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ABSTRACT. Fix p > 2. We prove that the Euclidean distortion of every n-point subset of Lp is p3(logn)
1
2 +o(1),

thus, in particular, demonstrating that all n-point subsets of Lp exhibit an asymptotic improvement over the
O(logn) Euclidean distortion guarantee that Bourgain’s embedding theorem provides for arbitrary n-point
metric spaces. We also prove that the separation modulus of every n-point subset of Lp is O(p2√

logn),
which is sharp up to the dependence on p. We deduce from (a refinement of) this asymptotic evaluation
of the finitary separation modulus of Lp that for any n-point subset C of Lp , any Banach space Z, and any

1-Lipschitz function f : C→ Z, there exists a O(p2√
logn)-Lipschitz function F : Lp → Z that extends f . We

obtain analogous separation and extension statements for doubling subsets of Lp .
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1. INTRODUCTION

Prior to passing to detailed descriptions of concepts, results, methods and history, we open with the
following quick list that describes in broad strokes the main three outcomes of the present article which
are resolutions of longstanding open problems in metric embedding theory:

(1) For every 2 < p <∞, every n-point subset of Lp is shown to embed into L2 with bi-Lipschitz dis-
tortion that grows to ∞ as n →∞ asymptotically slower logn. Whether or not this holds has been
a well-known open problem ever since the 1985 work [16] proved that any n-point metric space
whatsoever embeds into a Hilbert space with distortion O(logn). In other words, it was unknown
(and resolved herein) if—in terms of their bi-Lipschitz embeddability into L2— anything can be
said about finite subsets of Lp beyond the fact that they are metric spaces.

(2) For every 2 < p <∞, any n-point subset C of Lp , any Banach space Z, and any 1-Lipschitz func-
tion f :C→ Z, there is an L-Lipschitz function F : Lp → Z whose restriction to C coincides with f ,
where L grows to ∞ as n →∞ asymptotically slower than (logn)/ loglogn. Whether or not this
holds has been open ever since the 2004 work [52] proved that this extension statement holds
with L =O((logn)/ loglogn) and with Lp replaced by any metric space whatsoever.

(3) For every 2 < p <∞, answering a question that was posed in the 2017 work [77], it is proved that
the largest possible separation modulus of an n-point subset of Lp is bounded from above and

from below by positive multiples (which may depend only on p) of
√

logn. This yields asymptot-
ically optimal randomized clustering of finite subsets of Lp , where the quality of the clustering is
measured by the ratio between the probability that it separates points and their distance, which
is an influential method that was introduced [12] in the mid-1990s in the computer science liter-
ature and has since substantially impacted both algorithm design and pure mathematics.

In addition to the above listed answers to known questions, we obtain improved Lipschitz extension
and randomized clustering results for doubling subsets of Lp when 2 ⩽ p < ∞, which are new even
when p = 2 but (to the best of our knowledge) they have not been previously posed as open problems.
Specifically, setting Cp = p2

√
log p, we prove that if D ⊆ Lp is λ-doubling for some λ⩾ 2, then for any

Banach space Z and any 1-Lipschitz function f : D→ Z, there exists a O(Cp
√

logλ)-Lipschitz function

F : Lp → Z that extends f , and furthermore the separation modulus of D is O(Cp
√

logλ).
All of the aforementioned results are proved through an induction on scales and localization argument

that we develop herein, in combination with a novel property of the Mazur map that we introduce.
We will next turn to a more technical (but entirely self-contained) description of the above statements:

1.1. Bi-Lipschitz embeddings. The Euclidean distortion of a finite metric space (M,dM), which is com-
monly denoted c2(M) following [58], is the smallest D ⩾ 0 such that there exists f :M→ L2 satisfying

∀x, y ∈M, dM(x, y)⩽ ∥ f (x)− f (y)∥L2 ⩽DdM(x, y).

The Euclidean distortion growth
{
cn

2 (M)
}∞

n=1 of an infinite metric space (M,dM) is defined by

∀n ∈N, cn
2 (M)

def= sup
C⊆M
|C|⩽n

c2(C). (1)

One says that (M,dM) has nontrivial Euclidean distortion growth if

lim
n→∞

cn
2 (M)

logn
= 0. (2)

The above use of the word “nontrivial” arises from the Bourgain embedding theorem [16], which asserts
that cn

2 (M) = O(logn) for every metric space (M,dM). A well-known open question (which has been
prominently on researchers’ minds ever since [16] appeared but to the best of our knowledge was not
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stated in print) is whether Lp has nontrivial Euclidean distortion growth for every 2 < p <∞.1 In other
words, in terms of their bi-Lipschitz embeddability into a Hilbert space, can anything be said about finite
subsets of Lp beyond merely that they are metric spaces? Here we prove that the answer is affirmative:

Theorem 1. If 2 < p <∞, then Lp has nontrivial Euclidean distortion growth. More precisely,2

∀n ∈ {3,4, . . .}, cn
2 (Lp )≲ p3√logn loglogn. (3)

If 1 ⩽ p ⩽ 2, then cn
2 (Lp ) ≲

√
logn for every integer n ⩾ 2 by [22]. In fact, together with the matching

lower bound from [31], it follows from [22] that cn
2 (L1) ≍√

logn; at present, L1 is the only classical Banach
space for which the Euclidean distortion growth has been computed up to universal constant factors,
other than the (trivial) case cn

2 (L2) = 1 and the (substantial) case cn
2 (L∞) ≍ logn (the latter statement is a

combination of [16] and [58, 8] for the upper and lower bounds on cn
2 (L∞), respectively).

If p > 2, then prior to Theorem 1 it was known that Lp has nontrivial Euclidean distortion growth only
when 2 < p < 3

p
e ∈ [4.94,4.95]. Specifically, it was announced in Section 5.3 of the 2014 arXiv posting [13]

that Lp has nontrivial Euclidean distortion growth when 2 < p < 4. We warn that [13] was replaced by
a version in which all discussion of distortion growth was removed (and, to the best of our knowledge
what was removed from [13] did not appear elsewhere). We do not know why the authors of [13] chose to
remove that material, as it seems to us that the sketch of proof in [13] is sound, albeit with missing steps.
In our initial arXiv posting [83], which is superseded by the present article, we succeeded to prove that Lp

has nontrivial Euclidean distortion growth only when 2 < p < 4, while being unaware of [13] (the bound
that we obtained in [83] is stronger than what is implied by [13]). The subsequent work [49] used a clever
iterative application of our main embedding theorem in [83] to extend to 4⩽ p < 3

p
e the range for which

Lp has nontrivial Euclidean distortion growth, but that method of [49] breaks down when p ⩾ 3
p

e. From
the quantitative perspective, the bound (3) of Theorem 1 is the best-known such bound for all fixed p > 2.

Conjecture 2. The bound (3) gives cn
2 (Lp ) = o(logn) when p = o

(
6
√

logn/ 3
√

loglogn
)
. If p ≳ logn, then ℓn∞

embeds with O(1) distortion into Lp , so cn
2 (Lp ) ≍ logn as all n-point metric spaces are isometric to a subset

of ℓn∞. We conjecture that cn
2 (Lp ) = o(logn) in the remaining range 6

√
logn/ 3

√
loglogn ≲ p = o(logn).

1.1.1. Toward a sharp Euclidean distortion growth rate for Lp . Now that it is established that Lp has non-
trivial Euclidean distortion growth for every 1⩽ p <∞, one can turn attention to determining the growth
rate of cn

2 (Lp ) as n →∞, which is currently known only for p ∈ {1,2}. This seems to be a highly nontrivial
matter. The Lewis theorem [54] asserts that c2(X) ⩾ k |1/2−1/p| for every k-dimensional subspace X of Lp

(this lower bound holds as equality when X = ℓk
p ; see e.g. [95, 43]). In accordance with the longstanding

Ribe research program [17, 44, 74, 10, 90, 89, 34, 78]), this naturally leads to the following open question:

Question 3 (Nonlinear Lewis problem). Is it true that for every 1⩽ p ⩽∞ we have

∀n ∈ {2,3, . . .}, cn
2 (Lp ) ≍p (logn)

∣∣∣ 1
2− 1

p

∣∣∣
. (4)

In fact, it is not even known whether (4) holds for any fixed p ∈ [1,∞]∖ {1,2,∞}.

1For concreteness, Lp will always be the space of (equivalence classes of) p-integrable functions on the interval [0,1],
equipped with Lebesgue measure, but all of our results hold for any Lp (µ) space; this follows formally as any separable Lp (µ)
space embeds isometrically into Lp (see e.g. [97, Chapter III.A]), though the proofs extend effortlessly to arbitrary Lp (µ) spaces.
Other such standard Banach space-theoretic notations and conventions that will be used herein are according to [56, 57].

2We will use throughout the ensuing text the following (standard) conventions for asymptotic notation, in addition to the
usual O(·),o(·),Ω(·),Θ(·) notation. Given a,b > 0, by writing a ≲ b or b ≳ a we mean that a ⩽ κb for some universal constant
κ> 0, and a ≍ b stands for (a ≲ b)∧ (b ≲ a). When we will need to allow for dependence on parameters, we will indicate it by
subscripts. For example, in the presence of auxiliary objects q,U ,φ, the notation a ≲q,U ,φ b means that a ⩽ κ(q,U ,φ)b, where
κ(q,U ,φ) > 0 may depend only on q,U ,φ, and similarly for the notations a ≳q,U ,φ b and a ≍q,U ,φ b. Also, in what follows when

expressions like, say,
√

logloglogn appear for some integer n, it will be assumed tacitly that n is greater than a sufficiently large
universal constant, so that they make sense (thus, n > 15 in the above example). In all such occurrences, the corresponding
statement will be self-evident for smaller values of n ∈N (by suitably adjusting an implicit universal constant factor).
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We expect that answering Question 3 would be very challenging (based in part on how the only known
nontrivial cases p ∈ {1,∞} of Question 3 were resolved), especially if the answer is positive, which would
likely be a major achievement that would entail introducing a significant new idea/embedding method.

The challenge within Question 3 is to prove the upper bound on cn
2 (Lp ) in (4), as the lower bound

∀n ∈ {2,3, . . . , }, cn
2 (Lp )≳ (logn)

∣∣∣ 1
2− 1

p

∣∣∣
. (5)

follows from known results (observe that thanks to (5) our new upper bound (3) is optimal up to lower
order factors whenever p = (logn)o(1) →∞). To justify (5), if 1 ⩽ p < 2, then for each k ∈N consider the
n-point hypercube {0,1}k as a subset of ℓk

p , thus n = |{0,1}n | = 2k . By [31] its Euclidean distortion is

c2
(
{0,1}k ,∥ ·∥ℓk

p

)= k
1
p − 1

2 ≍ (logn)
1
p − 1

2 ,

which shows that (5) holds when n is a power of 2; it is straightforward to deduce from this that (5) holds
for every integer n ⩾ 2 (e.g., by augmenting the hypercube with auxiliary very distant points that form an
equilateral metric). If p ⩾ 2, then by [87] there is an n-vertex connected planar graph Gn , equipped with
its shortest-path metric, whose Euclidean distortion satisfies c2(Gn) ≳

√
logn. As p ⩾ 2, the proof of the

main result of [91] (see also the exposition in [36, 47]) shows that there is an embedding f of Gn (indeed,
of any connected planar graph) into Lp whose bi-Lipschitz distortion is at most a universal constant
multiple of (logn)1/p ; the image f (Gn) ⊆ Lp exhibits the validity of (5) in the remaining range p ⩾ 2.

The lower bound (5) is only part of the picture, as there must be some dependence on p in (4) that di-
verges as p →∞, which demonstrates that there is a qualitative difference between the nonlinear setting
of Question 3 and its aforementioned linear counterpart [54]. Indeed, consider any n-point metric space
Mn with c2(Mn)≳ logn, which exists thanks to [58, 8]. Because Mn embeds isometrically into ℓn∞, while
ℓn∞ embeds with O(1) distortion into LΩ(logn), it follows that for p ≍ logn we necessarily have

cn
2 (Lp )≳

√
min{p, logn}(logn)

1
2− 1

p . (6)

This suggests (but does not prove!) that perhaps (6) holds for all p > 2. If so, then it would follow that a
power-type dependence on p in our new bound (3) is unavoidable ifα(loglogn)/ logloglogn ⩽ p ≲ logn
for some fixedα> 2, e.g., combining (3) and (6) gives

√
(logn) loglogn ≲ cn

2 (Lloglogn)≲
√

logn(loglogn)3.

1.2. Lipschitz extension. Given a (source) metric space (M,dM), a subsetC ofM such that |C|⩾ 2, and a
(target) metric space (T,dT), one denotes (following [64]) by e(M,C;T) ∈ [1,∞] the infimum over those
K > 0 such that for every function f : C → T there exists a function F : M → T whose restriction to C

coincides with f , and the Lipschitz constant of F satisfies:

∥F∥Lip(M;T) ⩽K ∥ f ∥Lip(C;T), (7)

where (7) uses the following notation for Lipschitz constants, which will occur throughout what follows:

∥ f ∥Lip(C;T)
def= sup

x,y∈C
x ̸=y

dT

(
f (x), f (y)

)
dM(x, y)

.

The supremum of e(M,C;T) over all the subsetsCofM containing at least two points is denoted e(M;T).
For each integer n ⩾ 2 one defines en(M) to be the supremum of e(M,C;Z) over all C ⊆M satisfying

2⩽ |C|⩽ n, and all Banach spaces (Z,∥ ·∥Z). By [53, Theorem 1.10], every metric space (M,dM) satisfies:

∀n ∈ {3,4, . . .}, en(M)≲
logn

loglogn
. (8)

Remark 4. Given a metric space (M,dM), its Lipschitz extension modulus e(M) is defines to be the supre-
mum of e(M,C;Z) over allC⊆M with |C|⩾ 2 and all Banach spaces (Z,∥·∥Z). When the (typical) situation
e(M) =∞ occurs, one can consider analogously to (1) the finitary invariant en(M) which is defined for
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each n ∈ {2,3, . . .} to be the supremum of e(C) over all subsets C ⊆M with 2 ⩽ |C|⩽ n.3 It is important
to stress the difference between en(M) and en(M), namely, en(M) measures the extent to which for any
C⊆M with 2 ⩽ |C|⩽ n, any Lipschitz function from C to a Banach space can be extended to a Lipschitz
function on M, while en(M) disregards how C is situated in the super-space M, asking for such exten-
sions to C of Banach space-valued functions from arbitrary subsets of C. While en(M) was studied in the
literature for a long time (starting with [42], inspired by [35, 55]), to the best of our knowledge en(M) was
not considered before. Nevertheless, en(M) has a key role in our investigations herein; see Section 1.3.2.

By [53, Theorem 1.12] for every 1 < p ⩽ 2 we have:

∀n ∈ {2,3, . . . , }, en(Lp )≲p (logn)
1
p . (9)

The following Lipschitz extension theorem treats the analog of (9) in the previously unknown range p > 2:

Theorem 5. If 2 < p <∞ and n ∈ {2,3, . . . , }, then

en(Lp )≲ p2√logn.

Theorem 5 answers the natural question that was left open by [53] (and stated elsewhere, e.g. [82])
whether for every (indeed, any) fixed 2 < p <∞ we have

lim
n→∞en(Lp )

loglogn

logn
= 0. (10)

In other words, prior to Theorem 5 it was not even known if one could provide an upper bound on en(Lp )
that is asymptotically better than merely using the fact that Lp is a metric space through (8).

Remark 6. We hesitate to call (10) “nontrivial extension growth” for Lp partly due to the distinction
that is noted in Remark 4, and mainly because in contrast to the analogous setting in (2), it is unknown
if (8) is asymptotically sharp, nor is it conjectured that this is the case (though, it could very well be so).
Determining the largest possible growth rate as n →∞ of en(M) over all metric spacesM is a major open
question for which the currently best-known lower bound [82] is that en(M) must sometimes be at least
a positive universal constant multiple of

√
logn. In other words, the currently best-known bounds on

en(L∞) are
√

logn ≲ en(L∞) ≲ (logn)/ loglogn. For finite p, at present there is insufficient information
for there to be a widely accepted conjecture what the sharp asymptotic dependence as n → ∞ should
be in Theorem 5, as well as in the estimate (9) of [53]. The best-available bounds in this context are
presented in Section 1.2.1 below, from which it follows that if p is allowed to depend on n so that it tends
to ∞ at a (logn)o(1) rate, then Theorem 5 is sharp up to lower order factors; e.g. we now know that:√

logn ≲ en(Lloglogn)≲
√

logn(loglogn)2.

Conceivably en(Lp ) ≍p
√

logn or even en(Lp ) ≍√
logn for all p ⩾ 2, but proving this would be a spectac-

ular achievement; in particular, the former statement would settle the Hilbertian case p = 2 and the latter
statement would also settle the aforementioned case p =∞ of extension from finite subsets of general
metric spaces, while both of these remain tantalizingly unknown despite major efforts over many years.

The implicit constant in (9) that the proof in [53] provides tends to ∞ as p → 1+; this seems inherent to
the currently available approach due to its reliance on [63].4 Thus the case p = 1 remains the last holdout
for the question of improving (8) when M is Lp for some fixed 1⩽ p <∞.5

3More generally, we will maintain the following notational convention. Given an invariant i(M) ∈ R∪ {∞} of metric spaces
(M,dM), for each n ∈ {2,3, . . .} the superscript notation in (M) is reserved for the supremum of i(C) over C⊆M with 2⩽ |C|⩽ n.
In contrast, the subscript notation in (M) is used less consistently in the literature to denote more subtle finitary invariants that
still consider arbitrary subsets C of M with 2⩽ |C|⩽ n, but do not depend only on the intrinsic geometry of (C,dM).

4The best available bound as p → 1+ on the implicit constant in (9) can be deduced from the proof in [80, Section 4.2], which
implies that one can take it to be at most a universal constant multiple of 1/(p −1).

5The case p =∞ is also open, as we recalled in Remark 6, since it corresponds to arbitrary metric spaces (M,dM).
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Problem 7. Determine whether for n ∈ {3,4, . . .} we have en(L1) = o
(

logn
loglogn

)
.

It is worthwhile to recall in the context of Problem 7 that by [69] we have en(M;Z)≲Z
√

logn for every
metric space (M,dM) and every Banach space (Z,∥ · ∥Z) that has an equivalent norm whose modulus of
uniform convexity has power type 2 (see e.g. [11] for background on this class of spaces); the Hilbertian
special case Z = L2 of this statement is the famous Johnson–Lindenstrauss extension theorem [41].

A positive answer to Problem 7 would have significant algorithmic consequences by improving over
the best-known upper bound on the existence of vertex cut sparsifiers of weighted graphs [72], which
has stood for a long time despite substantial efforts to improve it in the computer science literature (see
e.g. [24, 32, 62]). The connection between Lipschitz extension and graph sparsification that yields this
potential application of Problem 7 was discovered in [62]; we omit the details and the definition of the
relevant sparsification notion as they are covered thoroughly in [62], as well as in e.g. [22, Section 1.3.3].

Remark 8. Even though it is of secondary importance given the current state of knowledge, we note that
if one allows p ⩾ 2 to depend on n, then Theorem 5 improves over the general estimate (8) if and only
if p = o( 4

√
logn/

√
loglogn). Understanding this for p ≳ 4

√
logn/

√
loglogn is open. For that matter, by

examining its behavior as p → 1+, one sees that the bound (9) of [53] improves over (8) if and only if
(p −1)loglogn = 2(logloglogn)− loglogloglogn +O(1); understanding this for other 1 < p < 2 is open.

1.2.1. Known Lipschitz extension impossibility results. Unlike the discussion in Section 1.1.1, there is no
widely accepted conjectural growth rate (as n →∞) for en(Lp ) when 1 ⩽ p ⩽∞ is fixed; this growth rate
is not even known in the Hilbertian setting p = 2. A naïve appeal to [54] from the perspective of the Ribe
program leads to the prediction en(Lp ) ≍p (logn)|1/2−1/p|. This was indeed a possibility for quite some
time (see e.g. the questions posed in [42, 9] for p = 2), until it was shown in [73] to fail even when p = 2.

The best-known lower bound in the range 2 ⩽ p ⩽ 4 is en(Lp ) ≳ 4
√

(logn)/ loglogn. In fact, for every

infinite dimensional Banach space X we have en(X)≳ 4
√

(logn)/ loglogn because by [71] (see also [73]),

∀m ∈N, emO(m)(ℓm
2 )≳ 4

p
m, (11)

while for every m ∈N by Dvoretzky’s theorem [30] ℓm
2 is O(1)-isomorphic to a subspace of X.

For the remaining values of p, the best-known lower bounds are en(Lp ) ≳ ((logn)/ loglogn)|1/2−1/p|

when p ∈ [1,2)∪ (2,∞) and en(L∞)≳
√

logn. For 1⩽ p < 2, this coincides with [41, Theorem 3]. If p > 2,
then en(Lp ) ≳ ((logn)/ loglogn)1/2−1/p also follows from the reasoning in [41], though it is not stated
there explicitly. Indeed, by [94] for every 1 ⩽ p ⩽∞ and every m ∈N there is a linear subspace Y = Yp of
ℓm

p such that ∥Proj∥ℓm
p →ℓm

p
≳m|1/2−1/p| for every projection Proj from ℓm

p onto Y. By [55], this implies:

e(ℓm
p ,Y;Y)≳m

∣∣∣ 1
2− 1

p

∣∣∣
. (12)

The discretization method of [41] deduces from (12) that there is a subset N =Np of ℓm
p with |N| = mO(m)

(specifically, N is a (1/mO(1))-net of the unit sphere of Y) such that e(ℓm
p ,N;Y)≳m|1/2−1/p|.

1.2.2. Lipschitz extension from doubling subsets. Givenλ ∈ {2,3, . . .}, a metric space (M,dM) isλ-doubling
if for every r ⩾ 0 and every x ∈M there exist y1, . . . , yλ ∈M with BM(x,2r ) ⊆ BM(y1,r )∪ . . .∪BM(yλ,r ).6

Here, as well as throughout the ensuing discussion, BM(u,ρ) = {v ∈M : dM(u, v)⩽ ρ} denotes the closed
dM-ball centered at a point u ∈M of radius ρ⩾ 0.

By [53, Theorem 1.6], for every metric space (M,dM), for every λ-doubling subset D of M, and for
every Banach space (Z,∥ ·∥Z) we have

e(M,D;Z)≲ logλ. (13)

It is an important open problem to determine if in the above stated generality the right hand side of (13)
can be reduced to o(logλ) as λ→ ∞. It is also natural to investigate if such an improvement could be

6The notion of λ-doubling when λ⩾ 2 is not necessarily an integer coincides with ⌊λ⌋-doubling.
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achieved for specific metric spaces M, though to the best of our knowledge this has not been previously
posed as an open question. In particular, it was not known if (13) could be improved when M is a Hilbert
space; this is answered as the special case p = 2 of the following theorem:

Theorem 9. If 2⩽ p <∞, then the following estimate holds for every λ ∈ {2,3, . . .}, for every subset D of Lp

that is λ-doubling, and for every Banach space (Z,∥ ·∥Z):

e(Lp ,D;Z)≲
(
p2√log p

)√
logλ. (14)

We expect that the right hand side of (13) could be improved to o(logλ) also in the remaining range
1 ⩽ p < 2, i.e., for every λ ∈ {2,3, . . .}, for every subset D of Lp that is λ-doubling, and for every Banach
space (Z,∥ · ∥Z), we conjecture that e(Lp ,D;Z) = o(logλ). The case p = 1 here is most tenuous in terms of
available methods and evidence. When 1 < p < 2, an attempt to combine our approach herein with the
proof of (9) in [53] leads to probabilistic issues that we currently do not know how to address but they
could be quite tractable. In terms of the best-known lower bounds in the context of Theorem 9, as every
finite dimensional normed space Y is λ-doubling for λ = eO(dim(Y)), it follows from (11) and (12) that for
every λ ∈ {2,3, . . .} and every 1⩽ p ⩽∞ there exists a λ-doubling subset D=Dp of Lp and a Banach space

Z = Zp for which e(Lp ,D;Z)≳ 4
√

logλ if 2⩽ p ⩽ 4 and e(Lp ,D;Z)≳ (logλ)|1/2−1/p| if p ∈ [1,2)∪ (4,∞].

1.3. Randomized clustering. Given a metric space (M,dM) and a partition P of M, denote for each
x ∈M the element of P containing x by P(x). For ∆ > 0, a partition P of M is said to be ∆-bounded if
diamM(P(x))⩽∆ for every x ∈M. Here, as well as throughout the ensuing discussion, the dM-diameter
of ; ̸=C⊆M will be denoted diamM(C) = supx,y∈CdM(x, y) ∈ [0,∞].

Following [80], one says that P = {Γ1,Γ2, . . .} is a random partition of a metric space (M,dM) if there
exists a probability space (Ω,P) such that Γ1 :Ω→ 2M,Γ2 :Ω→ 2M, . . . is a sequence of set-valued map-
pings that are strongly measurable,7 namely, {ω ∈Ω : E ∩Γi (ω) ̸= ;} is P-measurable for every i ∈N and
every closed subset E of M, and if we write Pω = {Γk (ω) : k ∈N} for eachω ∈Ω, then the mappingω 7→Pω

takes values in partitions of M. Note that we are formally discussing here random ordered partitions of
M into countably many clusters, but this nuance will not have a role in what follows (it is important only
for some of the results from the literature that we will need to quote). Measurability is not relevant when
M is finite, which is the setting that we will initially discuss below, but we will quickly need to also treat
random partitions of infinite spaces, at which point we will verify measurability as required.

Given ∆> 0, one says that P is a ∆-bounded random partition of (M,dM) if Pω is a ∆-bounded parti-
tion of (M,dM) for everyω ∈Ω. Givenσ⩾ 0, a random∆-bounded partition P of a metric space (M,dM)
is said to be σ-separating if the following requirement holds:

∀x, y ∈M, P
[
P(x) ̸=P(y)

]
⩽
σ

∆
dM(x, y). (15)

The separation modulus of (M,dM), denoted SEP(M), is the infimum over σ⩾ 0 such that for every
∆ > 0 there exists a random ∆-bounded σ-separating partition P∆ of M; if no such random partition
exists, then setSEP(M) =∞. This important concept has been introduced by [12], see [80] for the history.

For an infinite metric space (M,dM), define its separation growth
{
SEPn(M)

}∞
n=1 by

∀n ∈N, SEPn(M)
def= sup

C⊆M
|C|⩽n

SEP(C).

We say that (M,dM) has nontrivial separation growth if

lim
n→∞

SEPn(M)

logn
= 0. (16)

7This notion of measurability of set-valued functions is called here “strongly measurable” even though parts of the literature
calls it more simply “measurable” to distinguish it from the notion of a “weakly measurable” set-valued function which is also
commonly used in the literature but is not what we need herein. See [39] for a treatment of these classical concepts.
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The term “nontrivial” is used here since by [12] every metric space (M,dM) satisfies SEPn(M) =O(logn).
By [23, 51, 80], if 1 ⩽ p ⩽ 2, then SEPn(Lp ) = o(logn) if limn→∞(p − 1)(loglogn)/ logloglogn = ∞,

while if liminfn→∞(p −1)loglogn <∞, then SEPn(Lp ) ≳ logn. See [80, Section 1.7.6] for more on this
(including sharp bounds for fixed 1 < p ⩽ 2), where it is conjectured that SEPn(Lp ) = o(logn) if and only
if limn→∞(p −1)loglogn =∞.

It was asked in [77, Question 1] (reiterated in [80, Question 83]) if Lp has nontrivial separation growth
when 2 < p <∞ (see [80, Section 1.7.6] for the relation to metric dimension reduction). This question
was answered affirmatively in [48] by showing that SEPn(Lp ) ≲ (logn)1−1/p for every (p,n) ∈ (2,∞)×N.

It was also asked in [77, 80] if, in fact, for every (p,n) ∈ (2,∞)×N we have SEPn(Lp ) ≲p
√

logn, which
would be asymptotically optimal as n →∞ for every fixed 2 < p <∞ (see below). Here we prove that this
sharp evaluation of the largest possible separation modulus of an n-point subset of Lp indeed holds:

Theorem 10. For every 2 < p <∞ and every n ∈ {2,3, . . .} we have SEPn(Lp ) ≍p
√

logn. More precisely,

∀(p,n) ∈ (2,∞)×N,
√

logn ≲ SEPn(Lp )≲ p2√logn. (17)

The new content of (17) is its upper bound on SEPn(Lp ); the lower bound on SEPn(Lp ) in (17) holds

sinceSEPn(L2) ≍√
logn, by [23], whileSEPn(X)⩾ SEPn(L2) for every infinite dimensional Banach space

X, by Dvoretzky’s theorem [30]. So, we now know that SEPn(Lp ) = o(logn) as n →∞ if 2 < p = o
(

4
√

logn
)
,

and it fails if p ≳ logn because in that case ℓn∞ embeds with distortion O(1) into Lp , any n-point met-
ric space M embeds into ℓn∞, and we already recalled that by [12] there exists such a space for which
SEP(M)≳ logn. It remains open (likely requiring a substantially new idea) to understand what happens
in the remaining range 4

√
logn ≲ p = o(logn).

Remark 11. The first arXiv posting [83] of our work (which the present article supersedes) suppressed the
dependence on p in Theorem 10 because the main matter at hand is determining the asymptotic growth
rate of SEPn(Lp ) as n →∞; this is what was asked in [77] and what Theorem 10 answers. Nevertheless,
understanding the dependence on p is of value in its own right (partially because in applications some-
times p itself is allowed to depend on n), and an inspection of the proof in [83] reveals that it yields the
estimate SEPn(Lp )⩽ eO(p)

√
logn. This was achieved in [83] by combining the approach of [13, 48] with a

bootstrapping argument, which, as explained in [83, Remark 8] can also be realized as an iterative proce-
dure. The question of improving the dependence on p was broached in the subsequent work [49], which
enhanced the recursion in a novel and interesting way to get the bound SEPn(Lp )≲ p4

√
logn. The proof

herein of Theorem 10 incorporates a more geometric approach by examining radially bounded random
partitions and relying on a new property of the Mazur map that could be of use elsewhere; an overview
of the ideas and steps of that proof appears in Section 1.3.3 below.

We will also prove the following theorem for doubling subsets of Lp :

Theorem 12. If p,λ⩾ 2, then every λ-doubling subset D of Lp satisfies:

SEP(D)≲
(
p2√log p

)√
logλ.

1.3.1. From separation of neighborhoods to Lipschitz extension. The similarity between the conclusions
of Theorem 10 and Theorem 5, as well as Theorem 12 and Theorem 9, are not coincidental. The link is
provided by Theorem 13 below, which we will deduce quickly in Section 7 from [53] (with input from [80]).

In the formulation of Theorem 13, as well as throughout the ensuing discussions, we will use the fol-
lowing (natural but nonstandard) notation. Given a metric space (M,dM) and C⊆M, for every r ⩾ 0 we
will denote the r -neighborhood C in M by:

BM(C,r )
def= ⋃

x∈C
BM(x,r ). (18)
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Given ∆> 0 we will denote by SEP∆(M) the infimum over σ⩾ 0 such that there is a random ∆-bounded
σ-separating partition of M (again, if no such random partition exists, then write SEP(M) =∞). Thus,

SEP(M) = sup
∆>0

SEP∆(M).

Theorem 13. Suppose that (M,dM) is a metric space and that C ̸= ; is a locally compact subset of M.
Then, the following Lipschitz extension estimate holds for every Banach space (Z,∥ ·∥Z) and every L > 0:

e(M,C;Z)≲ L+ sup
∆>0

SEP∆
(
BM

(
C,

1

L
∆

))
. (19)

Our main contribution to randomized clustering of (neighborhoods of) subsets of Lp is:

Theorem 14. There exists a universal constant γ> 0 with the following property. Suppose that 2⩽ p <∞.
For every n ∈ {2,3, . . .}, if C is an n-point subset of Lp , then for every ∆> 0 we have:

SEP∆
(
BLp

(
C,
γ

p
∆

))
≲ p2√logn. (20)

Furthermore, for every λ⩾ 2, if D is a subset of Lp that is λ-doubling, then for every ∆> 0 we have:

SEP∆
(
BLp

(
D,

γ

p
∆

))
≲

(
p2√log p

)√
logλ. (21)

Because any neighborhood of a set contains the set itself, Theorem 14 strengthens (the upper bound
on SEPn(Lp ) in) Theorem 10 and Theorem 12. Furthermore, Theorem 5 and Theorem 9 follow from The-
orem 14 by invoking Theorem 13. Indeed, any Lipschitz function from subset of a metric space that take
values in a complete metric space automatically extends to the closure of its domain, so in Theorem 14
we may assume that D is a closed subset of Lp . As D is also assumed in Theorem 14 to be doubling, it is
locally compact (see e.g. [38, Lemma 4.1.14], or notice that any ball in D is compact because it is totally
bounded and complete). The assumptions of Theorem 13 therefore hold with L ≍ p by Theorem 14. Note
here that even when C⊆ Lp is finite, the above justification of Theorem 5 involves random partitions of
infinite sets (neighborhoods of C in Lp ), for which measurability considerations are pertinent.

1.3.2. From separation and extension to Euclidean embedding. The link between Theorem 5 and Theo-
rem 1 is furnished by Theorem 15 below, which is an embedding statement of independent interest; one
can view it as a variant of the “measured descent” embedding method [47] that incorporates separating
partitions rather than the padded partitions that occur in [47]. The proof of Theorem 15, which appears
in Section 2, combines multiple ingredients, many of which (but not all) refine the reasoning in [5].

For Theorem 15, recall that ek (M) = sup{e(C) : C⊆M ∧ |C|⩽ k} was defined in Remark 4.

Theorem 15. For every n ∈ {3,4, . . .}, every n-point metric space (M,dM) satisfies

c2(M)≲
√

(logn) loglogn

( n∑
k=2

SEPk (M)2ek (M;L2)4

k(logk)2

) 1
2

. (22)

For every k ∈ {2,3, . . .} we have SEPk (Lp )≲ p2
√

logk by Theorem 10, and ek (Lp )⩽ e(Lp )≲
p

p by [81].
A substitution of these two estimates into Theorem 15 implies Theorem 1 as follows:

cn
2 (Lp )≲

√
(logn) loglogn

( n∑
k=2

p4(logk) ·p2

k(logk)2

) 1
2

≍ p3√(logn) loglogn

(∫ n

1

ds

s log s

) 1
2 = p3√logn loglogn.
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1.3.3. Localization and induction on scales, and a radial property of the Mazur map. The purpose of this
section is to provide an overview of the key ingredients of our proof of Theorem 14.

Suppose that (M,dM) is a metric space and C⊆M. The dM-(circum)radius of C is defined as follows:

radM(C)
def= inf

{
r ∈ [0,∞] : ∃x ∈M such that BM(x,r ) ⊇C

}
, (23)

Given ∆> 0, we will say that a random partition P of C is radially ∆-bounded with respect to M if:

∀x ∈C, radM

(
P(x)

)
⩽∆. (24)

A random partition (ω ∈Ω) 7→ Pω of C, defined on some probability space (Ω,P), is radially ∆-bounded
with respect to M if radM(Pω(x)) ⩽ ∆ for every ω ∈Ω and every x ∈ C. Given a random partition P of C
that is radially ∆-bounded with respect to M, say that it is σ-separating for some σ⩾ 0 if (15) holds.

Denote by �SEP∆(C;M) the infimum over σ⩾ 0 such that there exists a σ-separating random partition
of C that is radially∆-bounded with respect to M (as always, when no such partition exists we define this
parameter to be ∞). Recalling that diamM(·) denotes the dM-diameter, the following bounds hold:

∀; ̸=C⊆M, radM(C)⩽ diamM(C)⩽ 2radM(C). (25)

Consequently, the following simple general relations between the separation and radial separation mod-
uli are satisfied for every metric space (M,dM), every ; ̸=C⊆M, and every ∆> 0:�SEP∆(C;M)⩽ SEP∆(C)⩽ 2�SEP ∆

2
(C;M), (26)

Even though the above radial variants of the notions of random ∆-bounded and σ-separating parti-
tions may seem to be nuanced minor tweaks of the standard (by now classical) definitions, we will see
that they influence our results in a way that is more dramatic than what one might initially expect.

The following lemma is a localization and induction on scales principle for random radial separation:

Lemma 16. Suppose that (M,dM) is a separable metric space and that ; ̸=C⊆M satisfies

lim
∆→∞

1

∆
SEP∆(C) = 0. (27)

Then, the following estimate holds for every ∆> 0 and K > 1:

�SEP∆(C;M)⩽
∞∑

s=0

1

K s lim
ε→0+ sup

z∈M
�SEPK s∆

(
C∩BM(z,K s+1∆+ε);M

)
. (28)

The limits in (28) exist as the summands are nondecreasing with ε. We used the term “localization”
to describe Lemma 16 as the s-summand in (28) depends only on C∩BM(z,K s+1∆+ε), which is a “local
snapshot” ofC. We used the term “induction on scales” to describe Lemma 16 as the left hand side of (28)
treats partitions at scale∆while the right hand side of (28) considers partitions at an increasing sequence
of larger scales. Our proof of Lemma 16 is an iterative use of the following observation. One can partition
C into clusters of radius at most ∆ by first partitioning it into clusters of radius at most K∆; each of those
clusters is thus contained in a ball of radius K∆+ε, so we can proceed to refine the aforementioned initial
partition by partitioning each of the enclosing balls into pieces of radius at most ∆.

A standard tool for analysing the geometry Lp is the classical Mazur map [67] to L2 (and shifts thereof),
whose restriction to balls has well-understood (and widely-used) quite favorable uniform continuity
properties, i.e., it is well-behaved on the local snapshots of C that appear in the right hand side of (28).

For 1⩽ p, q <∞, the Mazur map Mp→q : Lp → Lq is defined [67] by:

∀φ ∈ Lp , ∀t ∈ [0,1], Mp→q (φ)(t )
def= |φ(t )|

p
q sign

(
φ(t )

)
. (29)

If p > 2, then Mp→2 is Lipschitz by [67], so we may consider the following normalization of the Mazur
map that makes it be a 1-Lipschitz function from Lp into the Hilbert space L2:

M̃p→2
def= 1

∥Mp→2∥Lip(Lp ;L2)
Mp→2. (30)
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The normalization factor in (30) satisfies ∥Mp→2∥Lip(Lp ;L2) < p, as computed in [75, equation (5.32)].
We will prove herein that there exists a universal constantβ> 0 such that the following inclusion holds:

∀φ ∈ BLp ,
(
M̃p→2

)−1
(
BL2

(
M̃p→2(φ),

β

p

))
⊆ BLp

( 1

p
φ,1− 1

4p

)
, (31)

where BLp is the ball in Lp of radius 1 centered at the 0-function; more generally, the unit ball centered
at the origin of a Banach space (X,∥ ·∥X) will always be denoted BX = {x ∈ X : ∥x∥X ⩽ 1} = BX(0,1).

The upshot of (31) is that the restriction of M̃p→2 to BLp gives a 1-Lipschitz function f into a Hilbert
space with the property that for any point x ∈ BLp , the pullback under f of the Hilbertian ball centered
at f (x) of radius β/p is contained in an Lp -ball whose radius is a definite number (independent of x)
smaller than 1, albeit ever so slightly as p →∞.

Returning to the setting of Theorem 14, the above discussion sets the stage for the following procedure.
First apply Lemma 16 with K = 1/(1−1/(4p)); the choice of this value of K will allow us to take advantage
of the radius decrease in (31) from 1 (the radius of the domain of f ) to 1−1/(4p).

Thus, suppressing (only for the purpose of the present proof sketch) the small additive ε> 0 correction
of the radius that appears in (28) (the complete reasoning in Section 6 takes this correction into account),
we may now fix z ∈ M, ∆ > 0 and an integer s ⩾ 0 and focus our attention on obtaining a separating
partition that is K s∆-radially bounded with respect to Lp of the local snapshots C∩BLp (z,K s+1∆) and
D∩BLp (z,K s+1∆). By translating by z and rescaling by K s+1∆, we are thus interested in obtaining a
separating partition that is (1/K )-radially bounded with respect to Lp of C∩BLp and D∩BLp .

As these local snapshots are contained in the unit ball of Lp , we may apply the Mazur map to them, for
which (31) holds. The resulting images are now subsets of L2, on which we may us Euclidean geometric
considerations to randomly partition them with good separation into clusters of L2-diameter at mostβ/p
(using the partitioning results of [23, 53, 80] as well as the Kirszbraun extension theorem [46] and the
Johnson–Lindenstrauss dimension reduction lemma [41]). The pullback under the normalized Mazur
map of the resulting partition will then have good separation, and by (31) it will have Lp -radius a most
1−1/(4p) = 1/K , as desired. Note that the center (1/p)φ of the ball in the right hand side of (31) need not
belong to the corresponding local snapshot of C and D, but this is permitted by the definition of radially
bounded random partitions with respect to the super-space Lp . By substituting the resulting bounds on
the radial separation moduli of the snapshots and summing over s, Theorem 14 follows.

Remark 17. As we already mentioned, good bounds on the moduli of uniform continuity of the Mazur
map are well known [75, equation (5.32)] and widely used. If one incorporates into the above reasoning
those bounds in place of the new radial property (31) of the Mazur map that we obtain herein, one arrives
at exponential dependence on p in the right had side of (20) and of (21). In Section 3 we will prove that
such an exponential loss is inherent to the aforementioned alternative route, and it will be incurred by
any uniform homeomorphism from the unit ball of Lp (µ) into Hilbert space, not only by the Mazur map.
What (31) achieves is power-type dependence on p if one is willing to settle for a small gain in the radius
of the pre-image. This forces us to work with K close to 1 in Lemma 16, so the geometric convergence
in (28) is slow, but as K −1 is of order 1/p, this leads to a multiplicative loss which is also just O(p).

1.4. Beyond Lp . Here we will discuss generalizations of our results to Banach spaces that need not be Lp

(or any Lp (µ) space, for which all the statements are identical). Those who are interested only the afore-
mentioned statements for Lp can harmlessly skip this material, which assumes some (entirely standard,
per e.g. [15]) background from Banach space theory that is not pertinent to the ensuing proofs.

An inspection of the reasoning herein reveals that if (X,∥ ·∥X) is an infinite dimensional Banach space,
then the conclusions of Theorem 1, Theorem 5, Theorem 9, Theorem 12, Theorem 10, and Theorem 14
hold with Lp replaced by X provided that there is an injective Lipschitz function from the unit ball of X
into a Hilbert space whose inverse is uniformly continuous, with the only difference being that in this
(much) more general setting the dependence on p should be replaced by a dependence on the Lipschitz

11



constant and the modulus of uniform continuity of the inverse in the aforementioned assumption on X.
There is substantial literature [67, 20, 88, 21, 28, 15, 92, 2, 93, 26, 27] that obtains uniform homeomor-
phisms from the unit ball of certain Banach spaces into a Hilbert space, which we will next describe.

The important work [88] implies that if (X,∥ ·∥X) is a Banach space with an unconditional basis whose
modulus of uniform smoothness has power-type 2 and whose modulus of uniform convexity has power
type p, then there is an injective Lipschitz function from the unit ball of X into a Hilbert space whose
inverse is (2/p)-Hölder,8 whence the theorems that we listed above hold for such X. The work [21] gener-
alizes the aforementioned result of [88] to Banach lattices, though in a manner that is lossy with respect
to the Hölder estimates that are obtained; we expect, however, that with not much more care the rea-
soning in [21] could be adapted to show that if (X,∥ · ∥X) is a Banach lattice whose modulus of uniform
smoothness has power-type 2 and whose modulus of uniform convexity has power type p, there is an
injective Lipschitz function from the unit ball of X into a Hilbert space whose inverse is (2/p)-Hölder.

By [93], if (X,∥ · ∥X) is the Schatten–von Neumann trace class Sp , or more generally if it is a noncom-
mutative Lp space over any von Neumann algebra, then there is an injective Lipschitz function from the
unit ball of X into a Hilbert space whose inverse is (2/p)-Hölder, thus showing that the theorems that we
listed above can be generalized to this noncommutative setting. We conjecture that the same holds for
any unitary ideal SE over any Banach space (E,∥·∥E) with a 1-symmetric basis, provided that E has mod-
ulus of uniform smoothness of power-type 2 and modulus of uniform convexity has power type p; we
leave this as an open question that seems quite accessible (perhaps even straightforward) with current
technology (the work [40] could be especially helpful here).

There are valuable works that construct uniform homeomorphisms into Hilbert space of unit balls in
interpolation spaces (see [28, 26, 27] and [15, Section 3 of Chapter 9]), but they do not yield the above
Lipschitz estimate and it would be interesting to understand (perhaps requiring a substantial new idea)
whether such a Lipschitz estimate could be derived in this context as well (under suitable assumptions).

Problem 18. The extent to which the inclusion (31) generalizes beyond Lp is uncharted (and currently
unstudied) territory. In particular, it would be interesting to determine if (31) holds for the noncommu-
tative Mazur map on the Schatten–von Neumann trace class Sp when p > 2. And, it would be worthwhile
to understand how (31) should be changed when Lp is replaced by a Banach space (X,∥ · ∥X) with an un-
conditional basis whose modulus of uniform smoothness has power-type 2, the pertinent question being
how the radii of the balls that occur in (31) should depend on geometric characteristics of X.

1.5. Roadmap. The rest of the ensuing text is organized as follows. We will start by proving Theorem 15
in Section 2. As we explained in Section 1.3.2, this will complete the reduction of Theorem 1 to Theo-
rem 10. Thus, what will remain to be done after Section 2 is to prove Theorem 14, which we have already
seen implies the rest of the new results that are obtained herein; the corresponding extension statements
rely on Theorem 13, which is not stated in the literature but readily follows from the link between ran-
domized separation and Lipschitz extension that was discovered in [53]. The justification of Theorem 13
using [53] appears in Section 7. In Section 3 we will set the stage for proving the inclusion (31), which
we will do in Section 4. While the concepts that are discussed in Section 3 are not needed for the proof
Theorem 14, those motivate their radial counterparts that are used for this purpose and are discussed in
Section 4. Also, Section 3 proves an impossibility result that explains the need for the variants that Sec-
tion 4 provides. Lemma 16 is proved in Section 5, and the proof of Theorem 14 is completed in Section 6.

2. MEASURED DESCENT FOR SEPARATED PARTITIONS (IN THE PRESENCE OF LIPSCHITZ EXTENSION)

The purpose of this section is to prove Theorem 15. As we explained in Section 1.3.2, this will reduce
Theorem 1 to Theorem 14, which will be proven later, in Section 6 below.

8[88] obtains such a function into L1 rather than into L2, but it is straightforward to adapt the reasoning so as to obtain a
function into L2. Furthermore, these Lipschitz and Hölder assertions follow from an inspection of the proofs in [88], but they
are not stated there explicitly. It is perhaps simplest to verify them by examining the exposition of [88] in the monograph [15].
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2.1. Weakly bi-Lipschitz embeddings. Section 1.1 recalled (for brevity of the Introduction) only the no-
tion of Euclidean distortion, but it is standard (and fruitful) to study the analogous concept for embed-
dings into an arbitrary metric space. A metric space (M,dM) has a bi-Lipschitz embedding of distortion
D ⩾ 1 into a metric space (Z,dZ) if there is a nonconstant Lipschitz function f :M→Z satisfying

∀x, y ∈M, dZ

(
f (x), f (y)

)
⩾

∥ f ∥Lip(M;Z)

D
dM(x, y), (32)

The Z-distortion cZ(M) of M is the infimum over those D ∈ [1,∞] for which an embedding f as above
exists. We also denote cn

Z
(M) = sup{cZ(C) : |C| ⊆M ∧ 2⩽ |C|⩽ n} for every integer n ⩾ 2.

There is a “one scale at a time” variant of the above classical setup, which is an important and com-
monly used concept in the study of metric embeddings; the relevant terminology, which we next recall,
was introduced in [81, p. 192] (the reason for the nomenclature is further articulated in [75, Section 7.2]).

Definition 19. A metric space (M,dM) admits a weakly bi-Lipschitz embedding of distortion D ⩾ 1 into a
metric space (Z,dZ) if for any ∆> 0 there is a nonconstant Lipschitz function f = f∆ :M→Z satisfying

∀x, y ∈M, dM(x, y)⩾∆ =⇒ dZ

(
f (x), f (y)

)
⩾

∥ f ∥Lip(M;Z)

D
∆.

Analogously to the above notation, in the setting of Definition 19 let dZ(M) be the infimum over those
D ∈ [1,∞] for which (M,dM) has a weakly bi-Lipschitz embedding of distortion D into (Z,dZ), and write

∀n ∈ {2,3, . . .}, dn
Z(M)

def= sup
C⊆M

2⩽|C|⩽n

dZ(C).

We will also use the shorter notation dLp (M) = dp (M) and dn
Lp

(M) = dn
p (M) for p ⩾ 1 and n ∈ {2,3, . . .}.

Suitably defined “spatially localized” variants of Definition 19 will be discussed in Section 3 below,
as they are important for proving the results that obtained herein. In this section, though, it suffices to
consider only the above “vanilla” notion of “one scale at a time” embedding, as well as the following ad
hoc notation for an obvious (also standard) “two-sided scale-localized” version thereof.

Given metric spaces (M,dM) and (Z,dZ), let d̂Z(M) denote the infimum over those D ∈ [1,∞] with
the property that for any ∆> 0 there exists a nonconstant Lipschitz function f = f∆ :M→Z satisfying

∀x, y ∈M, ∆⩽ dM(x, y)⩽ 2∆ =⇒ dZ

(
f (x), f (y)

)
⩾

∥ f ∥Lip(M;Z)

D
∆. (33)

We also use the shorter notation d̂Lp (M) = d̂p (M) and d̂n
Lp

(M) = d̂n
p (M) for p ⩾ 1 and n ∈ {2,3, . . .}, where

∀n ∈ {2,3, . . .}, d̂n
Z(M)

def= sup
C⊆M

2⩽|C|⩽n

d̂Z(C).

Remark 20. The factor 2 in (33) was fixed for concreteness, but it is an arbitrary choice of minor signifi-
cance to the context of what we study herein. Specifically, suppose that 1 <α< β<∞ and for any ∆> 0
there exists a 1-Lipschitz function f∆ :M→ L2 satisfying

∀x, y ∈M, ∆⩽ dM(x, y)⩽α∆ =⇒ ∥ f∆(x)− f∆(y)∥L2 ⩾
∆

D
. (34)

Set k = ⌈(logβ)/ logα⌉−1. If x, y ∈M satisfy ∆⩽ dM(x, y) ⩽ β∆, then αi∆⩽ dM(x, y) ⩽ αi+1∆ for some
i ∈ {0, . . . ,k}, whence ∥ fαi∆(x)− fαi∆(y)∥L2 ⩾αi∆/D ⩾∆/D . So, if we define g∆ :M→ L2 ⊗L2

∼= L2 by

g∆(x)
def= 1p

k +1

k∑
i=0

fαi∆(x)⊗ vi ,

where v0, . . . , vk is an arbitrary orthonormal system in L2, then g∆ is 1-Lipschitz and

∀x, y ∈M, ∆⩽ dM(x, y)⩽β∆ =⇒ ∥g∆(x)− g∆(y)∥L2 ⩾
∆

D
p

k +1
.

13



Therefore, the existence for every ∆> 0 of a 1-Lipschitz function satisfying (34) implies the existence for
every ∆> 0 of such a function having the analogous property with α replaced by β and D replaced by

D

√⌈
logβ

logα

⌉
≍α,β D.

2.1.1. From separation and extension to a weakly bi-Lipschitz embedding. Lemma 21 below bounds d2(·)
by a product of separation moduli and (squares of) Lipschitz extension moduli, as those that appear in
the statement of Theorem 15. The statement of Lemma 21 uses the following common notation and
terminology, as well as the nonstandard notation that we will introduce in (35).

Given a metric space (M,dM), a subsetN is called a net ofM if there is r > 0 such thatN is r -separated,
i.e., dM(a,b)⩾ r for every distinct x, y ∈N, and N is also ε-dense in M, i.e., for every x ∈M there is a ∈N
such that dM(x, a)⩽ r . For each target metric space (T,dT), the Lipschitz extension modulus from nets
enet(M;T) is defined to be the supremum of e(M,N;Z) over all possible nets N of M, where we recall
that the (standard) notation for Lipschitz extension moduli was already introduced in Section 1.2. Clearly
enet(M;T) ⩽ e(M;T), but it is worthwhile to single out extension from nets because it is an especially
important and useful instance of the Lipschitz extension problem, and there are situations in which
bounds on enet(M;T) are known that are stronger than the available upper bounds on e(M;T); examples
of works that either treat or rely on extension from nets include [18, 14, 71, 76, 82, 79, 3, 19, 85].

For Theorem 15, it is convenient to introduce the following notation for every metric space (M,dM):

Π(M) =Π(M,dM)
def= max

{
SEP(N)e(M,N;L2)2 : N is a net of M

}
. (35)

Thus, Π(M) ⩽ SEP(M)enet(M;L2)2 ⩽ SEP(M)e(M;L2)2. The following lemma relates the “separation-
extension product”Π(M) to the weakly bi-Lipschitz Euclidean distortion d2(M):

Lemma 21. Every finite metric space (M,dM) satisfies d2(M)⩽ 8Π(M)+1.

Proof. Our goal is to prove that for any ∆> 0 there is a 1-Lipschitz function f = f∆ :M→ L2 such that

∀x, y ∈M, dM(x, y)⩾∆ =⇒ ∥ f (x)− f (y)∥L2 ⩾
∆

8Π(M)+1
. (36)

Set m = |M| and fix ∆> 0. Let 0 < ε< 1/2 and 0 < δ< 1−2ε be auxiliary parameters whose values will
be specified later to optimize the ensuing reasoning. Fix from now an arbitrary (ε∆)-net N of M.

Let {vS}S⊆N ⊆ L2 be an orthonormal system of 2|N| vectors in L2, indexed by the subsets of N. Denoting
byΩ the collection of all the (δ∆)-bounded partitions of N, let µ be a probability measureΩ such that

∀a,b ∈N, µ
[
P ∈Ω : P(a) ̸=P(b)

]
⩽

SEP(N)

δ∆
dM(a,b). (37)

We can now define a functionψ :N→ L2(µ;L2) as follows:

∀a ∈N,∀P ∈Ω, ψ(a)(P)
def= ∆

p
εδp

2Π(M)
vP(a). (38)

As ∥vS− vT∥2
L2

= 2 whenever S,T ⊆N are distinct, every a,b ∈N satisfy

∥ψ(a)−ψ(b)∥L2(µ;L2)
(38)= ∆

p
εδp

2Π(M)

√
2µ

[
P ∈Ω : P(a) ̸=P(b)

]
(37)
⩽

√
ε∆SEP(N)dM(a,b)p

Π(M)

(35)
⩽

√
ε∆dM(a,b)

e(M,N;ℓ2)
⩽

dM(a,b)

e(M,N;ℓ2)
,

(39)

where the last step of (39) holds as dM(a,b) ⩾ ε∆ for distinct a,b ∈N. By (39), the Lipschitz constant of
ψ is at most 1/e(M,N;ℓ2), so there is a 1-Lipschitz functionΨ :M→ L2(µ;L2) that extendsψ.
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Consider x, y ∈M with dM(x, y)⩾∆. Take a,b ∈N such that dM(x, a),dM(y,b)⩽ ε∆. Then,

dM(a,b)⩾ dM(x, y)−dM(x, a)−dM(y,b)⩾ (1−2ε)∆> δ∆, (40)

where the last step of (40) is where the assumption δ< 1−2ε is used. Since diamM(P(a)) ⩽ δ∆ for every
P ∈ Ω, necessarily b ∉ P(a). In other words, P(a) ̸= P(b) for every P ∈ Ω. Equivalently, every P ∈ Ω
satisfies ∥vP(a) − vP(b)∥L2 =

p
2. Recalling the definition (38) of ψ, because a,b ∈N and Ψ extends ψ we

consequently have ∥Ψ(a)−Ψ(b)∥L2(µ;L2) = ∥ψ(a)−ψ(b)∥L2(µ;L2) =∆
p
εδ/Π(M). Therefore,

∥Ψ(x)−Ψ(y)∥L2(µ;L2) ⩾ ∥Ψ(a)−Ψ(b)∥L2(µ;L2) −∥Ψ(x)−Ψ(a)∥L2(µ;L2) −∥Ψ(y)−Ψ(b)∥L2(µ;L2)

⩾
∆
p
εδp

Π(M)
−dM(x, a)−dM(y,b)⩾

( p
εδp

Π(M)
−2ε

)
∆,

(41)

where the penultimate step of (41) uses the fact thatΨ is 1-Lipschitz.

The right hand side of (41) is maximal for ε = εopt
def= δ/(16Π(M)), which is a valid choice for the

above reasoning provided that the requirement δ < 1−2εopt is satisfied, i.e., if δ < 8Π(M)/(8Π(M)+1).
Assuming from now on that this restriction on δ holds, substitute εopt into (41). Since Ψ takes values in
an m-dimensional subspace of a Hilbert space, by composingΨwith an isometry between that subspace
and ℓm

2 and translating the resulting function so that 0 ∈ ℓm
2 is in its image, we conclude that for every

0 < δ< 8Π(M)/(8Π(M)+1) there is a 1-Lipschitz functionΦδ :M→ Bℓm
2

(
0,diam(M)

)
that satisfies:

∀x, y ∈M, dM(x, y)⩾∆ =⇒ ∥Φδ(x)−Φδ(y)∥ℓm
2
⩾

δ∆

8D(Π(M)
.

Now (36) follows by taking a δ→ (
8Π(M)/(8Π(M)+1)

)− limit ofΦδ along a convergent subsequence. □

2.2. Strongly bi-Lipschitz from weakly bi-Lipschitz. Here we will prove the following embedding result:

Theorem 22. For every n ∈ {3,4, . . .}, every n-point metric space (M,dM) satisfies

c2(M)≲max

{√
logn

(n−1∑
k=2

d̂k
2 (M)2

k(logk)2

) 1
2

,d2(M)

}√
loglogn. (42)

Thanks to Lemma 21, Theorem 22 implies Theorem 15. In fact, this yields the following estimate:

c2(M)≲max

{√
logn

(n−1∑
k=2

Πk (M)2

k(logk)2

) 1
2

,Π(M)

}√
loglogn

(35)
⩽ max

{√
logn

(n−1∑
k=2

SEPk (M)2ek
net(M;L2)4

k(logk)2

) 1
2

,SEP(M)2enet(M;L2)4

}√
loglogn,

(43)

which is a strengthening of (22), where (43) uses the following notation:

∀k ∈N, Πk (M)
def= sup

;̸=C⊆M
|C|⩽k

Π(C) and ek
net(M;L2)

def= sup
;̸=C⊆M
|C|⩽k

enet(C;L2).

(This adheres to the notational convention that we have been maintaining throughout by which a super-
script indicates the hereditary version of an invariant of metric spaces which is obtained by considering
the subset of the metric space of a given size for which the invariant in question is maximal.)

For the sole purpose of proving Theorem 3 (as a consequence of our Theorem 10 and the Lipschitz
extension theorem of [81]), one could use [5] as a “black box” rather than using Theorem 22. Specifically,
Theorem 3 follows by fixing p > 2, using Theorem 10 and the estimate e(Lp ;L2) ≲

p
p of [81] to deduce

that Πk (Lp ) ≲ p3
√

logk for every integer k ⩾ 2, whence dk
2 (Lp ) ≲ p3

√
logk by Lemma 21, and now a

substitution of this conclusion into [5, Theorem 4.1] yields Theorem 3.
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Thus, those who wish to verify Theorem 3 while appealing to the published literature can stop reading
Section 2 here, and continue reading the present article from Section 3 onwards; that material does not
rely on the contents of the rest of Section 2.

Notwithstanding the above discussion, it is worthwhile to revisit the ideas of [5] so as to derive Theo-
rem 22 because it is an independently interesting geometric statement that did not appear elsewhere. In
comparison to the reasoning in [5], the ensuing proof of Theorem 22 is more modular and its steps are
more general and flexible, so they could be of use for further investigations elsewhere.

Observe that Theorem 22 implies the following embedding result:

∀1

2
⩽ θ⩽ 1, ∀C ⩾ 1, max

k∈{2,...,n}

d̂k
2 (M)

(logk)θ
⩽C =⇒ c2(M)≲C (logn)θ min

{√
loglognp
2θ−1

, loglogn

}
. (44)

The special case θ = 1/2 of (44) coincides with the case ε= 1/2 of [5, Theorem 4.1]. However, if 1/2 < θ⩽ 1
is independent of n or more generally if limn→∞(θ−1/2)loglogn =∞, then (44) improves asymptotically
over [5, Theorem 4.1], though this could also be deduced by a careful inspection of the proof in [5].

In fact, the ensuing justification of Theorem 22 is an involved but quite direct refinement and gener-
alization of the reasoning in [5]; it is also not entirely self-contained because it uses [5, Theorem 4.5] as
a “black box,” since we do not have anything novel to add to [5, Theorem 4.5] (there are enhancements
of [5, Theorem 4.5] that appeared in [4, 22], but those are not needed for the present purposes).

2.2.1. Weakly bi-Lipschitz embeddings of controlled local growth centers. A key part of the proof of The-
orem 22 studies the geometry of the set of points in a metric space which are centers of balls whose size
increases in a controlled manner for radii that belong to a prescribed range. The pertinent object is:

Notation 23 (controlled local growth centers). Suppose that (M,dM) is a locally finite metric space (thus,
all balls in M are finite). For K ⩾ 1 and R ⩾ r ⩾ 0, let G⩽K (r,R) denote the set of centers in M at which the
growth rate of balls from radius r to radius R is at most K , i.e.,

G⩽K (r,R) =G
dM

⩽K (r,R)
def=

{
x ∈M :

|BM(x,R)|
|BM(x,r )| ⩽K

}
. (45)

Note in passing that the sets of Notation 23 obey the following immediate inclusions:

∀1⩽K ⩽K ′, ∀0⩽ r ⩽ r ′ ⩽R ′ ⩽R, G⩽K (r,R) ⊆G⩽K ′(r ′,R ′). (46)

The following theorem derives favorable Euclidean embedding properties of the sets of controlled local
growth centers from Definition 23, which refine and generalize results that were obtained in [5]:

Theorem 24. Fix an integer n ⩾ 3 and supposed that (M,dM) is an n-point metric space. Then,

• There is a 1-Lipschitz function ψ :M→ L2 satisfying the following for every 0 < r < R and K ⩾ 1:

∀(x, y) ∈G⩽K (r,R)×M, dM(x, y) > 1

2
r + 3

2
R =⇒ ∥ψ(x)−ψ(y)∥L2 ≳

R − r√
K logn

. (47)

• There is a universal constant C ⩾ 1 with the following property. Fix K ,D,β⩾ 1. Suppose that for
any C⊆M with |C|⩽K and any ∆> 0 there is a 1-Lipschitz function f = fC,∆ :M→ L2 satisfying:

∀x, y ∈C, ∆⩽ dM(x, y)⩽ 3β∆ =⇒ ∥ f (x)− f (y)∥L2 ⩾
∆

D
. (48)

Then, for any ∆> 0 and any R > r > 0 that satisfy the restrictions

∆⩾ 9Dr and R − r ⩾Cβ
(

log |G⩽K (r,R)|)∆, (49)

there is a 1-Lipschitz function φ=φ∆,R,r :M→ L2 for which the following property holds:

∀(x, y) ∈G⩽K (r,R)×M, ∆⩽ dM(x, y)⩽β∆ =⇒ ∥φ(x)−φ(y)∥L2 ≳
∆

D
. (50)

Prior to proving Theorem 24 we will next explain how it implies Theorem 22.
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Proof of Theorem 22 assuming Theorem 24. Let C ⩾ 1 be the universal constant from (the second part of)
Theorem 24. For the ensuing reasoning, it will be convenient to set the following notation:

∀i ∈Z, ∀k ∈ {1, . . . ,n}, r k
i

def= 2i

27d̂k
2 (M)

and Rn
i

def= 3C (logn)2i . (51)

Fix k ∈ {1, . . . ,n}. By the definition of d̂k
2 (M) and Remark 20 for β= 6 and α= 2, for every subset C⊆M

with 2⩽ |C|⩽ k and every ∆> 0 there exists a 1-Lipschitz function f = fC,∆ :M→ L2 such that

∀x, y ∈C, ∆⩽ dM(x, y)⩽ 6∆ =⇒ ∥ f (x)− f (y)∥L2 ⩾
∆

3d̂k
2 (M)

.

The assumption of the second part of Theorem 24 therefore holds with the following parameters:

β= 2 and K = k and D = 3d̂k
2 (M). (52)

Consequently, for every i ∈Z there exists a 1-Lipschitz function φk
i :M→ L2 such that

∀(x, y) ∈G⩽k
(
r k

i ,Rn
i

)×M, 2i ⩽ dM(x, y)⩽ 2i+1 =⇒ ∥φk
i (x)−φk

i (y)∥L2 ≳ r k
i , (53)

This is indeed a valid application of Theorem 24 for the parameter choices

∆= 27d̂k
2 (M)2i and r = r k

i and R = Rn
i , (54)

because ∆= 9Dr by (52) and (54), and furthermore since C ⩾ 1 and |G⩽K (r,R)|⩽ |M| = n we have

R − r
(51)
⩾ 2C (logn)2i ⩾ 2C

(
log |G⩽K (r,R)|)2i (52)∧(54)= βC

(
log |G⩽K (r,R)|)∆.

Apply [5, Theorem 4.5] to {φk
i }k∈Z with the parameters A = 3C (logn)/2 ⩾ 1 and B = 27d̂k

2 (M) ≲ logn,

while using B ≲ logn, which holds by [16]. This yieldsϕk :M→ L2 that has the following two properties:

∥ϕk∥Lip(M;L2) ≲
√

(logn) loglogn, (55)

and

∀x, y ∈M, ∀i ∈Z, ∥ϕk (x)−ϕk (y)∥2
L2
≳

⌊
log2

|BM(x,Rn
i )|

|BM(x,r k
i )|

⌋
min

{
22i

d̂k
2 (M)2

,∥φk
i (x)−φk

i (y)∥2
L2

}
. (56)

For every distinct x, y ∈M define i (x, y) ∈Z by the requirement 2i (x,y) ⩽ dM(x, y) < 2i (x,y)+1, i.e.,

i (x, y)
def= ⌊

log2 dM(x, y)
⌋

. (57)

We will also set i (x, x) = −∞ for every x ∈ M. As |M| = n the definition (45) of G⩽n(r,R) implies that
G⩽n(r,R) =M for every R ⩾ r ⩾ 0. Hence, the following index k(x, y) ∈ {1, . . . ,n} is well-defined:

k(x, y)
def= min

{
k ∈ {1, . . . ,n} : x ∈

n⋂
ℓ=k

G⩽ℓ
(
r ℓi (x,y),Rn

i (x,y)

)}
. (58)

For every x ∈M, the above convention i (x, x) =−∞ is consistent with setting k(x, x) = 1. We calim that

∀x, y ∈M, ∀k ∈ {k(x, y),k(x, y)+1, . . . ,n}, ∥ϕk (x)−ϕk (y)∥L2 ≳

√⌊logk(x, y)⌋
d̂k

2 (M)
dM(x, y). (59)

To justify (59), fix x, y ∈M and k ∈ {k(x, y),k(x, y)+1, . . . ,n}. If k(x, y) ∈ {1,2}, then the right hand side of
the inequality in (59) vanishes, so (59) holds vacuously. We can therefore assume that k(x, y) ∈ {3,4, . . . ,n}.
As k ⩾ k(x, y), the definition (58) of k(x, y) and the definition (57) of i (x, y) show that

x ∈G⩽k
(
r k

i (x,y),Rn
i (x,y)

)
and 2i (x,y) ⩽ dM(x, y) < 2i (x,y)+1. (60)

Consequently,

∥φk
i (x,y)(x)−φk

i (x,y)(y)∥L2

(60)∧(53)
≳ r k

i (x,y)
(53)≍ dM(x, y)

d̂k
2 (M)

. (61)
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At the same time, by the minimality of k(x, y) per (58), we have

x ∉G⩽k(x,y)−1
(
r k(x,y)−1

i (x,y) ,Rn
i (x,y)

)
,

which by (45) is equivalent to the following lower bound on the growth rate of balls centered at x:∣∣BM

(
x,Rn

i (x,y)

)∣∣∣∣BM

(
x,r k(x,y)−1

i (x,y)

)∣∣ > k(x, y)−1. (62)

Since d̂k
2 (M)⩾ d̂

k(x,y)−1
2 (M) we have r k

i (x,y) ⩽ r k(x,y)−1
i (x,y) by (51), and therefore∣∣BM

(
x,r k

i (x,y)

)∣∣⩽ ∣∣BM

(
x,r k(x,y)−1

i (x,y)

)∣∣. (63)

Consequently,⌊
log2

∣∣BM

(
x,Rn

i (x,y)

)∣∣∣∣BM

(
x,r k

i (x,y)

)∣∣
⌋

(63)
⩾

⌊
log2

∣∣BM

(
x,Rn

i (x,y)

)∣∣∣∣BM

(
x,r k(x,y)−1

i (x,y)

)∣∣
⌋

(62)
⩾

⌊
log2(k(x, y)−1)

⌋≍ logk(x, y), (64)

where the last step of (64) is valid because we are now working under the assumption k(x, y) ⩾ 3. The
desired assertion (59) now follows by substituting (61) and (64) into (56) while using 2i (x,y) ≍ dM(x, y).

Next, observe that the function ψ :M→ L2 from the first part of Theorem 24 satisfies:

∥ψ∥Lip(M;L2) ⩽ 1 and ∀x, y ∈M, ∥ψ(x)−ψ(y)∥L2 ≳
1√

k(x, y) logn
dM(x, y). (65)

Indeed, the first part of (65) is the upper bound on the Lipschitz constant of ψ from statement of Theo-
rem 24. For the second part of (65), fix distinct x, y ∈M and record the following (very) crude bounds:

Rn
i (x,y)

(51)> 2i (x,y)−1 and dM(x, y)
(57)
⩾ 2i (x,y) (51)> 1

2
r k(x,y)

i (x,y) + 3

2
2i (x,y)−1. (66)

Thus,

x ∈G⩽k(x,y)
(
r k(x,y)

i (x,y) ,Rn
i (x,y)

)⊆G⩽k(x,y)
(
r k(x,y)

i (x,y) ,2i (x,y)−1), (67)

where the first step of (67) follows from the case k = k(x, y) of (60) and the second step of (67) follows
from the first part of (66) and the (trivial) monotonicity property (46) of the sets of controlled local growth
centers. We can thereofre complete the justification of the second part of (65) as follows:

∥ψ(x)−ψ(y)∥L2 ≳
2i (x,y)−1 − r k(x,y)

i (x,y)√
k(x, y) logn

≍ 2i (x,y)−1√
k(x, y) logn

≍ dM(x, y)√
k(x, y) logn

, (68)

where the first step of (68) uses the first part (47) of Theorem 24 with r = r k(x,y)
i (x,y) , R = 2i (x,y)−1, K = k(x, y),

which is valid thanks to (67) and the second part of (66).
If v1, . . . , vn is an orthonormal system in L2, then define f :M→ L2 ⊗L2

∼= L2 by setting

∀x ∈M, f (x)
def= √

(logn) loglogn ·ψ(x)⊗ v1 +
n−1∑
k=2

d̂k
2 (M)p
k logk

ϕk (x)⊗ vk +
d̂2(M)√

logn
ϕn(x)⊗ vn . (69)

The orthonormality of v1, . . . , vn and the the bounds on the Lipschitz constants in (55) and (65) give

∥ f ∥Lip(M;L2⊗L2) ≲max

{√
logn

(n−1∑
k=2

d̂k
2 (M)2

k(logk)2

) 1
2

,d2(M)

}√
loglogn. (70)
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Furthermore, every distinct x, y ∈M satisfy the following lower bound:

∥ f (x)− f (y)∥L2⊗L2

dM(x, y)

(69)∧(59)∧(65)
≳

(
loglogn

k(x, y)
+⌊logk(x, y)⌋

n−1∑
k=k(x,y)

1

k(logk)2 + ⌊logk(x, y)⌋
logn

) 1
2

⩾
(

loglogn

k(x, y)
+⌊logk(x, y)⌋

∫ n

max{k(x,y),2}

ds

s(log s)2 + ⌊logk(x, y)⌋
logn

) 1
2

=
(

loglogn

k(x, y)
+⌊logk(x, y)⌋

(
1

logmax{k(x, y),2}
− 1

logn

)
+ ⌊logk(x, y)⌋

logn

) 1
2

≳ 1,

(71)

where the last step of (71) is verified by considering separately the cases 1 ⩽ k(x, y) ⩽ max{loglogn,3},
max{loglogn,3} ⩽ k(x, y) ⩽

p
n and

p
n ⩽ k(x, y) ⩽ n. The desired distortion bound (42) of Theorem 22

follows by combining (70) and (71) for the embedding f of M into Hilbert space. □

Passing to the proof of Theorem 24, we will first justify its first part by following the reasoning in the
proof of [5, Claim 4.6] as well as its predecessors [68, Lemma 3.4], [1, Theorem 2] and [25, Lemma 2.9],
all of which are an elaboration of the important embedding technique that was introduced in [16].

Given a metric space (M,dM), the distance of a point x ∈M to a nonempty subset C of M is denoted
as usual by dM(x,C) = inf{dM(x, y) : y ∈C}. It is worthwhile to state separately the following observation:

Observation 25. Let (M,dM) be a finite metric space. Given 0 ⩽ p ⩽ 1, denote by Zp the (p-Bernoulli)
random subset of M that is obtained by including independently each x ∈M in Z with probability p, i.e.,

∀C⊆M, P[Zp =C] = p|C|(1−p)n−|C|. (72)

Then, for every 0 < r < R and every x, y ∈M such that dM(x, y) > 1
2 r + 3

2 R, we have

P

[
Zp ̸= ; and |dM(x,Zp)−dM(y,Zp)| > R − r

2

]
⩾min

{
(1−p)|BM(x,R)|,1− (1−p)|BM(x,r )|

}
. (73)

Proof. Consider the events E and F that are defined as follows:{
E

def= {
dM(x,Zp) > R and dM(y,Zp)⩽ r+R

2

}
,

F
def= {

dM(x,Zp)⩽ r and dM(y,Zp) > r+R
2

}
.

(74)

By definition, E ∩F =; and E ∪F ⊆ {Zp ̸= ; ∧ |dM(x,Zp)−dM(y,Zp)| > (R − r )/2}, so we have

P

[
Zp ̸= ; and |dM(x,Zp)−dM(y,Zp)| > R − r

2

]
⩾P[E ]+P[F ]. (75)

Note that the event {dM(x,Zp) > R} occurs if and only if Zp contains no point from BM(x,R), and the
event {dM(y,Zp)⩽ (r +R)/2} occurs if and only if Zp contains at least one point from BM(y, (r +R)/2). By
the triangle inequality for dM, the assumption dM(x, y) > r /2+3R/2 = R+(r +R)/2 of Observation 25 im-
plies that BM(x,R)∩BM(y, (r +R)/2) =;, so {dM(x,Zp) > R} and {dM(y,Zp)⩽ (r +R)/2} are independent
events, thanks to the definition of Zp. Consequently,

P[E ]
(74)= P

[
Zp∩BM(x,R) =;]

P

[
dM(y,Zp)⩽

r +R

2

]
(72)= (1−p)|BM(x,R)|P

[
dM(y,Zp)⩽

r +R

2

]
. (76)

In the same vein, the events {dM(x,Zp) ⩽ r } and {dM(y,Zp) > (r +R)/2} coincide with, respectively, the
events {Zp∩BM(x,r ) ̸= ;} and {Zp∩BM(y, (r+R)/2) =;}. The latter two events are independent because
BM(x,r )∩BM(y, (r +R)/2) ⊆ BM(x,R)∩BM(y, (r +R)/2) =;, so we have

P[F ]
(74)= P

[
Zp∩BM(x,r ) ̸= ;]

P

[
dM(y,Zp) > r +R

2

]
(72)= (

1− (1−p)|BM(x,r )|)P[
dM(y,Zp) > r +R

2

]
. (77)
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The desired bound (73) is now justified as follows:

P

[
Zp ̸= ; and |dM(x,Zp)−dM(y,Zp)| > R − r

2

]
(75)∧(76)∧(77)

⩾ (1−p)|BM(x,R)|P
[

dM(y,Zp)⩽
r +R

2

]
+ (

1− (1−p)|BM(x,r )|)P[
dM(y,Zp) > r +R

2

]
⩾min

{
(1−p)|BM(x,R)|,1− (1−p)|BM(x,r )|

}(
P

[
dM(y,Zp)⩽

r +R

2

]
+P

[
dM(y,Zp) > r +R

2

])
= min

{
(1−p)|BM(x,R)|,1− (1−p)|BM(x,r )|

}
. □

For the of proof of the first part of Theorem 24, it will be notationally beneficial to use the convention
that the distance of a point x ∈M of a metric space (M,dM) to the empty set equals ∞ (in our setting M

is finite, so the same purpose will be served by defining dM(x,;) to be any fixed number that is strictly
larger than the diameter diam(M) = sup{dM(y, z) : y, z ∈M} of M, say, dM(x,;) = diam(M)+1).

Proof of the first part of Theorem 24. For each i ∈ {1, . . . ,⌈logn⌉} let Ze−i be the random subset of M from
Observation 25 with p= 2−i . Denote the probability space on which these sets are defined by (Ω,P); it can
be the corresponding product space, though they need not be independent for the ensuing reasoning.
Let v1, v2, . . . be an orthonormal basis of L2 and define a 1-Lipschitz function f :M→ L2(P;L2) ∼= L2 by

∀(x,ω) ∈M×Ω, f (x)(ω)
def= 1√⌈logn⌉

⌈logn⌉∑
i=1

min
{
dM

(
x,Ze−i (ω)

)
,diam(M)

}
vi . (78)

For every x ∈M and R > 0 let iR (x) ∈ {1, . . . ,⌈logn⌉} be such that e iR (x)−1 ⩽ |BM(x,R)| < e iR (x). Then,

∀K ⩾ 1, ∀0 < r < R, ∀x ∈G⩽K (r,R), e iR (x) > |BM(x,R)|⩾ |BM(x,r )| (45)
⩾

|BM(x,R)|
K

⩾
e iR (x)−1

K
. (79)

Using Observation 25, for every x ∈G⩽K (r,R) and every y ∈M with dM(x, y) > r /2+3R/2 we have

P

[∣∣min
{
dM

(
x,Ze−iR (x)

)
,diam(M)

}−min
{
dM

(
y,Ze−iR (x)

)
,diam(M)

}∣∣> R − r

2

]
(73)∧(79)

⩾ min

{(
1−e−iR (x)

)e iR (x)

,1−
(
1−e−iR (x)

) eiR (x)−1

K

}
≍ 1

K
.

(80)

This directly implies the desired estimate (47) as follows:

∥ f (x)− f (y)∥L2(P;L2)

(78)= 1√⌈logn⌉

( ⌈logn⌉∑
j=1

∫
Ω

∣∣∣min
{
dM

(
x,Ze− j (ω)

)
,diam(M)

}−min
{
dM

(
y,Ze− j (ω)

)
,diam(M)

}∣∣∣2
dP(ω)

) 1
2

⩾
1√⌈logn⌉

(∫
Ω

∣∣∣min
{
dM

(
x,Ze−iR (x) (ω)

)
,diam(M)

}−min
{
dM

(
y,Ze−iR (x) (ω)

)
,diam(M)

}∣∣∣2
dP(ω)

) 1
2

(80)
⩾

R − r√
K logn

. □

It remains to prove the second part of Theorem 24. We will start with the following lemma:

Lemma 26. Fix K ,D,β⩾ 1. Let (M,dM) be a locally finite metric space such that for every C ⊆M with
|C|⩽K and every ∆> 0 there exists a 1-Lipschitz function f = fdM ,C,∆ :M→ L2 that satisfies:

∀x, y ∈C, ∆⩽ dM(x, y)⩽ 3β∆ =⇒ ∥ f (x)− f (y)∥L2 ⩾
∆

D
. (81)
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Then, for every finite nonempty subset U of M, any ∆> 0 and any R > r > 0 that satisfy the restrictions

∆⩾ 9Dr and R − r ⩾ diamM(U), (82)

there exists a 1-Lipschitz function φ=φU,r,R,∆,dM
:M→ L2 such that

∀(x, y) ∈ (
U∩G⩽K (r,R)

)×M, ∆⩽ dM(x, y)⩽β∆ =⇒ ∥φ(x)−φ(y)∥L2 ≳
∆

D
. (83)

Due to the similarity of Lemma 26 and the second part of Theorem 24, it is helpful to spell out how they
differ. Assumption (81) of Lemma 26 coincides with assumption (48) of Theorem 24. Conclusion (83) of
Lemma 26 is weaker than the desired conclusion (50) of Theorem 24: It imposes a further restriction that
the point x belongs not only to the set G⩽K (r,R) of centers whose local growth at the input radii R > r > 0
is at most K , but also to an arbitrary but fixed bounded nonempty subset U of M; for this, Lemma 26
requires in (82) that those radii are separated by diamM(U), while Theorem 24 asks in (49) for them to be
separated by a quantity that involves both the given scale ∆> 0 and the size of G⩽K (r,R).

Proof of Lemma 26. Let N be a subset of U∩G⩽K (r,R) with the property that dM(a,b) > 2r for all distinct
a,b ∈N, and furthermore N is maximal with respect to inclusion among all the subsets of U∩G⩽K (r,R)
that have this property. By the triangle inequality for dM, the balls {BM(a,r )}a∈N are disjoint, so we have

|N|min
a∈N

|BM(a,r )|⩽ ∑
a∈N

|BM(a,r )| =
∣∣∣ ⋃

a∈N
BM(a,r )

∣∣∣. (84)

Fix amin ∈N such that |BM(amin,r )| = mina∈N |BM(a,r )|. By the triangle inequality for dM, sinceN ⊆U

we have BM(a,r ) ⊆ BM(amin,diamM(U)+r ) ⊆ BM(amin,R) for every a ∈N, as R−r ⩾ diamM(U). Thanks
to (84), this implies |N|⩽ |BM(amin,R)|/|BM(amin,r )|. As amin ∈N ⊆G⩽K (r,R), we deduce that |N|⩽K .

By the assumption of Lemma 26 applied to C=N, there is a 1-Lipschitz function f :M→ L2 for which

∀a,b ∈N, ∆0 ⩽ dM(a,b)⩽ 3β∆0 =⇒ ∥ f (a)− f (b)∥L2 ⩾
∆0

D
, where ∆0

def= 19D −1

19D
∆−4r, (85)

which is valid since ∆⩾ 9Dr > 76Dr /(19D −1), as D ⩾ 1, so the parameter ∆0 in (85) is indeed positive.
Because M is locally finite,φ(M) is a countable subset of L2, so by replacing L2 by L2⊕R, we may assume
that there exists a vector v ∈ f (M)⊥ ⊆ L2 that satisfies ∥v∥L2 = 1 and v is orthogonal to f (M). Since f is
1-Lipschitz, and by the triangle inequality for dM also the function (x ∈M) 7→ dM(x,N) is 1-Lipschitz,
the aforementioned orthogonality implies that the following function φ :M→ L2 is 1-Lipschitz:

∀x ∈M, φ(x)
def= 1p

2
f (x)+ dM(x,N)p

2
v.

We then have the following lower bound:

∀x, y ∈M, ∥φ(x)−φ(y)∥L2 ≳max
{∥ f (x)− f (y)∥L2 , |dM(x,N)−dM(y,N)|}. (86)

Fix x ∈U∩G⩽K (r,R). By the maximality of N with respect to inclusion, there must exist ax ∈N such
that dM(x, ax )⩽ 2r , i.e., we have dM(x,N)⩽ 2r . Consequently, if y ∈M satisfies

dM(y,N)⩾ 2r + ∆

19D
, (87)

then it follows from (86) that ∥φ(x)−φ(y)∥L2 ≳∆/D , which is the desired conclusion of (87).
The above simple preparatory reasoning demonstrates that the proof of Lemma 26 will be complete if

we will prove that ∥φ(x)−φ(y)∥L2 ≳∆/D whenever x, y ∈M have the following properties:

∆⩽ dM(x, y)⩽β∆ and ∃ax , ay ∈N, dM(a, ax )⩽ 2r and dM(y, ay ) < 2r + ∆

19D
. (88)

This is indeed the case because by the triangle inequality for dM we have

dM(ax , ay )⩾ dM(x, y)−dM(x, ax )−dM(y,by )
(88)
⩾ ∆−4r + ∆

19D
(85)= ∆0, (89)
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and

dM(ax , ay )⩽ dM(x, y)+dM(x, ay )+dM(y,by )
(88)
⩽ β∆+4r + ∆

19D
⩽ 3β∆0, (90)

where checking that the last step of (90) is valid is straightforward using the definition (85) of∆0 together
with the assumptions β⩾ 1 and ∆⩾ 9Dr ⩾ 9r . Thanks to (89) and (90) we may use (85) with a = ax and
b = ay in combination with (86) to conclude that the following lower bound holds:

∥φ(x)−φ(y)∥L2

(86)
≳ ∥ f (x)− f (y)∥L2 ⩾ ∥ f (ax )− f (ay )∥L2 −∥ f (x)− f (ax )∥L2 −∥ f (y)− f (ay )∥L2

(85)
⩾
∆0

D
−dM(x, ax )−dM(y, ay )

(85)∧(88)
⩾

19D−1
19D ∆−4r

D
−4r − ∆

19D
≳
∆

D
,

(91)

where the second step of (91) uses the triangle inequality in L2, the third step of (91) uses the fact that f
is 1-Lipschitz, and the final step of (91) is straightforward to verify using r ⩽∆/(9D) and D ⩾ 1. □

Lemma 27 below provides a link between Lemma 26 and Theorem 24; it is a spatial localization princi-
ple for Euclidean single scale embeddings that does not involve the controlled local growth centers. The
term “spatial localization” is used here for the following reason: The assumption of Lemma 27 per (92)
is that “one scale at a time” embeddings exist for arbitrary subsets of small diameter, and its conclusion
per (93) is that such an embedding guarantee is possible provided one of the points is close to a subset
whose cardinality is sufficiently small without any bound on the spacial size (diameter) of that subset.

Lemma 27. There is a universal constant C ⩾ 1 with the following property. Suppose that β,D ⩾ 1
and d,∆ > 0. Let (M,dM) be a metric space and fix X,Y ⊆ M. Assume that for every ; ̸= U ⊆ M with
diamM(U)⩽ d there is a 1-Lipschitz function fU :U→ L2 satisfying

∀(x, y) ∈ (U∩X)× (U∩Y), ∆⩽ dM(x, y)⩽β∆ =⇒ ∥ fU(x)− fU(y)∥L2 ⩾
∆

D
. (92)

Then, for any C⊆M with 2⩽ |C|⩽ e
d

Cβ∆ there is a 1-Lipschitz function ϕC :M→ L2 satisfying

∀(x, y) ∈X×Y,
(
∆⩽ dM(x, y)⩽β∆

)∧ (
dM(x,C)⩽ (β+1)∆

) =⇒ ∥ϕC(x)−ϕC(y)∥L2 ≳
∆

D
. (93)

Prior to proving Lemma 27, which is of independent interest and could be of value for other purposes
elsewhere (in particular, another application of it will be worked out in Section 3), we will next demon-
strate how to quickly deduce the second part of Theorem 24 assuming its validity:

Proof of the second part of Theorem 24 assuming Lemma 27. We may assume that |G⩽K (r,R)|⩾ 2 since if
G⩽K (r,R) =;, then the desired conclusion (50) is vacuous, and if |G⩽K (r,R)| = 1, then let x0 ∈M be such
that G⩽K (r,R) = {x0} and the desired conclusion (50) holds for φ(x) = dM(x, x0) ∈ R. Let C ⩾ 1 be the
constant from Lemma 27. Assumption (48) of Theorem 24 coincides with assumption (81) of Lemma 26,
and the second part of assumption (49) Theorem 24 implies that R − r ⩾ diamM(U) for every nonempty
subsetU ofM for which diamM(U)⩽Cβ(log |G⩽K (r,R)|)∆. We may therefore apply Lemma 26 to deduce
that for every such U there is a 1-Lipschitz function fU :M→ L2 for which assumption (92) of Lemma 27
holds for X = Y =M and d = Cβ(log |G⩽K (r,R)|)∆, and with D replaced by a positive universal constant
multiple of D . The desired conclusion (50) of Theorem 24 is now a special case of the conclusion (93) of
Lemma 27, applied to C=G⩽K (r,R), which is valid because 2⩽ |G⩽K (r,R)| = ed/(Cβ∆). □

Thus, in order to complete the proof of Theorem 24 it remains to prove Lemma 27, which we do next:

Proof of Lemma 27. For each S⊆M and K > 0, let PartM(S;K ) denote the set of all the partitions P of S
that are K -bounded with respect to dM, i.e., diamM(P(x))⩽K for every x ∈ S.

By [12], there exist universal constants 0 < p< 1 < κ such that for anyC⊆M with |C| > 1 and any∆0 > 0
there exists a probability measure µC,∆0

on PartM(C;∆0) satisfying the following condition:
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∀x ∈C, µC,∆0

[
P0 ∈ PartM(C;∆0) : BM

(
x,

1

κ log |C|∆0

)
∩C⊆P0(x)

]
⩾ p.

We will proceed to prove that Lemma 27 holds if we take the universal constant C equal to 60κ.
Fix any subset C of M whose size satisfies the assumptions in the statement of Lemma 27, i.e.,

2⩽ |C|⩽ e
d

Cβ∆ = e
d

60κβ∆ . (94)

It will be convenient to set the following notations:

∆0
def= 16κ(β+1)

(
log |C|)∆ and Ω

def= PartM
(
M;8(β+1)(2κ log |C|+1)∆

)
and µ

def= µC,∆0
.

Thus,Ω is the set of∆′-bounded partitions of the entire metric spaceM, where we introduce the notation

∆′ def= 8(β+1)(2κ log |C|+1)∆
(94)
⩽ 8(β+1)

( 1

30β∆
d+1

)
∆⩽ d, (95)

and the last step of (95) is valid because (94) implies in particular that d/∆⩾ 60κβ log2, and using this
lower bound on d/∆ the rightmost inequality in (94) is elementary to verify, since β,κ⩾ 1. Now, a substi-
tution of µ into [53, Lemma 3.8] shows that there exists a probability measure ν onΩ such that

∀x ∈M, dM(x,C)⩽ (β+1)∆ =⇒ ν
[
P ∈Ω : BM(x, (β+1)∆) ⊆P(x)

]
⩾ p. (96)

By [68, Lemma 5.2] there exists a function G =G∆ : L2 → L2 such that for every x, y ∈ L2,

∥G(x)∥L2 = ∥G(y)∥L2 =∆ and
1

2
min

{
∆,∥x − y∥L2

}
⩽ ∥G(x)−G(y)∥L2 ⩽min

{
∆,∥x − y∥L2

}
. (97)

For every U⊊M define dU = dU,∆,dM
:M→ [0,1] by

∀z ∈M, dU(z)
def= min

{
1,

1

∆
dM(z,M∖U)

}
. (98)

As the function (t ∈ R) 7→ min{1, t/∆} is (1/∆)-Lipschitz and nondecreasing, ∥dU∥Lip(M;R) ⩽ 1/∆. Finally,
because by (95) we have diamM(P(z)) ⩽ d for every P ∈Ω and z ∈M, so we can invoke the assumption
of Lemma 27 to fix a 1-Lipschitz function fP(z) :P(z) → L2 that satisfies (92) with U=P(z), i.e.,

∀(x, y) ∈ (P(z)∩X)× (P(z)∩Y), ∆⩽ dM(x, y)⩽β∆ =⇒ ∥ fP(z)(x)− fP(z)(y)∥L2 ⩾
∆

D
. (99)

In particular, fP(z)(z) is well-defined since z ∈P(z), so we can define ϕC :M→ L2(ν;L2) ∼= L2 by setting

∀z ∈M, ∀P ∈Ω, ϕC(z)(P)
def= dP(z)(z)

2
G

(
fP(z)(z)

)
. (100)

We first claim that the following point-wise bound holds:

∀x, y ∈M, ∀P ∈Ω, ∥ϕC(x)(P)−ϕC(y)(P)∥L2 ⩽ dM(x, y). (101)

Observe that after (101) will be established, by squaring both of its sides and then integrating the resulting
estimate dν(P), we will deduce that ϕC is 1-Lipschitz as a function M to L2(ν;L2) ∼= L2.

To verify (101), fix x, y ∈M and P ∈Ω. Suppose first that P(x) =P(y)
def= U. Then

|ϕC(x)(P)−ϕC(x)(P)| = 1

2

∥∥∥(
dU(x)−dU(y)

)
G

(
fU(x)

)+dU(y)
(
G

(
fU(x)

)−G
(

fU(y)
))∥∥∥

L2

⩽
|dU(x)−dU(y)|

2

∥∥G
(

fU(x)
)∥∥

L2
+ dU(y)

2

∥∥G
(

fU(x)
)−G

(
fU(y)

)∥∥
L2

⩽
∥dU∥Lip(M;R)

2
∆dM(x, y)+ 1

2
∥ fU∥Lip(M;L2)dM(x, y)⩽ dM(x, y),

(102)

where the first step of (102) is a consequence of the definition (100) of ϕC, using the current assumption
P(x) = P(y) = U, the penultimate step of (102) uses (97) and the fact that 0 ⩽ dU(·) ⩽ 1 by (98), and the
final step of (102) holds as fU is 1-Lipschitz and dU is (1/∆)-Lipschitz. This establishes (101) ifP(x) =P(y).
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It remains to verify (101) when P(x) ̸=P(y), i.e., x ∈M∖P(y) and y ∈M∖P(x), which implies that

max
{

dM

(
x,M∖P(x)

)
,dM

(
y,M∖P(y)

)}
⩽ dM(x, y). (103)

Consequently, when P(x) ̸=P(y) we can justify (101) as follows:

|ϕC(x)(P)−ϕC(x)(P)|⩽ |ϕC(x)(P)|+ |ϕC(x)(P)| (100)∧(97)= 1

2
dP(x)(x)∆+ 1

2
dP(y)(y)∆

(98)
⩽

1

2
dM

(
x,M∖P(x)

)+ 1

2
dM

(
y,M∖P(y)

) (103)
⩽ dM(x, y).

Next, fix x, y ∈ M that satisfy dM(x, y) ⩽ β∆. Using the triangle inequality for dM, it follows that
BM(y,∆) ⊆ BM(x, (β+ 1)∆). Hence, if P ∈ Ω is such that BM(x, (β+ 1)∆) ⊆ P(x), then P(y) = P(x) and
also min{dM(x,M∖P(x)),dM(y,M∖P(y))}⩾∆. Recalling (98), it follows that(

dM(x, y)⩽β∆
) ∧ (

BM(x, (β+1)∆) ⊆P(x)
) =⇒ (

P(x) =P(y)
)∧ (

dP(x)(x) = dP(y)(y) = 1
)
, (104)

for every x, y ∈M and every P ∈ΩM
∆ . Consequently, the following lower bound holds for all (x, y) ∈X×Y

that satisfy dM(x,C)⩽ (β+1)∆ and ∆⩽ dM(x, y)⩽β∆:

∥ϕC(x)−ϕC(y)∥L2(ν;L2) ⩾
(∫

{P∈Ω: BM(x,(β+1)∆)⊆P(x)}
∥ϕC(x)−ϕC(y)∥2

L2
dν(P)

) 1
2

= 1

2

(∫
{P∈Ω: BM(x,(β+1)∆)⊆P(x)}

∥∥G
(

fP(x)(x)
)−G

(
fP(x)(y)

)∥∥2
L2

dν(P)

) 1
2

⩾
1

4

(∫
{P∈Ω: BM(x,(β+1)∆)⊆P(x)}

min
{
∆2,∥ fP(x)(x)− fP(x)(y)∥2

L2

}
dν(P)

) 1
2

⩾
∆

4D

√
ν
({
P ∈Ω : BM(x, (β+1)∆) ⊆P(x)

})
⩾
∆
p
p

4D
≍ ∆

D
,

(105)

where the second step of (105) holds by (100) using (104), which is valid as dM(x, y) ⩽β∆, the third step
of (105) uses the first inequality in (97), the fourth step of (105) uses (99), which is valid as∆⩽ dM(x, y)⩽
β∆ and (x, y) ∈ (P(x)∩X)×(P(x)∩Y) by (104), and D ⩾ 1, and the penultimate step of (105) is where (96) is
used, which is valid as dM(x,C)⩽ (β+1)∆. We have thus proved the remaining part (93) of Lemma 27. □

Remark 28. An inspection of the proof of Lemma 27 reveals that the restriction on the size ofC appears in
its statement only because by [12] the padding modulus of C is O(log |C|). Specifically, using the notation
of [80], given 0 < p< 1 let PADp(C) =PADp(C,dM) be the smallest K ⩾ 1 such that for every ∆> 0 there is
a distribution over ∆-bounded random partitions P of C with the property that for every x ∈C the prob-
ability that BM(x,∆/K )∩C is contained in P(x) is at least p. A repetition of the reasoning of Lemma 27
gives mutatis mutandis that if one replaces its requirement |C|⩽ ed/(Cβ∆) by PADp(C) ⩽ d/(Cβ∆), then
its conclusion (93) holds with ∥ϕC(x)−ϕC(y)∥L2 ≳∆/D replaced by ∥ϕC(x)−ϕC(y)∥L2 ≳∆

p
p/D .

3. LOCALIZED WEAKLY BI-LIPSCHITZ EMBEDDINGS

The following “localized version” of Definition 19 is a slight generalization of a definition that appeared
in [75, Section 7.2], which corresponds to the (arbitrary) choice K = 32 below:

Definition 29. Given K ,D > 0, a metric space (M,dM) is said to admit a K -localized weakly bi-Lipschitz
embedding into a metric space (N,dN) with distortion D if for every ∆ > 0 and every z ∈M there exists a
non-constant Lipschitz function f z

∆ :M→N such that

∀x, y ∈ BM(z,K∆), dM(x, y)⩾∆ =⇒ dN

(
f z
∆ (x), f z

∆ (y)
)
⩾

∥ f z
∆∥Lip

D
∆, (106)

A key (well known) property of Lp that we will use herein is the (first part of) the following theorem:
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Theorem 30. If K > 1 and p > 2, then Lp admits a K -localized weakly bi-Lipschitz embedding into L2

with distortion D, where D ≲ p2p/2K p/2−1. Conversely, if Lp admits a K -localized weakly bi-Lipschitz
embedding into L2 with distortion D, then necessarily D ≳ 2p/2K p/2−1.

Proof. The first part of Theorem (30) essentially coincides with Lemma 7.6 of [75], which notes the (spe-
cial case K = 32 of the) following general statement. Suppose that (X,∥·∥X) and (Y,∥·∥Y) are Banach spaces
for which there exists a function U : BX → Y from the unit ball BX = {x ∈ X : ∥x∥X ⩽ 1} to Y satisfying

∀x, y ∈ BX, ω
(∥x − y∥X

)
⩽ ∥U (x)−U (y)∥Y ⩽ L∥x − y∥X, (107)

for some L > 0 and an increasing modulus ω : [0,∞) → [0,∞). Let ρX : X → BX be the standard retraction
(e.g. [75, equation (5.2)]) from X onto BX, i.e., ρX(x) = x/max{∥x∥X,1} for every x ∈ X. It is straightforward
to check that ∥ρX∥Lip ⩽ 2, so if we define for z ∈ X and K ,∆> 0 a function f z

∆ : X → Y by:

∀x ∈ X, f z
∆ (x)

def= K∆U

(
ρX

( 1

K∆
(x − z)

))
,

then ∥ f z
∆∥Lip ⩽ 2L by the second inequality in (107). Using this together with the first inequality in (107)

shows that for every x, y ∈ BX(z,K∆), if ∥x − y∥X ⩾ δ, then ∥ f z
∆ (x)− f z

∆ (y)∥Y ⩾ Kω(1/K )∥ f z
∆∥Lip∆/(2L).

Thus, X admits a K -localized weakly bi-Lipschitz embedding into Y with distortion 2L/(Kω(1/K )).
In particular, if in (107) we haveω(t ) = tα/β for all t ⩾ 0 and someα,β⩾ 1, then X admits a K -localized

weakly bi-Lipschitz embedding into Y with distortion 2LβKα−1. When X = Lp for some p ⩾ 2 and Y = L2,
one can take U to be the restriction to the unit ball of Lp of the classical Mazur map [67] Mp→2 : Lp → L2,
in which case this holds with α = p/2 and β ≍ 2p/2, and with L in (107) satisfying L ≍ p. A derivation of
these values of α,β,L for the Mazur map appears in [75]; see specifically equation (5.32) there.

We will establish the reverse direction by adjusting the proof of [75, Lemma 52]. So, suppose that Lp

admits a K -localized weakly bi-Lipschitz embedding into L2 with distortion D , and our goal is to bound
D from below. As the complex plane C = ℓ2

2 , embeds into Lp with distortion 1+ε for any 0 < ε < K −1
(e.g. by Dvoretzky’s theorem [30], though using that theorem is overkill for this purpose), it follows that
also Lp (C) admits a K /(1+ε)-localized weakly bi-Lipschitz embedding into L2 with distortion (1+ε)D .
Therefore, it suffices to prove that if Lp (C) admits a K -localized weakly bi-Lipschitz embedding into L2

with distortion D , then necessarily D ≳ 2p/2K p/2−1 (considering ε≍ 1/p above suffices).
Fix n ∈ N. Applying the assumption that Lp (C) admits a K -localized weakly bi-Lipschitz embedding

into L2 of distortion D to∆= n1/p /K in Definition 29 , it follows that there is f : n1/p Bℓn
p (C) → L2 satisfying

∥ f ∥Lip = 1 and ∀x, y ∈ n
1
p Bℓn

p (C), ∥x − y∥ℓn
p (C) ⩾

n
1
p

K
=⇒ ∥ f (x)− f (y)∥L2 ⩾

n
1
p

K D
. (108)

For m ∈Nwrite um
def= e2πi/m ∈C and letUm

def= {1,um ,u2
m , . . . ,um−1

m } ⊆C be the cyclic group of the roots
of unity of order m. By (the Hilbertian special case of) Theorem 5.2 in [84] (whose conclusion is a slightly
simpler variant of [70, Theorem 4.1]9), if m ⩾

p
n and m is divisible by 8, then every g :Un

m → L2 satisfies:
n∑

j=1

∑
x∈Un

m

∥∥g (x)− g (x1, . . . , x j−1,−x j , x j+1, . . . , xn)
∥∥2

L2

≲
m2

2n

∑
ε∈{−1,1}n

∑
x∈Un

m

∥∥g (x)− g (uε1
m x1, . . . ,uεn

m xn)
∥∥2

L2
.

(109)

We will apply (109) to the restriction toUn
m ⊆ n1/p Bℓn

p (C) of the function f : n1/p Bℓn
p (C) → L2 in (108). For

that, observe that since f is 1-Lipschitz, every ε= (ε1, . . . ,εn) ∈ {−1,1}n and x = (x1, . . . , xn) ∈Un
m satisfy

∥∥ f (x)− f (uε1
m x1, . . . ,uεn

m xn)
∥∥

L2
⩽

∥∥(1−uε1
m)x1, . . . , (1−uεn

m )xn
∥∥
ℓn

p (C) =
p

2n
1
p

∣∣∣1−cos
(2π

m

)∣∣∣≍ n
1
p

m
.

9Alternatively one could combine here Theorem 4.1 in [70] with the discussion in Section 4 of [33].
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Hence, the right hand side of (109) for g = f |Un
m

can be bounded from above as follows:

m2

2n

∑
ε∈{−1,1}n

∑
x∈Un

m

∥∥ f (x)− f (uε1
m x1, . . . ,uεn

m xn)
∥∥2

L2
≲ n

2
p mn . (110)

To bound the right hand side of (109) from below, suppose that n ⩽ (2K )p . Then, for every x ∈ Um and
every j ∈ {1, . . . ,n} we have ∥x − (x1, . . . , x j−1,−x j , x j+1, . . . , xn)∥Lp (C) = 2⩾ n1/p /K , so using (108) we get:

∀x ∈Um
m ,

∥∥ f (x)− f (x1, . . . , x j−1,−x j , x j+1, . . . , xn)
∥∥

L2
⩾

n
1
p

K D
.

Consequently,
n∑

j=1

∑
x∈Un

m

∥∥ f (x)− f (x1, . . . , x j−1,−x j , x j+1, . . . , xn)
∥∥2

L2
⩾

n1+ 2
p mn

(K D)2 . (111)

By combining (110) and (111) with (109) and rearranging, we deduce that D ≳
p

n/K . The require-
ments for this to hold were that n ⩽ (2K )p , as well as that m ⩾

p
n and m ≡ 0 mod 8, so choosing

n = ⌊(2K )p⌋ and m = 8
⌈p

n
⌉

gives D ≳
p

(2K )p −1/K ≍ 2p/2K p/2−1, as required. □

Remark 31. It is worthwhile to note (though not needed for the results herein) that by incorporating the
Maurey–Pisier theorem [66] and the main result of [70] that Rademacher cotype and metric cotype coin-
cide, the above proof of the lower bound on D in Theorem 30 yields mutatis mutandis the following state-
ment. Let (X,∥·∥X), (Y,∥·∥Y) be Banach spaces. Suppose Y has Rademacher cotype q and that p ⩾ 2 equals
the infimum over those p ′ ⩾ 2 such that X has Rademcaher cotype p ′. Fix K ,D > 1 and p > q . If X ad-
mits a K -localized weakly bi-Lipschitz embedding into Y with distortion D , then D ≳ 2p/q K p/q−1/Cq (Y),
where Cq (Y) is the Rademacher cotype q constant of Y.

As done in (33) for the two-sided scale-localized variant of Definition 19, we will also say in the context
of Definition 29 that a metric space (M,dM) admits a two-sided scale-localized K -localized weakly bi-
Lipschitz embedding into a metric space (N,dN) with distortion D > 0 if for every ∆ > 0 and every z ∈M

there exists a non-constant Lipschitz function g z
∆ :M→N such that

∀x, y ∈ BM(z,K∆), ∆⩽ dM(x, y)⩽ 2∆ =⇒ dN

(
g z
∆(x), g z

∆(y)
)
⩾

∥g z
∆∥Lip

D
∆. (112)

The localization principle of Lemma 27 allows us to relate as follows localized weakly bi-Lipschitz
embeddings to the usual (global) weakly bi-Lipschitz embeddings that were discussed in Section 2.1:

Lemma 32. There exists a universal constant κ ⩾ 2 with the following property. Fix a nondecreasing
function D : (1,∞) → (1,∞). Suppose that (M,dM) is a metric space admitting a two-sided scale-localized
K -localized weakly bi-Lipschitz embedding into L2 with distortion less than D(K ) for every K > 1. Then,

∀n ∈ {2,3, . . .}, d̂n
2 (M)⩽D(κ logn). (113)

Proof. We will show that (113) holds for κ= 2C , where C ⩾ 1 is the universal constant of Lemma 27. For
every nonempty bounded subset U of M, fix any zU ∈U. Then, U⊆ BM(zU,diamM(U)), whence for every
∆> 0, by considering the restriction to U of the function in (112) with K = diamM(U)/∆ and z = zU, the
assumption of Lemma 32 implies that there exists a 1-Lipschitz function fU,∆ :M→ L2 that satisfies

∀x, y ∈U, ∆⩽ dM(x, y)⩽ 2∆ =⇒ ∥ fU,∆(x)− fU,∆(y)∥L2 ⩾
∆

D
(

diamM(U)
∆

) .

So, for every integer n ⩾ 2 we may apply Lemma 27 withX=Y=M andβ= 2, as well as d= 2C (logn)∆
and D = D(d/∆), to obtain for every C⊆M with |C| = n a 1-Lipschitz functionϕC,∆ :M→ L2 that satisfies

∀x, y ∈M,
(
∆⩽ dM(x, y)⩽ 2∆

)∧ (
dM(x,C)⩽ 3∆

) =⇒ ∥ϕC,∆(x)−ϕC,∆(y)∥L2 ≳
∆

D(2C logn)
.
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This is more than what is needed to deduce that d̂n
2 (M)⩽D(2C logn), per (33). In particular, we obtained

a function ϕC,∆ that is defined on all of M while we only need it to be a 1-Lipschitz function on C. For
that, in the above application Lemma 27 it would suffice that fU,∆ is defined on U, for which we could
work here with the weakening of the notion of two-sided scale-localized K -localized weakly bi-Lipschitz
embedding in which the function g z

∆ in (112) is defined only on BM(z,K∆). This observation could be
relevant to future investigations, but not whenM is a Banach space since in that case Lipschitz functions
can be extended from any ball to the super-space while increasing their Lipschitz constant by a factor of
at most 2, which is seen by composing with the radial retraction as we did in the proof of Theorem 30. □

With Lemma 32 at hand, we can now summarize the best available upper bounds on d̂n
2 (Lp ):

∀n ∈ {2,3 . . . , }, d̂n
2 (Lp )≲



√
logn if 1⩽ p ⩽

p
5−1,

(logn)
2
p

(
1
p − 1

2

)
if
p

5−1⩽ p ⩽ 2,

(logn)
p
2 −1 if 2⩽ p ⩽ 3,

p3
√

logn if 3⩽ p ⩽ 6
√

logn,
logn if p ⩾ 6

√
logn.

(114)

Our contribution here is the range 2 ⩽ p = o( 6
√

logn) of (114), in which the previously best known esti-
mate was nothing more than the O(logn) upper bound that holds by [16] for any n-point metric space.
The case 2 ⩽ p ⩽ 3 of (114) follows by substituting Theorem 30 into Lemma 32, and if 3 ⩽ p ⩽ 6

√
logn,

then (114) follows by substituting Theorem 10 and the bound e(Lp ;L2) ≲
p

p of [81] into Lemma 21 (us-
ing Theorem 30 and Lemma 32 here would yield a weaker result). If 1 ⩽ p ⩽

p
5− 1, then (114) is due

to [6], if
p

5−1⩽ p ⩽ 2, then (114) is due to [50], and if p ⩾ 6
√

logn, then (114) follows from [16].
The best available lower bound on d̂n

2 (Lp ) is a universal constant multiple of (logn)1/p−1/2 if 1⩽ p ⩽ 2
and max{min{p, logn}, ((logn)/ loglogn)1/2−1/p } if p ⩾ 2; when 1 ⩽ p ⩽ 2 this follows from [31] by con-
sidering as in Section 1.1.1 the discrete k-dimensional hypercube with the ℓk

p metric, and for p ⩾ 2 the

Ω(min{p, logn}) lower bound follows from [65] while theΩ(((logn)/ loglogn)1/2−1/p lower bound follows
from [70] (one cannot consider for this purpose the planar graph example that was used in Section 1.1.1).

Thus, we know that (114) is optimal only when (p −1)logn = O(1) and p ≳ logn (and, trivially, when
p = 2), but it plausibly not optimal for the rest of the possible values of p. It would be worthwhile (and
likely challenging) to obtain asymptotically sharp bounds here.

4. LOCALIZED RADIALLY WEAKLY BI-LIPSCHITZ EMBEDDINGS

As we will see later, Definition 29 (correspondingly, the first part of Theorem 30) suffices for proving
Theorem 1, Theorem 5, Theorem 9, Theorem 10, and Theorem 12 with a constant factor that has a much
worse (exponential) dependence on p. The lower bound in the second part of Theorem 30 shows that
such a loss is inherent to this approach. It is more delicate to get the stated dependence on p in the above
theorems. For that purpose, we will next introduce a (quite subtle, but crucial) variant of Definition 29
which is interesting in its own right and likely useful for other purposes beyond its applications that we
derive herein. We will prove that the Mazur map obeys the aforementioned variant with a much better
dependence on p, and demonstrate that this new embedding notion preserves the separation modulus.

To motivate Definition 33 below, clarify its geometric meaning, and explain its nuanced difference
from Definition 29, we will start by examining the following consequence of Definition 29.

Fix K ,∆> 0 and suppose that a metric space (M,dM) admits a K -localized weakly bi-Lipschitz embed-
ding into a metric space (N,dN) with distortion D . Thus, for every ∆> 0 there is a nonconstant Lipschitz
function f z

∆ :M→N for which (106) holds. If x ∈M and y, w ∈ BM(z,K∆) satisfy dM(y, w)⩾∆, then,

∥ f z
∆∥Lip

D
∆

(106)
⩽ dN

(
f z
∆ (y), f z

∆ (w)
)
⩽ 2max

{
dN

(
f z
∆ (x), f z

∆ (y)
)
,dN

(
f z
∆ (x), f z

∆ (w)
)}

.
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Letting B◦
M

(x,r ) = {y ∈M : dM(x, y) < r } be the open dM-ball centered at x ∈M of radius r ⩾ 0, we get:

∀x ∈M, ∀y, w ∈ BM(z,K∆), dM(y, w)⩾∆ =⇒ {y, w} ̸⊆ (
f z
∆

)−1
(
B◦
N

(
f z
∆ (x),

∥ f z
∆∥Lip

2D
∆

))
.

The contrapositive of this conclusion implies that

∀x ∈M, diamM

(
BM(z,K∆)∩ (

f z
∆

)−1
(
B◦
N

(
f z
∆ (x),

∥ f z
∆∥Lip

2D
∆

)))
⩽∆. (115)

Definition (33) below is important for our purposes. It modifies (115) in the following 5 ways. Firstly, it
considers only closed balls and it replaces the weak inequality in (115) by a strict inequality; both of these
modifications are essentially cosmetic as they have insignificant impact on the results that are obtained
herein and they are introduced for ease of remembering the definition and to streamline its subsequent
implementations. Definition (33) also changes the term 2D in (115) to D , which is merely a matter of
notational convenience that impacts only the values of the (mostly implicit) universal constant factors in
the results that are obtained herein. Next, it requires the nonconstant Lipschitz function f z

∆ to be defined
on BM(z,K∆) rather than on all of M; while this could be a genuine weakening when M is an arbitrary
metric space, if M is a Banach space, then (as we recalled in the proof of Theorem 30) the standard
normalization mapping yields a 2-Lipschitz retraction from M onto BM(z,K∆), so by precomposing
with this retraction we would obtain the same property for a function that is now defined on all of M, at
the cost of replacing D by 2D ; again, this would only impact the universal constant factors in the results
that are obtained herein. Finally, Definition (33) replaces the dM-diameter in (115) by the dM-radius.
While one might think that due to (25) this is also a minor modification, it is, in fact, substantial, as it
leads to an exponential improvement of the dependence on p, as expressed in Lemma 34 below.

Definition 33. Given K ,D > 0, we say that a metric space (M,dM) admits a K -localized radially weakly
bi-Lipschitz embedding into a metric space (N,dN) with distortion D if for every ∆ > 0 and every z ∈M

there exists a non-constant Lipschitz function f z
∆ : BM(z,K∆) →N such that

∀x ∈ BM(z,K∆), radM

((
f z
∆

)−1
(
BN

(
f z
∆ (x),

∥ f z
∆∥Lip

D
∆

)))<∆. (116)

By the above discussion, if a metric space (M,dM) admits a K -localized weakly bi-Lipschitz embed-
ding into a metric space (N,dN) with distortion D , then for any ε > 0 it also admits a (1+ε)K -localized
radially weakly bi-Lipschitz embedding into N with distortion 2(1+ε)2D .

Conversely, suppose that there is L ⩾ 1 such that for every ball BM(z,r ) ⊆M there exists an L-Lipschitz
retraction ρz

r from M onto BM(z,r ); if M is a Banach space, then we can take L = 2. If f : BM(z,K∆) →N

is a nonconstant Lipschitz function satisfying (116), then the function F z
∆ = f z

∆ ◦ρz
r : M→N extends f z

∆
and satisfies ∥F z

∆∥Lip ⩽ L∥ f z
∆∥Lip. Therefore, for every x ∈ BM(z,K∆) we have:

diamM

((
f z
∆

)−1
(
BN

(
f z
∆ (x),

∥F z
∆∥Lip

LD
∆

)))
⩽ diamM

((
f z
∆

)−1
(
BN

(
f z
∆ (x),

∥ f z
∆∥Lip

D
∆

))) (116)∧(25)< 2∆.

It follows that y ∉ ( f z
∆ )−1(BN

(
f z
∆ (x),∥F z

∆∥Lip∆/(LD)))) whenever x, y ∈ BM(z,K∆) satisfy dM(x, y)⩾ 2∆. In
particular, since F z

∆ extends f z
∆ , we have

∀x, y ∈ BM(z,K∆) = BM

(
z,

K

2
(2∆)

)
, dM(x, y)⩾ 2∆ =⇒ dN

(
F z
∆(x),F z

∆(y)
)
⩾

∥F z
∆∥Lip

LD
∆= ∥F z

∆∥Lip

2LD
2∆.

Recalling Definition 29, this observation shows that (under the assumption that an L-Lipschitz retrac-
tion fromM onto any ball inM exists), ifM admits a K -localized radially weakly bi-Lipschitz embedding
into N with distortion D , then also M admits a (K /2)-localized weakly bi-Lipschitz embedding into N

with distortion 2LD . In particular, ifM is a Banach space, then we deduce that it admits a (K /2)-localized
weakly bi-Lipschitz embedding into N with distortion 4D .

28



The above loss of a 2L factor in the distortion is of secondary importance if L =O(1), as it only impacts
the universal constant factors in the results that are obtained herein. However, the above reduction of
K to K /2 is significant, as demonstrated by Proposition 34 below, which should be contrasted with the
second part of Theorem 30, since it shows that if the word “radially” would be omitted from the statement
of Proposition 34, then the distortion in its conclusion would have to be eΩ(p).

Lemma 34. If p ⩾ 2, then there are K = K (p),D = D(p) > 1 satisfying K −1 ≍ 1/p and D ≍ p such that Lp

admits a K -localized radially weakly bi-Lipschitz embedding into L2 with distortion D.

Lemma 34 provides a novel property (potentially of use beyond its applications herein) of the Mazur
map [67], whose classical definition was recalled in (29); the relevant property, which implies Lemma 34
and is, in fact, what Lemma 34 will prove, was already stated in the Introduction as the inclusion (31).

It is straightforward to check that Mp→q maps Lp bijectively onto Lq with M−1
p→q = Mq→p . Further-

more, ∥Mp→q (x)∥Lq = ∥x∥Lp for every x ∈ Lp , and Mp→q (sx) = sp/q sign(s)Mp→q (x) for every x ∈ Lp and
s ∈R. The property of the Mazur map that lies at the heart of Lemma 34 is the following inequality:

Lemma 35. If p ⩾ 2, then for every 0 <α⩽ 1
p and every 0 <λ< 1 we have10

∀x, y ∈ Lp , ∥y −αx∥p
Lp

⩽ (1−λα)p∥x∥2
Lp

+ 5

(1−λ)pα

∥∥Mp→2(y)−Mp→2(x)
∥∥2

L2
. (117)

Note that since λ appears only in the right hand side of (117), the optimal way to use Lemma 35 is to
apply (117) with the value λ=λ(x, y, p,α) that minimizes the right hand side of (117) over 0⩽λ⩽ 1.

Assuming the validity of Lemma 35 for the moment, we will next show how to deduce Lemma 34.

Proof of Lemma 34 assuming Lemma 35. We will start by demonstrating that there exists a universal con-
stant c > 0 such that the following inclusion holds for every 0 <α⩽ 1/p and 0 <σ,λ< 1:11

∀x ∈ BLp , M2→p

(
BL2

(
Mp→2(x),cpα

√
(1−σ)λ(1−λ)

))
⊆ BLp

(
αx,1−σλα)

. (118)

To verify (118), note first that by the mean value theorem there exists σλα⩽ θ⩽λα⩽ λ
p such that

(1−σλα)p − (1−λα)p = p(1−θ)p−1(1−σ)λα⩾ (1−σ)λpα

(
1− λ

p

)p−1

⩾
λ

eλ
(1−σ)pα≍λ(1−σ)pα,

where we used the fact that (p ⩾ 1) 7→ (1−λ/p)p−1 is decreasing and tends to e−λ as p →∞. Therefore, if
we define r = r (α, p,σ,λ) > 0 by

r
def=

√
(1−λ)pα

5

(
(1−σλα)p − (1−λα)p

)
, (119)

then r ≳ pα
p

(1−σ)λ(1−λ). Consequently, the inclusion (118) would follow if we will show that

∀x ∈ BLp , M2→p

(
BL2

(
Mp→2(x),r

))⊆ BLp

(
αx,1−σλα)

. (120)

To justify (120) we need to prove that ∥M2→p (w)−αx∥Lp ⩽ 1−σλα for every w ∈ L2 satisfying

∥w −Mp→2(x)∥L2 ⩽ r. (121)

10The constant 5 in the right hand side of (117) is neither optimal nor does it have meaningful impact on the ensuing results.
11Stating (118) for general parameters α,λ,σ is beneficial because its proof is simpler to read without making choices that

are arbitrary at this juncture, and also this could be relevant for future investigations. Below, we will use (118) for α= 1/p and
λ=σ= 1/2, which suffices for the specific application herein even though these choices of λ,σ are not optimal for the ensuing
reasoning; its optimization leads to a different settings of λ,σ (specifically, σ= 2/3 and λ= (5−p

13)/2 = 0.697... turn out to be
best), but this only impacts the value of the (implicit) universal constant factors in our results.
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This indeed holds thanks to the following application of Lemma 35 with y = M2→p (w):

∥M2→p (w)−αx∥Lp

(117)
⩽

(
(1−λα)p +

5∥w −Mp→2(x)∥2
L2

(1−λ)pα

) 1
p (121)

⩽
(
(1−λα)p + 5r 2

(1−λ)pα

) 1
p (119)= 1−σλα.

Having established (118), we will use it by noting that for α= 1
p and λ=σ= 1

2 it implies that

∀x ∈ BLp , radLp

(
M2→p

(
BL2 (Mp→2(x),γ)

))
⩽ 1− 1

4p
, (122)

where γ> 0 is a universal constant. To deduce Lemma 34 from (122), fix z ∈ Lp and ∆> 0, and define

∀x ∈ Lp , f z
∆ (x)

def= K∆Mp→2

( 1

K∆
(x − z)

)
∈ L2, where K = K (p)

def= 1+ 1

4p
. (123)

Then, f z
∆ : Lp → L2 is a bijection whose inverse is given by

∀w ∈ L2,
(

f z
∆

)−1(w) = z +K∆M2→p

( 1

K∆
w

)
. (124)

Since (K∆)−1(x − z) ∈ BLp for every x ∈ BLp (z,K∆), it follows that

∀x ∈ BLp (z,K∆), radM

((
f z
∆

)−1(BL2 ( f z
∆ (x),γK∆)

)) (122)∧(123)∧(124)
⩽

(
1− 1

4p

)
K∆

(123)< ∆. (125)

By [75, equation (5.32)] we have ∥Mp→2∥Lip(Lp ;L2) < p/
p

2, so also ∥ f z
∆∥Lip(Lp ;L2) < p by (123). Conse-

quently, for every x ∈ Lp we have BL2 ( f z
∆ (x),γK∆)) ⊇ BL2 ( f z

∆ (x), (γK /p)∥ f ∥Lip∆)), so, recalling Defini-
tion 33, we see that (125) implies that Lp admits a K -localized radially weakly bi-Lipschitz embedding
into L2 with distortion D , where K = K (p) is given in (123), so K−1 ≍ 1/p, and D = D(p) = p/(Kγ) ≍ p. □

Remark 36. The above proof of Lemma 34 yields (31) forβ=
√

4
p

e −1/
p

5e ∈ [0.14,0.15], as seen from (120)
while recalling (119) with our choices α= 1/p and λ=σ= 1/2, and using ∥Mp→2∥Lip(Lp ;L2) < p/

p
2.

By a straightforward tensorization argument, Lemma 35 can be deduced from its one-dimensional
counterpart, which amounts to the following numerical fact:

Lemma 37. If p ⩾ 2, then the following estimate holds for every 0 <α⩽ 1
p and every 0 <λ< 1:

∀u, v ∈R,
∣∣∣|u + v | 2

p sign(u + v)−α|u| 2
p sign(v)

∣∣∣p
⩽ (1−λα)p u2 + 5v2

(1−λ)pα
. (126)

We will next explain how to quickly deduce Lemma 35 from Lemma 37:

Proof of Lemma 35 assuming Lemma 37. Fixing x, y ∈ Lp , define u = u(x), v = v(x, y) ∈ L2 by

u
def= Mp→2(x) and v

def= Mp→2(y)−Mp→2(x). (127)

Then,

∥y −αx∥p
Lp

=
∫ 1

0
|y(t )−αx(t )|p dt

(29)∧(127)=
∫ 1

0

∣∣|u(t )+ v(t )| 2
p sign

(
u(t )+ v(t )

)−α|u(t )| 2
p sign

(
v(t )

)∣∣p dt

(126)
⩽ (1−λα)p∥u∥2

L2
+ 5

(1−λ)pα
∥v∥2

L2

(127)= (1−λα)p∥Mp→2(x)∥2
L2
+ 5

(1−λ)pα

∥∥Mp→2(y)−Mp→2(x)
∥∥2

L2
.

This coincides with (117) because ∥Mp→2(x)∥L2 = ∥x∥Lp . □
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Proof of Lemma 37. If u = 0, then (126) holds (with room to spare), so assume u ̸= 0. By normalization, it
suffices to prove (126) when u = 1, i.e., our goal is equivalent to establishing the following estimate:

∀v ∈R,
∣∣∣|1+ v | 2

p sign(1+ v)−α
∣∣∣p

⩽ (1−λα)p + 5v2

(1−λ)pα
. (128)

Suppose first that v ⩾−1+αp/2, in which case our goal (128) becomes the following inequality:

(1+ v)
2
p ⩽α+

(
(1−λα)p + 5v2

(1−λ)pα

) 1
p

. (129)

If also |v |⩽ √
15(1−λ)pα/20, which will see is when (129) is most meaningful, then we proceed as fol-

lows. The function (t > 0) 7→ (1+ t )1/t is decreasing, so (1+ t )1/t ⩾ (19/4)4/15 > e2/5 for 0 < t ⩽ 15/4.
Hence, (1+ t )1/p ⩾ e2t/(5p) ⩾ 1+2t/(5p) for 0⩽ t ⩽ 15/4. Using this for t = 5v2/((1−λ)pα)⩽ 15/4, we get(

1+ 5v2

(1−λ)pα

) 1
p

⩾ 1+ 2v2

(1−λ)p2α
. (130)

We can therefore bound the right hand side of (129) from below as follows:

α+
(
(1−λα)p + 5v2

(1−λ)pα

) 1
p

⩾α+ (1−λα)

(
1+ 5v2

(1−λ)pα

) 1
p (130)

⩾ 1+ (1−λ)α+ 2(1−λα)v2

(1−λ)p2α

⩾ 1+ (1−λ)α+ v2

(1−λ)p2α
= 1+ 2

p
v +

(
v

p
p

(1−λ)α
−

√
(1−λ)α

)2

⩾ 1+ 2

p
v ⩾ (1+ v)

2
p ,

(131)

where the third step of (131) holds because 1−λα⩾ 1−1/p ⩾ 1/2, as 0 <λ< 1, 0⩽α⩽ 1/p and p ⩾ 2, and
the final step of (131) holds because 0 < 2/p ⩽ 1, so the function (v >−1) 7→ 1+2v/p−(1+y)2/p attains its
global minimum when v = 0, where it vanishes. We have thus completed the verification of (129) when
|v |⩽√

15(1−λ)pα/20. If
√

15(1−λ)pα/20 < |v |⩽ 1, then (129) holds because

(1+ v)
2
p ⩽ 2

2
p =

(
1

4
+ 15

4

) 1
p

⩽
(

1

4
+ 5v2

(1−λ)pα

) 1
p

<α+
(
(1−λα)p + 5v2

(1−λ)pα

) 1
p

, (132)

where in the last step of (132) we used that (1−λα)p ⩾ (1− 1/p)p ⩾ 1/4, as λα ⩽ α ⩽ 1/p ⩽ 1/2. The
remaining case of (129) is when v ⩾ 1 , which holds (with room to spare) because in this case we have

(1+ v)
2
p ⩽ (2v)

2
p < (

5v2) 1
p <α+

(
(1−λα)p + 5v2

(1−λ)pα

) 1
p

,

where the last step is valid because (1−λ)pα< pα⩽ 1.
It remains to check (128) for v <−1+αp/2, in which case set w =−v > 1−αp/2 > 0 and (128) becomes:

α−|w −1| 2
p sign(1−w)⩽

(
(1−λα)p + 5w2

(1−λ)pα

) 1
p

. (133)

But (133) is very crude since−|w−1|2/p sign(1−w) < (5/((1−λ)pα))1/p w2/p , as 5/((1−λ)pα) > 5/(pα) > 5,
and also α⩽ (1−α) < (1−λα), as α⩽ 1/p ⩽ 1/2. This completes the proof of Lemma 37. □

5. LOCALIZATION AND INDUCTION ON SCALES FOR SEPARATED RANDOM PARTITIONS

Here we will prove the general localization and induction on scales principle that was formulated as
Lemma 16. All of the relevant definitions were provided in the Introduction. In particular, the notion of
radially bounded separating random partitions was introduced in Section 1.3.3.
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Proof of Lemma 16. We will prove that the following inequality holds for every K > 1 and every ∆,ε > 0,
even without the assumption (27) of Lemma 16, namely for any separable metric space (M,dM):

�SEP∆(C;M)⩽
1

K
�SEPK∆(C;M)+ sup

z∈M
�SEP∆(

C∩BM(z,K∆+ε);M
)
. (134)

Accepting the validity of (134) for the moment (its justification appears below), we will next proceed to
explain how to use it to quickly deduce Lemma 16.

Suppose first that �SEP∆(C;M) <∞, which is when (28) is most meaningful. Then, �SEP∆′(C;M) <∞
for every∆′ ⩾∆. We may therefore rearrange the limit as ε→ 0+ of (134) with∆ replaced by K s∆ for every
integer s ⩾ 0 to obtain the following recursive estimate:

1

K s
�SEPK s∆(C;M)− 1

K s+1
�SEPK s+1∆(C;M)⩽

1

K s lim
ε→0+ sup

z∈M
�SEPK s∆

(
C∩BM(z,K s+1∆+ε);M

)
. (135)

Thanks to the assumption (27), by summing (135) over s ∈N∪ {0} and telescoping we get (28), as K > 1.
If �SEP∆(C;M) =∞, then we need to demonstrate that the right hand side of (28) is also infinite. This

is so because the assumption (27) implies in particular that there is s ∈N for which SEPK s∆(C;M) <∞,
whence also �SEPK s∆(C;M) < ∞ by (26). We can therefore consider the largest nonnegative integer s0

for which �SEPK s0∆(C;M) =∞. By applying (134) with ∆ replaced by K s0∆, we see that since the left hand
side of that inequality is infinite while the first term in the right hand side of that inequality is finite by the
maximality of s0, necessarily supz∈M �SEPK s0∆(C∩BM(z,K s0+1∆+ε);M) =∞ for every ε > 0. Therefore
the s0-summand in the right hand side of (28) is infinite, as required.

To prove (134), fix ε> 0. Define σ,τ> 0 by

σ
def= �SEPK∆(C;M) and τ

def= sup
z∈M

�SEP∆(
C∩BM(z,K∆+ε);M

)
. (136)

We may assume from now that σ,τ< 0 because otherwise (134) is vacuous.
Fix η> 0. The definition ofσ in (136) yields the existence of a probability space (Ω0,µ0) and a sequence

of strongly measurable mappings {
Φi :Ω0 → 2C

}∞
i=1

satisfying

∀(i ,ω0) ∈N×Ω0 radM

(
Φi (ω0)

)
⩽K∆, (137)

and furthermore if we define

∀ω0 ∈Ω0, Qω0 def= {
Φi (ω0)

}∞
i=1, (138)

then Qω0 is a partition of C for each ω0 ∈Ω0, and the following requirement holds:

∀x, y ∈C, µ0
[
ω0 ∈Ω0 : Qω0 (x) ̸=Qω0 (y)

]
⩽
σ+η
K∆

dM(x, y). (139)

Because M is separable, we can fix a sequence {un}∞n=1 that is dense in M. Thanks to (137) we can
then define a sequence of random indices {ni :Ω0 →N}∞i=1 ⊆N as follows:

∀ω0 ∈Ω, ni (ω0)
def= min

{
n ∈N : Φi (ω0) ⊆ BM(un ,K∆+ε)

}
. (140)

Note in passing (so that we could use it freely later) that the measurability of all of these random indices
is a quick consequence of the strong measurability of each of {Φi :Ω0 → 2C}∞i=1. Indeed, for every i ,n ∈N,{

ω0 ∈Ω0 : ni (ω0) = n
}

= {
ω0 ∈Ω0 : Φi (ω0)∩ (

C∖BM(un ,K∆+ε)
)=;}⋂

(n−1⋂
k=1

{
ω0 ∈Ω0 : Φi (ω0)∩ (

C∖BM(uk ,K∆+ε)
) ̸= ;})

.
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Next, by the definition of τ in (134) for every n ∈N there is a probability space (Ωn ,µn) and a sequence
of strongly measurable mappings {

Ψ
j

n :Ωn → 2C∩BM(un ,K∆+ε)
}∞

j=1

satisfying

∀( j ,n) ∈N×N, ∀ωn ∈Ωn radM

(
Ψ

j
n (ωn)

)
⩽∆, (141)

and furthermore if we define

∀n ∈N, ∀ωn ∈Ωn , R
ωn
n

def= {
Ψ

j
n (ωn)

}∞
i=1, (142)

then R
ωn
n is a partition of C∩BM(un ,K∆+ε) for each ωn ∈Ωn , and the following requirement holds:

∀x, y ∈C∩BM(un ,K∆+ε), µn
[
ωn ∈Ωn : Rωn

n (x) ̸=R
ωn
n (y)

]
⩽
τ+η
∆

dM(x, y). (143)

We will henceforth work with the product space (Ω,µ) that is given by:

Ω
def=

∞∏
n=0

Ωn and µ
def=

∞⊗
n=0

µn . (144)

For every i , j ∈N define Γi , j :Ω→ 2C by:

∀(i , j ) ∈N×N, ∀ω= (ω0,ω1, . . .) ∈Ω, Γi , j (ω)
def= Φi (ω0)∩Ψ j

ni (ω0)

(
ωni (ω0)

)
. (145)

The strong measurability of Γi , j follows from the assumed strong measurability of {Ψ j
n}∞j ,n=1, together

with the measurability of {ni }∞i=1 that we verified above, as a consequence of the assumed strong mea-

surability of {Φi }∞i=1. Indeed, suppose that E ⊆C is closed. Forω= (ω0,ω1, . . .) ∈Ω, definition (145) shows

that Γi , j (ω)∩E ̸= ; if and only ifΨ j
ni (ω0)

(
ωni (ω0)

)∩E ̸= ;, as E ⊆C and {Φi (ω0)}∞i=1 is a partition of C. Thus,{
ω ∈Ω : Γi , j (ω)∩E ̸= ;}

=
∞⋃

i=1

∞⋃
j=1

∞⋃
n=1

{
ω0 ∈Ω0 : ni (ω0) = n

}×Ω1 × . . .×Ωn−1 ×
{
ωn ∈Ωn : Ψ j

n (ωn)∩E ̸= ;}× ∞∏
k=n+1

Ωk .

Therefore, we can consider the random partition of C that is given by

∀ω= (ω0,ω1, . . .) ∈Ω, Pω
def= {

Γi , j (ω)
}∞

i , j=1,

which satisfies radM(Pω(x))⩽∆ for every x ∈C thanks to (141) and (145). Finally, every x, y ∈C satisfy:

µ
[
ω ∈Ω : Pω(x) ̸=Pω(y)

]
(145)= 1−

∞∑
i=1

∞∑
j=1

µ
[
ω ∈Ω : Φi (ω0) ⊇ {x, y} and Ψ

j
ni (ω0)

(
ωni (ω0)

)⊇ {x, y}
]

= 1−
∞∑

i=1

∞∑
j=1

∞∑
n=1

µ
[
ω ∈Ω : Φi (ω0) ⊇ {x, y} and ni (ω0) = n and Ψ

j
n (ωn) ⊇ {x, y}

]
(144)= 1−

∞∑
i=1

∞∑
j=1

∞∑
n=1

µ0
[
ω ∈Ω0 : Φi (ω0) ⊇ {x, y} and ni (ω0) = n

]
µn

[
ωn ∈Ωn : Ψ j

n (ωn) ⊇ {x, y}
]

(142)= 1−
∞∑

n=1

(
1−µn

[
ωn ∈Ωn : Rωn

n (v) ̸=R
ωn
n (y)

]) ∞∑
i=1

µ0
[
ω ∈Ω0 : Φi (ω0) ⊇ {x, y} and ni (ω0) = n

]
(143)∧(138)

⩽ 1−
(
1−min

{
1,
τ+η
∆

dM(x, y)
})
µ0

[
ω0 ∈Ω0 : Qω0 (x) ̸=Qω0 (y)

]
(139)
⩽ 1−

(
1−min

{
1,
τ+η
∆

dM(x, y)
})(

1−min
{
1,
σ+η
K∆

dM(x, y)
})
⩽

σ+η
K +τ+η

∆
dM(x, y).

33



By taking the limit of this estimate as η→ 0+ we conclude that (134) indeed holds. □

6. ANALYTIC SEPARATION IS PRESERVED UNDER LOCALIZED RADIALLY WEAKLY BI-LIPSCHITZ EMBEDDINGS

We will need to impose a stronger measurability requirement from random partitions to be able to eas-
ily use localized radially weakly bi-Lipschitz embeddings to transfer separating random partitions from
one metric space to another; this is the mechanism by which the proof of Theorem 14 will be completed.

Given a Polish metric space (M,dM) and a probability space (Ω,P), call a sequence of set-valued map-
pings {Γi :Ω→ 2M}∞i=1 an analytic random partition of M if for every i ∈N and every analytic subset A of

M the set {ω ∈Ω : A∩Γi (ω)} is P-measurable. For this, we recall the standard terminology that a metric
space is called Polish if it is separable and complete and a subset of a Polish metric space is analytic if it
is a continuous image of a Polish metric space; see [45] for a thorough treatment and [59] for the history.

Because closed subsets of a Polish metric space are analytic, any analytic random partition is in partic-
ular a random partition per the definition that we recalled in Section 1.3. The following theorem from [80]
provides examples of analytic random partitions with good (optimal) separation properties:

Theorem 38. For each k ∈N and 1 ⩽ p ⩽∞ there is 1 ⩽ σ = σ(p,k) ≲ k
max

{
1
p , 1

2

}
such that for any ∆ > 0

there exists an analytic random partition of ℓk
p that is ∆-bounded and σ-separating.

The Introduction of [80] states Theorem 38 without mentioning that the corresponding random parti-
tions are analytic, but their analyticity is stated in [80, Lemma 119], which is what is applied in the proof
of [80, Lemma 125] to derive the measurability of the random partition that Theorem 38uses.12 We will
use below only the case p = 2 of Theorem 38, for which the underlying construction for finite subsets of
ℓk

2 is due to [23], and its extension to random partitions of all of ℓk
2 is due to [53, 80]. The short proof of

following basic and useful lemma clarifies why it is beneficial to consider analytic random partitions:

Lemma 39. Fix σ,∆,R,L > 0. Let (N,dN) be a Polish metric space admitting an analytic random partition
that is (LR)-bounded and σ-separating. Suppose that (M,dM) is a Polish metric space, S ⊆M is a Borel
subset of M, and that ϕ : S→N is an L-Lipschitz function that satisfies the following property:

∀x ∈ S, radM

(
ϕ−1(BN(ϕ(x),LR)

))
⩽∆. (146)

Then, (S,dM) admits an analytic random partition that is∆-radially bounded andσ∆R -separating. Hence,

�SEP∆(S;M)⩽σ
∆

R
.

Proof. Fix a probability space (Ω,µ) and an analytic random partition

P= {
Γi :Ω→ 2N

}∞
i=1 (147)

that is (LR)-bounded and σ-separating. If E ⊆ S is analytic, then ϕ(E) ⊆N is analytic as ϕ is continuous,
whence by the assumed analyticity of the random partition (147) for every i ∈N the set{

ω ∈Ω : ϕ−1(Γi (ω)
)∩E ̸= ;}= {

ω ∈Ω : Γi (ω)∩ϕ(E) ̸= ;}
is µ-measurable. So, the following sequence of set-valued mappings is an analytic random partition of S:

Q = {
(ω ∈Ω) 7→Qω

} def= {
(ω ∈Ω) 7→ϕ−1(Γi (ω)

)⊆ S
}∞

i=1, (148)

A different way to write (148) is:

∀ω ∈Ω, ∀x ∈ S, Qω(x)
(147)∧(148)= ϕ−1

(
Pω

(
ϕ(x)

))
. (149)

12To notice that the statement of [80, Lemma 119] provides the measurability that we need, recall the important classical
theorem of Luzin [61] (see also e.g. [45, Theorem 21.10]) that analytic sets are universally measurable, i.e., they are measurable
with respect to every complete σ-finite Borel measure on the given Polish metric space.
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BecauseP is (RL)-bounded by assumption, diamN(Pω(ϕ(x)))⩽RL for everyω ∈Ω and x ∈M, whence
Pω(ϕ(x)) ⊆ BN(ϕ(x),RL). Thanks to (149), this implies that Qω(x) is contained in ϕ−1(BN(ϕ(x),RL)).
By invoking the assumption (146) we conclude that the random partition Q is ∆-radially bounded with
respect to the super-space (M,dM). Finally, for every x, y ∈ S we have

µ
[
ω ∈Ω : Qω(x) ̸=Qω(y)

] (149)= µ
[
ω ∈Ω : Pω

(
ϕ(x)

) ̸=Pω
(
ϕ(y)

)]
⩽σ

dN

(
ϕ(x),ϕ(y)

)
LR

⩽
(σ∆

R

)dM(x, y)

∆
,

(150)

where the second step of (150) uses the assumption that P is σ-separating and (LR)-bounded, and the
third step of (150) uses the assumption that ϕ is L-Lipschitz. We already checked that Q is ∆-radially
bounded with respect to (M,dM), so it follows from (150) that �SEP∆(S;M)⩽σ∆/R, as required. □

The following lemma sets the stage for our subsequent application of Lemma 39; its short proof pro-
ceed by combining two important Euclidean results, namely the Kirszbraun Lipschitz extension theo-
rem [46] and the Johnson–Lindenstrauss dimension lemma [41].

Lemma 40. For any C⊆ L2 with 2⩽ |C| <∞ there is an integer 1⩽ k ≲ log |C| and H : L2 → ℓk
2 satisfying:

∀x, y ∈ L2,
1

2
∥x − y∥L2 −

3

2
dL2 (x,C)− 3

2
dL2 (y,C)⩽ ∥H(x)−H(y)∥ℓk

2
⩽ ∥x − y∥L2 . (151)

Therefore, the following inclusion holds for any r > 0 and any point x in the r -neighborhood BL2 (C,r ) of C:

BL2 (C,r )∩H−1(Bℓk
2

(H(x),r )
)⊆ BL2 (x,8r ). (152)

For (152), recall our (nonstandard) notation (18) for neighborhoods of subsets in a metric space.

Proof of Lemma 40. (152) follows from the first inequality in (151). Indeed, fix r > 0 and x ∈ BL2 (C,r ), i.e.,
dL2 (x,C)⩽ r . Consider any point y that belongs to the set that appears in the left hand side of(152). Thus,
y ∈ BL2 (C,r ), i.e., dL2 (y,C) ⩽ r , and H(y) ∈ Bℓk

2
(H(x),r ), i.e. ∥H(x)−H(y)∥L2 ⩽ r . By substituting these 3

bounds into the first inequality in (151) and rearranging we arrive at ∥x − y∥L2 ⩽ 8r , i.e., y ∈ BL2 (x,8r ), as
required. Lemma 40 will therefore be proven once we establish (40), which we will proceed to do next.

The Johnson–Lindenstrauss lemma [41] yields a positive integer k ≲ log |C| and h : L2 → ℓk
2 such that

∀x, y ∈C,
1

2
∥x − y∥L2 ⩽ ∥h(x)−h(y)∥ℓk

2
⩽ ∥x − y∥L2 . (153)

Now, Kirszbraun’s Lipschitz extension theorem [46] provides a function H : L2 → ℓk
2 satisfying:

∀a ∈C, H(a) = h(a) and ∀x, y ∈ L2, ∥H(x)−H(y)∥ℓk
2
⩽ ∥x − y∥L2 . (154)

Given x, y ∈ L2, the second inequality in (151), i.e., the fact that H is 1-Lipschitz, coincides with the
second condition in (154). For the first inequality in (151) fix a,b ∈ L2 such that

a,b ∈C and ∥x −a∥L2 = dL2 (x,C) and ∥y −b∥L2 = dL2 (y,C). (155)

Then,

∥x − y∥L2 ⩽ ∥x −a∥L2 +∥a −b∥L2 +∥b − y∥L2

(153)∧(155)
⩽ dL2 (x,C)+2∥h(a)−h(b)∥ℓk

2
+dL2 (y,C)

(154)∧(155)= dL2 (x,C)+2∥H(a)−H(b)∥ℓk
2
+dL2 (y,C)

⩽ dL2 (x,C)+2
(∥H(a)−H(x)∥ℓk

2
+∥H(x)−H(y)∥ℓk

2
+∥H(y)−H(b)∥ℓk

2

)+dL2 (y,C)

(154)
⩽ dL2 (x,C)+2

(∥a −x∥L2 +∥H(x)−H(y)∥ℓk
2
+∥y −b∥L2

)+dL2 (y,C)

(155)= dL2 (x,C)+2
(
dL2 (x,C)+∥H(x)−H(y)∥ℓk

2
+dL2 (x,C)

)+dL2 (y,C).
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which rearranges to give the desired lower bound on ∥H(x)−H(y)∥ℓk
2

in the first inequality of (151). □

Lemma 41. Fix K ,D ⩾ 1. Suppose that (M,dM) is a metric space that admits a K -localized radially weakly
bi-Lipschitz embedding into L2 with distortion D. If C⊆M satisfies 2⩽ |C| <∞ and also

C⊆ BM

(
z,

(
K − 1

8D

)
∆

)
(156)

for some ∆> 0 and z ∈M, then there is an integer k =O(log |C|) a 1-Lipschitz function

ϕ : BM

(
C,

1

8D
∆

)
→ ℓk

2

such that

∀x ∈ BM

(
C,

1

8D
∆

)
, radM

(
ϕ−1

(
Bℓk

2

(
ϕ(x),

1

8D
∆

)))
<∆. (157)

Proof. Writing r
def= ∆/(8D), we have BM(C,r ) ⊆ BM(z,K∆) thanks to (156) and the triangle inequality

for dM. Hence, recalling Definition 33, the assumption of Lemma 41 implies that there is a 1-Lipschitz
function f : BM(C,r ) → L2 and 0 < R <∆ such that for any x ∈ BM(C,r ) there is yx ∈M satisfying:

f −1(BL2 ( f (x),8r )
)= f −1

(
BL2

(
f (x),

1

D
∆

))
⊆ BM(yx ,R). (158)

By applying Lemma 40 to f (C) we get an integer 1⩽ k ≲ log |C| and a 1-Lipschitz function H : L2 → ℓk
2

that satisfies the following inclusion for any v ∈ BL2 ( f (C),r ):

BL2 ( f (C),r )∩H−1(Bℓk
2

(H(v),r )
)⊆ BL2 (v,8r ).

Since f is 1-Lipschitz, f (x) ∈ BL2 ( f (C),r ) for every v ∈ BM(C,r ), so the following holds a special case:

∀x ∈ BM(C,r ), BL2 ( f (C),r )∩H−1
(
Bℓk

2

(
ϕ(x),r

))⊆ BL2 ( f (x),8r ), (159)

where we define ϕ
def= H ◦ f : BM(C,r ) → ℓk

2 . Then, ϕ is 1-Lipschitz as both f and H are 1-Lipschitz. Ob-
serve furthermore that as f is 1-Lipschitz and its domain is BM(C,r ), all of its values belong to BL2 ( f (C),r ).
Therefore (159) can we rewritten as follows:

∀x ∈ BM(C,r ), f
(
BM( f (C),r )

)∩H−1
(
Bℓk

2

(
ϕ(x),r

))⊆ BL2 ( f (x),8r ), (160)

By applying f −1 to both sides of (160) and then using (158), we conclude that

∀x ∈ BM

(
C,

1

8D
∆

)
= BM(C,r ), ϕ−1

(
Bℓk

2

(
ϕ(x),

1

8D
∆

))
= f −1

(
H−1

(
Bℓk

2

(
ϕ(x),r

)))⊆ BM(yx ,R).

The dM-radius of ϕ−1(Bℓk
2

(ϕ(x),δ/(8D))) is therefore at most R < ∆ for any x ∈ BM(C,∆/(8D)). In other
words, the desired conclusion (157) of Lemma 41 indeed holds. □

The following theorem implies Theorem 14 because if M = Lp for some p > 2, then by Lemma 34 its
assumptions hold with D ≍ p and K −1 ≍ 1/p.

Theorem 42. Fix K ,D,λ> 1. Let (M,dM) be a Polish metric space admitting a K -localized radially weakly
bi-Lipschitz embedding into L2 with distortion D. Then, every λ-doubling Borel subset D of M satisfies:

∀∆> 0, �SEP∆(
BM

(
D,

1

9D
∆

)
;M

)
≲

√
logλ

K −1
·


√
log 1

K−1

K−1 if 1 < K ⩽ 1+ 1
D ,

K D
√

log(K D) if K > 1+ 1
D .

(161)

If furthermore 2⩽ |D| <∞, then

∀∆> 0, �SEP∆(
BM

(
D,

1

9D
∆

)
;M

)
≲

√
log |D|
K −1

·
{ 1

K−1 if 1 < K ⩽ 1+ 1
D ,

K D if K > 1+ 1
D .

(162)
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Note that if |D| = n < ∞, then conclusion (163) of Theorem 42 is stronger than its conclusion (164)
unless the doubling constant λ is very large; specifically, this occurs if and only if

λ= n
o
(

1
log(eK D)

)
.

Proof of Theorem 42 . It suffices to prove Theorem 42 while imposing the further assumption K ⩾ 1+1/D
because if 1 < K < 1+1/D < 2, then we can replace D by the larger quantity 1/(K−1). Thus, we will assume
from now that K ⩾ 1+1/D and our goal becomes to prove that

�SEP∆(
BM

(
D,

1

9D
∆

)
;M

)
≲

K D
√

log(K D)

K −1

√
logλ, (163)

and correspondingly if 2⩽ |D| <∞, then

�SEP∆(
BM

(
D,

1

9D
∆

)
;M

)
≲

K D

K −1

√
log |D|. (164)

We will start by proving (163). Fix ∆> 0. Our goal is to eventually apply Lemma 16 with C replaced by
BM(D,∆/(9D)), and with K replaced by K∗, where for convenience we set the following notation:

K∗
def= K − 1

2D
. (165)

Then, our assumption K ⩾ 1+1/D ensures that

K∗−1 ≍ K −1. (166)

In particular, K∗ > 1, so this will be a valid instantiation of Lemma 16.
Fix s ⩾ 0 and define three auxiliary parameters α=α(s,∆,K ,D),β=β(s,∆,K ,D),ε= ε(s,∆,K ,D) by:

α
def=

(
K − 1

8D

)
K s
∗∆ and β

def= 1

8D
K s
∗∆− 1

9D
∆ and ε0

def=
3
8 K s∗− 1

9

D
∆. (167)

Observe for later use that because s ⩾ 0, K > K∗ > 1 and D > 1, we have:

α≍ K K s
∗∆ and α>β≍ K s∗

D
∆≍ α

K D
and ε0 ≍

K s∗
D
∆. (168)

Fix z ∈M. By a standard iteration of the assumed λ-doubling property of D, there exists a finite subset C
of D∩BM(z,α) which is β-dense in D∩BM(z,α), i.e., BM(C,β) ⊇D∩BM(z,α), and whose size satisfies:

2⩽ |C|⩽ λ
⌈

log2

(
2α
β

)⌉
. (169)

(Briefly, for completeness (see also [38, Lemma 4.1.12]): If ℓ ∈N satisfies 2ℓ⩾ 2α/β, then iterate ℓ times
the doubling condition for D to get the existence of a cover D∩BM(z,α) by λℓ balls of radiusα/2ℓ⩽β/2,
and then letC consist of one point from the intersection of each of these balls withD∩BM(z,α).) Observe
that by the definition (167) of α, the aforementioned inclusion C⊆D∩BM(z,α) can be rewritten as

C⊆D∩BM

(
z,

(
K − 1

8D

)
K s
∗∆

)
. (170)

Also, the parameters in (165) and (167) were chosen judiciously so that following inclusion holds:

BM

(
D,

1

9D
∆

)∩BM(z,K s+1
∗ ∆+ε0) ⊆ BM

(
C,

1

8D
K s
∗∆

)
. (171)

Indeed, if x ∈M satisfies dM(x, y)⩽∆/(9D) for some y ∈D, and also dM(x, z)⩽K s+1∗ ∆+ε0, then

dM(y, z)⩽ dM(x, y)+dM(x, z)⩽
1

9D
∆+K s+1

∗ ∆+ε0
(165)∧(167)= α.

Therefore, y ∈D∩BM(z,α). As C is β-dense in D∩BM(z,α), there exists c ∈C with dM(c, y)⩽β, whence:

dM(x,c)⩽ dM(x, y)+dM(y,c)⩽
1

9D
∆+β (167)= 1

8D
K s
∗∆.
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This implies that x belongs to the right hand side of (171), as required.
Thanks to (170), we may invoke Lemma 41 with ∆ replaced by K s∗∆ to get an integer k satisfying

k ≍ log |C|
(169)
≲ (logλ) log

(
α

β

)
(168)
≲ (logλ) log(K D), (172)

and a 1-Lipschitz function ϕ=ϕs,ε : BM

(
D, 1

9D∆
)∩BM(z,K s+1∗ ∆+ε0) → ℓk

2 , such that

∀x ∈ BM

(
D,

1

9D
∆

)∩BM(z,K s+1
∗ ∆+ε0), radM

(
ϕ−1

(
Bℓk

2

(
ϕ(x),

1

8D
K s
∗∆

)))
< K s

∗∆. (173)

Now, thanks to (173) we may apply Lemma 39 to S= BM(D,∆/(9D))∩BM(z,K s+1∗ ∆+ε0) ⊆M and the
target space N = ℓk

2 , for which the assumption of Lemma 39 holds for σ≲
p

K by Theorem 38, with the
parameters L = 1, R = K s∗∆/(8D) and ∆ replaced by K s∗∆, to get that:

∀z ∈M, �SEPK s∗∆

(
BM

(
D,

1

9D
∆

)∩BM(z,K s+1
∗ ∆+ε0);M

)
≲D

p
k

(172)
≲ D

√
(logλ) log(K D).

Consequently,

lim
ε→0+ sup

z∈M
�SEPK s∗∆

(
BM

(
D,

1

9D
∆

)∩BM(z,K s+1
∗ ∆+ε);M

)
⩽ sup

z∈M
�SEPK s∗∆

(
BM

(
D,

1

9D
∆

)∩BM(z,K s+1
∗ ∆+ε0);M

)
≲D

√
(logλ) log(K D).

(174)

In order to be able to use Lemma 16 in conjunction with (174), we must first check that its assump-
tion (27) holds with C replaced by BM(D,∆/(9D)), i.e., we need to verify that:

lim
T→∞

1

T
SEPT

(
BM

(
D,

1

9D
∆

))= 0. (175)

The ensuing justification of (175) is suboptimal from the quantitative perspective. We chose this route as
it is quick and for our purposes a qualitative statement (namely, without providing a rate of convergence)
such as (175) suffices. See Remark 43 below for an improved (optimal) statement.

A well-known classical result (contained in [7]; see also [37, Chapter 12] and the discussion in [29], or
e.g. the proof of [86, Theorem 5.2]) asserts that there are k = k(λ) ∈N and 0 < η = η(λ) ⩽ 1 such that for
any T > 0 there exists a function fT :M→ ℓk

2 which satisfies:

∥ fT ∥Lip(M;ℓk
2 ) ⩽ 1 and ∀a,b ∈D, dM(a,b)⩾

1

4
T =⇒ dM

(
fT (a), fT (b)

)
⩾ ηT. (176)

We will next proceed to demonstrate that the following inclusion holds:

∀T ⩾
∆

2ηD
, ∀x ∈ BM

(
D,

1

9D
∆

)
, BM

(
D,

1

9D
∆

)∩ f −1
T

(
Bℓk

2

(
fT (x),

η

2
T

))⊆ BM

(
x,

1

2
T

)
. (177)

After (177) will be established, we will proceed by fixing T ⩾∆/(2ηD) and applying Lemma 39 with both
M and S replaced by BM(D,∆/(9D)), the function ϕ replaced by the restriction of fT to BM(D,∆/(9D)),
the target space N = ℓk

2 , for which the assumption of Lemma 39 holds for σ≲
p

K by Theorem 38, and
with the parameters L = 1⩾ ∥ fT ∥Lip(M;ℓk

2 ), R = ηT /2 and ∆ replaced by T /2, to get that:

∀T ⩾
∆

ηD
, SEPT

(
BM

(
D,

1

9D
∆

)) (26)
⩽ 2�SEP 1

2 T

(
BM

(
D,

1

9D
∆

))
≲

p
k

η
≲λ 1, (178)

which handily implies (175).
Thus, it remains to prove (177), which we will next do by contradiction. The contrapositive of (177) is

that there exist T > 0, as well as x, y ∈M and a,b ∈D that satisfy:

T ⩾
∆

ηD
and ∥ fT (x)− fT (y)∥ℓk

2
⩽
ηT

2
and dM(x, a),dM(y,b)⩽

∆

9D
and dM(x, y) > T

2
. (179)
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It follows in particular from (179) that dM(a,b) is sufficiently large so that the second part of (176) applies:

dM(a,b)⩾ dM(x, y)−dM(x, a)−dM(y,b)
(179)> T

2
− 2∆

9D

(179)
⩾

T

2
− 2ηT

9
> T

4
. (180)

We may therefore use (176) to deduce the following contradictory chain of inequalities:

ηT

2

(179)
⩾ ∥ fT (x)− fT (y)∥ℓk

2
⩾ ∥ fT (a)− fT (b)∥ℓk

2
−∥ fT (x)− fT (a)∥ℓk

2
−∥ fT (y)− fT (b)∥ℓk

2

⩾ ∥ fT (a)− fT (b)∥ℓk
2
−∥ fT ∥Lip(M;ℓk

2 )

(
dM(x, a)+dM(x,b)

) (180)∧(176)
⩾ ηT − 2∆

9D

(179)
⩾ ηT − 4ηT

9
.

Having checked the assumption (27) of Lemma 16 with C replaced by BM(D,∆/(9D)) is indeed satis-
fied, substituting (174) into the conclusion (28) of Lemma 16 and K replaced by K∗ gives:

�SEP∆(
BM

(
D,

1

9D
∆

)
;M

)
≲D

√
(logλ) log(K D)

∞∑
s=0

1

K s∗
= K∗D

√
log(K D)

K∗−1
logλ,

which implies the desired estimate (163) by the definition (165) of K∗ and (166).
The justification of the finitary variant (164) is identical to the above reasoning, except that in this case

one can simply work with C=D, and then replace the bound on k in (172) by k ≲ log |D|. □

Remark 43. An optimal version of (178) is the following statement. There is a universal constant C > 0
such that if (M,dM) is a metric space and D⊆M is complete and λ-doubling for some λ⩾ 2, then:

∀r > 0, ∀T ⩾Cr, SEPT
(
BM(D,r )

)
≲ logλ. (181)

IfD is compact, then (181) follows from [53, Theorem 3.17] applied to any λO(1)-doubling nondegenerate
measure σ on D; the existence of such a measure is due to [96], though the aforementioned dependence
of its doubling constant on λ is not stated there but instead follows from an inspection of its proof (see
also [37, Chapter 13]). IfD is complete but not necessarily compact, then (181) is not proved in the litera-
ture but we will next indicate two ways to justify it. One such route is to use [53, Corollary 3.12] to obtain
a O(logλ)-padded partition of D, then use [53, Lemma 3.8] to extend it to a O(logλ)-padded random
partition of BM(D,r ), and finally use [51, Theorem 2.2] to transform the extended random partition to
a random partition of BM(D,r ) that is O(logλ)-separating. However, [51] is an unpublished manuscript
and one needs to justify the measurability that we need of each of the above steps (we checked that this is
indeed the case, but it is somewhat tedious and does not appear in the literature). An alternative way to
prove (181) is to follow the approach in the proof of [53, Theorem 3.17] whenσ is now the λO(1)-doubling
nondegenerate measure σ on D whose existence is proved in [60] (since D is complete). As this σ can
have infinite mass (unlike the compact case), one needs to incorporate a (somewhat involved) reasoning
that is a suitable adaptation of what was done in [80, Chapter 4]; an upshot of this route is that the mea-
surability that we need is already worked out in [80]. Both of the above ways to demonstrate (181) result
in digressions that are lengthier than how we proceeded above to establish (178), albeit suboptimally.

7. DEDUCTION OF THEOREM 13 FROM [53]

Here will explain how to quickly derive Theorem 13 from one of the main results of [53].

Proof of Theorem 13. Fix L > 0 and denote

σ
def= sup

∆>0
SEP∆

(
BM

(
C,

1

L
∆

))
.

We may assume that σ <∞ as otherwise (19) is vacuous. Fix ∆ > 0. By the definition of σ, for any ε > 0
there exists a probability space (Ω,P) = (Ωε,∆,L ,Pε,∆,L) and a random partition

P
def= Pε,∆,L =

{
Γi :Ω→ 2BM

(
C, 1

L∆
)}∞

i=1
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of BM(C,∆/L) that is ∆-bounded and (σ+ ε)-separating. Because C is nonempty and locally compact,
by [80, Lemma 115] for each i ∈N there exists a P-to-Borel measurable function γi :Ω→C that satisfies

∀ω ∈Ω, Γi (ω) ̸= ; =⇒ dM

(
γi (ω),Γi (ω)

)= dM

(
C,Γi (ω)

)
. (182)

For each x ∈M∖BM(C,∆/L) fix any cx ∈ C with dM(x,cx ) < 2dM(x,C). Denote by Γx : Ω→ 2M and
γx : Ω→ C the constant (set-valued and point-valued, respectively) functions that are given by setting
Γx (ω) = {x} and γx (ω) = cx for every ω ∈Ω. Then, the following forms a stochastic decomposition13 of M
with respect to C in the sense of [53, Definition 3.1]:(

Ω,P, {Γi (·),γi (·)}∞i=1 ∪ {Γx (·),γx (·)}x∈M∖BM

(
C, 1

L∆
)). (183)

By combining [53, Lemma 2.1] and [53, Theorem 4.1, part 3.] it suffices to check that the stochastic
decomposition (183) is ∆-bounded and (1/(2L),1/max{2L,σ+ ε})-separating with respect to C, in the
sense of [53, Definition 3.2] and [53, Definition 3.7], respectively. The former requirement is immediate
as (183) adds singleton clusters to the random partition P. The latter requirements mean that if we write

∀ω ∈Ω, Qω def= Pω∪{
{x}

}
x∈M∖BM

(
C, 1

L∆
), (184)

then

∀x, y ∈M, dM({x, y},C)⩽
1

2L
∆ =⇒ P

[
Qω(x) ̸=Qω(y)

]
⩽

max{2L,σ+ε}

∆
dM(x, y). (185)

To verify (185), fix x, y ∈M with dM({x, y},C)⩽∆/(2L). Assume that also dM(x, y) <∆/(2L), as otherwise
the right hand side of (185) is at least 1. So, max{dM(x,C),dM(y,C)}⩽ dM({x, y},C)+dM(x, y)⩽∆/L, i.e.,
x, y ∈ BM(C,∆/L), whence (185) follows from the definition (184) of Q and the fact that P is assumed to
be a (σ+ε)-separating random partition of BM(C,∆/L). □

Remark 44. We assumed in Theorem 13 that C is locally compact only for invoking [80, Lemma 115] to
get measurable functions {γi :Ω→C}∞i=1 that satisfy (182) (an inspection of the proof of [80, Lemma 115]
reveals that all that is required for this is that C is σ-compact). One can alternatively stipulate the exis-
tence of such functions (even with the weaker requirement dM(γi (ω),Γi (ω)) < 2dM(C,Γi (ω)) in (182)) as
part of the assumption of Theorem 13. This would be analogous to the route that was pursued in [53],
which axiomatizes the minimal assumptions that are needed for its proofs. However, it is hard to main-
tain such an assumption under various natural operations, including those that are applied herein, such
as preimages under Lipschitz functions and intersections. The foundational reworking of [80] circum-
vents such issues by imposing stronger measurability requirements that are readily seen to be perserved
under natural geometric operations; adopting this approach facilitates the constructions herein.
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