q(\phi) : \mathbb{R} \to \mathbb{R}$ that is defined by

$$
\forall x \in E, \quad G_q(\phi)(x) \overset{\text{def}}{=} \left(\int_0^{\infty} \|t \hat{p}_t * \phi(x)\|_E \frac{dt}{t} \right)^\frac{1}{q}.
$$

(214)

By [MTX06], if $K_q(E) < \infty$, then for every $1 < p < \infty$,

$$
\|G_q(\phi)\|_{L_p(\mathbb{R})} \lesssim\|\phi\|_{L_p(\mathbb{R}; E)}.
$$

(215)

If the implicit constant in (215) were $O(\max\{K_q(E), 1/(p-1)^{1-1/q}\})$ for $1 < q < p$ (this is so when $p > q$ by (209) and Jensen's inequality), then Theorem A.1 would follow by direct substitution into [LN14b] without the need to consider the above averaging argument using the auxiliary function F_M in (210). However, it seems that the interpolation argument [MTX06] does not yield this dependence. Determining the optimal dependence on $p, q, K_q(E)$ in the G–function bound (215) remains an interesting open question.

The same question for the heat semigroup variant of (215), i.e., with \hat{p}_t replaced by \hat{h}_t in (214), is a bigger mystery. That such an inequality for the vector-valued heat semigroup Hardy–Littlewood–Stein G–function holds with any dependence on $p, q, K_q(E)$ was established recently in [Xu20], but as $p \to 1^+$ the dependence of [Xu20] seems suboptimal. Obtaining the analogue of (208) for the n–dimensional heat semigroup (in which case ϕ is a mapping from \mathbb{R}^n to E) would be very interesting. In [Xu20], this is achieved with a constant that is independent of n but has a much worse dependence on $K_q(E)$.

A substitution of Theorem A.1 into the reasoning of [LN14b] yields the following re-statement of the nonembedding result of [LN14b], with explicit dependence on $K_q(E)$.

Theorem A.4. For $q \geq 2$, if E is a Banach space with $K_q(E) < \infty$, then for every $n \in \mathbb{N}$, the word-ball in \mathbb{H} of radius n has E–distortion

$$
c_E(\mathcal{B}_n) \gtrsim \left(\frac{\log n}{K_q(E)} \right)^{\frac{1}{q}}.
$$

Since by [BCL94], the Schatten–von Neumann trace class S_r has $K_2(S_r) = \sqrt{r-1}$ when $1 < r \leq 2$, Theorem A.4 implies the lower bound on $c_{S_r}(\mathcal{B}_n)$ that we used in Section 1.1.3 (recall that the behavior as $r \to 1^+$ was important for that application). This also shows that the following question about a possible strengthening of Theorem A.4 would imply the distortion lower bound (24) that we asked about in Section 1.1.3. In fact, a positive answer to this question would be a remarkable geometric result, which, as we explained in Section 1.1.3, would have strong implications; at present, we do not have sufficient evidence to conjecture that the answer is indeed positive in such great generality.

Question A.5. Can the conclusion of Theorem A.4 be improved to $c_E(\mathcal{B}_n) \gtrsim \left(\frac{\log n}{K_q(E)} \right)^{\frac{1}{q}}$?
Added in proof. Q. Xu recently resolved [Xu21a] many of the questions on the growth-rate of the optimal constants in vector-valued Littlewood–Paley—Stein inequalities that we raised in Remark A.3. See also his work [Xu21b] for the evaluation of the order of magnitude of the constants in the classical (real-valued) Littlewood–Paley inequalities.