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Abstract

The cut-norm ||A||C of a real matrix A = (aij)i∈R,j∈S is the maximum, over all I ⊂ R, J ⊂
S of the quantity |∑i∈I,j∈J aij |. This concept plays a major role in the design of efficient
approximation algorithms for dense graph and matrix problems. Here we show that the problem
of approximating the cut-norm of a given real matrix is MAX SNP hard, and provide an efficient
approximation algorithm. This algorithm finds, for a given matrix A = (aij)i∈R,j∈S , two subsets
I ⊂ R and J ⊂ S, such that |∑i∈I,j∈J aij | ≥ ρ||A||C , where ρ > 0 is an absolute constant
satisfying ρ > 0.56. The algorithm combines semidefinite programming with a novel rounding
technique based on Grothendieck’s Inequality.

1 Introduction

The cut-norm ||A||C of a real matrix A = (aij)i∈R,j∈S with a set of rows indexed by R and a set of
columns indexed by S is the maximum, over all I ⊂ R, J ⊂ S, of the quantity |∑i∈I,j∈J aij |. This
concept plays a major role in the work of Frieze and Kannan on efficient approximation algorithms
for dense graph and matrix problems, [7] (see also [2] and its references). Although the techniques
in [7] enable the authors to approximate efficiently the cut-norm of an n by m matrix with entries in
[−1, 1] up to an additive error of εnm, there is no known polynomial algorithm that approximates
the cut-norm of a general real matrix up to a constant multiplicative factor.

Let CUT NORM denote the computational problem of computing the cut-norm of a given real
matrix. Here we first observe that the CUT NORM problem is MAX SNP hard, and then provide
an efficient approximation algorithm for the problem. This algorithm finds, for a given matrix
A = (aij)i∈R,j∈S , two subsets I ⊂ R and J ⊂ S, such that |∑i∈I,j∈J aij | ≥ ρ||A||C , where ρ > 0 is
an absolute constant. We first describe a deterministic algorithm that supplies a rather poor value
of ρ, and then describe a randomized algorithm that provides a solution of expected value greater
than 0.56 times the optimum.
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The algorithm combines semidefinite programming with a novel rounding technique based on
(the proofs of) Grothendieck’s Inequality. This inequality, first proved in [10], is a fundamental tool
in Functional Analysis, and has several interesting applications in this area. We will actually use
the matrix version of Grothendieck’s inequality, formulated in [19]. In order to apply semidefinite
programming for studying the cut-norm of an n by m matrix A = (aij), it is convenient to first
study another norm,

||A||∞7→1 = max
n∑

i=1

m∑

j=1

aijxiyj ,

where the maximum is taken over all xi, yj ∈ {−1, 1}.
It is not difficult to show (see section 3), that for every matrix A,

4||A||C ≥ ||A||∞7→1 ≥ ||A||C ,

and hence a constant approximation of any of these norms provides a constant approximation of
the other.

The value of ||A||∞7→1 is given by the following quadratic integer program

Maximize
∑

ij

aijxiyj (1)

subject to xi, yj ∈ {−1, 1} for all i, j.

The obvious semidefinite relaxation of this program is

Maximize
∑

ij

aijui · vj (2)

subject to ||ui|| = ||vj || = 1,

where here ui · vj denotes the inner product of ui and vj , which are now vectors of (Euclidean)
norm 1 that lie in an arbitrary Hilbert space. Clearly we may assume, without loss of generality,
that they lie in an n + m-dimensional space.

This semidefinite program can be solved, using well known techniques (see [9]) within an additive
error of ε, in polynomial time (in the length of the input and in the logarithm of 1/ε.) The main
problem is the task of rounding this solution into an integral one. A first possible attempt is to
imitate the technique of Goemans and Williamson in [11], that is, given a solution ui, vj to the
above program, pick a random vector z and define xi = sign(ui · z) and yj = sign(vj · z). It is
easy to check that the expected value of xiyj satisfies E(xiyj) = 2

π arcsin(ui · vj), and as arcsin(t)
and t differ only in constant factors for all −1 ≤ t ≤ 1, one could hope that this will provide an
integral solution whose value is at least some absolute constant fraction of the value of the optimal
solution. This reasoning is, unfortunately, incorrect, as some of the entries aij may be positive and
some may be negative, (in fact, the problem is interesting only if this is the case, since otherwise
either xi = yj = 1 or xi = −yj = 1 for all i, j supplies the required maximum). Therefore, even if
each single term aijui · vj is approximated well by its integral rounding aijxiyj , there is no reason
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to expect the sum to be well-approximated, due to cancellations. We thus have to compare the
value of the rounded solution to that of the semidefinite program on a global basis. Nesterov [21]
obtained a result of this form for the problem of approximating the maximum value of a quadratic
form

∑
ij bijxixj , where xi ∈ {−1, 1}, but only for the special case in which the matrix B = (bij)

is positive semidefinite. While his estimate is global, his rounding is the same simple rounding
technique of [11] described above. As explained before, some new ideas are required in our case in
order to get any nontrivial result.

Luckily, there is a well known inequality of Grothendieck, which asserts that the value of the
semidefinite program (2) and that of the integer program (1) can differ only by a constant factor.
The precise value of this constant, called Grothendieck’s constant and denoted by KG, is not known,
but it is known that its value is at most π

2 ln(1+
√

2)
= 1.782... ([17]) and at least π

2 = 1.570... ([10]).
Stated in other words, the integrability gap of the problem is at most KG. (Krivine mentions in
[17] that he can improve the lower bound, but such an improvement has never been published).

It follows that the value of the semidefinite program (2) provides an approximation of ||A||∞7→1

up to a constant factor. This, however, still does not tell us how to round the solution of the
semidefinite program into an integral one with a comparable value. Indeed, this task requires more
work, and is carried out in the following sections.

We describe three rounding techniques. The first one is a deterministic procedure, which com-
bines Grothendieck’s Inequality with some facts about four-wise independent random variables, in
a manner that resembles the technique used in [4] to approximate the second frequency moment of
a stream of data under severe space constraints. The second rounding method is based on Rietz’
proof of Grothendieck’s Inequality [23]. This proof supplies a better approximation guarantee for
the special case of positive semidefinite matrices A, where the integrality gap can be shown to be
precisely π/2, and implies that Nesterov’s analysis for the problem he considers in [21] is tight.

The third technique, which supplies the best approximation guarantee, is based on Krivine’s
proof of Grothendieck’s Inequality. Here we use the vectors ui, vj which form a solution of the
semidefinite program (2) to construct some other unit vectors u′i, v

′
j , which are first shown to exist

in an infinite dimensional Hilbert space, and are then found, using another instance of semidefinite
programming, in an n + m-dimensional space. These vectors can now be rounded to {−1, 1} in
order to provide an integral solution for the original problem (1) in a rather simple way. We note
that there are several known techniques for modifying the solution of a semidefinite program before
rounding it, see [25], [18], [8]. Here, however, the modification seems more substantial.

We believe that our techniques will have further applications, as they provide a method for
handling problems in which there is a possible cancellation between positive and negative terms. It
seems that there are additional interesting problems of this type. Moreover, unlike the semidefinite
based approximation algorithms for MAX CUT, MAX 2SAT and related problems, suggested in
the seminal paper of [11] and further developed in many subsequent papers, the problem considered
here has no known constant approximation algorithm, and the semidefinite programming and its
rounding appear to be essential in order to obtain any constant approximation guarantee, and not
only in order to improve the constants ensured by appropriate combinatorial algorithms.
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The rest of this paper is organized as follows. In Section 2 we present the (relatively simple)
proof that the problem of approximating the cut-norm ||A||C , as well as the related problem of
approximating ||A||∞7→1, are both MAX SNP hard. In Section 3 we describe a deterministic
procedure that approximates the cut-norm of a given matrix up to a constant factor. Two other
methods, providing better constants, are described in Section 4, where we also consider the special
case of positive semidefinite matrices. We conclude with Section 5, that includes some applications,
concluding remarks and open problems.

2 Hardness of approximation

As usual, we say that an approximation algorithm for a maximization problem has performance
ratio or performance guarantee ρ for some real ρ ≤ 1, if it always delivers a solution with objective
function value at least ρ times the optimum value. Such an approximation algorithm is then called a
ρ-approximation algorithm. Similarly, a randomized approximation algorithm is a ρ−approximation
algorithm if it always produces a solution with expected value at least ρ times the optimum.

In this section we observe that the problem of approximating the cut-norm ||A||C of a given
input matrix is MAX SNP hard, and so is the related problem of approximating ||A||∞7→1. This
implies, by the results in [22], [6], that there exists some ρ < 1 such that the existence of a ρ-
approximation, polynomial-time algorithm for any of these problems would imply that P = NP .
The proof is by a reduction of the MAX CUT problem to the CUT NORM problem, and to the
problem of computing ||A||∞7→1. We need the following simple observation.

Lemma 2.1 For any real matrix A = (aij),

||A||C ≤ ||A||∞7→1 ≤ 4||A||C .

Moreover, if the sum of each row and the sum of each column of A is zero, then ||A||∞7→1 = 4||A||C .

Proof: For any xi, yj ∈ {−1, 1},
∑

i,j

aijxiyj =
∑

i:xi=1,j:xj=1

aij −
∑

i:xi=1,j:xj=−1

aij −
∑

i:xi=−1,j:xj=1

aij +
∑

i:xi=−1,j:xj=−1

aij .

The absolute value of each of the four terms in the right hand side is at most ||A||C , implying, by
the triangle inequality, that

||A||∞7→1 ≤ 4||A||C . (3)

Suppose, now, that ||A||C =
∑

i∈I,j∈J aij (the computation in case it is −∑
i∈I,j∈J aij is essen-

tially the same). Define xi = 1 for i ∈ I and xi = −1 otherwise, and similarly, yj = 1 if j ∈ J and
yj = −1 otherwise. Then

||A||C =
∑

i,j

aij
1 + xi

2
1 + yj

2
=

1
4

∑

i,j

aij +
1
4

∑

i,j

aijxi · 1 +
1
4

∑

i,j

aij1 · yj +
1
4

∑

i,j

aijxiyj .
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The absolute value of each of the four terms in the right hand side is at most ||A||∞7→1/4, implying
that ||A||∞7→1 ≥ ||A||C . If the sum of each row and the sum of each column of A is zero, then the
right hand side is precisely 1

4

∑
i,j aijxiyj , implying that in this case |A||∞7→1 ≥ 4||A||C , which, in

view of (3), shows that the above holds as an equality. 2

Proposition 2.2 Given a (weighted or unweighted) graph G = (V,E), there is an efficient way to
construct a real 2|E| by |V | matrix A, such that

MAXCUT (G) = ||A||C = ||A||∞7→1/4.

Therefore, the CUT NORM problem and the problem of computing ||A||∞7→1 are both MAX SNP
hard.

Proof: We describe the construction for the unweighted case. The weighted case is similar. Given
G = (V, E), orient it in an arbitrary manner. Let V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em},
and let A = (aij) be the 2m by n matrix defined as follows. For each 1 ≤ i ≤ m, if ei is oriented
from vj to vk, then a2i−1,j = a2i,k = 1 and a2i−1,k = a2i,j = −1. The rest of the entries of A are all
0. It is not difficult to check that MAXCUT (G) = ||A||C . In addition, since the sum of entries in
each row and in each column of A is zero, it follows by Lemma 2.1 that ||A||∞7→1 = 4||A||C . As it
is known [22], [13] that the MAX CUT problem is MAX SNP hard, the desired result follows. 2

H̊astad [13] has shown that if P 6= NP then there is no polynomial time approximation algo-
rithm for the MAX CUT problem with approximation ratio exceeding 16/17. Thus, this is an upper
bound for the best possible approximation guarantee of a polynomial algorithm for approximating
||A||C or ||A||∞7→1. Similarly, our reduction above can be easily modified to construct, for any given
directed graph D, a matrix B with vanishing row sums and column sums, so that the value of the
maximum directed cut of D is equal to ||B||C . H̊astad [13] has shown that if P 6= NP then there
is no polynomial time approximation algorithm for the MAX DICUT problem with approximation
ratio exceeding 12/13. Thus, this is an upper bound for the best possible approximation guarantee
of a polynomial approximation algorithm for ||B||C or ||B||∞7→1.

3 Approximating the cut-norm

In this section we describe an efficient, deterministic, ρ- approximation algorithm for the CUT
NORM problem, where ρ > 0 is an absolute constant. We make no attempt here to optimize the
value of ρ: this will be done (in a different way) in Section 4. We believe, however, that although
the value of ρ obtained in this section is rather poor, the method, which is motivated by the proof
Grothendieck’s inequality in [15], is interesting and may lead to similar results for related problems.

Given a real n by m matrix A = (aij), our objective is to find xi, yj ∈ {−1, 1}, such that

∑

i,j

aijxiyj ≥ ρ||A||∞7→1,
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where ρ is an absolute positive constant. The discussion in Section 1 and the proof of Lemma 2.1
imply that this will yield a similar procedure for finding I and J such that |∑i∈I,j∈J aij | ≥ ρ′||A||C .

We start by solving the semidefinite program (2). We can thus compute, for any positive δ,
unit vectors ui, vj ∈ Rp, where p = n+m, such that the sum

∑
i,j aijui · vj is at least the maximum

value of the program (2) (which is clearly at least ||A||∞7→1) minus δ. Since the value of the above
norm of A is at least the maximum absolute value of an entry of A, we can make sure that the
δ term is negligible. The main part of the algorithm is the rounding phase, that is, the phase of
finding, using the vectors ui, vj , reals xi, yj ∈ {−1, 1}, such that

∑

i,j

aijxiyj ≥ ρ
∑

i,j

aijui · vj .

This is done as follows. Let V be an explicit set of t = O(p2) vectors ε = (ε1, ε2, . . . , εp) ∈
{−1, 1}p in which the values εj are four-wise independent and each of them attains the two values
−1 and 1 with equal probability. This means that for every four distinct coordinates 1 ≤ i1 <

. . . < i4 ≤ n and every choice of ε1, . . . , ε4 ∈ {−1, 1}, exactly a (1/16)−fraction of the vectors have
εj in their coordinate number ij for j = 1, . . . , 4. As described, for example, in [1] or [5] such sets
(also known as orthogonal arrays of strength 4) can be constructed efficiently using the parity check
matrices of BCH codes.

Let M > 0 be a fixed real, to be chosen later. Consider V as a sample space in which all t

points ε have the same probability. For any unit vector q = (q1, q2 . . . , qp) ∈ Rp, let H(q) denote
the random variable defined on the sample space V by putting [H(q)](ε) =

∑p
j=1 εjqj . Since the

entries εj are four-wise (and hence pairwise) independent, it follows that for any two vectors q, q′,
the expectation of H(q)H(q′) is precisely the inner product q · q′. In particular, the expectation
of [H(q)]2 is q · q = 1. Similarly, four-wise independence implies that the expectation of [H(q)]4

satisfies

E([H(q)]4) =
p∑

j=1

q4
j + 6

∑

1≤j<j′≤p

q2
j q

2
j′ ≤ 3


∑

j

q2
j




2

= 3.

The M -truncation of H(q), denoted HM (q), is defined as follows: [HM (q)](ε) = [H(q)](ε) if
|[H(q)](ε)| ≤ M , [HM (q)](ε) = M if [H(q)](ε) > M , and [HM (q)](ε) = −M if [H(q)](ε) < −M .

By Markov’s Inequality, for every positive real m, Prob[ |H(q)| ≥ m]m4 ≤ E([H(q)]4) ≤ 3,

implying that Prob[ |H(q)| ≥ m] ≤ 3
m4 . This implies the following

Claim 3.1 The expectation E(|H(q)−HM (q)|2) satisfies

E(|H(q)−HM (q)|2) ≤ 1
M2

.

2

Each random variable H(q) can be associated with a vector h(q) ∈ Rt by defining [h(q)](ε) =
1√
t
[H(q)](ε). The truncation hM (q) = HM (q)/

√
t is defined analogously. The above discussion thus

implies the following.
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Lemma 3.2 For each unit vector q ∈ Rp, h(q) ∈ Rt is a unit vector. The norm of hM (q) is at most
1, and that of h(q)− hM (q) is at most 1/M . If q′ ∈ Rp is another vector, then h(q) · h(q′) = q · q′.
2

Returning to our semidefinite program (2) and its solution (up to δ) given by the vectors
ui, vj ∈ Rp, let B denote the value of the program. Since h(q) · h(q′) = q · q′ for all unit vectors
q, q′, it follows that

B − δ ≤
∑

ij

aijui · vj =
∑

ij

aijh(ui) · h(vj)

=
∑

ij

aijh
M (ui) · hM (vj) +

∑

ij

aij(h(ui)− hM (ui)) · hM (vj) +
∑

ij

aijh(ui) · (h(vj)− hM (vj)).

By the convexity of the program, and since the norm of each vector hM (vj), h(ui) is at most 1, and
the norm of each vector h(ui)− hM (ui) and each vector h(vj)− hM (vj) is at most 1/M , it follows
that ∑

ij

aij(h(ui)− hM (ui)) · hM (vj) +
∑

ij

aijh(ui) · (h(vj)− hM (vj)) ≤ 2
M

B.

Here we have used, crucially, the fact that as B is the maximum value of the semidefinite program,
its value on the vectors h(ui)− hM (ui) and the vectors h(vj) does not exceed B 1

M , and so does its
value on the vectors h(ui) and h(vj)− hM (vj). Therefore,

B(1− 2
M

)− δ ≤
∑

ij

aijh
M (ui) · hM (vj).

It follows that there is a coordinate ε ∈ V such that
∑

ij

aijh
M (ui)(ε) · hM (vj)(ε) ≥ 1

t

(
B

(
1− 2

M

)
− δ

)
.

By the definition of the vectors h, this implies

∑

ij

aijH
M (ui)(ε) ·HM (vj)(ε) ≥ B

(
1− 2

M

)
− δ.

Choose M = 3 and define xi = HM (ui)(ε)/M , yj = HM (vj)(ε)/M . Then xi, yj are reals, each
having an absolute value at most 1, and

∑

ij

aijxiyj ≥ B

(
M − 2
M3

)
− δ

M2
=

B

27
− δ

9
.

Fixing all xi, yj but, say, x1, the left hand side is a linear form in x1, and thus we can shift x1 to
either −1 or 1, without any decrease in the value of the sum. Proceeding in this way with the other
variables, each one in its turn, we obtain xi, yj ∈ {−1, 1} such that the value of the sum

∑
ij aijxiyj

is at least B
27 − δ

9 . As δ is arbitrarily small, we have thus proved the following.

Theorem 3.3 There is a deterministic polynomial time algorithm that finds, for a given real matrix
A = (aij), integers xi, yj ∈ {−1, 1} such that the value of the sum

∑
ij aijxiyj is at least 0.03 B,

where B is the value of the semidefinite program (2) (which is at least ||A||∞7→1). 2

7



4 Improving the constant

The constant obtained in the previous section can be improved by replacing the space V of four-
wise independent {−1, 1} variables with a space of 2k-wise independent {−1, 1} variables (or with
a space of independent standard normal random variables). This, however, will not provide a
ρ-approximation algorithm with ρ > 1

5 .
In fact, we can do much better. In this section we describe two randomized ρ-approximation

algorithms for approximating ||A||∞7→1. For the first algorithm, ρ = 4
π − 1 > 0.27, while for

the second ρ = 2 ln(1+
√

2)
π > 0.56. We further show that these yield randomized ρ-approximation

algorithms for the CUT NORM problem, with the same values of ρ (without losing the factor of
4 that appears in Lemma 2.1.) It should be possible to derandomize these algorithms using the
techniques of [20].

4.1 Averaging with a Gaussian measure

The main idea here, based on [23], is to round the solution ui, vj ∈ Rp of the semidefinite program
(2) by averaging over Rp with normalized Gaussian measure. We proceed with the details.

Let g1, g2, . . . , gp be standard, independent, Gaussian random variables, and consider the ran-
dom vector G = (g1, . . . , gp). The following identity holds for every two unit vectors b, c ∈ `p

2:

π

2
E [sign(b ·G) · sign(c ·G)] = b · c + E

{[
b ·G−

√
π

2
sign(b ·G)

]
·
[
c ·G−

√
π

2
sign(c ·G)

]}
(4)

This is a simple exercise, using rotation invariance. Indeed, the fact that

E [(b ·G)(c ·G)] = b · c (5)

follows from the orthogonality of the vectors gi; if b = (b1, . . . , bp) and c = (c1, . . . , cp), then

E [(b ·G)(c ·G)] = E

[ p∑

i=1

bigi

p∑

i=1

cigi

]
=

∑

i,j

bicjE[gigj ] =
p∑

i=1

bici = b · c.

To compute E [(b ·G)sign(c ·G)] assume, by rotation invariance, that c = (1, 0, . . . , 0), and b =
(b1, b2, 0, . . . , 0). Hence b · c = b1 and

E [(b ·G)sign(c ·G)] = E [(b1g1 + b2g2)sign(g1)] = E [(b1g1sign(g1)] + E[b2g2]E[sign(g1)]

= E [(b1g1sign(g1)] = 2
∫ ∞

0

1√
2π

b1xe−x2/2dx =
√

2
π

b1.

Thus

E [(b ·G)sign(c ·G)] =
√

2
π

b · c. (6)

The identity above follows from (5) and (6), by linearity of expectation.
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Suppose, now, that the vectors ui, vj ∈ Rp supply a solution of (2), which can be found efficiently
(we assume, for simplicity, that this is a precise solution). Let B denote the value of the solution.
By (4)

π

2
E





∑

i,j

aij [sign(ui ·G) · sign(vj ·G)]





= B +
∑

i,j

aijE

{[
ui ·G−

√
π

2
· sign(ui ·G)

]
·
[
vj ·G−

√
π

2
· sign(vj ·G)

]}
. (7)

Note that each term of the form

E

{[
ui ·G−

√
π

2
· sign(ui ·G)

]
·
[
vj ·G−

√
π

2
· sign(vj ·G)

]}

which multiplies aij in (7), is the inner product of two vectors in a Hilbert space. Moreover, the
square of the norm of each of these vectors is easily seen to be π

2 − 1, by substituting b = c = ui (or
b = c = vj) in (4). Therefore, as B is the maximum possible value of the program (2), it follows
that the last sum in (7) is bounded, in absolute value, by (π

2 − 1)B. Thus, by (7)

π

2
E





∑

i,j

aij [sign(ui ·G) · sign(vj ·G)]



 ≥

(
2− π

2

)
B,

implying that by choosing the normal random variables gi randomly, and by defining

xi = sign(ui ·G), yj = sign(vj ·G)

we get a solution for (1) whose expected value is at least 2
π (2− π

2 )B = ( 4
π − 1)B. As B is at least

the value of the optimal solution of (1), this supplies a randomized ρ-approximation algorithm for
estimating ||A||∞7→1, where ρ = 4

π − 1.

Remark: The above algorithm is based only on the basic idea in the proof of [23], and it is in fact
possible to improve its performance guarantee by modifying it according to the full proof. This
suggests to round ui · G to xi = sign(ui · G) if it is ”large”, and to round it to some multiple of
ui · G if it is not, where the definition of ”large” and the precise multiple are chosen optimally.
We can then further round the fractional values of xi to integral ones with no loss. This resembles
some of the ideas used in several recent papers including [25], [18] and [8]. We do not include the
details here, as we can get a better approximation guarantee, using another method, described in
subsection 4.3.

4.2 Positive semidefinite matrices

In this section we observe that when A = (aij) is positive semidefinite then the approximation ratio
can be improved to 2/π. This follows from the work of Nesterov [21], but the short argument we
describe here is based on Rietz’ proof that for such an A the constant in Grothendieck’s Inequality
can be improved to π/2. Grothendieck himself showed in [10] (in a somewhat different language)
that π/2 is a lower bound for the constant in this case; we sketch a proof of this fact below.
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We first show that if A = (aij) is a positive semidefinite n by n matrix, then the maximum of
the semidefinite program (2) is obtained for some vectors ui, vj satisfying ui = vi for all i (though,
of course, it may also be obtained for some vectors that do not satisfy this property). This is not
really required for getting the 2/π approximation algorithm, but we include this proof as it shows
that the integrality gap of the problem is at most π/2.

Suppose, thus, that the maximum value of (2), denoted by B, is obtained by some p-dimensional
vectors, where p ≤ 2n and A is positive semidefinite. Let D = A ⊗ I be the tensor product of
A with a p by p identity matrix. This is simply the np by np matrix consisting of p blocks
along the diagonal, each being a copy of A. Given u1, . . . , un ∈ `p

2, where ui = (ui1, ui2, . . . , uip)
let u(j) = (u1j , u2j , . . . , unj) be the vector consisting of the j-th coordinates of all vectors ui,
(1 ≤ j ≤ p). Let u = (u(1), u(2), . . . , u(p)) ∈ `np

2 and note that Du = (Au(1), Au(2), . . . , Au(p)). Thus
D is positive semidefinite and for u1, . . . , un, v1, . . . , vn ∈ `p

2,
∑

i,j

aijui · vj = Du · v = D1/2u ·D1/2v ≤ ‖D1/2u‖ · ‖D1/2v‖,

with equality when u = v.
Therefore, if the maximum B of the quantity

∑
i,j aijui · vj is obtained for the unit vectors

ui, vj ∈ `p
2, then, as ‖D1/2u‖ cannot exceed B1/2, it follows that ‖D1/2u‖ = ‖D1/2v‖ = B1/2. Thus

the maximum is also equal to
∑

i,j aijui · uj (and to
∑

i,j aijvi · vj).
The fact that for positive semidefinite matrices A we can get a ρ-approximation algorithm with

ρ = 2
π is now an easy consequence of (7). We first solve the semidefinite program (2) to get vectors

ui, vj optimizing it. By the above discussion, the vectors ui = vi for all i also give an optimal
solution. (Alternatively, we can solve the variant of (2) in which ui = vi for all i directly, and
proceed from there.) By (7)

π

2
E





∑

i,j

aij [sign(ui ·G) · sign(uj ·G)]





= B +
∑

i,j

aijE

{[
ui ·G−

√
π

2
· sign(ui ·G)

]
·
[
uj ·G−

√
π

2
· sign(uj ·G)

]}
≥ B,

where here we have used the fact that A is positive semidefinite. The algorithm now simply chooses
G at random, and computes xi = yi = sign(ui ·G).

We conclude this subsection with a sketch of (a modified version of) the argument of Grothendieck
that shows that the integrality gap of (1) for the positive semidefinite case is indeed precisely π/2.
We need the following
Fact: If b and c are two random, independent, vectors on the unit sphere in Rp, then

E[(b · c)2] =
1
p

(8)

and

E[|b · c|] =

(√
2
π

+ o(1)

)
1√
p
, (9)

10



where the o(1)-term tends to zero as p tends to infinity.
Indeed, the computation of the first expectation is very simple; by rotation invariance we may
assume that c = (1, 0, 0, . . . , 0) and then E[(b · c)2] = E[b2

1], where b = (b1, b2, . . . , bp). However, by
symmetry E[b2

1] = 1
pE[b2

1+b2
2+ . . .+b2

p] = 1
p , implying (8). By the same reasoning, E[|b ·c|] = E[|b1|]

which can now either be computed directly by integrating along the sphere, or can be estimated by
noticing that it is well approximated by E[| g√

p |], where g is a standard Gaussian random variable.
The simple computation for this case appears before the derivation of (6).

Armed with the above fact, we now define an n by n positive semidefinite matrix A = (aij)
for which the ratio between the value of (1) and that of (2) is (nearly) π/2. Fix a large integer
p, and let n be much larger. Let v1, v2, . . . , vn be n independent random vectors chosen uniformly
according to the normalized Haar measure on the unit sphere in Rp. Let A be the gram matrix
of the vectors vi

n , that is aij = 1
n2 vi · vj . Obviously A is positive semidefinite. Moreover, if we

substitute the unit vectors vi in the program (2) we get

∑

i,j

aijvi · vj =
1
n2

∑

ij

(vi · vj)2.

When n tends to infinity, this converges to the average value of the square of the inner product
between two random vectors on the unit sphere of Rp, which is, by (8), 1/p. Therefore, the optimal
value of the program (2) for A is at least 1/p.

Consider, now, the optimal value of the integer program (1) for A. Let xi ∈ {−1, 1} be a sign
vector. Then ∑

i,j

aijxi · xj = ‖ 1
n

n∑

i=1

xivi‖2.

Therefore, the value of the integer program is the square of the maximum possible norm of a vector
1
n

∑n
i=1 xivi, where xi ∈ {−1, 1} for all i. If the direction of this optimal vector is given by the unit

vector c, then, knowing c, it is clear how to choose xi for each i; it simply has to be sign(vi · c).
With this choice of the signs xi, the quantity

1
n

n∑

i=1

xivi · c = ‖ 1
n

n∑

i=1

xivi‖

converges, when n tends to infinity, to the average value of |v · c|, where v is a random vector on
the sphere. By (9) this value is (

√
2/π + o(1)) 1√

p , where the o(1)-term tends to zero as p tends
to infinity. Since n can be chosen to be arbitrarily large with respect to p, and as we do not have
to consider all the infinitely many possible directions c, but can consider an appropriate ε-net of
directions on the sphere, we conclude that if p is large and n is huge, then, with high probability,
the value of the integer program (1) for A is at most

[(√
2
π

+ o(1)

)
1√
p

]2

=
(

2
π

+ o(1)
)

1
p
.

It follows that the integrality gap is at least π/2, implying, by the discussion in the beginning of
this subsection, that it is exactly π/2.
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4.3 Constructing new vectors

Our approach in this subsection is based on a simplified version of Krivine’s proof, presented in [17],
of Grothendieck’s Inequality, as described in [14]. We need the following simple lemma, which has
already been mentioned briefly in the introduction, and which has been applied in Grothendieck’s
original proof as well.

Lemma 4.1 (Grothendieck’s identity) For every two unit vectors u, v in a Hilbert space, if z

is chosen randomly and uniformly according to the normalized Haar measure on the unit sphere of
the space, then

π

2
· E([sign (u · z)] · [sign (v · z)]) = arcsin (u · v) .

2

Using this lemma, we prove the following.

Lemma 4.2 For any set {ui : 1 ≤ i ≤ n} ∪ {vj : 1 ≤ j ≤ m} of unit vectors in a Hilbert space
H, and for c = sinh−1(1) = ln(1 +

√
2), there is a set {u′i : 1 ≤ i ≤ n} ∪ {v′j : 1 ≤ j ≤ m} of unit

vectors in a Hilbert space H ′, such that if z is chosen randomly and uniformly in the unit sphere
of H ′ then

π

2
· E

([
sign

(
u′i · z

)] ·
[
sign

(
v′j · z

)])
= c ui · vj

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proof: Fix c as above, a Hilbert space H and u, v ∈ H. By Taylor’s expansion:

sin (c u · v) =
∞∑

k=0

(−1)k c2k+1

(2k + 1)!
(u · v)2k+1 .

For every vector w and integer j denote by w⊗j the j’th tensor power w ⊗ w ⊗ · · · ⊗ w (j terms).
Then the above expansion becomes

sin (c u · v) =
∞∑

k=0

(−1)k c2k+1

(2k + 1)!
u⊗(2k+1) · v⊗(2k+1).

Consider the following vectors in the direct sum ⊕∞k=0H
⊗(2k+1), whose k’th ”coordinate” is given

by:

T (u)k = (−1)k

√
c2k+1

(2k + 1)!
· u⊗(2k+1) and S(y)k =

√
c2k+1

(2k + 1)!
· v⊗(2k+1)

Then the above expansion boils down to sin (c u · v) = T (u) · S(v), or

c u · v = arcsin (T (u) · S(v)) .

Moreover,
‖T (u)‖2 = sinh

(
c · ‖u‖2

)
and ‖S(v)‖2 = sinh

(
c · ‖v‖2

)
.
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Given the unit vectors ui, vj , recall that c = sinh−1(1) and define u′i = T (ui) and v′j = S(vi).
Note that all the vectors u′i, v

′
j are unit vectors (in the huge direct sum of tensor products we

constructed). Let H ′ be the span of u′i, v
′
j . It is an m + n-dimensional Hilbert space. Let z be a

random vector chosen uniformly on its unit sphere. By Grothendieck’s identity (Lemma 4.1), for
every i, j:

π

2
· E([sign (T(ui) · z)] · [sign (S(vj) · z)]) = arcsin (T (ui) · S(vj)) = c ui · vj ,

as needed. 2

Theorem 4.3 There is a randomized polynomial time algorithm that given an input n by m matrix
A = (aij) and unit vectors ui, vj in Rn+m finds xi, yj ∈ {−1, 1} such that the expected value of the
sum

∑
ij aijxiyj is

2 ln(1 +
√

2)
π

∑

ij

aijui · vj .

Therefore, there is a polynomial randomized ρ-approximation algorithm for computing ||A||∞7→1,
where ρ = 2 ln(1+

√
2)

π > 0.56.

Proof: By Lemma 4.2 there are vectors u′i, v
′
j satisfying the conclusion of the lemma. We can thus

find such vectors in an m + n-dimensional space, using semidefinite programming. By linearity of
expectation, with c = sinh−1(1) as above,

c ·
∑

i,j

aijui · vj =
π

2
· E(

∑

i,j

aij
[
sign

(
u′i · z

)] ·
[
sign

(
v′j · z

)]
).

We can now simply pick a random z and define xi = sign(u′i · z) and yj = sign(vj · z). 2

4.4 The cut-norm

In this short subsection we observe that the same approximation ratio guaranteed in any approxi-
mation algorithm for ||A||∞7→1 can be obtained for the CUT NORM problem as well. Given an n

by m matrix A = aij , augment it to an (n + 1) by (m + 1) matrix A′ = (a′ij) by defining a′ij = aij

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, a′i,m+1 = −∑m
j=1 aij for all 1 ≤ i ≤ n, a′n+1,j = −∑n

i=1 aij for all
1 ≤ j ≤ m, and a′n+1,m+1 = 0. We claim that ||A′||C = ||A||C . Indeed, obviously ||A′||C ≥ ||A||C ,
as A is a submatrix of A′. Conversely, let I ⊂ {1, 2, . . . , n + 1}, J ⊂ {1, 2, , . . . ,m + 1} satisfy
||A′||C = |∑i∈I,j∈J a′ij |. If n+1 ∈ I replace it by its complement {1, 2, . . . , n+1} \ I and similarly,
if m + 1 ∈ J , replace it by its complement {1, 2, . . . , m + 1} \ J . As the sum of each row and the
sum of each column of A′ is zero, the absolute value of the sum

∑
i∈I,j∈J a′ij with the new sets I, J

is still equal to ||A′||C . This is, however, the sum of elements of a submatrix of A, implying that
in fact ||A′||C = ||A||C , as claimed.

By the last part of Lemma 2.1, ||A′||∞7→1 = 4||A′||C , and thus we can simply apply any algorithm
for ρ-approximating ||A′||∞7→1 to obtain a similar ρ-approximation of ||A′||C = ||A||C .
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5 Concluding remarks

• The Regularity Lemma of Szemerédi [24] is a result that asserts that any graph can be
partitioned in a certain regular way. An algorithmic version of this lemma appears in [3],
together with several algorithmic applications. The main step in the design of this algorithmic
version, is an efficient procedure for approximating the ”regularity” of a pair of subsets in a
given graph. This step can be improved using our results here. To state this improvement,
we need a few definitions.

Let G = (V,E) be an undirected graph, and let A,B be two disjoint nonempty subsets of V .
Let e(A,B) denote the number of edges of G with an endpoint in A and an endpoint in B,
and define the density of edges between A and B by d(A,B) = e(A,B)

|A||B| . For ε > 0, the pair
(A,B) is called ε-regular if for every X ⊂ A and Y ⊂ B satisfying |X| ≥ ε|A| and |Y | ≥ ε|B|,
the inequality

|d(A,B)− d(X, Y )| < ε

holds.

The main step in [3] is a polynomial time algorithm that, given two disjoint subsets A,B ⊂ V

in a graph G, where |A| = |B| = n, and given ε > 0, either decides that the pair (A,B)
is ε-regular, or finds two subsets X ⊂ A and Y ⊂ B, each of size at least ε4

16n, such that
|d(A,B)− d(X,Y )| ≥ ε4. A somewhat better result can be obtained using the approximation
algorithms developed here. Given G = (V, E), ε > 0 and A,B as above, compute, first, the
density d = d(A, B). Let F = (fab)a∈A,b∈B be the n by n matrix defined by fab = 1 − d

if ab ∈ E and fab = −d if ab 6∈ E. Note that if (A,B) is not ε-regular, then there are
I ⊂ A, J ⊂ B satisfying |I| ≥ εn, |J | ≥ εn such that

|
∑

a∈I,b∈J

fab| ≥ ε|I||J | ≥ ε3n2,

that is, the cut-norm of F is at least ε3n2. Therefore, in this case our algorithm will find
efficiently X ⊂ A, Y ⊂ B such that

|
∑

a∈X,b∈Y

fab| ≥ 0.56ε3n2.

Obviously this implies, say, that |X| ≥ 0.5ε3n, |Y | ≥ 0.5ε3n and |d(X,Y )− d(A,B)| ≥ 0.5ε3.

If the algorithm does not find such sets, it can report that the pair (A,B) is ε-regular. This
can be used instead of Corollary 3.3 in [3] to obtain efficiently a regular partition of any given
graph with less parts than the ones ensured by the algorithm in [3] (but the number will still
be huge; a tower of height polynomial in 1/ε, the degree of this polynomial will be smaller
than the one in [3]).

• In [7] Frieze and Kannan describe an efficient algorithm for finding what they call a cut-
decomposition of a given n by m real matrix A, and apply it to obtain efficient approximation
algorithms for various dense graph and matrix problems.
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Consider matrices with a set of rows indexed by R and a set of columns indexed by S. For
I ⊂ R and J ⊂ S, and for a real d, the cut matrix D = CUT (I, J, d) is the matrix (dij)i∈R,j∈S

defined by dij = d if i ∈ I, j ∈ J and dij = 0 otherwise. A cut-decomposition of A expresses
it in the form

A = D(1) + . . . + D(s) + W,

where the matrices D(i) are cut matrices, and the matrix W = (wkl) has a relatively small
cut-norm.

The authors of [7] describe an efficient algorithm that produces, for any given n by m matrix
A with entries in [−1, 1], a cut-decomposition in which the number of cut matrices is O(1/ε2),
and the cut-norm of the matrix W is at most εnm. This is done as follows. Starting with
W (0) = A, suppose that the first i cut matrices D(1), . . . , D(i) have already been defined, and
consider the difference W (i) = A − ∑i

j=1 D(j). If the cut-norm of this difference is already
smaller than εnm, we are done. Otherwise, let I, J be sets of rows and columns such that

|
∑

k∈I,l∈J

w
(i)
kl | ≥ ρεnm, (10)

where ρ > 0 is an absolute positive constant. Let d be the average value of the entries w
(i)
kl for

k ∈ I, l ∈ J , and define D(i+1) = CUT (I, J, d),W (i+1) = W (i) −D(i+1). A simple computa-
tion, described in [7], shows that the sum of squares of the entries of the new matrix W (i+1)

is at most the sum of squares of the entries of the matrix W (i) minus ρ2ε2nm. Therefore, this
process must terminate after at most 1

ρ2ε2
steps. The main step in the algorithm is clearly

that of finding the sets I, J that satisfy (10), and the authors are able to do it efficiently
only when the cut-norm is at least a constant fraction of nm. Our algorithm here enables
us to perform this task efficiently (even if ε is, say, 1/n0.001, which is not feasible using the
approach of [7], as the running time of their algorithm is exponential in 1/ε2).

• The rounding techniques described in Section 3 or in Subsection 4.1 (but not the one described
in Subsection 4.3) can be used to find efficiently, for any given square n by n matrix A = (aij),
a vector (x1, . . . , xn) ∈ {−1, 1}, such that the value of |∑ij aijxixj | is at least a ρ-fraction
of the maximum possible value of this quantity (or even the quantity |∑ij aijui · uj |, where
ui, uj are unit vectors in a Hilbert space.) Note that here we do not assume that A is
positive semidefinite (but we try to maximize the absolute value of the quadratic form, not
the quadratic form itself). By applying this approximation algorithm to a matrix defined
from a graph G as in the first comment of this section, we can find an induced subgraph that
approximates the maximum possible deviation of the total number of edges from its expected
value among all induced subgraphs of the graph.

• There is a lot known on the complex version of Grothendieck’s Inequality [12, 16], and it may
be interesting to find algorithmic or combinatorial applications of these results.
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• We believe that the method described in this paper will find further applications, as it provides
a rounding technique that can, at least in the cases considered here, handle cancellations
between positive and negative terms.

• It will be interesting to improve the approximation guarantee of our algorithms. It will also
be interesting to find a ρ-approximation algorithm for the CUT NORM problem (for any
absolute positive constant ρ) which does not apply semidefinite programming and/or can be
analyzed without relying on Grothendieck’s Inequality.
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[24] E. Szemerédi, Regular partitions of graphs, in: Proc. Colloque Inter. CNRS (J. -C. Bermond,
J. -C. Fournier, M. Las Vergnas and D. Sotteau eds.), 1978, 399-401.

[25] U. Zwick, Outward rotations: a tool for rounding solutions of semidefinite programming relax-
ations, with applications to MAX CUT and other problems, Proceedings of the 31th Annual
ACM Symposium on Theory of Computing (STOC), Atlanta, Georgia, 1999, 679–687.

17


