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Abstract

We devise a new embedding technique, which we call measured descent, based on decompos-
ing a metric space locally, at varying speeds, according to the density of some probability mea-
sure. This provides a refined and unified framework for the two primary methods of constructing
Fréchet embeddings for finite metrics, due to [Bourgain, 1985] and [Rao, 1999]. We prove that
any n-point metric space (X, d) embeds in Hilbert space with distortion O(

√
αX · log n), where

αX is a geometric estimate on the decomposability of X. As an immediate corollary, we ob-
tain an O(

√
(log λX) log n) distortion embedding, where λX is the doubling constant of X.

Since λX ≤ n, this result recovers Bourgain’s theorem, but when the metric X is, in a sense,
“low-dimensional,” improved bounds are achieved.

Our embeddings are volume-respecting for subsets of arbitrary size. One consequence is
the existence of (k, O(log n)) volume-respecting embeddings for all 1 ≤ k ≤ n, which is the
best possible, and answers positively a question posed in [Feige, 1998]. Our techniques are also
used to answer positively a question of Y. Rabinovich, showing that any weighted n-point planar
graph embeds in `

O(log n)
∞ with O(1) distortion. The O(log n) bound on the dimension is optimal,

and improves upon the previously known bound of O((log n)2).

1 Introduction

The theory of low-distortion embeddings of finite metric spaces into normed spaces has attracted
a lot of attention in recent decades, due to its intrinsic geometric appeal, as well as its applications
in Computer Science. A major driving force in this research area has been the quest for analogies
between the theory of finite metric spaces and the local theory of Banach spaces. While being
very successful, this point of view did not always result in satisfactory metric analogues of basic
theorems from the theory of finite-dimensional normed spaces. An example of this is Bourgain’s
embedding theorem [Bou85], the forefather of modern embedding theory, which states that every
n-point metric space embeds into a Euclidean space with distortion O(log n). This upper bound on
the distortion is known to be optimal [LLR95]. Taking the point of view that log n is a substitute
for the dimension of an n-point metric space (see [Bou85]; this approach is clearly natural when
applied to a net in the unit ball of some normed space), an analogue of John’s theorem [Joh48]
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would assert that n-point metrics embed into Hilbert space with distortion O(
√

log n). As this is
not the case, the present work is devoted to a more refined analysis of the Euclidean distortion of
finite metrics, and in particular to the role of a metric notion of dimension.

We introduce a new embedding method, called measured descent, which unifies and refines the
known methods of Bourgain [Bou85] and Rao [Rao99] for constructing Fréchet-type embeddings
(i.e. embeddings where each coordinate is proportional to the distance from some subset of the
metric space). Our method yields an embedding of any n-point metric space X into `2 with
distortion O(

√
αX log n), where αX is a geometric estimate on the decomposability of X (see

Definition 1.3 for details). As αX ≤ O(log n), we obtain a refinement of Bourgain’s theorem,
and when αX is small (which includes several important families of metrics) improved distortion
bounds are achieved. This technique easily generalizes to produce embeddings which preserve
higher dimensional structures (i.e. not just distances between pairs of points). For instance, our
embeddings can be made volume-respecting in the sense of Feige (see Section 1.2), and hence we
obtain optimal volume-respecting embeddings for arbitrary n-point spaces.

Applications. In recent years, metric embedding has become a frequently used algorithmic tool.
For example, embeddings into normed spaces have found applications to approximating the spars-
est cut of a graph [LLR95, AR98, ARV04] and the bandwidth of a graph [Fei00, DV01], and to
distance labeling schemes (see e.g. [Ind01, Sec. 2.2]). The embeddings introduced in this paper
refine our knowledge on these problems, and in some cases improve the known algorithmic re-
sults. For instance, they immediately imply an improved approximate max-flow/min-cut theorem
(and algorithm) for graphs excluding a fixed minor, an improved algorithm for approximating the
bandwidth of graphs whose metric has a small doubling constant, and so forth.

1.1 Notation

Let (X, d) be an n-point metric space. We denote by B(x, r) = {y ∈ X : d(x, y) < r} the open ball
of radius r about x. For a subset S ⊆ X, we write d(x, S) = miny∈S d(x, y), and define diam(S) =
maxx,y∈S d(x, y). We recall that the doubling constant of X, denoted λX , is the least value λ such
that every ball in X can be covered by λ balls of half the radius [Lar67, Ass83, Luu98, Hei01].
We say that a measure µ on X is non-degenerate if µ(x) > 0 for all x ∈ X. For a non-degenerate
measure µ on X define Φ(µ) = maxx∈X µ(X)/µ(x) to be the aspect ratio of µ.

Let (X, dX) and (Y, dY ) be metric spaces. A mapping f : X → Y is called C-Lipschitz if
dY (f(x), f(y)) ≤ C · dX(x, y) for all x, y ∈ X. The mapping f is called K-bi-Lipschitz if there
exists a C > 0 such that

CK−1 · dX(x, y) ≤ dY (f(x), f(y)) ≤ C · dX(x, y),

for all x, y ∈ X. The least K for which f is K-bi-Lipschitz is called the distortion of f , and is
denoted dist(f). The least distortion with which X may be embedded in Y is denoted cY (X). When
Y = Lp we use the notation cY (·) = cp(·). Finally, the parameter c2(X) is called the Euclidean
distortion of X.

Metric Decomposition. Let (X, d) be a finite metric space. Given a partition P = {C1, . . . , Cm}
of X, we refer to the sets Ci as clusters. We write PX for the set of all partitions of X. For x ∈ X
and a partition P ∈ PX we denote by P (x) the unique cluster of P containing x. Finally, the set
of all probability distributions on PX is denoted DX .
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Definition 1.1 (Padded decomposition). A (stochastic) decomposition of a finite metric space
(X, d) is a distribution Pr ∈ DX over partitions of X. Given ∆ > 0 and ε : X → (0, 1], a ∆-bounded
ε-padded decomposition is one which satisfies the following two conditions.

1. For all P ∈ supp(Pr), for all C ∈ P , diam(C) ≤ ∆.

2. For all x ∈ X, Pr[B(x, ε(x)∆) * P (x)] ≤ 1
2 .

We will actually need a collection of such decompositions, with the diameter bound ∆ > 0
ranging over all integral powers of 2 (of course the value 2 is arbitrary).

Definition 1.2 (Decomposition bundle). Given a function ε : X × Z → (0, 1], an ε-padded
decomposition bundle on X is a function β : Z→ DX , where for every u ∈ Z, β(u) is a 2u-bounded
ε(·, u)-padded stochastic decomposition of X.

Finally, we associate to every finite metric space an important “decomposability” parameter
αX . (See [LN04] for relationships to another notions of decomposability.)

Definition 1.3 (Modulus of padded decomposability). The modulus of padded decomposabil-
ity of a finite metric space (X, d) is defined as

αX = inf{α : there exists an ε-padded decomposition bundle on X with ε(x, u) ≡ 1/α}.

It is known that αX = O(log n) [LS93, Bar96], and furthermore αX = O(log λX) [GKL03].
Additionally, if X is the shortest-path metric on an n-point constant-degree expander, then αX =
Ω(log n) [Bar96]. For every metric space X induced by an edge-weighted graph which excludes Kr,r

as a minor, it is shown in the sequence of papers [KPR93, Rao99, FT03] that αX = O(r2).

Volume-respecting embeddings. We recall the notion of volume-respecting embeddings, which
was introduced by Feige [Fei00] as a tool in his study of the graph bandwidth problem. Let S ⊆ X
be a k-point subset of X. We define its volume by

vol(S) = sup{volk−1(conv(f(S))) : f : S → L2 is 1-Lipschitz},

where for A ⊆ L2, conv(A) denotes its convex hull and the (k − 1)-dimensional volume above is
computed with respect to the Euclidean structure induced by L2. A mapping f : X → L2 is called
(k, η)-volume-respecting if it is 1-Lipschitz and for every k-point subset S ⊂ X,

[
vol(S)

volk−1(conv(f(S)))

] 1
k−1

≤ η.

It is easy to see that a 1-Lipschitz map f : X → L2 has distortion D if and only if it is (2, D)-
volume-respecting. Thus the volume-respecting property is a generalization of distortion to larger
subsets.

1.2 Results

The following theorem refines Bourgain’s result in terms of the decomposability parameter.
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Theorem 1.4 (Padded embedding theorem). For every n-point metric space (X, d), and every
1 ≤ p ≤ ∞,

cp(X) ≤ O(α1−1/p
X (log n)1/p). (1)

The proof appears in Sections 1.3 and 2. Since αX = O(log λX), it implies in particular
that c2(X) ≤ O

(√
(log λX) · log |X|), for any metric space X. This refines Bourgain’s embedding

theorem [Bou85], and improves upon previous embeddings of doubling metrics [GKL03]. It is tight
for λX = O(1) [Laa02, LP01, GKL03], and λX = nΩ(1) [LLR95]. The question of whether this
bound is tight up to a constant factor for the range λX ∈ {c1, . . . , |X|c2}, where c1 ∈ N, 0 < c2 < 1
are some constants, is an interesting open problem.

For 1 ≤ p < 2, the bound O(
√

αX log n) is better than (1), and thus, in these cases, it makes
sense to construct the embedding first into L2.

A more careful analysis of the proof of Theorem 1.4 yields the following result, proved in
Section 2.2, which answers a question posed by Feige in [Fei00].

Theorem 1.5 (Optimal volume-respecting embeddings). Every n-point metric space X ad-
mits an embedding into L2 which is (k,O(

√
αX log n)) volume-respecting for every 2 ≤ k ≤ n.

Since αX = O(log n), this provides (k, O(log n))-volume-respecting embeddings for every 2 ≤
k ≤ n. This is optimal; a matching lower bound is given in [KLM04] for all k < n1/3. We note
that the previous best bounds were due to Feige [Fei00], who showed that a variant of Bourgain’s
embedding achieves distortion O(

√
log n ·√log n + k log k) (note that this is Ω(

√
n) for large values

of k), and to Rao who showed that O((log n)3/2) volume distortion is achievable for all 1 ≤ k ≤ n
(this follow indirectly from [Rao99], and was first observed in [Gup00]).

This also improves the dependence on r in Rao’s volume-respecting embeddings of Kr,r-excluded
metrics, from (k, O(r2

√
log n)), due to [Rao99, FT03], to (k, O(r

√
log n)).1 As a corollary, we obtain

an improved O(r
√

log n)- approximate max-flow/min-cut algorithm for graphs which exclude Kr,r

as a minor.

`∞ embeddings. It is not difficult to see that every n-point metric space (X, d) embeds isomet-
rically into `n∞ via the map y 7→ {d(x, y)}x∈X . And for some spaces, like the shortest-path metrics
on expanders, or on the log n-dimensional hypercube (see, e.g. [LMN04]), it is known that nΩ(1)

dimensions are required to obtain any map with O(1) distortion. On the other hand, a simple
variant of Rao’s embedding shows that every planar metric O(1)-embeds into `

O((log n)2)
∞ . Thus the

dimension required to embed a family of metrics into `∞ with low distortion is a certain measure
of the family’s complexity (see [Mat02a]).

In Section 3 we use a refinement of measured descent to prove the following theorem, which
answers positively a question posed by Y. Rabinovich [Mat02b], and improves Rao’s result to obtain
the optimal bound.

Theorem 1.6. Let X be an n-point edge-weighted planar graph, equipped with the shortest path
metric. Then X embeds into `

O(log n)
∞ with O(1) distortion.

The O(log n) bound on the dimension is clearly optimal (by simple volume arguments). Fur-
thermore, this result is stronger than the O(

√
log n) distortion bound on Euclidean embeddings

of planar metrics, due to Rao [Rao99]. The embedding is produced by “derandomizing” both the
1This bound is tight for the path even for k = 3, see [DV01, KLM04].
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decomposition bundle of [Rao99, KPR93] and the proof of measured descent (applied to this special
decomposition bundle).

1.3 Outline of Techniques

The following lemma is based on a decomposition of [CKR01], with the improved analysis of [FHRT03,
FRT03]. The extension to general measures was observed in [LN03]. Since this lemma is central to
our techniques, its proof is presented in Section 2 for completeness.

Lemma 1.7. Let (X, d) be a finite metric space and let µ be any non-degenerate measure on X.
Then there exists an ε(x, u)-padded decomposition bundle on X where

ε(x, u) =
[
16 + 16 log

µ(B(x, 2u))
µ(B(x, 2u−3))

]−1

. (2)

Remark 1.1. In [VK87] it was shown that X admits a doubling measure, i.e. a non-degenerate
measure µ such that for every x ∈ X and every r > 0 we have µ(B(x,2r))

µ(B(x,r)) = λ
O(1)
X . We thus recover

the fact, first proved in [GKL03], that for every metric space X, αX = O(log λX). In particular,
for every d-dimensional normed space Y , αY = O(d). In [CCG+98], it is argued that αY = Ω(d)
when Y = `d

1. The same lower bound was shown to hold for every d dimensional normed space Y
in [LN04].

The main embedding lemma. Let (X, d) be a finite metric space, and for ε : X ×Z→ R define
for all x, y ∈ X,

δε(x, y) = min
{

ε(x, u) : u ∈ Z and
d(x, y)

32
≤ 2u ≤ d(x, y)

2

}
.

Given a non-degenerate measure µ on X denote for x, y ∈ X:

Vµ(x, y) = max
{

log
µ(B(x, 2d(x, y)))

µ(B(x, d(x, y)/512))
, log

µ(B(y, 2d(x, y)))
µ(B(y, d(x, y)/512))

}
. (3)

In what follows we use the standard notation c00 for the space of all finite sequences of real
numbers. The following result is the main embedding lemma of this paper.

Lemma 1.8 (Main embedding lemma). Let X be an n-point metric space, µ a non-degenerate
measure on X, and β : Z → DX an ε(x, u)-padded decomposition bundle on X. Then there exists
a map ϕ : X → c00 such that for every 1 ≤ p ≤ ∞ and for all distinct x, y ∈ X,

[Vµ(x, y)]1/p ·min{δε(x, y), δε(y, x)} ≤ ||ϕ(x)− ϕ(y)||p
d(x, y)

≤ C [log Φ(µ)]1/p .

Here C is a universal constant.

An informal description. Lemma 1.8 is proved in Section 2.1; here we sketch the main ideas. For
simplicity, assume that µ is the counting measure, i.e. µ(S) = |S| for S ⊆ X. We also assume, in
the informal discussion that follows, that the ratio of the largest to smallest distance in all n-point
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metric spaces considered is at most n. It follows that the number of values of i ∈ Z for which there
is a pair x, y with d(x, y) ∈ [2i, 2i+1) is only O(log n).

In [Rao99], it is shown that the shortest-path metric on an unweighted n-point planar graph
always admits a distortion O(

√
log n) embedding into a Euclidean space. For each scale 2i, i ∈ Z, an

embedding is constructed by first partitioning the space into pieces of diameter at most 2i, and then
by mapping each point to its distance to the boundary of the partition (such a map is, necessarily,
1-Lipschitz). The partitioning is done randomly, and using a structural theorem of [KPR93], it is
shown that the expected distance of a point to the boundary is Ω(2i). By concatenating together
these random maps for each relevant scale (i.e. each relevant value of 2i, i ∈ Z—there are only
O(log n) of them), it is not difficult to see that a distortion O(

√
log n) map is obtained. Note here

that the concatenation is uniform—equal weight is placed on each scale.
An extension of Rao’s technique to general metrics requires a different method of random

partitioning, and a significant loss is incurred. Even the optimal scheme can only ensure that (in
the worst case) the expected distance from a point to the boundary of the 2i-partition is Ω(2i/ log n).
Thus the resulting embedding incurs distortion O((log n)3/2), which is far from optimal.

Our work starts with the observation (made in [FRT03], based on the work of [CKR01]) that
there is a randomized partitioning scheme where, at scale 2i, the expected distance from a point x
to the boundary is

Ω(2i) ·
(

1 + log
|B(x, 2i)|
|B(x, ε2i)|

)−1

(for some fixed ε < 1 which the reader may ignore; see Lemma 1.7 for details). In the worst
case, the logarithm may have value Ω(log n), but notice that a point x cannot exhibit the worst
case behavior at every scale; indeed,

∑
i∈Z log |B(x,2i)|

|B(x,ε2i)| = O(log n). This suggests a non-uniform
concatenation of scales, where more “weight” is given to scales where the ratio is large.

Indeed, it seems prudent that for a point x ∈ X, we assign weight log |B(x,2i)|
|B(x,ε2i)| to scale i, to

counterbalance the associated loss in the partitioning scheme (the actual calculation is done near
line (7) of Section 2.1). Notice that the total weight used is only O(log n).

The problem which presents itself is that the required weights for distinct points x, y ∈ X at
a given scale 2i could be drastically different. The main technical contribution of Section 2 is
to overcome this hurdle. It is not difficult to see that the local mass at scale 2i obeys a certain
smoothness property. Intuitively, this is a manifestation of the trivial fact that

|B(y, 2i − d(x, y))| ≤ |B(x, 2i)| ≤ |B(y, 2i + d(x, y)|.

(The actual property we use is contained in Claim 2.1). Thus instead of constructing a global
partition according to one scale, it is possible to decompose the space “locally” at varying speeds,
according to the local mass ratio. This allows the appropriate weightings to be indirectly applied.

To get a feel for this, the reader may consider the following process. Assume that diam(X) = 1.
In Rao’s embedding, one may think of the space as being decomposed at a uniform speed, as
follows: First one starts with the trivial partition defined as a single set which contains the whole
space. Then, we refine this partition so that each piece S in the refinement has diam(S) ≤ 1

2 . This
refinement process is continued so that at time t, each piece has diam(S) ≤ 2−t. In contrast, our
embedding proceeds as follows. At time t, each piece of the current partition should have mass
about 2log n−t. Hence at time t = 0, there is a single piece of mass n, i.e. the whole set X. As t
increases, the mass of the pieces shrinks, but the diameters of the corresponding pieces decrease
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at a non-uniform rate, according to the “local mass ratio.” The effect is that for a point x ∈ X
and a scale 2i with a relatively high mass ratio, our embedding devotes proportionally more time
to “working on” x at that scale.

The actual decomposition process is random, and a reasonable amount of delicateness is needed
to maintain the proper correspondence between the mass and diameter of pieces (since the parti-
tioning scheme used, i.e. Lemma 1.7, is defined only in terms of diameter). In particular, we do not
actually maintain a partition at time t, but instead a sort of fuzzy superposition of local partitions.

The payoff. Using Lemma 1.8 we are in a position to prove Theorem 1.4. We start with the
following simple observation, which bounds Vµ(x, y) from below, and which will be used several
times in what follows.

Lemma 1.9. Let µ be any non-degenerate measure on X and x, y ∈ X, x 6= y. Then

max
{

µ(B(x, 2d(x, y)))
µ(B(x, d(x, y)/2))

,
µ(B(y, 2d(x, y)))
µ(B(y, d(x, y)/2))

}
≥ 2.

Proof. Assume without loss that µ(B(x, 2d(x, y))) ≤ µ(B(y, 2d(x, y))). Noticing that the two balls
B(x, d(x, y)/2) and B(y, d(x, y)/2) are disjoint, and that both are contained in B(x, 2d(x, y)); the
proof follows.

Proof of Theorem 1.4. Fix p ∈ [1,∞] and let µ = | · | be the counting measure on X. Let ε(x, u)
be as in (2), and observe that in this case for all x, y ∈ X we have δε(x, y) ≥ [16 + 16Vµ(x, y)]−1.
Applying Lemma 1.8 to the decomposition bundle of Lemma 1.7 we get a mapping ϕ1 : X → Lp

such that for all x, y ∈ X,

[Vµ(x, y)]1/p

16 + 16Vµ(x, y)
≤ ||ϕ1(x)− ϕ1(y)||p

d(x, y)
≤ C(log n)1/p.

On the other hand, Lemma 1.8 applied to the decomposition bundle ensured by the definition of
αX yields a mapping ϕ2 : X → Lp for which

[Vµ(x, y)]1/p

αX
≤ ||ϕ2(x)− ϕ2(y)||p

d(x, y)
≤ C(log n)1/p.

Finally, for ϕ = ϕ1 ⊕ ϕ2 we have

||ϕ(x)− ϕ(y)||pp
d(x, y)p

≥ Vµ(x, y)
[16 + 16Vµ(x, y)]p

+
Vµ(x, y)

αp
X

≥ Ω

(
1

αp−1
X

)
,

where we have used the fact that Lemma 1.9 implies that Vµ(x, y) ≥ Ω(1).

2 Measured descent

In this section, we prove the main embedding lemma and exhibit the existence of optimal volume-
respecting embeddings. We use decomposition bundles to construct random subsets of X, the
distances from which are used as coordinates of an embedding into c00. As the diameters of the
decompositions become smaller, our embedding “zooms in” on the increasingly finer structure of
the space. Our approach is heavily based on the existence of good decomposition bundles; we thus
start by proving Lemma 1.7, which is essentially contained in [FRT03].
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Proof of Lemma 1.7. By approximate the values {µ(x)}x∈X by rational numbers and duplicating
points, it is straightforward to verify that it is enough to prove the required result for the counting
measure on X, i.e. when µ(S) = |S|.

Let ∆ = 2u for some u ∈ Z. We now describe the distribution β(u). Choose, uniformly at
random, a permutation π of X and a value α ∈ [14 , 1

2 ]. For every point y ∈ X, define a cluster

Cy = {x ∈ X : x ∈ B(y, α∆) and π(y) ≤ π(z) for all z ∈ X with x ∈ B(z, α∆)}.

In words, a point x ∈ X is assigned to Cy where y is the minimal point according to π that is
within distance α∆ from x.

Clearly the set P = {Cy}y∈X constitutes a partition of X. Furthermore, Cy ⊆ B(y, α∆), thus
diam(Cy) ≤ ∆, so requirement (1) in Definition 1.1 is satisfied for every partition P arising from
this process. It remains to prove requirement (2).

Fix a point x ∈ X and some value t ≤ ∆/8. Let a = |B(x,∆/8)|, b = |B(x,∆)|, and arrange the
points w1, . . . , wb ∈ B(x,∆) in increasing distance from x. Let Ik = [d(x,wk)− t, d(x,wk) + t] and
write Ek for the event that wk is the minimal element according to π such that B(x, t) ∩ Cwk

6= ∅,
and yet B(x, t) * Cwk

. Note that if wk ∈ B(x,∆/8), then Pr[Ek] = 0 since B(x, t) ⊆ B(x,∆/8) ⊆
B(wk,∆/4) ⊆ B(wk, α∆). It follows that

Pr[B(x, t) * P (x)] =
b∑

k=a+1

Pr[Ek] =
b∑

k=a+1

Pr[α∆ ∈ Ik] · Pr[Ek |α∆ ∈ Ik]

≤
b∑

k=a+1

2t

∆/4
· 1
k
≤ 8t

∆

(
1 + log

b

a

)
.

Setting t = ε(x, u)∆ ≤ ∆/8, where ε(x, u) is as in (2), the righthand side is at most 1
2 , proving

requirement (2) in Definition 1.1.

2.1 Proof of main embedding lemma

We first introduce some notation. Define two intervals of integers I, J ⊆ Z by

I = {−6,−5,−4,−3,−2,−1, 0, 1, 2, 3} and J = {0, 1, . . . , dlog2 Φ(µ)e}.

For t > 0 write κ(x, t) = max{κ ∈ Z : µ(B(x, 2κ)) < 2t}. For each u ∈ Z let Pu be chosen
according to the distribution β(u). Additionally, for u ∈ Z let {σu(C) : C ⊆ X} be i.i.d. symmetric
{0, 1}-valued Bernoulli random variables. We assume throughout the ensuing argument that the
random variables {σu(C) : C ⊆ X, u ∈ Z}, {Pu : u ∈ Z} are mutually independent. For every
t ∈ J and i ∈ I define a random subset W i

t ⊆ X by

W i
t = {x ∈ X : σκ(x,t)−i(Pκ(x,t)−i(x)) = 0}.

Our random embedding f : X → c00 is defined by f(x) = (d(x,W i
t ) : i ∈ I, t ∈ J). In the

sequel, we assume that p < ∞; the case p = ∞ follows similarly. Since each of the coordinates of
f is Lipschitz with constant 1, we have for all x, y ∈ X,

‖f(x)− f(y)‖p
p ≤ |I| · |J | · d(x, y)p ≤ 50[log Φ(µ)] d(x, y)p. (4)
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The proof will be complete once we show that for all x, y ∈ X

E‖f(x)− f(y)‖p
p ≥ [Ω(min{δε(x, y), δε(y, x)} · d(x, y))]p · Vµ(x, y). (5)

Indeed, denote by (T, Pr) the probability space on which the above random variables are defined,
and consider the space Lp(T, c00), i.e. the space of all c00 valued random variables ζ on T equipped
with the Lp norm ‖ζ‖p = (E‖ζ‖p

p)1/p. Equations (4) and (5) show that the mapping x 7→ f(x)
is the required embedding of X into Lp(T, c00). Observe that all the distributions are actually
finitely supported, since X is finite, so that this can still be viewed as an embedding into c00. See
Remark 2.2 below for more details.

To prove (5) fix x, y ∈ X, x 6= y. Without loss of generality we may assume that the maximum
in (3) is attained by the first term, namely, µ(B(x,2d(x,y)))

µ(B(x,d(x,y)/512)) ≥
µ(B(y,2d(x,y)))

µ(B(y,d(x,y)/512)) . Using Lemma 1.9,
it immediately follows that

µ(B(x, 2d(x, y)))
µ(B(x, d(x, y)/512))

≥ 2. (6)

Setting R = 1
4d(x, y), denote for i ∈ Z, si = log2 µ(B(x, 2iR)). We next extend some immediate

bounds on κ(x, t) (in terms of R) to any nearby point z ∈ B(x,R/256).

Claim 2.1. For i ∈ I and all t ∈ Z ∩ [si−1, si], every z ∈ B(x, R/256) satisfies R
8 ≤ 2κ(z,t)−i < 5R

4 .

Proof. By definition, µ
(
B(z, 2κ(z,t))

)
< 2t ≤ µ

(
B(z, 2κ(z,t)+1)

)
. For the upper bound, we have

µ
(
B(x, 2κ(z,t) −R/256)

)
≤ µ

(
B(z, 2κ(z,t))

)
< 2t ≤ 2si = µ

(
B(x, 2iR)

)
,

implying that 2κ(z,t) − R
256 < 2iR, which yields 2κ(z,t)−i < 5R

4 . For the lower bound, we have

µ
(
B(x, 2κ(z,t)+1 + R/256)

)
≥ µ

(
B(z, 2κ(z,t)+1)

)
≥ 2t ≥ 2si−1 = µ

(
B(x, 2i−1R)

)
.

We conclude that 2κ(z,t)+1 + R
256 ≥ 2i−1R, which implies that R

8 ≤ 2κ(z,t)−i.

Consider the following events

1. E1 =
{
d(x,X \ Pu(x)) ≥ δε(x, y)R

8 for all u ∈ Z with 2u ∈ [R/8, 5R/4]
}
,

2. E2 = {σu(Pu(x)) = 1 for all u ∈ Z with 2u ∈ [R/8, 5R/4]},
3. E3 = {σu(Pu(x)) = 0 for all u ∈ Z with 2u ∈ [R/8, 5R/4]},
4. Ebig

i,t =
{
d(y,W i

t ) ≥ 1
512δε(x, y)R

}
,

5. Esmall
i,t =

{
d(y, W i

t ) < 1
512δε(x, y)R

}
.

The basic properties of these events are described in the following claim.

Claim 2.2. The following assertions hold true:

(a). Pr[E1], Pr[E2], Pr[E3] ≥ 2−4.

(b). For all i ∈ I and t ∈ Z ∩ [si−1, si], the event E3 is independent of Ebig
i,t .

(c). For all i ∈ I and t ∈ Z ∩ [si−1, si], the event E2 is independent of E1 ∩ Esmall
i,t .
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(d). For all i ∈ I and t ∈ Z ∩ [si−1, si], if the event E3 occurs then x ∈ W t
i .

(e). For all i ∈ I and t ∈ Z ∩ [si−1, si], if the event E1 ∩ E2 occurs then d(x,W t
i ) ≥ 1

256δε(x, y)R.

Proof. For the first assertion, fix u such that 2u ∈ [R/8, 5R/4]. Since δε(x, y) ≤ ε(x, u), and Pu

is chosen from β(u) which is ε(x, u)-padded, Pr[d(x,X \ Pu(x)) ≥ δε(x, y)2u] ≥ 1
2 . In addition,

Pr[σu(Pu(x)) = 1] = Pr[σu(Pu(x)) = 0] = 1/2. Furthermore, the number of relevant values of u in
each of the events E1, E2, E3 is at most four for each event, and the outcomes for different values of
u are mutually independent. This implies assertion (a).

To prove the second and third assertions note that for 2u ∈ [R/8, 5R/4], we always have
diam(Pu(x)) ≤ 5R

4 < 1
2 d(x, y), and thus Pu(x) 6= Pu(y). Furthermore, for every z ∈ B(y, 1

512δε(x, y)R),
we always have d(x, z) ≥ 3R > diam(Pu(x)) + diam(pu(z)), thus Pu(x) 6= Pu(z), and the choices
of σu(Pu(x)) and σu(Pu(z)) are independent. It follows that the value of σu(Pu(x)) is independent
of the data determining whether d(y,W i

t ) < 1
512δε(x, y)R, which proves (b). Assertion (c) follows

similarly observing that σu(Pu(x)) is independent also of the value of d(x,X \ Pu(x)).
To prove the last two assertions fix i ∈ I and t ∈ Z ∩ [si−1, si]. An application of Claim 2.1 to

z = x shows that 2κ(x,t)−i ∈ [R/8, 5R/4]. Now, by the construction of W i
t , if E3 occurs then x ∈ W i

t ;
this proves assertion (d). Finally, fix any z ∈ B

(
x, 1

256δε(x, y)R
)
. Since z ∈ B(x,R/256), Claim 2.1

implies that 2κ(z,t)−i ∈ [R/8, 5R/4]. The event E1 implies that for u = κ(z, t) − i, Pu(x) = Pu(z),
and thus σκ(z,t)−i(Pκ(z,t)−i(z)) = σκ(z,t)−i(Pκ(z,t)−i(x)). Now E2 implies that the latter quantity is
1, and hence z /∈ W i

t . Assertion (e) follows.

We can now conclude the proof of Lemma 1.8. Fix i ∈ I and t ∈ [si−1, si]. By assertions (d) and
(e), if either of the (disjoint) events E3∩Ebig

i,t and E1∩E2∩Esmall
i,t occurs then |d(x,W i

t )−d(y, W i
t )| ≥

1
512δε(x, y)R. The probability of this is Pr[E3] ·Pr[Ebig

i,t ]+Pr[E2] ·Pr[E1∩Esmall
i,t ] ≥ 2−4 Pr[E1] = Ω(1),

where we have used assertions (a), (b) and (c), and the fact that Ebig
i,t ∪ (E1∩Esmall

i,t ) ⊇ E1. It follows
that E|d(x,W i

t )− d(y,W i
t )|p = [Ω(δε(x, y) · d(x, y))]p, and hence

E‖f(x)− f(y)‖p
p ≥

∑

i∈I

∑

t∈Z∩[si−1,si]

E|d(x,W i
t )− d(y,W i

t )|p

≥ [Ω(δε(x, y) · d(x, y))]p
3∑

i=−6

|Z ∩ [si−1, si]|

≥ [Ω(δε(x, y) · d(x, y))]p · s3 − s−7

2
(7)

≥ [Ω(δε(x, y) · d(x, y))]p · Vµ(x, y),

where in (7) we used the fact that (6) implies that s3 − s−7 ≥ 1.
This completes the proof of Lemma 1.8.

Remark 2.1. The above proof actually yields an embedding ϕ, such that for all x, y ∈ X satisfying
(6), [

log
µ(B(x, 2d(x, y)))

µ(B(x, d(x, y)/512))

]1/p

· δε(x, y) ≤ ||ϕ(x)− ϕ(y)||p
d(x, y)

≤ C [log Φ(µ)]1/p .
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Remark 2.2. If in the above proof we use sampling and a standard Chernoff bound instead of taking
expectations, we can ensure that the embedding takes values in Rk, where k = O[(log n) log Φ(µ)].
(This is because the lower bound on E|d(x,W i

t ) − d(y,W i
t )|p relies on an event that happens with

constant probability, similar to [LLR95].) In particular, when µ is the counting measure on X we
get that k = O[(log n)2]. It would be interesting to improve this bound to k = O(log n) (if p = 2
then this follows from the Johnson-Lindenstrauss dimension reduction lemma [JL84]).

2.2 Optimal volume-respecting embeddings

Here we prove Theorem 1.5. Let f : X → `2 be the embedding constructed in the previous section
and g = f/

√
50 log Φ(µ), so that g is 1-Lipschitz. For concreteness, we denote by (T, Pr) the

probability space over which the random embedding g is defined.

Lemma 2.3. Fix a subset Y ⊆ X, x ∈ X \ Y and let y0 ∈ Y satisfy d(x, Y ) = d(x, y0). Let Z
be any `2 valued random variable on (T, Pr) which is measurable with respect to the sigma algebra
generated by the random variables {g(y)}y∈Y . Then

√
E||Z − g(x)||22

d(x, Y )
≥ C · δε(x, y0) ·

√
Vµ(x, y0)
log Φ(µ)

,

where C is a universal constant.

We will apply Lemma 2.3 to random variables of the form Z =
∑

y∈Y cyg(y), where the cy’s are
scalars. However, the same statement holds for Z’s which are arbitrary functions of the variables
{g(y)}y∈Y .

To finish that proof of Theorem 1.5 consider the Hilbert space H = L2(T, `2), i.e. the space
of all square integrable `2 valued random variables ζ on T equipped with the Hilbertian norm
‖ζ‖2 =

√
E‖ζ‖2

2. Defining G : X → H via G(x) = g(x), Lemma 2.3 implies that for every Y ⊆ X
and x ∈ X \ Y ,

dH(G(x), span({G(y)}y∈Y ))
d(x, Y )

≥ C · δε(x, y0)

√
Vµ(x, y0)
log Φ(µ)

.

We now argue as in the proof of Theorem 1.4. Let H1,H2 be Hilbert spaces and G1 : X → H1,
G2 : X → H2 be two 1-Lipschitz mappings satisfying for every Y ⊆ X and x ∈ X \ Y ,

dH1(G1(x), span({G1(y)}y∈Y ))
d(x, Y )

≥ C

16 + 16Vµ(x, y0)

√
Vµ(x, y0)

log n
,

and
dH2(G2(x), span({G2(y)}y∈Y ))

d(x, Y )
≥ C

αX

√
Vµ(x, y0)

log n
,

where d(x, y0) = d(x, Y ) and µ is the counting measure on X. Denoting H = H1 ⊕ H2 and
G = 1√

2
(G1 ⊕G2), the same argument as in the proof of Theorem 1.4 implies that

dH(G(x), span({G(y)}y∈Y ))
d(x, Y )

≥ Ω
(

1√
αX log n

)
.
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Now, Feige’s argument (see Section 5.3 in [Fei00]) yields the required result.
It remains to prove Lemma 2.3. We use the notation of Section 2.1. Denote R = 1

4d(x, y0) and
write Z = (Zi

t : i ∈ I, t ∈ J). Consider the events Ẽbig
i,t =

{
Zi

t ≥ 1
512δε(x, y0)R

}
and Ẽsmall

i,t ={
Zi

t < 1
512δε(x, y0)R

}
. Arguing as in Section 2.1, it is enough to check that E3 is independent of

Ẽbig
i,t and that E2 is independent of E1 ∩ Ẽsmall

i,t . Observe that the proof of assertions (b) and (c) in
Claim 2.2 uses only the fact that d(x, y) ≥ 4R (when considering z ∈ B(y, 1

512δε(x, y)R)), and this
now holds for all y ∈ Y . Since we assume that Zi

t is measurable with respect to {d(y, W i
t )}y∈Y , the

required independence follows.

Remark 2.3. Note that, by general dimension reduction techniques which preserve distance to
affine hulls [Mag02], the dimension of the above embedding can be reduced to O(k log n) while
maintaining the volume-respecting property for k-point subsets.

3 Low-dimensional embeddings of planar metrics

In this section we refine the ideas of the previous section and prove Theorem 1.6. We say that a
metric (X, d) is planar (resp. excludes Ks,s as a minor) if there exists a graph G = (X, E) with
positive edge weights, such that G is planar (resp. does not admit the complete bipartite graph
Ks,s as a minor) and d(·, ·) is the shortest path metric on a subset of G. We shall obtain optimal
low-dimensional embeddings of planar metrics into `∞ by proving the following more general result.

Theorem 3.1. Let (X, d) be an n-point metric space that excludes Ks,s as a minor. Then X

embeds into `
O(3s(log s) log n)
∞ with distortion O(s2).

We will need three lemmas. The first one exhibits a family of decompositions with respect to
a diameter bound ∆ > 0; it follows easily from [KPR93], with improved constants due to [FT03].
Note that in contrast to Definition 1.1 (and also to Rao’s embedding [Rao99]), we require that x
and y are padded simultaneously.

Lemma 3.2. There exists a constant c such that for every metric space (X, d) that excludes Ks,s

as a minor, and for every ∆ > 0, there exists a set of k = 3s partitions P1, . . . , Pk of X, such that

1. For every C ∈ Pi, diam(C) < ∆.

2. For every pair x, y ∈ X, there exists an i such that for T = cs2,

B(x,∆/T ) ⊆ Pi(x) and B(y, ∆/T ) ⊆ Pi(y).

Proof. Fix a edge-weighted graph G that does not admit Ks,s as a minor and whose shortest path
distance is d(·, ·). Fix also some x0 ∈ X and δ > 0. For i ∈ {0, 1, 2} and j ∈ {0} ∪ N define:

Ai
j =

{
x ∈ X : 9(j − 1) + 3i ≤ d(x, x0)

δ
< 9j + 3i

}
.

For every i, P i = {Ai
j}j≥0 clearly forms a partition of X. Let us say that a subset S ⊆ X cuts a

subset S′ ⊆ X if S ∩ S′ 6= ∅ and S′ 6⊆ S. Observe that for every x ∈ X at most one of the sets
{Ai

j : i = 0, 1, 2 ; j = 0, 1, 2, . . .} cuts B(x, δ), as otherwise there exist z1, z2 ∈ B(x, δ) for which
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d(z1, z2) ≥ d(x0, z1)− d(x0, z2) ≥ 3δ. Thus, for every x, y ∈ X, for one of the partitions P 0, P 1, P 2

both B(x, δ) and B(y, δ) are contained in one of its clusters. For each cluster C of the partitions
P 0, P 1, P 2, consider the subgraph of G induced on the points of C, partition C into its connected
components, and apply the above process again to each such connected component. Continuing
this way a total of s times, we end up with 3s partitions, and in at least one of them, neither
B(x, δ) nor B(y, δ) is cut. The results of [KPR93, FT03] show there exists a constant c > 0 such
that the diameter of each cluster in the resulting partitions is at most cs2δ, and the lemma follows
by setting δ = ∆/(cs2).

We next consider a collection of such decompositions, with diameter bounds ∆ > 0 that are
proportional to the integral powers of 4T . Furthermore, we need these decompositions to be nested.

Lemma 3.3. Let (X, d) be a metric space that excludes Ks,s as a minor, and let T = O(s2) be
as in Lemma 3.2. Then for every a > 0 there exists k = 3s families of partitions of X, {P i

u}u∈Z,
i = 1, . . . , k with the following properties:

1. For each i the partitions {P i
u}u∈Z are nested, i.e. P i

u−1 is a refinement of P i
u for all u.

2. For each i, every C ∈ P i
u satisfies diam(C) < a(4T )u.

3. For each u ∈ Z and every pair x, y ∈ X, there exists an i such that,

B(x, a(4T )u/(2T )) ⊆ P i
u(x) and B(y, a(4T )u/(2T )) ⊆ P i

u(y).

Proof. Let P1, . . . , Pk be partitions as in Lemma 3.2 with ∆ = a(4T )u and let Q1, . . . , Qk be
partitions as in Lemma 3.2 with ∆ = a(4T )u−1. Fix j and C ∈ Pj , let SC = {A ∈ Qj : A ∩
C 6= ∅, but A 6⊆ C}, and replace every C ∈ Pj by the sets A ∈ SC and the set C ′ = C \⋃

A∈SC
A. Continuing this process we replace the partition Pj by a new partition P ′

j such that Qj

is a refinement of P ′
j . Note that we do not alter Qj . Since diam(A) ≤ a(4T )u−1, we have that if

C ∈ Pj and B(x, a(4T )u/T ) ⊆ C, then B(x, 2a(4T )u−1) ⊆ C ′. Continuing this process inductively
we obtain the required families of nested partitions.

We next use a nested sequence of partitions {Pu}u∈Z to form a mapping ψ : X → RO(log |X|).

Lemma 3.4. Let {Pu}u∈Z be a sequence of partitions of X that is nested (i.e. Pu−1 is a refinement
of Pu), and let m ≥ 0 and D ≥ 2 be such that for all C ∈ Pu, diam(C) < 2mDu. Assume further
that Pu1 = {X}, Pu2 = {{x} : x ∈ X}. Then for all u2 ≤ u ≤ u1 and all A ∈ Pu there exists a
mapping ψ : A → R2dlog2 |A|e that satisfies:

(a). For every x ∈ A and every 1 ≤ j ≤ 2dlog2 |A|e there exists u′ < u for which |ψ(x)j | =
min{d(x,X \ Pu′(x)), 2mDu′},

(b). For all x, y ∈ A, ||ψ(x)− ψ(y)||∞ ≤ 2 d(x, y),

(c). If x, y ∈ A are such that for some u′ ≤ u, d(x, y) ∈ [2mDu′−1, 2m+1Du′−1) and there exists
a cluster C ∈ Pu′ for which x, y ∈ C, B(x, 2m+1Du′−2) ⊆ Pu′−1(x) and B(y, 2m+1Du′−2) ⊆
Pu′−1(y), then ||ψ(x)− ψ(y)||∞ ≥ d(x,y)

2D .

Proof. Proceed by induction on u. The statement is vacuous for u = u2, so we assume it holds for u
and construct the required mapping for u + 1. Fix A ∈ Pu+1 and assume that H = {A1, . . . , Ar} ⊆
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Pu is a partition of A. By induction there are mappings ψi : Ai → R2dlog2 |Ai|e satisfying (a)-(c)
above (with respect to Ai and u).

For h ∈ N denote Ch = {Ai ∈ H : 2h−1 < |Ai| ≤ 2h}. We claim that for every i = 1, . . . , r there
is a choice of a string of signs σi ∈ {−1, 1}2dlog2 |A|e−2dlog2 |Ai|e such that for all h and for all distinct
Ai, Aj ∈ Ch, σi 6= σj . Indeed, fix h; If h ≥ log2 |A| then for Ai ∈ Ch, |Ai| > 2h−1 ≥ |A|/2; thus
|Ch| = 1 and there is nothing to prove. So, assume that 2h < |A| and note that |Ch| ≤ |A|/2h−1.
Hence, the required strings of signs exist provided 22dlog2 |A|e−2h ≥ |A|/2h−1, which is true since
2h < |A|.

Now, for every i = 1, . . . , r define a mapping ζi : Ai → R2dlog2 |A|e−2dlog2 |Ai|e by

ζi(x) = min{d(x,X \Ai), 2mDu} · σi.

Finally, define the mapping ψ : X → R2dlog2 |A|e by ψ|Ai = ψi ⊕ ζi. Requirement (a) holds for ψ
by construction. To prove requirement (b), i.e. that ψ is 2-Lipschitz, fix x, y ∈ A. If for some i,
both x, y ∈ Ai then by the inductive hypothesis ψi is 2-Lipschitz, and clearly ζi is 1-Lipschitz, so
‖ψ(x) − ψ(y)‖∞ ≤ 2d(x, y). Otherwise, fix a coordinate 1 ≤ j ≤ 2dlog2 |A|e and use (a) to take
u′ ≤ u such that |ψ(x)j | = d(x,X \ Pu′(x)); since y /∈ Pu′(x), this is at most d(x, y). It similarly
follows that |ψ(y)j | ≤ d(x, y), and hence |ψ(x)j − ψ(y)j | ≤ 2d(x, y).

To prove that requirement (c) holds for ψ, take x, y ∈ A and u′ ≤ u + 1 such that d(x, y) ∈
[2mDu′−1, 2m+1Du′−1) and there exists a cluster C ∈ Pu′ for which x, y ∈ C, B(x, 2m+1Du′−2) ⊆
Pu′−1(x) and B(y, 2m+1Du′−2) ⊆ Pu′−1(y). The case u′ ≤ u follows by induction, so assume that
u′ = u + 1. Let i, j ∈ {1, . . . , r} be such that x ∈ Ai, y ∈ Aj ; then i 6= j, since diam(Ai) <
2mDu ≤ d(x, y). Assume first dlog2 |Ai|e 6= dlog2 |Aj |e, and without loss of generality suppose
dlog2 |Ai|e < dlog2 |Aj |e; then there is a coordinate ` = 2dlog2 |Ai|e+ 1 for which

|ψ(x)`| = |ζi(x)1| = min{d(x,X \Ai), 2mDu},

and, for some u′′ < u,

|ψ(y)`| = |ψj(y)`| = min{d(y, X \ Pu′′(y)), 2mDu′′}.

It follows that |ψ(x)`| ≥ 2m+1Du−1 (since we assumed B(x, 2m+1Du−1) ⊆ Ai), and that |ψ(y)`| ≤
2mDu−1, and therefore

|ψ(x)` − ψ(y)`| ≥ 2mDu−1 ≥ d(x, y)
2D

.

It remains to deal with the case dlog2 |Ai|e = dlog2 |Aj |e. By our choice of sign sequences, in this
case there is an index ` for which σi

` 6= σj
` , and thus, for `′ = ` + 2dlog2 |Ai|e, |ψ(x)`′ − ψ(y)`′ | =

|ψ(x)`′ |+ |ψ(y)`′ |. Since we assumed B(x, 2m+1Du−1) ⊆ Ai and B(y, 2m+1Du−1) ⊆ Aj , we get

|ψ(x)`′ − ψ(y)`′ | ≥ 2m+2Du−1 ≥ 2d(x, y)
D

.

Finally, we prove the main result of this section by a concatenating several of the above maps
ψ.
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Proof of Theorem 3.1. For each m ∈ {0, 1, . . . , dlog2(4cs2)e} set a = 2m, apply Lemma 3.3 to
obtain 3s families of nested partitions {Pm

1,u}u∈Z, . . . , {Pm
3s,u}u∈Z that satisfy the conclusion of

Lemma 3.3 with T = cs2. For every i = 1, . . . , 3s, let ψm
i be the mapping that Lemma 3.4

yields for {Pm
i,u}u∈Z when setting A = X and D = 4cs2. Consider the map Ψ = ⊕m,iψ

m
i , which

takes values in `
O(3s(log s) log n)
∞ . Clearly Ψ is 2-Lipschitz. Moreover, for every x, y ∈ X there is

m ∈ {0, 1, . . . , dlog2(4cs2)e} and u ∈ Z such that d(x, y) ∈ [2mDu, 2m+1Du). By Lemma 3.3, there
is i ∈ {1, . . . , 3s} for which B(x, 2m+1Du−1) ⊆ Pu(x) and B(y, 2m+1Du−1) ⊆ Pu(y); it then follows
using Lemma 3.4 that

‖Ψ(x)−Ψ(y)‖∞ ≥ ‖ψm
i (x)− ψm

i (y)‖∞ = Ω(d(x, y)/s2),

as required.
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