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Abstract

We study the rate at which entropy is produced by linear combinations of

independent random variables which satisfy a spectral gap condition.

1 Introduction

The Shannon entropy of a random variable X with density f is defined as Ent(X) =

−
∫

R
f log f , provided the positive part of the integral is finite. So Ent(X) ∈ [−∞, +∞).

If X has variance 1, it is a classical fact that its entropy is well defined and bounded above

by that of a standard Gaussian random variable G. By the Pinsker-Csiszar-Kullback

inequality ([12], [9], [10]), G is a stable maximizer of entropy in the following strong

sense:

dTV (X − EX,G)2 ≤ 2[Ent(G) − Ent(X)], (1)

where dTV is the total variation distance. It is therefore natural to track the convergence

in the central limit theorem (CLT) in terms of entropy. Let (Xn)n∈N be a sequence of

independent copies of a random variable X. For notational convenience we assume that

EX = 0 and EX2 = 1. Set

Sn =
X1 + · · · + Xn√

n
.
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Linnik [11] used entropy to reprove convergence in distribution of Sn to G. He actually

showed that Ent(Sn) converges to Ent(G) under some smoothness assumptions on the

law of X. This is discussed in [4] where Barron established entropic convergence in the

CLT in full generality: if the entropy of Sn ever becomes different from −∞, then Ent(Sn)

converges to Ent(G). This convergence is very strong, as (1) shows.

The fact that the sequence of entropies Ent(Sn) has a limit follows from the Shannon-

Stam inequality ([13], [15]): for independent variables Y, Z and λ ∈ (0, 1) one has

Ent(
√

1 − λY +
√

λZ) ≥ (1 − λ)Ent(Y ) + λEnt(Z), (2)

therefore (nEnt(Sn)) is super-additive and converges to its supremum. In particular

Ent(S2k) is non-decreasing. In [1] we confirmed an old conjecture: that the entire se-

quence (Ent(Sn)) is non-decreasing.

Until recently, quantitative improvements on the Shannon-Stam inequality (2), have

been somewhat elusive. A qualitative result in this direction, under pretty general hy-

potheses was obtained by Carlen and Soffer [8] (see also the works of Brown and Shimuzu

[7] [14]). In [3] we obtained quantitative estimates for random variables X satisfying a

Poincaré (or spectral gap) inequality with constant c > 0: i.e. so that for every smooth

function s, one has

c Var(s(X)) ≤ E[(s′(X))2].

The main result in [3] asserts that independent copies X1, X2 of such a random variable

X satisfy

Ent

(

X1 + X2√
2

)

− Ent(X) ≥ c

2 + 2c
(Ent(G) − Ent(X)).

In this article we apply an extension of the variational method of [3] to estimate the

entropy of sums (or linear combinations) of more than two copies of a random varaiable.

Independently of [3] and almost simultaneously, Barron and Johnson proved an anal-

ogous but slightly weaker fact for the Fisher information. We have just learned that,

by modifying their argument they are able to recover our results for entropy: the new

argument appears in [5].

The principal result of this article is the following.

Theorem 1 Let X1, . . . , Xn be independent copies of a random variable X with density

f . Assume that Var(X) = 1 and that X satisfies the Poincaré inequality with constant

c. Then for every a ∈ R
n with

∑n

i=1 a2
i = 1,

Ent(G) − Ent

(

n
∑

i=1

aiXi

)

≤ α(a)

c/2 + (1 − c/2)α(a)
(Ent(G) − Ent(X)) ,

2



where α(a) =
n
∑

i=1

a4
i .

Remark. In fact, we obtain a slightly stronger, more complicated inequality- see in-

equality (16).

Before passing to the proof, let us make a few comments. Note that when one of the

ai’s tends to ±1, there can be no increase of entropy. This is consistent with the fact that

α(a) tends to 1 in this case. On the other hand, for equal coefficients 1/
√

n we obtain

that the entropy distance from the Gaussian decays at rate 1/n

Ent(G) − Ent

(

1√
n

n
∑

i=1

Xi

)

≤ 1

1 + c
2
(n − 1)

(Ent(G) − Ent(X)) . (3)

In conjunction with the Csiszar-Kulback-Pinsker inequality, the above theorem leads to a

quantitative information-theoretic proof of the central limit theorem (under a spectral gap

assumption). The rate of convergence obtained (in total variation distance) is O(1/
√

n),

which is well known to be optimal. Moreover, we also obtain Berry-Esseen type estimates,

but in total variation, for the rate of convergence to a Gaussian.

2 Proof of the main theorem

Assume as we may that the variables are centered, that is EX =
∫

xf(x) dx = 0. The

proof is divided into several steps:

2.1 Reduction to an inequality for Fisher information

Recall that the Fisher information of a random variable X with density f is

I(X) = I(f) =

∫

(f ′)2

f
.

According to Bruijn’s identity (see e.g. [15]), Fisher information is the time derivative of

entropy along the heat semi-group. A similar relation holds along the adjoint Ornstein-

Uhlenbeck semigroup (see [2, 4]), where the evolute at time t of a variable X, denoted

X(t), has the same law as e−tX +
√

1 − e−2t G where G is a normal Gaussian variable

independent of X. More precisely if Ent(X) is finite then for every t > 0 , X (t) has finite

Fisher information and

Ent(G) − Ent(X) =

∫ ∞

0

(

I(X(t)) − 1
)

dt.
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A very clear explanation of this appears in [8]. Also note that I(G) = 1. Since the

evolute (
∑

aiXi)
(t) has the same distribution as

∑

aiX
(t)
i it suffices to prove:

Theorem 2 Let Y be a random variable with Var(Y ) = 1, finite entropy, and spectral

gap at least c > 0. Let t > 0, X = Y (t) and X1, . . . , Xn be independent copies of X.

Then for every a ∈ R
n with

∑n

i=1 a2
i = 1,

I

(

n
∑

i=1

aiXi

)

− 1 ≤ α(a)

c/2 + (1 − c/2)α(a)
(I(X) − 1) .

Let us also point out that the hypotheses in the latter theorem are far from optimal; we

could certainly get away with less smoothness for X than is guaranteed by its being an

Ornstein-Uhlenbeck evolute. However the hypothesis is sufficient for our goal and ensures

that the density f of X has an integrable second derivative (see e.g. the Appendix of [3]).

The rest of the paper is devoted to the proof of Theorem 2 and keeps the same notation.

2.2 Variational representations of the Fisher information

Our approach relies on the following result, which we proved in [1]

Theorem 3 Let w : R
n → (0,∞) be a continuously twice differentiable density on R

n

with
∫ ‖∇w‖2

w
,

∫

‖Hess(w)‖ < ∞.

Let a be a unit vector in R
n and h the marginal density in direction a defined by

h(t) =

∫

ta+a⊥
w.

Then the Fisher information of the density h satisfies

J(h) ≤
∫

(div(pw))2

w
,

for any continuously differentiable vector field p : R
n → R

n with the property that for

every x, 〈p(x), a〉 = 1 (and, say,
∫

‖p‖w < ∞). If w satisfies
∫

‖x‖2w(x) < ∞, then

there is equality for some suitable vector field p.

The previous formula is very short but it leads to tedious calculations when applied

to specific p. For this reason we provide another formulation of it, which is easier to use

in the present situation.
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Lemma 4 Let w be as in Theorem 3 and let p : R
n → R

n be twice continuously differ-

entiable, such that each coordinate function pi is bounded and has bounded derivatives of

first and second order. Then

∫

(div(pw))2

w
=

∫

w
[

Tr((Dp)2) + 〈Hess(− log w)p, p〉
]

.

Proof of the Lemma: Distributing the divergence and the square gives

∫

(div(pw))2

w
=

∫
(

w(div(p))2 +
〈∇w, p〉2

w
+ 2div(p)〈∇w, p〉

)

.

On the other hand
∫

w
[

Tr((Dp)2) + 〈Hess(− log w)p, p〉
]

=

∫
(

wTr((Dp)2) +
〈∇w, p〉2

w
− 〈Hess(w)p, p〉

)

.

So the identity we want amounts to

∫

(

w(div(p))2 + 2div(p)〈∇w, p〉 − wTr((Dp)2) + 〈Hess(w)p, p〉
)

= 0.

This can be checked by integration by parts, once for the second term and twice for the

fourth term, in order to get rid of derivatives of w.

Let X with density f be as in Theorem 2 and set w(x1, . . . , xn) = f(x1) · · · f(xn).

Then the function h(t) =
∫

ta+a⊥
w is the density of

∑n

i=1 aiXi. The latter results yield

I

(

n
∑

i=1

aiXi

)

≤
∫

w
[

Tr(Dp)2 + 〈Hess(− log w)p, p〉
]

, (4)

for any sufficiently integrable vector field p : R
n → R

n with the property that for every

x, 〈p(x), a〉 = 1. Note that the best choice of p would give equality in (4), whereas the

simplest choice (p(x) = a for all x) recovers I (
∑n

i=1 aiXi) ≤ I(X), a consequence of the

Blachman-Stam inequality [6, 15]. As in our previous works, our strategy is to optimize

over a workable sub-family of test functions p.

2.3 Choice of particular test functions

In order to exploit the product structure of w, in expression (4), we restrict ourselves to

functions pi which are linear combinations of the constant function and functions depend-

ing only on one variable. It seems to be sufficient to choose a single one-variable function:
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so our test function has the form pi(x1, . . . , xn) = ci0 +
∑n

j=1 cijr(xj) and the only restric-

tion on p is that
∑n

i=1 aipi ≡ 1. We would like to choose p = (a1r(x1), a2r(x2), . . . , anr(xn))

but since this does not satisfy the condition we project it orthogonally onto the hyper-

plane {x : 〈a, x〉 = 1}. So we choose

pi(x1, . . . , xn) = ai + ai(1 − a2
i )r(xi) − ai

∑

j 6=i

a2
jr(xj),

where r is a real-valued function on R.

Now for smooth r with compact support inequality (4) is valid. Denoting φ = − log f ,

the two integrands on the right hand side of (4) are

Tr
(

(Dp)2
)

=
∑

1≤i,j≤n

∂pi

∂xj

∂pj

∂xi

=
n
∑

i=1

a2
i (1 − a2

i )
2r′(xi)

2 +
∑

i6=j

a3
i a

3
jr

′(xi)r
′(xj),

and

〈Hess(− log w)p, p〉 =
n
∑

i=1

φ′′(xi)a
2
i

(

1 + (1 − a2
i )r(xi) −

∑

j 6=i

a2
jr(xj)

)2

=
n
∑

i=1

φ′′(xi)a
2
i

[

1 + (1 − a2
i )

2r(xi)
2 +

∑

j 6=i

a4
jr(xj)

2 − 2
∑

j 6=i

a2
jr(xj)

+2(1 − a2
i )r(xi) − 2

∑

j 6=i

(1 − a2
i )a

2
jr(xj)r(xi)+

∑

i6=j 6=k 6=i

a2
ja

2
kr(xj)r(xk)

]

.

Integrating against the product density w(x) and using the fact that
∑

a2
i = 1, this

identity reduces to
∫

w
[

Tr(Dp)2 + 〈Hess(− log w)p, p〉
]

= J + W

(
∫

f(r′)2 +

∫

fφ′′r2

)

+ JV

∫

fr2 + J(W − V )

(
∫

fr

)2

+2U

(
∫

fφ′′r − J

∫

fr

)

− 2W

(
∫

fr

)(
∫

fφ′′r

)

+ M

(
∫

fr′
)2

,

where:

J = I(X), U = 1 −
n
∑

i=1

a4
i , V =

n
∑

i=1

a4
i −

n
∑

i=1

a6
i , W = U − V

and M =

(

n
∑

i=1

a3
i

)2

−
n
∑

i=1

a6
i .
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Our aim is to choose r to make the estimate small. This is a standard variational

problem except for the term M
(∫

fr′
)2

. If the random variable X is symmetric, so that

f is an even function, then we will choose an even function r and so the term in question

will vanish. This gives a slightly better result for symmetric random variables. In the

the general case we can control the term because

(
∫

fr′
)2

=

(
∫

f ′r

)2

≤
(
∫

(f ′)2

f

)(
∫

fr2

)

= J

(
∫

fr2

)

. (5)

However, our choice of vector field p is invariant under the addition of a constant to

r and this property simplifies considerably the calculations. In order to maintain this

invariance we improve the estimate (5) slightly as follows. Setting m =
∫

fr we have

(
∫

fr′
)2

=

(
∫

f ′(r − m)

)2

≤
(
∫

(f ′)2

f

)(
∫

f(r − m)2

)

= J

(
∫

fr2 − m2

)

. (6)

Lastly, the coefficient M is at most V by Hölder’s inequality.

Hence we obtain the estimate

I

(

n
∑

i=1

aiXi

)

− J ≤ T (r)

where

T (r) = W

(
∫

f(r′)2 +

∫

fφ′′r2

)

+ 2JV

∫

fr2 + J(W − 2V )

(
∫

fr

)2

+2U

(
∫

fφ′′r − J

∫

fr

)

− 2W

(
∫

fr

)(
∫

fφ′′r

)

.

Our goal is to find r that makes this quantity as negative as possible.

2.4 Optimization in the test function r

In this subsection we apply variational methods to find the optimum value of T (r). Their

statement in the appropriate Sobolev spaces, as well as the questions of existence and

regularity are discussed in detail in the appendix of [3]. So, in the following we shall

ignore technical issues.

In order to deal with the quadratic terms J(W−2V )
(∫

fr
)2

and −2W
(∫

fr
) (∫

fφ′′r
)

we introduce a Lagrange multiplier λ and choose r to be λr0 where r0 is the minimiser of
∫

f(r′)2 +

∫

fφ′′r2 + Jβ

∫

fr2 + 2

(
∫

fφ′′r − J

∫

fr

)
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and β = 2V/W . The Euler-Lagrange equation for this minimization problem is

−(fr′0)
′ + fr0φ

′′ + Jβfr0 = Jf − fφ′′. (7)

By integrating this equation against r0 and 1 respectively, we obtain that any solution

r0 of (7) automatically satisfies the following relations
∫

f(r′0)
2 +

∫

fφ′′r2
0 + Jβ

∫

fr2
0 = J

∫

fr0 −
∫

fφ′′r0, (8)

∫

fφ′′r0 + Jβ

∫

fr0 = 0. (9)

Set A =
∫

fr0 and B =
∫

fφ′′r0. Using equations (8) and (9) we obtain

T (λr) = AJλ(1 + β) (λ(1 + A)W − 2U) .

The optimal choice of λ is U/W (1 + A) and the estimate is then

T (λr0) = −JU2(1 + β)

W

A

A + 1
. (10)

To finish the proof we need to estimate A =
∫

fr0 from below: we want to know

that if U and W are close to 1 and β is small then A is large so that the quantity above

captures almost all of J . From now on, we suppress the subscript and use r instead of

r0. The equation satisfied by r reads

−(fr′)′ + fφ′′r + Jβfr = f(J − φ′′). (11)

Writing f ′ = −fφ′ and dividing by f we can rewrite it as

−r′′ + φ′r′ + φ′′r + Jβr = J − φ′′.

If we set r = s′ then we can integrate the equation to get

−s′′ + φ′s′ + Jβs = Jx − φ′ (12)

where the constant of integration is chosen so that
∫

fs = 0 (assuming that our random

variable is centred so that
∫

fx = 0). Multiplying (12) by f we get

− (fs′)
′
+ Jβfs = Jfx − fφ′ (13)

Now equation (13) is the Euler-Lagrange equation for a different minimisation problem

in which the objective function is

Q(s) =
1

2

∫

f(s′)2 +
Jβ

2

∫

f

(

s − x

β
+

φ′

Jβ

)2

. (14)
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Observe that in our new notation A =
∫

fs′. Integrating equation (13) against s and x

respectively we get
∫

f(s′)2 + Jβ

∫

fs2 = J

∫

fsx −
∫

fs′

and
∫

fs′ + Jβ

∫

fsx = J

∫

fx2 −
∫

f = J − 1

since f is the density of a random variable with variance 1.

As before these equations yield an expression of Q(s) in terms of A =
∫

fs′ only. One

obtains that

Q(s) =
1 + β

2β
A. (15)

So in order to bound A from below it suffices to bound the functional Q. Note that

the value of Q on the zero function is

Q(0) =
J

2β

∫

f

(

x − φ′

J

)2

=
J − 1

2β
.

Now we use the fact that f satisfies a Poincaré inequality with constant c. This will force

the minimum of Q to be of the order of Q(0). Since
∫

fs = 0 the Poincaré inequality

gives

c

∫

fs2 ≤
∫

fs′2.

Thus we get

Q(s) =
1

2

∫

fs′2 +
Jβ

2

∫

f

(

s − x

β
+

φ′

Jβ

)2

≥ 1

2

∫

f

(

cs2 + Jβ

(

s − x

β
+

φ′

Jβ

)2
)

≥ 1

2
· cJβ

c + Jβ

∫

f

(

−x

β
+

φ′

Jβ

)2

=
c

2(c + Jβ)
Q(0) =

c(J − 1)

2β(c + βJ)
.

Substituting into the expression (15) for Q(s) in terms of A, we obtain the lower bound

A ≥ c(J − 1)

(1 + β)(c + Jβ)
.

Substituting this into (10) rearranging and using the facts that W = U − V and β =

2V/W gives an estimate slightly better than

I

(

n
∑

i=1

aiXi

)

− J ≤ − c(J − 1)U 2

cU + 2V − cV
, (16)
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where we have used the fact that J ≥ 1, which is a consequence of the Cramer-Rao

inequality. It is easy to check that V ≤ U − U 2 and this implies the desired estimate

I
(

∑

aiXi

)

− 1 ≤ (J − 1)
1 − U

cU/2 + 1 − U
= (J − 1)

α(a)

c(1 − α(a))/2 + α(a)
.
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