CLASS NOTES ON LIPSCHITZ EXTENSION FROM FINITE SETS

ASSAF NAOR

Our goal here is to give a self-contained proof of the following theorem, which was originally proved
in [LNO5|. The proof below is based on the same ideas as in [LN05], but some steps and constructions are
different, leading to simplifications. The previously best-known bound on this problem was due to [JLS86].

Theorem 0.1. Suppose that (X,dx) is a metric space and (Z,]|| - ||z) is a Banach space. Fiz an integer
n >3 and A C X with |A] = n. Then for every Lipschitz function f : A — Z there exists a function
F: X — Z that extends f and

logn
1Flie S g og s 1 e (1)
By normalization, we may assume from now on that || f||Lip = 1. Write A = {a1,...,a,}. For r € [0, 0)

let A, denote the r-neighborhood of A in X, i.e.,
def "
AT = U Bx(a]‘ﬂ“),
j=1

where for x € X and r > 0 we denote Bx (z, 1) def {y € X : dx(z,y) < r}. Given a permutation = € S,, and
r € [0,00), for every x € A, let j7(x) € {1,...,n} be the smallest j € {1,...,n} for which dx (ar(;),z) <r.
Such a j must exist since © € A,. Define a : X — A by

T if x e A,
VeeX, al(@) € ape ifred A, (2)
a1 ifve XA,

We record the following lemma for future use; compare to inequality (3) in [MNO7].

Lemma 0.2. Suppose that r > 0 and that x,y € A, satisfy dx(x,y) <r. Then

{meSu: af(@) #afw}l _ | |ANBx(w.r —dx(x,y))
nl = |AN Bx (z,r +dx(z,y))|

Proof. Suppose that 7 € S, is such that the minimal j € {1,...,n} for which ar(;) € Bx(z,r+dx(x,y)) ac-
tually satisfies ar(;) € Bx(x,r—dx(z,y)). Hence j7(x) = j and therefore a, ;) = aff (). Also, dx (ar(;),y) <
dx (), ) +dx(x,y) < 7,50 j7(y) < j. But dx(z,a;x () < dx(y, ajr()) +dx(2,y) <r+dx(z,y), so by
the definition of j we must have j7(y) > j. Thus j7(y) = j, so that a](y) = ar(;) = af(z). We have shown
that if in the random order that = induces on A the first element that falls in the ball Bx(x,r 4+ dx(x,y))
actually falls in the smaller ball Bx (z,r —dx (z,y)), then a7 (y) = a™ (z). If 7 is chosen uniformly at random
from S,, then the probability of this event equals |[AN Bx (x,r —dx(z,y))|/|ANBx(x,r+dx(x,y))|. Hence,

[{m € Sn: af(e) =af (W} _ |ANBx(z,r —dx(z,y))]
n! “ |An Bx(z,r +dx(z,y))|

O

Corollary 0.3. Suppose that 0 < u < v and x,y € A, satisfy dx(z,y) < min{u —dx(z, A),v —u/2}. Then

/v (1 /2t {m €S, : af(zx) # aZf(y)HdT,) dt < dx(z,y)logn.

t n!

Proof. Denote d Cf (z,y) and

ot € S, a7(a) £ a7 (w))]
n!

and  h(r) ¥log(|ANBx(z,1)|). (3)

Vr>0,  g(r)



u <L, Lemmalmphes that
h(r+d) — h(r —d), (4)

[}

Since z,y € A, and for r > u we have A, C A, and dx(z,y) <
v,r 2 u) g(T) < 1 _ eh(?"—d)—h(?"-‘y—d) <

where in the last step of we used the elementary inequality 1 — e~ < «, which holds for every o € R.

Note that by Fubini we have

[ wow)oe [ (L2070 (2o o

Since min{v, r}/ max{u,r/2} < 2, it follows that

[ o) oo [ [ e [ [

where the last step of @ is valid because 2v — d > u + d, due to our assumption that d < v — u/2.
Since h is nondecreasing, for every s € [2v—d, 2v+d] we have h(s) < h(2v+d), and for every s € [u—d, u+d]
we have h(s) = h(u — d). It therefore follows from (6]) that

[ (1 /t 9(T)dr> dt < d(h(2v + d) — h(u — d)) = dlog ('ﬁ%%ﬁ&?jgﬂ) Sdlogn, (7)

where in the last step of (7)) we used the fact that |AN Bx (z,2v+d)| < |A| = n, and, due to our assumption
d<u—dx(z,A) (<= dx(z,A) <u—d), that AN Bx(z,u—d) # 0, so that |AN Bx(z,u—4d)|>1. O

Returning to the proof of Theorem[0.1] fix e € (0,1/2). Fix also any (2/e)-Lipschitz function ¢, : R — [0, 1]
that vanishes outside [¢/2,1 + £/2] and ¢.(s) =1 for every s € [¢,1]. Note that

ds be(s) 2 ds
log(1/e) = / / < /5/2 5 < log(3/e).

Hence, if we define ¢(¢) € (0, 00) by

Lo [T 0l8) (8)
then ) )
oa(3/2) =9 ioa(1/5)’ ¥
Define F': X — Z by setting F'(z) = f(x) for x € A and
et (c) ¥1, (2 R
Vee X NA, F(z) = o Wg;n/o t—qus <tdx(x,A)) < ) f(ay (ac))dr) dt. (10)

By definition, F' extends f. Next, suppose that x € X and y € X \ A. Fix any z € A that satisfies
dx(z,z) = dx(z,A) (thus if x € A then z = x). We have the following identity.

F(y) — F(x)
2dX (yvA) X(.L A)
2t (be 1{a7'(y) a} — be 1{a7'(ac) a}
_ m S Z/ / ) . § ) (f (@) = f (2))drdt. (11
TES, ac€A
To verify the validity of , note that for every w € X ~\ A we have
dx(w, ) 2dx(w A)

2t ¢e 1am (w)=a} 2t d)s =

n| Z Z/ / tQ) f(z)drdt = — Z / / )f(z)drdt
TES, a€A TESR

—eo ([ Lo (it A))dt) ooy ([ ) 1) @1, 2

where in (x) we made the change of variable s = 2dx (w, A)/t, which is allowed since dx(w, A) > 0. Due
0 , if z,y € X \ A then is a consequence of the definition . If x € A (recall that y € X \ A)
then z = z and ¢ (2dx (x, A)/t) = 0 for all t > 0. So, in this case follows once more from and ((10)).



By we have

|1F(z) = F(y)lz
2t E gé&ig;é)) 1{a§( Y=a} — ¢a (ggﬁif;é)> 1{a“(z) a}
! ZZ/ / 2 1f (a) — f(2) | zdrdt
TES, aEA
2t M 1 é 79014) 1
Fy)= 7 (2)=a}
Z Z/ / b ) {a7 (y)=a} — . 8( ) {a7(z)=a (0, 2)drde -
: TES, a€A

(B0 10 g — 0 (22ED) 1r )=

2c. 3 Z/ /Qt - dx (z, a)drdt, (14)

eSS, a€A

where in we used the fact that || f||Lip = 1 and in we used the fact that for every a € A we have
dx(a,z) < dX(a,x) +dx(x,2) < 2dx(a,x), due to the choice of z as the point in A that is closest to x.

To estimate (14)), fix ¢ > 0 and r € [t, 2t]. If ¢-(2dx (y, A) /)1 (ax (y)=a} F P=(2dx (2, A) /1)1 {ar(2)=a} then
either ¢ = alf(x) and 2dx(z,A)/t € supp(¢e) or a = al(y) and 2dx(y, A)/t € supp(¢.). Recalling that
supp(¢:) C [g/2,1 + /2], it follows that either a = a7 (z) and dx(z, A) <t or a = al(y) and dx(y, A) < t.
If a = al(x) and dx(x,A) < t then since t < r it follows that z € A,, and so the definition of a7 (z)
implies that dx (z,a) = dx(alf(x),z) < r. On the other hand, if a = a7 (y) and dx(y, A) < t then as before
we have dx(y,a) = dx(aT(y),y) < r, and therefore dx(z,a) < dx(x,y) + dx(y,a) < dx(z,y) +r. We
have thus checked that dx(z,a) < ( ,y) + 7 < dx(x,y) + 2t whenever the integrand in is nonzero.
Consequently,

[F(x) = F(y)llz
D 2(c Z Z/ /2”ZS (B Ly )0 + 0 (29 Loz -0)

t2

dx(x,y)drdt
TES, aEA

2t

A 2dx (z,A
e 7‘”)) Liar(y)=a} — 0= (%) L{ar (2)=a}
t

drdt.

TES, a€EA

2dx(y A\ — ¢ QdX(T A)) 1
2t | Pe 7) {a7 (y)=a} ( {a7 (2)=a}
= ddx (z,y : Z Z . drdt.

TES, a€A

Therefore, in order to establish the validity of it suffice to show that we can choose € € (0,1/2) so that

2t % 1 {ar (y)=a} — e 7114) 1(ar (x)=a} |
TEX[ / ) t () drdt 5 1020 dx(a,). (15)

TES, a€A logn

We shall prove below that for every e € (0,1/2] we have

2t |0 (2202 1y — 0 (220) Lap =y
9 5 5 [ e o ()

drdt
t

TES, aEA
1 (Lx(xay)
<([-+1 —F=. (16
< (5 ioen) g (9
Once proved, would imply (15| ., and hence also Theorem [0.1] if we choose € < 1/logn.
Fixt >0 and r € [t,2t] and note that if ¢.(2dx (y, )/zt)l{alr (y)=a} 7 Pe(2dx(x, A)/t)1{ar (2)=a) then
{2dx(x, A),2dx(y, A)/t} Nsupp(¢e) # O, implying that max{dx (x, A),dx(y, A)} > et/4. Hence, since

2dx (y, A) 2dx (z,A)
VmE Sy, ) |6 (t Lapwy=ap = ¢ | = ) Har@)=a} | < 2

t
acA




we have

'ZZ/ /% - drdt

TES, aEA

2 max{dx (z,A),dx (y,A)} p2t drdt
< |
0 et

~ max{dx(z, 4),dx(y, A)}

~

€
< dx(z,y) + min{dx (z, A),dx(y, 4)}
~ € °
In combination with the upper bound on ¢(¢) in @, we therefore have the following corollary (the constant
g that appears in it isn’t crucial; it was chosen only to simplify some of the ensuing expressions).

Corollary 0.4. If min{dx(z, A),dx(y, A)} < 2dx(z,y) then

2d s T

/ /Qt M) l{uﬂ—(y) (L} — ¢E ( )) 1{u’;(gc):a} d dt < dX(l',y)
T — .

n' g E P ~ elog(1/e)

TES, a€A

Corollary[0.4)implies that holds true when min{dx (z, A),dx (y, A)} < 5dx (z,y)/3. We shall therefore
assume from now on that the assumption of Corollary fails, i.e., that

dx(w,y) < 3 min{dx (z, A),dx (3, )} a7)

o (QdX(ty,A) o (de(tx,A)N >0}7 18)

2d A
+ ¢, (X(x’)) > 0} . (19)
Then, for every m € S,,, t > 0 and r € [t, 2t] we have

)
)

> |¢ (My’A)) Liar(y)=a} — 9= (W) L{ar(a)=a}
)

Define

and
Vola,y) % {te (0,50 : &,

acA t
- 5 t € t a’(x)=al(y
2d 2dx(z, A
( < x( > + ¢e (X(t)» Lar (@)#a7 (1))
< dx(z,y)
S = s T Wey) Har@zarm)- (20)

Where in we used the fact that ¢, is (2/¢)-Lipschitz and that |dx (z, A) — dX (y, A)| < dx(x,y). Con-
sequently, in combination with the upper bound on ¢(¢) in @D, it follows from (20)) that

(P2 ) Lr =) = 0 (P20) Loz

n| ZZ/ /zt ; L ldrdt

TES, a€EA

dxi,y) d 1 L [* [ € Su: af(a) # af )}
S ot 7 S ] m ). (21

To bound the first term in , denote

m(x,y) def min{dx (z, A),dx(y, A)} and M(x,y) def max{dx(x,A),dx(y, A)}.

If t € [0,00) satisfies t < 2m(x,y)/(1 4+ &/2) then min{2dx(z, A)/t,2dx(y, A)/t} > 1+ /2, and there-
fore by the definition of ¢. we have ¢.(2dx(x,A)/t) = ¢-(2dx(y,A)/t) = 0. Similarly, if ¢ € [0,00)




satisfies t > 4M(z,y)/e then max{2dx(z, A)/t,2dx(y,A)/t} < &/2, and therefore by the definition of
¢ we also have ¢.(2dx(z, A)/t) = ¢-(2dx(y,A)/t) = 0. Finally, if 2M(z,y) < t < 2m(x,y)/e then
2dx (z,A)/t,2dx (y, A)/t € [e,1], so by the definition of ¢, we have ¢.(2dx (z, A)/t) = ¢ (2dx (y, A)/t) = 1.
By the definition of U.(z,y) in , we have thus shown that

2m(x,y) 2m(x,y) 4M(x,y)
U, C |———=.2M U .
E(w,y)_[1+€/27 (z,9) R .
Consequently,
dt M@y g gy oM
/ f</ —+/ — Slog ((x,y)) <1, (22)
Uc(wy) t iyt my) ¢ m(z,y)

where the last step of holds true because, due to the triangle inequality and , we have
3
To bound the second term in , note that by the definition of V(z,y) in and the choice of ¢.,

2d A) 2d A
t t 2 2
Hence,
2dx(z,A) 4dx(z,A) 2dx(y, A) 4dx(y, A)
V. - U 24
o) € |2 A xly2) 2xt0 A)], (29)
and therefore, using the notation for g : [0,00) — [0, 1] that was introduced in (3)),
1 o 4dx (z,A) 1 2 4dx (y,A) 1 o
- < z z .
/V(g; ) (t/t g(r)dr) dt < /M (t/t g(r)dr) dt—l—/M (t/t g(r)dr) dt (25)
e &, 1+e/2 1+e/2

We wish to use Corollaryto estimate the two integrals that appear in the right hand side of . To this
end we need to first check that the assumptions of Corollary[0.3|are satisfied. Denote u, = 2dx (z, A)/(14¢/2)
and u, = 2dx(y, A)/(1 +¢/2). Since u, > dx (v, A) we have x € A,,. Analogously, y € A,,. Also,

@ 3 4+2

where the last step of is valid because € < 1/2. From we see that y € A, , and the symmetric
argument shows that x € A, . It also follows from that dx (z,y) < u, — dx(z, A), and by symmetry
also dx (z,y) < uy —dx(y, A). Next, denote v, = 4dx(z, A)/e and v, = 4dx(y, A)/e. In order to verify the
assumptions of Corollary it remains to check that dx(x,y) < min{v, — u,/2,v, —u,/2}. Indeed,

dx(ey) @ sdxleA)fs D 3=(4+/2)
Vg — Uy /2 Vp — Uz /2 54 +e) ’

1_ 1
€ 1+e/2
and the symmetric argument shows that also dx (z,y) < vy —u,/2. Having checked that the assumptions of
Corollary hold true, it follows from (25 and Corollary that

/ (/ i € S : oy fm) i (y)}|dr> dt < dx(z,y)logn. (27)

Ve (w,y) t t n:

The desired estimate now follows from a substitution of and into . O
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