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Abstract

We prove a concentration inequality for the £; norm on the £, sphere
for p,g > 0. This inequality, which generalizes results of Schechtman
and Zinn, is used to study the distance between the cone measure and
surface measure on the sphere of £;. In particular, we obtain a significant
strengthening of the inequality derived in [NR], and calculate the precise
dependence of the constants that appeared there on p.

1 Introduction

For every star shaped body K C R”, one can define two natural measures
on the boundary of K. One is the regular surface measure, and the other is
the “cone measure”. The cone measure of a subset A of 0K is the volume of
[0,1]A = {ta: a € A,0 <t < 1}, i.e. the cone with base A and cusp 0. Both
these measures have appeared in various contexts in the literature. For instance,
the cone measure appears in the Gromov-Milman theorem for concentration of
Lipschitz functions on uniformly convex bodies. This paper is devoted to the
study of these measures for the particular case when K is the sphere of /.
The cone measure arises naturally when one tries to generalize a theorem
of Diaconis and Freedman [DF], which was originally stated for the Euclidean
sphere, to the sphere of /7. This theorem states that the distribution of the
first k£ coordinates of a random point on the Euclidean sphere, is close in total
variation distance to the k dimensional Gaussian measure, as long as k = o(n).
Since the cone measure and the surface measure on the sphere of £} coincide only
in the cases p = 1,2, 00, the Diaconis Freedman theorem could be generalized
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in two different ways: for the surface measure or for the cone measure. For the
cone measure, such a generalization was obtained in [RaR], and for the surface
measure it was obtained in [M]. The paper [NR] tackles this problem differently.
It was proved there that the (normalized) surface measure on the sphere of
{3 is asymptotically close in total variation distance to the (normalized) cone
measure. This allows one to transfer various results from the cone measure to
the surface measure, and vice versa. The present paper develops this theme. We
study the precise relation between the surface measure and cone measure on the
7 sphere, and obtain results which, apart from their geometric interest, allow
us to transfer several known theorems from the cone measure to the surface
measure. In many situations, the cone measure turns out to be much easier
to handle than the surface measure. This paper formulates a general principle
which, essentially, shows that results for the cone measure automatically transfer
to the surface measure.

If we denote by o, ,, and p, , the normalized surface measure and cone mea-
sure on the sphere of £, then in the paper [NR] it was proved that |[up, —
opn|l = O(1/4/n). Here ||v|| is the total variation of a measure v. In this paper
we show that, in fact, ||ppn — 0pnl|| ~p 1/4/n, where ~, means equivalence up
to universal constants which may depend on p. Since yu,, and o, , coincide
when p = 1,2, 00, we also study the dependence on p in the above estimate, and
show that there is a numerical constant C such that:

i =opall <€ (1-3) 1= 2] L2,
p p| n+p

We actually show that p, , and o, , are close in a much stronger sense. There

is a constant C'= C(p) such that for every Borel subset of the sphere of £}, A:

701)’”(14) — 1‘ < g . [log <7C >:| e .
tp,n(A) ~n Pp,n(A)

This inequality is tight when p > 2.

The above result is applied to concentration inequalities for op . If (X, d) is
a metric space, and v is a Borel measure on X, then the concentration function
of (X,d,v) is defined as:
3
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where A, = {z; d(z,A) < €}.
The Gromov-Milman theorem [GM] states that:

I[U;,an(e) < Cefcnmax{Z,p},

and a theorem of Schechtman and Zinn [SZ2], states that:

. —cnmin{2,
Ill1l2(e) < Cemenmin{22},

(The case p > 2 in the above inequality was not stated in [SZ2], but it seems
well known, and follows from the fact that the transportation function from the
Gaussian measure to the p measure is Lipschitz.)

A simple corollary of our results is that for every metric d on the sphere of

¢;; which induces the standard topology, and for every € > 0:

o Hp,n

d d € 1 d € 1-min{1/2,1/p}
I pin (6) S CI (5) |:]. -+ % ‘log Iup,n (5)‘ .

This inequality essentially transfers both the Gromov-Milman and the Schechtman-
Zinn inequalities from the cone measure to the surface measure.

In studying the relation between the cone measure and surface measure, one
is naturally led to the study of the concentration of the £ norm on the £}
sphere. Most of this paper is therefore devoted to deriving precise concentration
inequalities in this situation. The problem of the concentration of the {7 norm
on the £ sphere, was studied for the case ¢ = 2,p = 1 by Schechtman and Zinn
[SZ2]. The tail behavior of the £7 norm for the case ¢ > p was calculated by

the same authors in [SZ1]. We prove here generalizations of the above results.

In the case ¢ < p we prove that:
>t [ ||y||gdup,n(y>> <
S(eg)

|
2
< 12exp (—Cnmin { (£> ,E}> .
q q

This result reflects the fact that || - || tends to a constant when ¢ — 0. We

]2 / 911917, (3)
S(ez)

also study what happens when ¢ — p. Our results seem to be the first time
that deviation estimates were obtained for the {7 norm on the £} sphere, which

don’t become trivial in the above limiting cases.



In the case ¢ > p we show that:

Hp,n (

]2 — / 19112 dpn ()
S(ez)

> t) < Ce—CT/’(Tht),

where:
nt, for t > n—(1-2/9)
P(n,t) =< nE-p/op/agp/a for p—Bi—p)a—p)/l1C2e-p)] < ¢ < p~(1-p/0)
n3-2p/442, for 0 < t < n~Ba—p)(a—p)/la(24—p)]

This estimate coincides in the case p = 1, ¢ = 2 with the result in [SZ2], and is
tight in the first two ranges of the definition of .

It has been proved in [SZ1] and [RaR] that if G is a random vector of n
iid. random variables with density proportional to exp(—|[¢t[?), then G/||G||p
generates the cone measure on the sphere of /3. It was also shown that G/||G]],
is independent of ||G||,, although this property has been hardly used in the
literature. In the present paper we shift the attention to the above independence,
which turns out to be a very powerful and useful fact. It implies a fundamental
negative correlation property (see Theorem 2), and essentially allows us to treat
the random variable ||G||, as if it were a constant (see for example Lemma 1
for one possible formulation of this fact. The proofs of Theorems 3 and 5 are
also manifestations of this principle). Thus, many natural questions concerning
the cone measure reduce to questions about i.i.d. random variables, which are
better understood, and to which powerful tools such as the results of [L] may be
applied. In addition to the new results presented here, this point of view leads
to a new, more direct, proof of the result of [SZ1] (see Theorem 2) and has been
applied to probabilistic problems in [NR], and to purely geometric questions in
[BN].

2 Concentration on the /] sphere

Fix p > 0 and an integer n. Recall that the £} norm is defined by :

n 1/p
][, = <Z$f> :
i=1

The £} sphere is defined by: S(¢;) = {z € R";||z|[, = 1}, and the £} ball is
defined by B({y) = {z € R*;||z||, < 1}. We denote by 0, the normalized



surface measure on S(£}), and by p,,, the normalized cone measure. In other
words, for every measurable A C S(£3) we put :

Hpn(A) = m -vol([0, 1] A).

Here vol refers to the Lebesgue measure on R™.

The measure pp, has another useful probabilistic description. Let g be a
random variable with density 1/(2T(1+1/p))e " (t € R). If g4, ..., g, are i.i.d.
copies of g, put :

n
S = Z |gsl?-
i=1
We will also define a random vector in R" by :

X = (Sgll/p""’ Sglip) ’

The following result was proved in [SZ1], and later independently also in [RaR]:

Theorem 1 The random vector X is independent of S. Moreover, For every

measurable A C S(£) we have :
Mpin(A) = P('X € A)'

Fix some ¢ > 0 and write:

n
T= Z|gi|q'
=1

The following simple lemma will be crucial for our subsequent calculations :

Lemma 1 For every t,a > 0 and § € R the following inequality holds :

T t
E exp (t‘Saq/p —GD <E exp (]ES"“I/P

Proof: It follows from the previous theorem that S is independent of T'/S a/p,

To — esaq/PD .

Hence, using Jensen’s inequality we get:

7 - g5ealr|) =

(&) -1)-

t
E exp (ES’aq 7p

tSoa/p

=E exp (W




tSoa/p
= Ep/ga/» Bs exp (]EST/P

T o
(&)
T [e3

cnm (&) o)

To illustrate the possible applications of Lemma 1 we will begin by giving a

simple proof of the main result of [SZ1]. We will show later, in Corollary 3,
that for every ¢ > p > 1 there is a constant C = C(p, q) such that for every
0<t<1/C, EetT”* < nl=p/a(1 - Ct)~™"".

Theorem 2 For every q > p there is a constant C = C(p, q) such that for every
A>C:

Y \Pnp/a
o (el > =) < e (25,

Proof: Let C be asin the remark that preceded the statement of the theorem.
Use Lemma 1 with @ = p/q, 8§ = 0 and t = n/(pC) —n/NP (which is positive as
long as A > (pC)'/P) to get:

A Tp/q AP —t/\P/nl_P/q Tp/q
Hp,n <||$||q>m> —P(T>m) <e Eexp (t 5 ) <

< e_t)‘P/nl_P/q]EeXp (iTp/q) — e—tkl’/nl—P/q]EeXp (ETP/'I) <
ES n

P —pr/a /
< ni TP/t =nl-e/p (e)‘I))np q exp (_np/Q)\p> :
> (1 _ %)np/q pC pC
n

And this clearly implies the required result. ]

Another useful property of the cone measure is the following negative correla-
tion property. For the normalized volume measure on B({}), such a statement
was proved analytically in [BP] and geometrically in [ABP]. In our case, the con-
crete representation of the cone measure allows us to give a purely probabilistic

proof.

Lemma 2 Let fi,..., fn : Ry = Ry be nonnegative non-decreasing functions.
Then:

~/S(én) Hfz(|33z‘)d,up7n($) S il;[l/s(e;) f’(‘xiDdﬂp,n(x)

p/ 4=1



Proof: We have to show that:

[T (&) < Tier (24).

We will prove this by induction on n. For n = 1 there is nothing to prove. The

case n = 2 is based on the following standard trick: for every z,y,a,b > 0

5 (@) 4 (@) |

|» (@)~ (@vwm)| <o

Hence, if hq, hy are independent copies of g;, go then:

oo g 2s) - )]
12 (i) - (e i)} -
om0 g ()] e (2] e (120)].

Assuming the required result for n, and denoting Sy, = Zle |gi|?, we get:

e ()| =l (T () o) -

n+1

= /OOO (1;71/13 { Ll_[ fi (%)] Jn+1 (m) } dr.

If we denote by 9 (u) the density of S, then by the independence of S, and
(917"-7gn)/5717,/p we get:

{ lH i ( Sh -Lg;w 1/;;)] fat (W)} =
E(““ (W)gf<(si/)/;g/|> S)} _

/p |9
/¢ f"+1<(u+r1’1/1’> lez(u-i—rPl/P'S;/p)]duS
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< [Towin (5 +/)H (G s 91

Define hu(r) = fn+1 (m) and:

H]E [fz ( @ +T:)1/p ' ;i/i’)] '

Then h,, is increasing and k,, is decreasing, so that by the above argument:

E[hu(|gnt11)ku(lgn1])] < [Ehu (I9n+1])] - [Eku (|gn41])]-

Finally:
n+1
|gz o0 )
|~Hfl< 711{:)1)‘|_~/0 1+1/p / (u)hy (r)ky (r)dudr =
/ YW)E[hu(|gnr1)ku(|gnr1])] du <
/ b(u |gn+1|)] : [Eku(|gn+1|)]du —

lg:
I fz(f/,,)-
n+1
[ ]

In what follows we will derive concentration inequalities for the the £ norm
on the /7 sphere. By the above remarks, this amounts to the study of the
concentration of the random variable T//S9/?. Tt will be convenient to separate
the calculations into two cases : ¢ < p and ¢ > p.

2.1 Casel: g<p

For reasons that will become clear in the next section, we will take special care
to study what happens when ¢ tends to zero and ¢ tends to p.

We will begin by deriving some elementary inequalities concerning the random
variable g. To begin with, a simple change of variable shows that for A < 1,
1

MglP - =
B = aoy

In what follows, we refer to [A] for the necessary background on the Gamma

function.



Lemma 3 For all 0 <t <1/(29q),
Ee~tl9l* < ¢=t(1-20)

Proof: Note that for every A > 0:

A
P(|Q|S>\)=7/ e ™ dr <\
r(1+l) 0

Hence,

1 [e3)
Ee 9" = / P(e 9" > g)de = t/ e " P(lg| < u/?)du <
0 0

1 [e’e] 1
< t/ e tuyt/ady + t/ e tdy = t/ e tuyl/idy 4+ e 1.
0 1 0

To estimate the above integral we will substitute v = v?? and get :

1 1 1
/ e My Idy = 2q/ e~ yl+2a gy < 2q/ e ydv.
0 0 0

Since t < 1/(2¢),forall0 <v <1:

et _ g—to(1—v*N)t < e—te(1=v"1)/(29) < e~te2ul08(v)/(20) — €
v
In the last estimate we used the inequality 1 —z < —logz. Plugging this in the
above integral we finally get :

Ee~ %" < 2gte™t + et = e~ (1 + qt) < ete??.

|
Remark: An inspection of the above proof shows that it remains true when
|g| is replaced by any non negative random variable with bounded density (and
then the factor 2 is replaced by twice the bound of the density).

We will also need a similar estimate on the moment generating function:
Lemma 4 Assume that p > 1. For every 0 <t < 1/(2q) :

Eetlsl® < t(1+20),



Proof: Fixt<1/(2qg). If z > 1 then:

1 o) o8] p—1
P(lg| > z) = 7/ e du < / p — e Wdu < e .
T (]. + %) T z DpxP

It follows that :

(o9}
Eetl9l® — 1 +t/ e P(|g| > a:l/q)dx <
0

! ° p/q > p/a
<1+ t/ edx + t/ ee " dy = et + t/ et " dy.
0 1 1

Substituting = v9/? in the last integral, and using the inequality v?/? <
1 + qu/p, which is true for v > 1 (since ¢/p < 1), we get:
00 o tvt/P—y
tor— P/ _q €
/ er ® dm——/ l_q/pdvg
1 pJji v
o0 oo
< q/ etttav/r—v gy, < qet/ e~V dv < 2¢et.
1 1
So that we finally get :
Eell9® < et + 2qtel < et(1129)
|

A simple corollary of the previous two lemmas is:
Corollary 1 Ifp > 1 and |t| < 1/(2q) then Eetls* < et+1,
When 0 < p < 1 we can prove the following weaker estimate :

Remark 1 If0<p<1and0<t<p/2q then
91/p+1 .

Eetldl* < e’.
ST/

Proof:  Assume that 27 > 1/p and put A =1 —1/(pz?) > 0. Now:

AP
e)\z

oy = @) e

P(lg| > z) < e A" EMNII" =

This estimate is also true (trivially) for 0 < < 1/p. An application of Stirling’s

formula gives:

vV 27f —xP

P(|Q|Z$)SW

10



As in the proof of the previous lemma, we deduce that:

3

oo
Eet|g|q < et—}-til/ .Z'l/qetw*wp/ng;
VT (L +1) i

As before, by substituting z = v9/? we get:

o0 o0
/ pl/agta—a"l% g _ g/ R P s
1 P /1

1
< get /OO (et /p=1,=0/2 3, < q2 /pr (1 + 1) et
b 1 b p

And from this the required result follows. [ ]
Note that for every 8 > —1,

In particular Elg|? = 1/p.
The following elementary inequalities will be used several times in this paper:

Lemma 5 The following inequalities hold:
a) For every 0 < q < p:

El 2q 2 22 _ 42
TP S ol Vi
(Elg|?) P p

b) For every 2 < p < 5/2 put ¢ =2p — 2. Then:

E|g|? ¢ 2
1+ 4L +(p—2)2°
Egley ST, TP

¢) For every p,q > 0:

Elg|*? _qlp—q) '
@mn22“+”“p(p@+n)zl+p'

Proof: Recall the Weirstrass product formula for the gamma function :

e T 0 ez/k

L) = x H 1+z/k

k=1

11



Where + is the Euler constant. Now :

EgPt T (%) r (%) _ ,ﬁo (kp+q+1)°

(Elgl7)? ~ ()’ W GprDkp+2+1)
p
o (kp+q+1D)((k+1p+q+1) l+gq
=@+ ]] = .
E+1Dp+1)(kp+2q+1 o0 )
k=0 ((k+1)p+1)(kp+2¢ +1) | o (1 + (kp+q+({)1()kzﬁkp+q+1))

To estimate this product, use the inequality log(1 + a) < a, a > —1 to get that
forz > —1/2:

x X
log(1 =-1 1-— >
i+ 0= og(1- 12 )2 12

Hence for k > 0, if we put z = (kp+q+‘11)(fk_£p+q+l) then our assumptions in a)

and b) imply that £ > —1/2, so that 1 +z > e Now,

> z(1—x).

1 q(p—q)
lcl;[(](1+ (kp+q+1)(kp+p+qﬂ)) >

i q(p—q)
(kp+q+ 1D (kp+p+q+1)

k=0
*(p—q)°
1

GXP[ ,; (kp+q+1)*(kp+p+q+1)°

>expl(p )i

o

k=0

1 1
(kp+q+1 _kp+p+q+1)

1 1
kp+q+1 kp+p+q+1>> B

cexp | -2 -9 (Z

P’ 0

2

oy | 1P P9 alp-q9) ¢P®-49
‘ep[p(qH) p<q+1>]> Tpla+ ) T Pt D)

Hence, if we define a = 29  then a little calculation gives:

3"

p(g+1)°
Elg|*® ap-9) F-9°]7 _
(Elglq)2§(1+q) [1+p(q+1) pz(q+1)2] B
¢p-9?® [_1 1
_1+5+ Pla+1) [1+a+ (1+q)(1+a—a2)]'

12



In the case 0 < ¢ < p, 0 < a <1 and the result follows. In the case 2 < p < 5/2
and ¢ = 2p— 2, —1/4 < a < 0, from which it is easy to deduce the required
inequality.

The proof of part ¢) runs along the same lines, and is simpler: one just

estimates the product using the inequality 1 + z < e® (Part ¢ was also proved
in [Schm]). [ ]

Lemma 6 For every0 < q<p :
2 2 1 q
Var(|g|?) = Elg|* — (E|g|?)” < 3max 175

Proof: By part a) of Lemma 5:

2¢+1) p (1
Var(|lg|*) = (E(|g|*))? w -1

and this is the required result. [ ]

Proposition 1 Assume that p > 1. For 0 < t < 1/(4q) the following inequality

holds :
a_|g|2 2.2
Eetll9l”—Elgl < £B00g°

Proof: Let h be an independent copy of g. Now,

Eet(917=1h%) — et(lalt=Ir%) +E€t<|g|4—|h|4>1{

{J1g1a-1m1a| <1/} \lgla—Inls|>1/¢}"

To estimate the first summand note that for |z| < 1, e < 1+z+22?. Using this

inequality and the fact that the random variable (|g|? — |h|q)1{||g‘q_|h‘q|<1/t} is
symmetric we get :

t(lgl* —[h|") 1 <

Re {|lgl=Inie|<1/e} =

< 1+E(|g|* — IhI")l{ + 2t"E(|g|* ~ Ihl")21{

|lgla—|nje|<1/¢} llgle—Inja|<1/e} <

13



< 14 4t?Var(|g|?) < 1+ 12¢°%.

The last inequality is an application of the previous lemma.

Now, using the independence of g and h, and previous inequalities, we get :

]Eet(lglq—\hlq)1{||g|q_‘h|q|21/t} <

< Retllal*—Ih") n E€t<|g|q—|h|q)1{|

{[lgla-1]21/¢20)} Ihja-1|>1/(2t)}

_ (Eetlgl”‘l )]Ee—t|h|q+

{{1gla=1]21/(20)}

(B s oo ) B
< (E62t9“)1/2Eeth|q\/P (|Igla -1 > 2%>+
+ (E€72t|h|q)1/2 Eetlol® \/p (||h|q - 1| > 2%) <

< [(62t+1)1/2e—t+1 + (e—2t+1)1/zet+1] \/P <||g|q _ 1| > %) _

1
=232, [P(|lg1-1|>=) <
e \/(Hgl |_2t>_

1 1 1/2
<9|P 7—-1>— Pl(l1-|g|?7> — <
<olp(lolr-12 5 ) +P(1-ll>5)| <

g
p

1 1 1/2
< P_1)> — 1<1- — <
<olp(faar-nzg)+p(r<i-3)] <
1 1/p 1 1/q 1/2
P > 1+ — P <|1l-—
o> (1450) ) +r (< (1-5)
1/q 1/2
oo ()+(-3

We used here the estimates that appeared in the beginning of the proofs of

IA

IA

Lemma 3 and Lemma 4, and the inequality e /% < 22 which is true for all 0 <
z <1 (to prove it note that the minimum of the function f(z) = 1/z + 2logz,
which is attained at = 1/2, is positive).

14



Summing up, we have shown that for all 0 < t < 1/(4q), Eexp (t(]g|?—]|h|?)) <
1 + 250¢%t2. If we now use the elementary inequality :

x —T
e|w|51+x+2(i—1).

2
We get :
a i t(lgl? —|n|?) t(|h|?~]g|?)
e < 1w — oy 42 (2 s -1) <
<14 500¢%%.
Finally, an application of Jensen’s inequality gives:
E€t|\g\"—1E|9|q| < Eet|\9\"—|h\"| <14 5004%2 < 500078
|

Remark: For 0 < p < 1, similar reasoning shows that if 0 < t < p/(4q) then,
Eet|l91°—Elsl?| < Ct)a*e

Where C(p) depends only on p (and tends to infinity as p tends to zero).

The case 0 < p < 1 will be very important for us later, and we will need
another inequality, in addition to the above remark, to handle it:

Proposition 2 For every 0 < g < p and 0 < t < p?/? /(2¢) we have :

q q 2q°17
Eexp (t||g|? — Elg|?|) < 10exp p2alp )

Before passing to the proof, we will need some elementary inequalities, the
short proofs of which we include for the sake of completeness.

Lemma 7 For every x,y > 0,

2V (z)

Y /z
<14 =< e¥?.
Tz +vy) — x
Proof: Using the formula:
mim!

PO = m ) a+m)’

15



r 1 1 ”
i: lim — w: lim _H 1+ Yy <
L(x+y) moocomy e Ttk m—roo m¥ -2 z+k

m
D) i L (30
S(1+:L' Tr}l—rgomyeXp<k_lx+k>S

A 1 M gy
< (1 + —) lim —exp |y
x/ m—oco mY 0 T+ u

1
= (1 + Q) lim — exp (ylog (“—m>>
T/ m—oo mY T

1 Yo
_1+y/x lim (a:+m> _ +y/;c‘

xY m— 00 m Y

Corollary 2 For every 0 < q < p:

1
q _ q
Elg|? < T (14 q)Elg|*.

Proof: Since E|g|P = 1/p, the left hand side follows from Holder’s inequality.
To prove the second inequality just use the previous lemma with z = 1/p and
y=a/p:

1 2YT(z) y
pPEgl  Ta+y) = oY
|
Lemma 8 For every 0 < a <1/2,
E ! <3 27
—_— er .
(p*/lgl)> —
Proof: Putz=(1-a)/pand y = a/p. Then:
1—
s 1 T(5)  @rwre |
1/p a (e 1 N 'z +
(p/71g]) p/pr(p) (z +y)
y a/p 2
2
(2 e — (12 ) e (=) <o (14 227)
T 1—«a 1-—«a p
|

16



Proof of Proposition 2: To begin with,
g1 g_ 1 1 q
Eexp ( t||g|? — il <Eexp |t||g|? — il + Eexp |t ol lg] <

1 1
<1+ Eexp [ (|g|q q/p)] 1igja>1/pasry + Eexp [t (W - |g|q)] .

Now, if we put A = tq/p?/P < 1/2 then,
1 tqpl—q/p 1
Eexp [ (|9|q )] {lgla>1/pa/r} < Eexp [T lg|? _5 =

—-A/p 1
— o MpRMelP — € T _ (=X —log(1 — <
e Ee TN exp (p( A — log( /\))) <

2¢%¢2
227 /p _ '
S Xp (pl-i-?q/l))

In the last inequality we used the fact that for 0 < A < 1/2,log(1—X) > —A—2A2

(to prove it just use the Taylor expansion of log(1 + x)).
Next, using Lemma 8 (remember that A < 1/2) and the inequality log(z) <

z — 1 we get:

Summing up we get:

1 2t2¢>
q_ _~ 2t d
Eexp (t‘|g| Pq/pD <1+44exp (p1+2‘1/1’) <

2t
S 5 exp Im .

Finally, using Corollary 2:

) <

1
q __
) EeXP( ‘|g| pq/p

2.2 2t2 q2

tq 2t4q 1/2
S exp (W) -5exp (W) S Se / exp zm .
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We will now derive similar inequalities for the random variable S. It is easy
to check that |g|P has gamma(1l/p,1) distribution. In other words, the density

of |g|P is :
1

r(;)
P
It is well known (see [D]) that S = ", _, |gx|? has gamma(n/p,1) distribution,
i.e. the density of S is :

z? te % for £ > 0.

- (1%) zrte® for z > 0.

By the above remarks, if we put r = p/n, and Z is a random variable with
density 1/T(1 +1/r)e*" for = > 0, then S has the same distribution as Z?/™.

This is the reason why we took special care to study the case p < 1, although

we are primarily interested in the case p > 1.

pq/P
q

1—
—n a/v,

Lemma 9 For every 0 <t <

242
t|Sq/P—]ES"q/P\ 2(] t
Ee < 10exp piFEaloi=2als )

Proof: In the above notation, S%/? has the same distribution as Z%/™. Now

all we need to do is to notice that the required result is just the statement of

Proposition 2 where p is replaced by p/n and g is replaced by ¢/n. ]
We will need the following:

Lemma 10 The following inequalities hold:

%) yarergy < BT < gars-

p/q a/p
b) sm e < ES9/P < DT

o) [l < n'=.

nl-a/? ET 1—q/p
d) " < getm <1 /p.

18



Proof: Parts a) and b) are just a rephrasing of Corollary 2. Part ¢) is also

clear since: .
T _ ||(91;;gn)||q < nlfq/p

Sa/p a ||(gla"'agn)||P N
The left hand inequality in d) follows from a) and b). To prove the remaining

inequality note that since T'/S%/? and S9/? are independent:

< nl—Q/P

= Sa/p

ET E T < T
ESe/p ~ T Sa/p —

o

We can now prove:

Theorem 3 For every 0 < p < oo there is constant C = C(p) > 0, such that
for allt > 0:
> [ ||y||zdup,n(y)> <
S(£3)

|
2
< 10exp (—Cnmin { (£> ,E}> .
q q

Proof: Fix some A > 0. Using Lemma 1 and the remarks at the beginning

lalls = [ llidnna®)
s

> [ ||y||zdup,n<y>> -
S(e)

>t ET <
= "ESa/p ) —

lalls = [ llidnna®)
S(ex)

of this section we get:
T ET

o
=P (‘ Sa/p  ES/p

ET T ET

< exp (_)‘tESq/p> - Eexp (A ‘ Sa/p ES/p
ET

" ESa/p

)<
)<

ga/p

ET A ANET
— . AN I 0 /p _ /p
< exp( )\t]ES‘I/P> Eexp (]ES‘I/PlT ET| + (IES‘I/P)2|Sq P _ RESY |) <
< A ET
P~ ESa/p
22 INET 1/2
. []Eexp (WlT - ]ET|) -Eexp (mw@/p — ]ESQ/p|>:|

19



Write A = nsESEf[/p , for some s > 0. Using Lemma 10 we see that:

2\ 2sn
e a0 a/p q/p
goae = mr S 2077+ a) < 2577 (1 +p).
And:
20AET 2sn

— a/p 1-q/p
(ES4/P)2  ESe/p < 2sp"*(L+p)n ’

It follows that there is a constant A(p) such that if s < A(p)/q then :

2 . 1 p 2\ET pi/P 1—
7 < i A <P 1-a/p,
ES/r = mm{4q’ 4q} (ESe/P)2 = 2

Combining Proposition 1, the remark following it and Proposition 9, we get that
there are constants By (p), B2(p), Bs(p), Ba(p) such that if s < A(p)/q:

2\ 2\

2
nB1(p)q2( 2 ) <eBQ(”)"qZS2.

n
> lgx|* —nElg|?
k=0

ES4/p =

2\ "
< |exp (o llol? = Bigl']) | <exp
And:

2AET
(ESQ/P)2 |

Eexp ( Sa/p —]ESq/p|> < 10exp

) 2
q 2)\ET
B3(p)n1—2q/z) ((ESQ/p)2> ] :

2112(1—(1/1’)) _ 10634(p)nq252_

2
< 10exp <B4(p)q Ry

Plugging this into what we derived before, we get the following statement: there
are constants A(p) and C(p) such that for all s < A(p)/q:

o

We can also clearly assume that C(p) = 1/(2A(p)). Indeed, replace C(p) by

C(p) +1/(2A(p)) and A(p) by A(p)/(1 +2C(p)A(p)) -
To finish the proof, assume first that ¢t < q. Taking s = t/(2C(p)¢?) < A(p)/q

we get:

2 2
||| —/ 1yll4dpp,n(y)| > t/ ||y||3dup,n(y)> < 12¢ et Clpings”,
s(en) s(en)

(t/q)?
4C(p)

—st+ C(p)g’s® = —

20



If t > g then take s = A(p)/q. Then:

—st+ 0ast = - 20 oy =204 AP o

q 2

_A@t At __AWp)t
q 2q 2q

This proves the theorem.

|
Remark: An inspection of the preceding proofs shows that in the case p > 1,
on can take C(p) = ¢/p for some absolute constant c.

Remark: By Lemma 10:
ESY/P T
0< BT Sip = (1+4).
So that in Theorem 3, the the probability estimated is nonzero only for ¢ <

max{1,q}. Therefore, if we ignore the dependence on ¢, we proved a deviation
inequality of the form:

Hp,n <

On the other hand if we assume that p > 1, then since the function f(z) =

lally = [ Wllzdinat)
5)

>t [ ||y||zdup,n<y)> <ceenr,
5(¢2)

||z||q/nt/7=1/P is Lipschitz with respect to the ¢ metric (with constant inde-
pendent of n), the Gromov-Milman theorem [GM] implies that:

o

By standard arguments, this is equivalent to a concentration inequality for ||z[|¢,

llle= [ lolladipn (@)
S(ey)

> tnl/q_l/p> < Cexp (—cntmax{Z’p}) .

of the form given above, with the power 2 of ¢ replaced by max{2,p}, which
is asymptoticly worse when p > 2. Reversing the argument, the concentration
we got in the case p > 2 is better then the concentration that follows from
the Gromov-Milman theorem. Moreover, the constants in the Gromov-Milman
theorem tend to zero as p tends to 1, and this is not the case in our result (see
[A-d-RV] and [Sche] for related results).

Theorem 4 is satisfactory when ¢ tends to zero, since it reflects the fact that

||z||Z tends to a constant. We will now study what happens when ¢ tends to
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p. In this case we are only able to prove a less satisfactory inequality, which
reflects the fact that [|z|| tends to a constant when ¢ tends to p, but which
involves an apparently redundant logn term.

Theorem 4 For everyp>1,0<qg<p andu > 0:
fip,n ( lll§ — / lyll3dpp.n(y)| > t/ ||y||3dﬂp,n(y)> <
S(ep) S(ep)
2
<exp|— n_o u(n — 1) , u(n —1) <
600p p(n — nd/p) p(n — na/p)

= l_mmm{((p—wlogn) ’ (p—q)lognH '

Proof: For every z € S({}),

0<1 lq/lezl ZKn””lwil)"—<n1/P|wi|>q]s

i=1

n
=

1 1 «
< =[Pl = (0P (2] Lpare gy 51y = - > F(ntPlzy)),
i=1

1

3

where for > 0, f(z) = (2P — 29)1(,>1}. Simple differentiation shows that f is
nondecreasing on [0, 00). By Jensen’s inequality and Lemma 2, for every § > 0:

/ exo [ -0
5(em) P\ ni-i
0
e (n—/ el = 131 dipn et n(s) <
el )
< 260 = _ 11 ) dupn(z) <

/S Hex (w) dpap,n (@) <

(€3) i=1

: Vsur» op (M) dﬂp,n(x)] ' =

- []Eexp (M)]"’

lallg = [ 1llidinn(2)
5(63)

> d,up,n (55') <

n
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where Z denotes the random variable |g1|?/SP.

z—gzd/P

Note that the function a(z) = 2% is increasing on (1,00). Indeed, since
(x — 1)%d'(z) = z9/P1 (w (1 - %) + %) — 1, it is enough to show that for
z > 1, b(z) = x(l—%) +1 — 2797 > 0. Now, b(1) = 0 and ¥'(z) =
(1 - %) (1 - qu/P) 2 0.

Since Z <1,
n —nd/P
f(nl/le/p) = (nZ — (nZ)q/p)l{nzz1} < 1 [nZ —1|.

Arguing the same as in the proof of Lemma 1 we see that for every A > 0:

)<

) — Eepk| lg|”—Elg|? |

p 1
EeAnZ-1 — Fe - lgufP 1
Xp {n SP n

ni

ESP
Now, as in the proof of Proposition 1, if A is an independent copy of g then for
every 0 <t < 1:

1
<ho (2o - -0

Eet| 1917 ~Elol” | < et loP—1n7| <

etglP=1rl?) 4 o—t(lgIP=[RI?) 1)]
5 —

< |1+ tgp - 1) +2 (
72 1

(1—2)/p

It is elementary to check that for 0 < ¢ < 1/2, 2(1—#2)"1/P —1 < 8"/ Hence,

";+q1/p then we have shown that for 0 < 6 < 5-:

0 T T 8na’6?
Eexp (nlq/p ' ‘Sq/p _E(Sq/p) D S exp ( P ) ’

By standard arguments, this gives that for u > 0,

T T 1—q/p . pu®  u
P<‘W—E<W>‘Zn u Sexp — min m,@ .

This yields the required result since by Lemma 10, 2pE(T/(S%/?)) > n=4/7.
|

— Q(Eetlglp) . (]Eeftlglp) —1=

ifweseta:%”-
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2.2 Case2: ¢g>p

We shall begin by stating a result from [L]. Let X be a random variable with
finite moments. If X3, ..., X,,,Y1,...,Y,, are i.i.d. copies of X and a > 2 then:

ay\ 1/a
S ) -
~sup{% <g)1/s (E|X|s)1/s; max{Z,%} <s< a}.

Where the symbol ~ means equivalence up to universal constants independent
of n, a and the distribution of X.
If in addition we assume that X is non-negative then for a > 1:

n avl/a
(5]

k=1
~ sup {% (g)l/s (IE|X|5)1/S; rnax{l, %} <s< a} .

By Stirling’s formula, for any ¢ > p>1and s > 1,

Z(Xk -Yy)

k=1

1/s
1+gs
(E| |qs)1/s: F( p ) ~ (1+q8)q/p
9 T (1) (ep)a/P(p/2qL/2=1/p)1/5’
P

where we have used also the fact that T'(1/p) ~ p.

Proposition 3 For a > 1 and g > p > 1 the following equivalence holds:

a/p 1/p 1-1/a
(]ETa)l/aN <1+CI) . ng max{l,(\/p_q) .a'I/P},

ep VPa ng'/»

Proof: Assume first that ¢ > 6p. By the preceding remarks:

(]ETa)l/a ~

o} 1 n 1/s N
~ N —— a/v. @
(ep)/p Sup { s (ap1/2q1/2_1/p) (1+gs)"?; max{l, n} <s< a} .

Define:

1 n 1/s
= a/p
f(S) - s (ap1/2q1/2_1/p) (1 + qs) )
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and g(s) = log f(s). It is strait-forward to check that:

s9"(s) |,y _s9@—p)(sg+2)—p
2 (s) = 2ps(1 + gs)?

In particular, for ¢ > 6p and s > 1, sg"(s)/2+g'(s) > 0 so that a local extremum
of g (and hence also of f) must be a minimum. It follows that:

oy {7 (oo {1.2)) 1)

We claim that when a > n, f is increasing. Indeed, it is enough to show that g

(]ETa)l/a ~

is increasing. Now,

'(s)——l—llo n + ¢ >
=TT 2 B\ a2 2178 ) T p(T 4 qs) <

q2

>1+1110+1110+ >
ST T2 |2 8P 2 p 64 p(1+gqs) —

><i_1)l_logq>q—210gq_1>

~—\2p s  ps® ~ 2p -
6p — 2log(6p) 1> 6p—2logb6—2(p—1) 1=
- 2p - 2p B
1 -1
:1—£22—log6>0,
p

where we have used the fact that the function z — 2log « is increasing for z > 2,
q > 6p > 6 and the inequality logz <z — 1.
Summarizing, we have shown that for ¢ > 6p:

(BT)% ~ o - max { (1), f ()} ~

<1+q)q/p nql/”ma 1 (\/ITQ)I_l/a (1+qa>q“’
~y . —_— X —_—
ep VPa "\ ngl/p 1+¢ ’

which is equivalent to the required formula since

q/p a/p a/p
a?/? > <1+qa> > ( a > >2
“\1l+4g¢ —\1+1/q e

The case p < ¢ < 6p is much simpler. In this case it is clear that for every s > 1:

as q/p 1
P p/e

(Elg|?/*)* ~ (
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Hence,

ayl/a aq?/? a/p-1 [ l/s. a
(ET*)/< ~ 7p Sup {8 e ;maxd1l,—t<s<ay.
p

1/s
If we define f(s) = s9/P~1 (alp) , then it is easy to verify that f is increasing
when a > n, and the only local extremum of f, which is attained at s =
(g/p—1)"tlog (n/(ap)), is a minimum. The rest of the proof is as above. ®

Let T be an independent copy of T. Since for a > 1, (E|T — ]ET|‘1)1/°‘ ~
(BT - T |0‘)1/ “, similar reasoning gives:

Proposition 4 Fora>2 and g >p> 1:

(]E|T _]ET|a)1/a B (1+2q)q/PmaX (anql/p>1/2 (nql/P)l/a (g)q/p
ep VP4 "\ vPg 2

We record here two simple corollaries, the first of which was used in the proof

of Theorem 2:

Corollary 3 There is a constant C = C(p, q) such that for all A\ < 1/C':

nl—p/4

]Ee)\TP/q )
— (1 _ CA)np/q

Proof:  Set m = [nP/9]. Let ¢ be an exponential random variable and ¢ be
the sum of m i.i.d. copies of (. By Proposition 3, for every k£ > 1,

ET*?/4 < C* max {n""’p/",nkk} ,

Eet > ¢ max {m#, mk*} > (¢')* max {nkp/q,np/qkk}’

where, ¢, C' are absolute constants depending on p and gq.
It follows that ET*?/9 < (C')*n'~P/9E¢* . Hence,

np/a

»/a _ c’ _ '
EeT Snl p/9Re /\Egnl p/q(Ee /\C) )

and the result follows. [ |

Corollary 4 There is a constant C = C(p,q) such that for all a > 2:

E|T - ET|* < (Cma.x{nl/aaQ/p,n1/2a1/2})a.

26



To use this inequality we will require a simple numerical result, the proof of
which we include for the sake of completeness.

Lemma 11 For every 0 <0 <1 anda,b>0 :

la —b|? < max{1, 20}%.
Proof: We can assume that a > b. If § <1/2 then:
@0+ 0@ — %) =a—b+a’b? (B2 —al~2) <a— b
If > 1/2, by the above identity we have to show that:
a?b'=? —v%a=? < (20 — 1)(a - b).
Putting t = a/b > 1, we have to show that:
O =@20-1)t—1) -t +¢7 > 0.

Now, f'(1) = 0and f"(t) = 8(1—0)t=?=1(t*?=1—1) > 0, so that f(t) > f(1) = 0.
|

We can now generalize a result of Schechtman and Zinn [SZ2]:

Theorem 5 For 0 < p < q let

nt, for t > n~(-7/0)
Y(n,t) =& nE-p/or/ap/a - for p=Ga—p)(a—p)/[02e-p)] < ¢ < p~1-2/3)
n3-2p/442, for 0 < t < n~Ba=p)(a=p)/[a(24-p)]

Then, for some absolute constants 0 < ¢,C < oo, which depend only on p and

o

Proof: In what follows C, ¢ are constants which depends only on p and gq.
Fix some a > 2. Then, by the independence of S and T/S%/?:

ellz = /5(15") lyl[§dppn(y)| > t) < Cemev(mb),

T?/9  (ET)P/4 o\ e 1 (ET)?/4 o\ He
E - =—  |E|TP/0 - <
( ‘ S ES ) (ES2)1/a < ‘ ES S ) -
<L (]E‘Tp/q — (ET)?/1 a)l/a + (E|@®D)P - MS Al <
— ES ES -
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B arl/a (IET)”/‘I
(BIT - ET|*)!/* + S=pi—

INA
INA

2 e (s - 517"
C

A

= n2-p/1 (max{nl/2al/27"1/aaq/p}+max{n1/2a1/2,n1/aa}) <
o

max{n'/2a'/? nt/*q/P}.

= np2-p/a
For the sake of simplicity put a = (ET')?/? /(ES) = Cn~(~?/9)_ If we denote by
X the random variable T?/9/S, and Y is an independent copy of X then:

E|X —EX|* <EX —-Y|* <2°E|X — al®.
So that we proved the inequality:
TP/q Tr/q
E —-E
=)

If t > C/n'~P/9 > ET?/9 /(ES) then by Theorem 2:

K |

pCE—p max{n/2a'/? n/*q1/?}

Tp/e  RTP/1
(‘ S ES

|2 0) < ullelly > 0/7) < e,

Assume therefore that ¢t < C/n'~?/4. Fix some a > 2 to be chosen momentarily.

Tr/q TP/q 1 |_TP/2 Tr/q
P -E >t) < — -
(5 25|20 <& 5 -=(55)

K max{n'/2a!/2 n'/*q1/P}1*
< : .
[ n2-p/at ]

Now,

[e%

Where K is a universal constant.
If t > n~Ge=p)(a—p)/1aC2e¢-P) then take a = (eK) 2n(—2/0P/1p/1 5o that

a > 2 for n large enough, and:

>

n(2=p/0)p/aw/a\ V/P~1/?
- e2K?2

n'/®qa/? > o1/? (

all/?

2> Wn(z—P/Q)(Q/P—I/Q)P/qn—(3q—1’)(‘1—1’)(Q/P—I/Q)p/[qz(2q_p)] _
e -

B al/2pl/2

~ (eK)2a/p—1"
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So that:

p/q p/q 2q/p—1,1/aqq/P7%
T _E T A K(eK) nt/%q
S S - - n2-p/at

(

(eK)~2p(2-p/a)P/ap/a
<e

—en(2—P/D)P/agp/a

K(eK)%/p-1
o]
This proves the required inequality in the range: n~(31=2)(a-p)/la21-p)] < ¢ <
C/nl—p/q_
Finally, if ¢ < n~(3e=p)(a-2)/[4(24-p)] then take:

t2n3-2p/q }

a=maxq ———
{e4q/pK2’

First, since the only extremum of the function f(8) = n'/#49/7=1/2 is a mini-

mum, we have:

n—20Ba—p)(¢—p)/[9(2¢—p)] n3—2p/q
f(a)gmax{f(2)af( eta/p K2 )} =
1/2 4q/p 2]
_ q/p—1/2,1/2 n e K" logn
= max {2 n (eta/PK2)a/p—1/2 exp ( np/(2¢—p) <
44/P K210
1/2a/p ¢ TR logn
snelTexp ( )
In other words, we have proved that:
44/P K2 logn
/o, a/p 1/2 ,1/2 4q/p ¢ TR logn
n /%P <n'a’’e exp( RYYIET) )

Hence, assuming that « > 2 (otherwise the required estimate is trivial):

e/t (TP Ke"/”eXp(%g—")nl/zal/z
S S o - n2-pr/at

_ q logn
= exp [— (pe4‘1/PK2 - np/2‘1) lﬁ(n,t)] .

Which gives the required result for n large enough (the result is trivial for
bounded n). [ |
Remark: Note that for p = 1, ¢ = 2, the result coincides with Proposition 5.1

in [SZ2]. Just as remarked there, it is best possible in the first two ranges in the
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definition of ¥. The proof of this is exactly the same as in [SZ2], and it is based
on the fact that using the equivalence in Proposition 4, in the first two ranges
all our estimates can be reversed since the estimate for 7%/ is asymptotically

larger then the estimate for S.

3 Surface measure vs. cone measure on S(£})

In this section we will apply the results of the previous sections to study the
distance between the surface measure and the cone measure on the sphere of
7. The total variation distance between these two measures was estimated in
[NR], where it was shown that it is bounded by C,/+/n. Before proceeding to
strengthen this result, we will begin by studying the dependence of Cp, on p .
We remind some basic facts on the total variation distance. For P, @) probabil-
ity measures on a measurable space (2, F), the total variation distance between
them is defined as ||P — Q|| = 2sup{|P(4) — Q(A)| : A C F}. If P,Q are
absolutely continuous with respect to some reference measure A, with respec-
tive densities f and g, then the total variation distance is known to be equal to

fQ |f ) |d/\'
Fix some p > 1. It has been proved in [NR] that:

p " 1/2
Op,n 2p—2
—=(z) =Cp,, - z;|“P .
@) =, <§Hj| | )

Put ¢ = 2p — 2. It has been proved in [NR] that the following estimate holds:

(Elg|®)!/2 1 Eg|* ES2a/p
ltpn — opnll <2- SLD 2 1

Elg[i/2 n(Eg[? @S
Note that:
(Elg1) \/ (5)r 1
DP T 1+q/2 \/ Jor (1+5) < b

Assume first that 1 < p < 2. In this case 0 < g < p so that by Lemma, 5:

11 ¢ 2¢°(p—q)° (¢/n)?
||Np,n_ap,n||§2\/1_7'\/1_ﬁ+ﬁ'(1+?+72 - (1t =

P p/n
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— 205 \/8<p—1)2§2—p>2 W2 p-)E-p)
np Vvn
In the case 2 < p < 5/2, we can apply part b) of Lemma 5 and get similarly:
llttp,n — op.nll < %a
where C' is some universal constant.
It remains to deal with the case p — oo. The proof of the result in [NR]
actually shows that if we denote W = T/(S%/?) then:

iton — ol = E| T _ 1] <
ll’p,n p,n E\/W —
2
<o VEW [ EWE
EVW |\ (EW)?2
VEWZ [ Ew?
S 2 ° - ]-a
EW EW)?2

where in the last line we used Holder’s inequality.
By the remark following Lemma 13 in Section 4, as long as p > 10,

EW? Cpn
= <142
@) = )

for some numerical constant C. Hence

<1+

Y

=~ Q

lttp,n = op,nll <
Summarizing, we have proved

Theorem 6 There is an absolute constant C > 0 such that for oll p > 1 and

for every n:

1 2| /N
||Np,n_ap,n||sc(1__>‘1__" p-
p p| n+p

If P and @) are two probability measures on €2, then the fact that ||P— Q|| < e
means that for every measurable A C €2,

Q(A4)
m‘1\<

€

2P(4)’

For the cone measure and surface measure on S(£;) we have in fact a much

stronger inequality:
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Theorem 7 Assume that 1 < p < 2. There is an absolute constant C > 0 such
that for every measurable A C S(£}):

< ()

Proof: Let ¢ = 2p—2 and define W = T"/2/(S9/(?P)). If V is an independent
copy of W then for every A > 0:

EANW-EW|  gAW-V| g AW —VEW?|4A[V-VEV?| o

_ 2 2
< ]EeZ/\|W—\/]EW2| = Eexp (2)\|W —EW |) <

W + VEW?
20|W? —EW? |)
EW?2

< Eexp <

=1+ 2A2VEW? / P (|W? —EW?| > zEW?) - 2A2VEW? g,
0

Note that W2 = T/(S9/?), so that by the remark following Theorem 3 there is
a universal constant C' > 0 such that P(|W?2 — EW?2| > zEW?) < 10e-C"". A

simple calculation now gives:

2T/ 2
EeMNW—EWI < 100 exp (M) .

nC

It is easy to see that EW? < 4(EW)?, hence if we define for = € S(£})

dopn _
fla) = 2 ) = (/m

then we have shown that there is an absolute constant ¢ such that for all A > 0:

-1
: IIyIIZ/Qdup,n(y)> |22,

P

/ e Yau, , < 100X/,
5(¢3)
Finally, for A C S(¢}) and every A > 0:

Hp,n(A) / Alf-1] d—p'p’n
UnA— nA S/' —1ld = Ty log(e S
o0 (4) = ppn( AN < [ 1 =My = P25 [ r0g(er=1) ne
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fipn(A) 100ecX*/m
< Eerm g | ———— |
N A & Pp,n(A)

Choosing A = 4/ % -log (uplf? A)) gives the required result.

For p > 2 we have:

Theorem 8 Assume that 2 < p < co. For every measurable A C S(£y):

e b

Here C = C(p) is an absolute constant (which may depend on p).

Proof: As before, set ¢ = 2p—2 > p and W = T''/2(§9/()) In what follows
C denotes a constant depending on p, which may change in each particular
occurrence. By the previous methods, it is easy to see that

¢ ¢ and EW?2P/1 > ¢

EW < £-1) - nl/2—1/p = pl-p/a’

n(
Since ¢/(2p) < 1,

2|W2p/q - EW2p/q|
(EW?2p/a)1-a/(2p) ’

(W — (EW?#/1)2/(P)| < min { |W2p/s — Ew2p/a |q/(2p)} <

< min {Cn(l—p/q)(l—Q/Zp) |W2p/a _ EW2P/9| |W2P/1 — B 2P/ |q/(2p)} .

Hence, since ¢ = 2p — 2 we get that for ¢t < 1:

t
—_ 2p/q\2/(2p) v
p <|W (EW?2P/1)2/(2P)| > n1/21/p> <

<P <|sz/q _BW/1| > Ctn—(p—Z)/(Zp—2)) 7
and for ¢t > 1:
p (lW _ (EW?P/0)2/CP)| > ﬁ) <
<P <|W2p/q —EW?P/1| > Ctp/(p—l)n—(p—z)/(zp_z)) ‘
Note that W?2P/? = T?/9/S, so that by Theorem 5 we get:

t

_ 2p/q\2/(2p) -
P (|W (Ew ) | > 2=/

) < Ce—cw(mt),
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where:

np/(2r=2)p/(0=1)  for ¢ > 1
p(n,t) = { np/Cr=2p/(2p=2)  for n=(P-2/Gr—4) < ¢ < 1
nt?, for 0 < t < n—(P=2)/(3p—4)

By standard arguments (since in the proof of Theorem 5 we have only used

moment estimates), this implies:

1% Ct
- _ _ _ —cp(n,t)
P(‘]E 1‘2t)§P<|W ]EW|2n1/21/p>§Ce .

Hence, if f is as in the proof of Theorem 7 then for every A > 0:

[ s [ (o)
S(¢£2) 0 EW

oo
<1+ CA/ exp (/\t - cn”/@f’—?)t”/(”—l)) dt =
0

Cx [ Au
=1+ —/ exp (— - cup/(p_1)> du <
Vv Jo Vvn

o0 P _
§1+%/ exp (1 - A pplcu”/pl—cup/(”l)) du <
n Jo p c

—lnp/2 +

by p
< -
< Cex [c (x/ﬁ) ] ’
ﬁp/(?-l)

where we have used the fact that for a,8 > 0, af < %P + =1 >
rest of the proof is now just as in the proof of Theorem 7.

The

|
Remark: Theorem 8 is tight in the following sense. Using the preceding nota-
tion, fix some € > 0, and A be the set {W > (1 + ¢)EW}. Clearly:

opn(4) = /A Wi > (14 €)ipn(A).

Since in the range t > n~(1-2/9)  the statement of Theorem 5 is tight, there are
constants ¢1, C1, ¢, Co (which depend on p) such that:

€1 exp (_Clnp/(2p*2)€p/(p*1)) < ppn(A) < Coexp (_CQnP/@P*Q)eP/(P*l)) .

Now, .
——=—1>e> log .
fip,n(A) Cll_l/p\/'ﬁ fip,n(A)
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We now show how a simple application of Theorems 7 and 8 gives the in-
equality for concentration functions mentioned in the introduction. Recall that
the concentration function of a probability metric space (X, d,v) is defined by:

13(e) = sup {u<X \A); v(A) > %} ,

where A, = {z; d(z,A) < €}.

It is easy to see that for any Borel A C X, v(4,) < 215((;/)2). Indeed, when
v(A) > 0, define § = (I2)~1(v(A)/2). Then v(As) > 1/2, since otherwise, using
the fact that (X \ A5)s N A = 0 we get:

v(4)

5
which is a contradiction. Hence, for € > 24, since (4s5)c/2 C Ae, v(X \ Af)
I%(e/2). For € < 24 our estimate is trivial, since v(X \ 4.) < 1 < Loe/2) _

2I5(¢/2)
v(4)

Returning to our setting, let d be a metric on S(£}) which induces the standard
topology. Fix a Borel A C S(¢}) with 0}, ,(A) > 1/2. Theorems 7 and 8 imply
that:

1—v(A) > v((X \ As)s) > 1-I¢(5) =1—

IA

1

5 < 0pn(A) < Cupn(A)log (

; o)’

so that ppn(A) > ¢, for some absolute constant ¢ = ¢(p). By our previous
remarks, p, o(X \ 4c) < CI ﬁp _(€/2), and another application of Theorems 7
and 8 gives

(X \A) <L, (5) [1 N % hog 1, (§)|1min{1/2,1/17}:| |

This proves the following:

Corollary 5 For every p > 1 there is a constant C = C(p) such that if d is a
metric on S(£;) which induces the standard topology, then for every € > 0:

o Hp,n

0 <ot (5) [ st (5]

4 Lower bounds and further remarks

In this section we will prove several estimates which show that some of our
preceding results are tight. We will begin with:
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Lemma 12 Assume that p > 1 and 0 < ¢ < p. Then for n > 16(1 + q),

2
/ (nwng -/ ||y||zdup,n<y>> tpn(a) >
S(63) 5)

2
2 2
-9 /
> 3P L. .
- 10np2(1+q) ( S((;) ||y||q NP, (y))

Proof: As we have done many times before,

2
T T \1?
q __ q — _ —
/S(e;) <|Iw||q /S(q) IIyllqdup,n(y)> dptp,n () —E[—Sq,p E(—Sq/,,>] =

ET? (ET)> _ (ET) [nlElgI”’+7”L(7”L—1)(If‘3|g|")2 ES>e/? ]

T ES2a/r ~ (ESu/r)2  ES%4/p n2(E|g|7)2 ~ (ES/p)2

If we put z = Zg;g then z < 1, so that e=® > (1 — %)2 =1—z+ %. Hence,

by Lemma 5,

2¢q 2q/p
gL, Hgf?  ESWP
n - n(Elgl7)? (ES/P)?

1 14q  (ap-9)\]_ (¢/n)?* | 2(g/n)*(p/n —q/n)*
z [1 T e p( p(q+1)>] [l+ p/n (p/n)? ] z
1 1+q<1_q(p—q) qQ(p—q)2>_1_ﬁ_2q2(p—q)2:
n plg+1)  4p*(g+1)? np n2p?
_¢p—9)? 12 ¢°(p—q)?
- np? (4(1 +4q) n) 2 3+ q)
Finally, using Lemma 10 we get:

2
/ (nwuz -/ ||y||zdup,n<y)> tpn() >
S(63) 5()

. p-q? (S ( BT
~ 8np*(l+4q) ES2/p ESa/p

P -a)? ( ET )2

>
~ 8np*(1+¢)(1 +¢/n)? \ESV/P

2 2
*(p—q) /
> W9 Y,
~ 10np*(1 4 q) ( s(eg) Wladen (y)>
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Proposition 5 For every 1 < p < 2 there is a constant C = C(p) > 0 such

c
|> 7.

that for every n, ||pip,n — Op.n

Proof: Define W = T/S%/? where q = 2p — 2. We have to show that

If V is an independent copy of W then:

E|W — EW| §E|W—V|=E[(\/V_V+\/17)‘\/V_V—\/I7H <

< B+ 7)o |viT - v -

= 2\/]EW + (E\/W)2\/1EW - (JE\/W)2 <

< 23/2\/W\/]E(\/W _ ]E\/W)2.

By Theorem 3, there are absolute constants C, ¢ > 0 such that:

4
> w
=4 PP |l— —1|>t] <
e (ar-1)21) <
Cl

n?’

IE‘ -1

w
EW
< 4/ 3. Cemon gt <

0

By Lemma, 12 there is a constant C' = C(p) such that

w e
- _ > =
E(IEW 1) ~n’

and using Holder’s inequality we deduce that:

E|W — EW| >

and it follows that: S
]E(\/W—]E\/W) >~ -EW.

As we have done many times before:

E(VIW -BVTW)' <sE(VI7 - VEW) <

37



c
2

n

8 2
< WE(W —EW)* < = - (EW)2.

Finally, another application of Hoélder’s inequality gives:

[IE (Vi - E\/W)Z] "

>

B[V - BV > L
E(\/W—E\/W)]

—

For the case p > 2 we will need the following:
Lemma 13 There are absolute constants ¢,C > 0 such that for every p > 2

andn > C:

2
/ (nwniz% -/ ||y||§5§dup,n<y)> i) >
53) 5)

2
clp - 2)2” / 2p—2
> = Yllop—2dppn(y) | -

p(n+p)2 ( S(Z;‘) || ||2p 2 P ( )

Proof: Arguing the same as in Lemma 12 we get:
2

T/(S‘I/P)
i) Y T
. r(4—g)r(%) r("TjQ+2)2 )

=1 n + 2 ' 4
n— n
i) | TR G)
Just as in the proof of Lemma 12, an application of Lemma 5 gives the result

for bounded p, say p < 10.
Assume that p > 10. Since for £ > 0and 0 < y < 1, T'(z + y) < 2¥T'(x), the

following inequalities hold:

"), T

p
e-g) (13Tl
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?

NGHIGHIGHEN (1_§) Gp+ )@+ 1)
= (4_%)4/1)(1_’_%)2# = P p+1

and using also Lemma 7
r(ie) r(zv2) (st 4 )"
P )T B) T () () T ()T ()
2 (p+n)
z (1 - n+p) (n +n3§)?nn+ 2p)’

Plugging these estimates into what we derived before, it is easy to verify the

required inequality. [ ]
Remark: The above proof actually shows that for p > 10

2

T/(S‘I/”)
E(T/(S4/7)?)

np

E -+
(n + p)?’

-1

~

where the equivalence is up to numerical constants.
Using Lemma 13, and arguing just as in the proof of Proposition 5 we get:

Theorem 9 ||upn — 0pnl| ~p 1/v/n, where ~, means equivalence up to con-

stants which may depend on p.

We will end by stating some conjectures and open problems. It is an unfortu-
nate fact that in the concentration inequalities that appear in the literature, the
estimates become worse as ¢ — p. This absurdity seems to be a fundamental
weakness in the known techniques. It requires considerable effort to deal with
the limiting cases; we have managed to deal with the case ¢ — 1 in Theorem 3
and we partially deal with the case ¢ — p~ in Theorem 4. We conjecture that

the following improvement of Theorem 4 holds:

Conjecture 1: For every 0 < g <p and t > 0:

o

>t [ ||y||gdup,n<y>> <
5(¢3)

SC%p(ﬂmmm{<mpi®>iq@im}>.
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As in the proof of Proposition 12, this would imply that for 1 < p < 2,
[|tp,n — 0p.n|| is equivalent, up to universal constants, to (p—1)(2—p)//n. Our
proof gives the required behavior when ¢ — 1, and by Theorem 4 we also know,
up to a logn factor, that this is the behavior for ¢ — p~.

For general p we conjecture the following;:

Conjecture 2:

1 2 m
lnn = opall~ (1= 1) 1= 2| 2.
p pl n+p

Our proof shows that this equivalence is true if we replace the total variation
distance by (f(f — 1)2dpp,n)1/2, where f = gfiﬁ. To prove this conjecture,
using the method of Proposition 12, would requ}re obtaining exact constants
in Theorem 5, which seems to be a difficult problem. Such exact deviation
inequalities are also required to prove the following;:

Conjecture 3: There is an absolute constant C' > 0 such that for every Borel

AcCS(ty):

1-min{1/2,1/p}
ey <o (-3 - 2355 hos () -
Hpn(A) p p| n+p Ppn(A)

Theorem 3 gives the above behavior for p — 1, and up to a logn factor, this

inequality holds also for p — 27, by Theorem 4.

The question whether the results of Theorem 3, and the last range of the
definition of 4 in Theorem 5, are tight, is also interesting. Since the moment
estimates we derived in these cases coincide asymptoticly for T' and S9/7, it
is unclear how to reverse our argument as in the remark following Theorem 5.
Even precise results such as in Propositions 3 and 4 seem insufficient. A proof
that Theorem 5 is tight would imply also that Theorem 7 is tight, as in the

Remark following Theorem 8.
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