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Abstract

We introduce the notion ofmetric cotype, a property of metric
spaces related to a property of normed spaces, calledRademacher
cotype. Apart from settling a long standing open problem in metric
geometry, this property is used to prove the following dichotomy: A
family of metric spacesF is either almost universal (i.e., contains
any finite metric space with any distortion> 1), or there exists
α > 0, and arbitrarily largen-point metrics whose distortion when
embedded in any member ofF is at leastΩ((log n)α). The same
property is also used to prove strong non-embeddability theorems
of Lq into Lp, whenq > max{2, p}. Finally we use metric cotype
to obtain a new type of isoperimetric inequality on the discrete
torus.

1 Introduction

1.1 An Embedding Dichotomy In the past decade the
theory of finite metric spaces has become an intensively in-
vestigated topic in the theoretical computer science literature
due to its remarkable applicability to algorithm design.

One approach in this vein is to reduce optimization
problems over general metric spaces to a class of “special”
metrics which has more structure (e.g., convex combination
of tree metrics [1, 5]), and solve the optimization problem
over the class of special metrics. The class of special metric
spaces is chosen to balance between the structure needed for
developing an algorithmic solution, and the “distance” of the
special metrics from the original metric. That “distance”
influences the quality of the algorithmic solution in the
original metric.

A useful measure for the “distance”’ between metric
spaces is the distortion.

DEFINITION 1.1. Given two metric spaces(M, dM) and
(N , dN ), and an injective mappingf : M ↪→ N , we denote
thedistortionof f by

dist(f) := sup
x,y∈M

x6=y

dN (f(x), f(y))
dN (x, y)

· sup
x,y∈M

x 6=y

dM(x, y)
dM(f(x), f(y))

.
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The smallest such distortion is denotedcN (M), i.e.
cN (M) := inf{dist(f) : f : M ↪→ N}.

Bourgain’s embedding theorem [8] and Bartal’s prob-
abilistic embedding theorem [5, 16] established Hilbert
spaces,̀ 1, and and convex combination of tree metrics as
useful host spaces for which the distortion of embeddingn-
point metrics isO(log n).

It is therefore interesting to find out whether this ap-
proach can gives distortions which are significantly better
than the guarantee in Bourgain’s theorem. A concrete nat-
ural question in this vein is:

Is there a non-trivial class of metric spacesN for
whichcN (X) is significantly less thanlog |X|, for
every finite metric spaceX?

Motivated by related questions, Arora, Lovász, New-
man, Rabani, Rabinovich and Vempala [3] proved the fol-
lowing dichotomy.

THEOREM 1.1. For any classF of metric spaces,
1. EitherF is almost universal, i.e., for any finite metric

spaceM , cF (M) = 1, or
2. for everyγ ≥ 1, there exists a finite metric spaceM

such thatcF (M) > γ.

The proof is a simple corollary of Matoušek’s bounded-
distortion (BD) Ramsey theorem [29]. Arora et. al. conjec-
ture that a stronger form of Theorem1.1 is true fornormal
classes of metrics.1

CONJECTURE1.1. Let F be a normal metric class which
does not contain all finite metrics with distortion arbitrarily
close to1. Then there existsα > 0 and arbitrarily large
n-point metric spacesMn such thatcF (Mn) ≥ (log n)α.

Arora et. al. also give some supporting evidence for
Conjecture1.1 to be true. Here we settle this conjecture
positively, without any restriction on the classF . Namely,
we prove

THEOREM 1.2. For any classF of metric spaces:
1. EitherF is almost universal, or

1We refer to [3] for the definition of a normal class of metrics, since we
will not use this notion in what follows.
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2. there existsα > 0 and a sequence of metric spaces
{Mn}n≥1, such that |Mn| = n, and cF (Mn) =
Ω ((log n)α).

For Hilbert spaceH, sup{cH(M) : |M | = n} =
Θ(log n) [8, 26]. We do not know whether there exists a
class of metric spacesF which is not almost universal, but
for which sup{cF (M) : |M | = n} = O

(
(log n)β

)
, for

someβ ∈ (0, 1).

Theorem1.2 is proved using a newly introduced prop-
erty of metric spaces calledmetric cotype. Its origins come
from Banach space theory, which we review next.

1.2 Banach Space’s PerspectiveThe parallelogram
equality states that in Hilbert spaceH, for anyx, y ∈ H,

∀x, y ∈ H ‖x− y‖2 + ‖x + y‖2 = 2
(‖x‖2 + ‖y‖2) .

It turns out that this equality characterizes Hilbert space
(see [2]). For various reasons which will become clearer in
the sequel, researchers in Banach space theory generalized
this property into two “isomorphic” inequalities known to-
day as (Rademacher) type and cotype.

A Banach spaceX is said to have (Rademacher) type
p > 0 if there exists a constantT < ∞ such that for everyn
and everyx1, . . . , xn ∈ X,

E
ε∈{±1}n

∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥

p

X

≤ T p
n∑

j=1

‖xj‖p
X .(1.1)

X is said to have (Rademacher) cotypeq > 0 if there
exists a constantC < ∞ such that for everyn and every
x1, . . . , xn ∈ X,

E
ε∈{±1}n

∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥

q

X

≥ 1
Cq

n∑

j=1

‖xj‖q
X .(1.2)

The infimum overC satisfying (1.2) for any n ∈ N, and
x1, . . . , xn ∈ X is denotedCq(X).

The notions of type and cotype of Banach spaces are the
basis of a deep and rich theory which encompasses diverse
aspects of the local theory of Banach spaces. We refer to the
full version of this paper for references on these topics. Here
we mention only few highlights of this theory:

1. Kwapien’s Theorem [24] generalizes the isometric
characterization of Hilbert space into an isomorphic
one: A Banach spaceX is isomorphic (i.e., has a linear
bijection with finite distortion) to Hilbert space if and
only if it has type 2 and cotype 2.

2. Denote bypX the supremum overp such thatX has
type p, and by byqX the infimum overq such thatX
has cotypeq. The Maurey-Pisier theorem [35, 32] states
that for anyn ∈ N, and anyη > 0, X linearly contains
copies of̀ n

qX
and`n

pX
with distortion at most1 + η.

3. Dvoretzky’s theorem (see [31, Chap. 14]) states that for
anyη > 0 andn ∈ N, anyn-dimensional normed space
X contains ad dimensional linear subspaceY ⊆ X
that is isomorphic tò d

2 with distortion 1 + η, where
d = Ωη(log n). The logarithmic estimate ond is
known to be asymptotically tight. However, Figiel,
Lindenstrauss, and Milman [17] have shown that it is
possible find suchY which is1 + η isomorphic to`d

2,
andd = ΩqX ,η(n2/qX ).

The notions of type and cotype are clearlylinear no-
tions, since their definition involves addition and multipli-
cation by scalars. However, in 1976 Ribe (see [7]) proved
that if X andY are uniformly homeomorphic Banach spaces
(i.e., there exists a bijectionf which is uniformly continu-
ous andf−1 is also uniformly continuous) thenX is finitely
representable inY , and vice versa (X is said to be finitely
representable inY if there exists a constantK > 0 such that
any finite dimensional subspace ofY is K-isomorphic to a
subspace ofY ). This theorem suggests that “local proper-
ties” of Banach spaces, i.e. properties which are invariant
under finite representability, have a purely metric character-
ization. Finding explicit manifestations of this phenomenon
for specific local properties of Banach spaces (such as type,
cotype and super-reflexivity), has long been a major driving
force in the bi-Lipschitz theory of metric spaces (see [9] for a
discussion of this research program). Once this is achieved,
one could define the notion of type and cotype of a metric
space, and then hopefully transfer some of the deep theory
of type and cotype to the context of arbitrary metric spaces.

Enflo’s pioneering work [12, 13, 14, 15] resulted in the
formulation of a non-linear notion of type, known today as
Enflo type. The basic idea is that given a Banach spaceX
andx1, . . . , xn ∈ X, one can consider thelinear function
f : {−1, 1}n → X given byf(ε) =

∑n
j=1 εjxj . Then (1.1)

becomes

(1.3) Eε ‖f(ε)− f(−ε)‖p
X

≤ T p
n∑

j=1

Eε ‖f(ε1, . . . , εj−1, εj , εj+1, . . . , εn)−

f(ε1, . . . , εj−1,−εj , εj+1, . . . , εn)‖p
X .

One can thus say that a metric space(M, dM) has Enflo type
p if there exists a constantT such that for everyn ∈ N and
everyf : {−1, 1}n →M,

(1.4) Eε dM(f(ε), f(−ε))p

≤ T p
n∑

j=1

Eε dM(f(ε1, . . . , εj−1, εj , εj+1, . . . , εn),

f(ε1, . . . , εj−1,−εj , εj+1, . . . , εn))p.

There are two natural concerns about (1.4). First of all,
while in the category of Banach spaces (1.4) is clearly a



strengthening of (1.3) (as we are not restricting only to linear
functionsf ), it isn’t clear whether (1.4) follows from (1.3).
Indeed, this problem was posed by Enflo in [15], and in
full generality it remains open. Secondly, we do not know
if (1.4) is a useful notion, in the sense that it yields metric
variants of certain theorems from the linear theory of type.
The first issue is addressed in [10, 36] where it is shown
that for Banach spaces, Rademacher typep implies Enflo
type p′ for every 0 < p′ < p, and the same holds for a
variant of Enflo type called BMW type. The second issue
turned out not be problematic either: Enflo found striking
applications of his notion of type to Hilbert’s fifth problem
in infinite dimensions [13, 14, 15], and to the uniform
classification ofLp spaces [12]. Bourgain, Milman and
Wolfson [10] obtained a non-linear version of the Maurey-
Pisier theorem for type [35, 32] mentioned above, yielding a
characterization of metric spaces which contain bi-Lipschitz
copies of the Hamming cube. A stronger notion of non-linear
type, known as Markov type, was introduced by Ball [4] in
his study of theLipschitz extension problem. This important
notion has since found applications to various problems in
metric geometry and computer science [27, 6, 34].

Despite the vast amount of research on non-linear type,
a non-linear notion of cotype remained elusive. Indeed,
the problem of finding a notion of cotype which makes
sense for arbitrary metric spaces, and which coincides (or
almost coincides) with the notion of Rademacher cotype
when restricted to Banach spaces, became a central open
problem in the field.

1.3 Metric Cotype In this paper we define a metric notion
cotype.

DEFINITION 1.2. [Metric cotype] Let F be a family of
metric spaces andq ≥ p > 0. We shall sayF has metric
cotypeq with powerp and with constantΓ if for every integer
n ∈ N, there exists an even integerm, such that for every
M∈ F and everyf : Zn

m →M,

(1.5)
n∑

j=1

Ex

[
dM

(
f

(
x +

m

2
ej

)
, f(x)

)p]

≤ Γpmpn1− p
q Eε,x [dM(f(x + ε), f(x))p] ,

where the expectations above are taken with respect to
uniformly chosenx ∈ Zn

m and ε ∈ {−1, 0, 1}n (here, and
in what follows we denote by{ej}n

j=1 the standard basis of
Rn). Whenp = q, we simply call the condition above metric
cotypeq. The smallest constantΓ with which inequality(1.5)
holds true is denotedΓ(p)

q (F). Whenp = q, we write

Γq(F) = Γ(q)
q (F). We further introduce the notation

q(p)(F) = inf{q : Γ(p)
q (F) < ∞}, and

q(F) = inf{q : Γq(F) < ∞}.

REMARK 1.1. Metric cotypeq is really a class of inequali-
ties, depending on the powerp ∈ [1, q]. In Banach spaces,
these inequalities are provably closely related (see the full
version). Their mutual relationship in general metric spaces
is not yet understood. Different applications presented in
this paper use different variants (power) of the metric cotype
inequality.

The following theorem is the main result of this paper:

THEOREM 1.3. Let X be a Banach space, andq ∈ [2,∞).
ThenX has metric cotypeq if and only ifX has Rademacher
cotypeq. Moreover, 1

2π Cq(X) ≤ Γq(X) ≤ 90Cq(X).

Finding metric analogs of linear notions of normed
spaces has proved to benefit the theory of finite metric
spaces and algorithms. An example of this phenomenon
is Theorem1.2. That theorem actually follows from the
following theorem, whose proof is discussed in Section2.

THEOREM 1.4. Let F be a family of metric spaces, then
q(2)(F) = ∞ iff for any m,n ∈ N, cF ([m]n∞) = 1, where
[m]n∞ is the grid{0, . . . , m−1}n equipied with thè∞ norm.

Theorem1.4 can be viewed as a metric analog of a
special case (cotype infinity) of the Maurey-Pisier Theorem
mentioned above.

For perspective, we mention some previous examples of
this interaction between Banach space theory and computer
science:

I. Bourgain’s famous embedding theorem [8] is motivated
by John’s theorem [22]. Bourgain’s embedding tech-
nique has found many applications in computer science
(see [21]).

II. Bourgain’s work on the metric interpretation of super-
reflexivity [9] has been followed up by computer scien-
tists regarding the embeddability of of tree metrics in
Euclidean spaces [19, 28, 30, 20, 25].

III. Ball’s notion of Markov type [4], partially motivated as
another metric analog for type, has been used by the
computer science community to analyze the Euclidean
distortion of high-girth graphs, the Hamming cube, and
their subsets [27, 6].

IV. Metric Ramsey theory (see [6] and references therein)
is used to prove lower bound for some online optimiza-
tion problems, and was partially motivated as a metric
analog to Dvoretzky’s theorem.

We hope that the present paper will serve as stimulus for
further exportation of ideas from the highly developed theory
of the geometry of Banach spaces to algorithmic research.

1.4 Other Applications We next consider various other
consequences of the metric cotype property.



Relative conductance ofZn
m. Since Lq has cotype

max{2, q}, it also has metric cotypemax{2, q}. This fact
is especially interesting forL1. The metric cotype 2 with
power 1 property ofL1 can be reinterpreted in terms of a
new kind of a “relative conductance” property ofZn

m.

DEFINITION 1.3. Let G1 = (V, E1) be ad1 regular graph
andG2 = (V, E2) be ad2 regular graph, both on the same
set of vertices,V . The conductance ofG2 relative toG1 is
defined as

ΦE2/E1(V ) = min
∅6=S⊆V

d1|E2(S, S̄)|
d2|E1(S, S̄)| ,

where for a graphG = (V, E) and A,B ⊆ V , E(A,B)
denotes the edges inE which intersect bothA andB.

Note that the usual conductance of a regular graph can
be interpreted as a conductance relative to the complete
graph (with self loops).

We next define two graphs onZn
m:

E1 = {(x, y) ∈ V × V : ∃j, x− y = m
2 ej mod m},

E2 = {(x, y) ∈ V × V : x− y ∈ {−1, 0, 1}n mod m}

The following theorem is implied by the cotype 2 with
power 1 property ofL1. Its proof is discussed in Section3.

THEOREM 1.5. There exists universal constantsβ ≥ α > 0
such that for anyn ∈ N, andm ∈ 4N,

β min
{√n

m , 1
} ≥ ΦE2/E1(Z

n
m) ≥ α min

{√n
m , 1

}
.

An interesting application of Theorem1.5 is tight
bounds on the embedding of`∞ grids inL1.

COROLLARY 1.1. Let [m]n∞ denotes the grid{0, . . . ,m −
1}n endowed with thè ∞ norm, then cL1([m]n∞) =
Θ(min{m,

√
n}). The same holds for embedding into

Hilbert space.

Quadratic inequalities on the cut-cone.An intriguing
aspect of Theorem1.3 is thatL1 has metric cotype2 with
power 2. This inequality seems to be qualitatively stronger
than the cotype 2 with power 1 property ofL1. It is a non-
trivial inequality onL1 which involves distancessquared. To
the best of our knowledge, all the known non-embeddability
results forL1 are based on Poincaré type inequalities in
which distances are raised to the power1. By the cut-
cone representation ofL1 metrics (see [11]) it is enough
to prove any such inequality forcut metrics, which are
particularly simple. Theorem1.3 seems to be the first truly
“infinite dimensional” metric inequality inL1. We believe
that understanding such inequalities onL1 deserves further
scrutiny, especially as they hint at certain non-trivial (and
non-linear) interactions between cuts.

Strong nonembeddability results for Lp. To state
these results we need the following weak notion of distance
respecting embedding due to Gromov [18].

DEFINITION 1.4. Let (M, dM) and (N , dN ) be metric
spaces. A mappingf : M → N is called acoarse em-
beddingif there exists two non-decreasing functionsα, β :
[0,∞) → [0,∞) such thatlimt→∞ α(t) = ∞, and for
every x, y ∈ M, α(dM(x, y)) ≤ dN (f(x), f(y)) ≤
β(dM(x, y)).

In Section4 we show:

THEOREM 1.6. For anyr > max{2, q}, q ≥ 1, `r does not
coarsely embed inLq.

Theorem1.6generalizes a recent result of Johnson and Ran-
drianarivony [23] who proved a special case of Theorem1.6
whenp ∈ [1, 2]. This completes the coarse classification of
Lp spaces since it is known [37, 33] thatLq coarsely embeds
in Lp whenq ≤ p or whenq ≤ 2.

Similar results hold for another type of weak embedding
called uniform embedding. We will not discuss this topic
here, and refer to the full version of this paper for more
details.

2 Nonlinear Maurey-Pisier Theorem

In this section we sketch the proof of Theorem1.4. The proof
of Theorem1.2 does not require much more than what is
presented here, but due to space limitation will not be further
discussed.

In what follows we denote bydiag(Zn
m) the graph on

Zn
m in which x, y ∈ Zn

m are adjacent if for everyi ∈
{1, . . . , n}, xi − yi ∈ {±1 mod m}.

DEFINITION 2.1. Given2 ≤ q, a family of metric spaceF ,
an integern and an even integerm, let Γ(2)

q (F ; n,m) be the
infimum over allΓ > 0 such that for everyM ∈ F , and
everyf : Zn

m →M,

(2.6)
n∑

j=1

∫

Zn
m

dM
(
f

(
x +

m

2
ej

)
, f(x)

)p

dµ(x)

≤ Γpmpn1− p
q E

ε∈{±1,0}n

∫

Zn
m

dM (f (x + ε) , f(x))p
dµ(x).

With this notation,

Γ(2)
q (F) = sup

n∈N

(
inf

m∈2N
Γ(2)

q (F ; n,m)
)
.

For technical reasons that will become clear presently,
given `, n ∈ N we denote byB(F ;n, `) the infimum over
B > 0 such that for every evenm ∈ N, everyM ∈ F , and



everyf : Zn
m →M,

(2.7)
n∑

j=1

∫

Zn
m

dM (f (x + `ej) , f(x))2 dµ(x)

≤ B2`2n E
ε∈{±1}n

∫

Zn
m

dM(f(x + ε), f(x))2dµ(x).

Note thatΓ(F ; n,m), andB(F ; n, `)·n1/q play roughly
the same role. Although the definition ofB(F ; n, `) is more
complicated than that ofΓ(F ;n,m), it will be easier to work
with it, since it is “tensorized” easily, as we shall see in
Lemma2.2.

LEMMA 2.1. For every metric space(M, dM), every
n, a ∈ N, every evenm, r ∈ N with 0 ≤ r < m, and every
f : Zn

m →M,

(2.8)
n∑

j=1

∫

Zn
m

dM (f (x + (am + r)ej) , f(x))2 dµ(x)

≤ min
{
r2, (m− r)2

}
n

· E
ε∈{±1}n

∫

Zn
m

dM(f(x + ε), f(x))2dµ(x).

In particular, B(M;n, `) ≤ 1 for everyn ∈ N and every
eveǹ ∈ N.

Proof. The left-hand side of (2.8) depends only onr, and
remains unchanged if we replacer by m − r. We may thus
assume thata = 0 and r ≤ m − r. Fix x ∈ Zn

m and
j ∈ {1, . . . n}. Observe that

{
x + 1−(−1)k

2

∑

r 6=j

er + kej

}r

k=0

is a path of lengthr joining x and x + rej in the graph
diag(Zn

m). Thus the distance betweenx and x + rej in
the graphdiag(Zn

m) equalsr. If (x = w0, w1, . . . , wr =
x + rej) is a geodesic joiningx andx + rej in diag(Zn

m),
then by the triangle inequality
(2.9)

dM(f(x + rej), f(x))2 ≤ r

r∑

k=1

dM(f(wk), f(wk−1))2.

Observe that if we sum (2.9) over all geodesics joining
x and x + rej in diag(Zn

m), and then over allx ∈ Zn
m,

then in the resulting sum each edge indiag(Zn
m) appears

the same number of times. Thus, averaging this inequality
overx ∈ Zn

m we get that
∫

Zn
m

dM(f(x + rej), f(x))2dµ(x)

≤ r2 E
ε∈{±1}n

[dM(f(x + ε), f(x))]2.

Summing overj = 1, . . . , n we obtain the assertion. ¤

Sub-multiplicativity is a key property of theB(F ; `, s).

LEMMA 2.2. For every four integers`, k, s, t ∈ N,
B (F ; `k, st) ≤ B (F ; `, s) · B (F ; k, t) .

Proof. Let m be an even integer and take a functionf :
Z`k

m →M,M∈ F . Fix x ∈ Z`k
m andε ∈ {−1, 1}`k. Define

g : Z`
m →M by g(y) = f

(
x +

∑k
r=1

∑`
j=1 εj+(r−1)` · yj ·

ej+(r−1)`

)
. By the definition ofB (F ; `, s), applied tog, for

everyB1 > B (F ; `, s) we have that

∑̀
a=1

∫

Z`
m

dM
(
f
(
x +

k∑
r=1

∑̀

j=1

εj+(r−1)` · yj · ej+(r−1)`

+ s

k∑
r=1

εa+(r−1)` · ea+(r−1)`

)
,

f
(
x +

k∑
r=1

∑̀

j=1

εj+(r−1)` · yj · ej+(r−1)`

))2

dµZ`
m

(y)

≤ B2
1s

2` · E
δ∈{±1}`

∫

Z`
m

dM
(
f
(
x +

k∑
r=1

∑̀

j=1

εj+(r−1)` · (yj + δj) · ej+(r−1)`

)
,

f
(
x +

k∑
r=1

∑̀

j=1

εj+(r−1)` · yj · ej+(r−1)`

))2

dµZ`
m

(y).

Averaging this inequality overx ∈ Z`k
m andε ∈ {−1, 1}`k,

and using the translation invariance of the Haar measure, we
get that

(2.10) E
ε∈{±1}`k

∑̀
a=1

∫

Z`k
m

dM
(
f
(
x + s

k∑
r=1

εa+(r−1)` · ea+(r−1)`

)
, f(x)

)2

dµZ`k
m

(x)

≤ B2
1s

2` E
ε∈{±1}`k

∫

Z`k
m

dM (f (x + ε) , f (x))2 dµZ`k
m

(x).

Next we fix x ∈ Z`k
m , u ∈ {1, . . . , `}, and define

hu : Zk
m →M by hu(y) = f

(
x + s

∑k
r=1 yr · eu+(r−1)`

)
.

By the definition ofB (F ; k, t), applied tohu, for every
B2 > B (F ; k, t) we have that

k∑

j=1

∫

Zk
m

dM
(
f
(
x + s

k∑
r=1

yr · eu+(r−1)` + st · eu+(j−1)`

)
,

f
(
x + s

k∑
r=1

yr · eu+(r−1)`

))2

dµZk
m

(y)

=
k∑

j=1

∫

Zk
m

dM
(
hu(y + tej), hu(y)

)2
dµZk

m
(y)



≤ B2
2t

2k E
ε∈{±1}`k

∫

Zk
m

dM

(
hu(y + ε), hu(y)

)2
dµZk

m
(y)

= B2
2t

2k E
ε∈{±1}`k

∫

Zk
m

dM
(
f
(
x + s

k∑
r=1

(yr + εu+(r−1)`) · eu+(r−1)`

)
,

f
(
x + s

k∑
r=1

yr · eu+(r−1)`

))2

dµZk
m

(y).

Summing this inequality overu ∈ {1, . . . , `} and averaging
overx ∈ Z`k

m , we get, using (2.10), that

`k∑
a=1

∫

Z`k
m

dM (f (x + stea) , f(x))2 dµ(x)

≤ B2
2t

2k E
ε∈{±1}`k

∑̀
u=1

∫

Z`k
m

dM
(
f
(
x + s

k∑
r=1

εu+(r−1)` · eu+(r−1)`

)
, f (x)

)2

dµ(x)

≤ B2
2t

2kB2
1s

2` E
ε∈{±1}`k

∫

Z`k
m

dM (f (x + ε) , f (x))2 dµ(x).

This implies the required result. ¤

LEMMA 2.3. Assume that there exist integersn0, `0 > 1
such thatB(M; n0, `0) < 1. Then there exists0 < q < ∞
such that for every integern, Γ(2)

q (M) < ∞.

Sketch of a Proof.Let q < ∞ satisfy B(M, n0, `0) <

n
−1/q
0 . Iterating Lemma2.2 we get that for every integer

k, B(nk
0 , `k

0) ≤ n
−k/q
0 . Denotingn = nk

0 andm = 2`k
0 , this

implies that for everyf : Zn
m →M,

(2.11)
n∑

j=1

∫

Zn
m

dM
(
f

(
x +

m

2
ej

)
, f(x)

)2

dµ(x)

≤ 1
4
m2n1− 2

q E
ε∈{±1}n

∫

Zn
m

dM(f(x + ε), f(x))2dµ(x).

Inequality (2.11) “almost implies” thatΓ(2)
q (M;nk

0 , 2`k
0) =

O(1), except that the averaging ofε is done over{−1, 1}n

instead of{−1, 0, 1}n. This gap is overcome by averaging
(2.11) over all dimensions at mostn — details are omitted.
Extending the inequality to alln (and not just powers ofn0)
is done by a simple interpolation argument — details are
omitted. ¤

LEMMA 2.4. Let n > 1 be an integer,m an even integer,
and s an integer divisible by4. Assume thatη ∈ (0, 1)

satisfies8sn√η < 1
2 , and that there exists a mappingf :

Zn
m →M such that

(2.12)
n∑

j=1

∫

Zn
m

dM (f (x + sej) , f(x))2 dµ(x)

> (1− η)s2n E
ε∈{±1}n

∫

Zn
m

dM(f(x + ε), f(x))2dµ(x).

ThencM ([s/4]n∞) ≤ 1 + 8sn√η.
In particular, if B(M; n, s) = 1 thencM ([s/4]n∞) = 1.

As the proof of Lemma2.4 is too long to fit the current
format, we illustrate it by proving a weaker assertion.

PROPOSITION2.1. Let n > 1 be an integer,m an even
integer, ands an integer divisible by4. Assume that there
exists a mappingf : Zn

m →M such that

(2.13)
n∑

j=1

∫

Zn
m

dM (f (x + sej) , f(x))2 dµ(x)

≥ s2n E
ε∈{±1}n

∫

Zn
m

dM(f(x + ε), f(x))2dµ(x).

ThencM ([s/4]n∞) = 1.

Proof. Observe first of all that (2.13) and Lemma2.1 imply
that m ≥ 2s. In what follows we will use the following
numerical fact: Ifa1, . . . , ar ≥ 0 and0 ≤ b ≤ 1

r

∑r
j=1 aj ,

then

r∑

j=1

(aj − b)2 ≤
r∑

j=1

a2
j − rb2.(2.14)

For x ∈ Zn
m let G+

j (x) (resp. G−j (x)) be the set of all
geodesics joiningx andx + sej (resp.x− sej) in the graph
diag(Zn

m). As we have seen in the proof of Lemma2.1,
sinces is even, these sets are nonempty. Notice that ifm =
2s thenG+

j (x) = G−j (x), otherwiseG+
j (x) ∩ G−j (x) = ∅.

Denote byG±j (x) = G+
j (x) ∪ G−j (x), and forπ ∈ G±j (x),

sg(π) =

{
+1 if π ∈ G+

j (x)
−1 otherwise.

Each geodesic inG±j (x) has lengths. We write eachπ ∈
G±j (x) as a sequence of verticesπ = (π0 = x, π1, . . . , πs =
x+sg(π)sej). Using (2.14) with aj = dM(f(πj), f(πj−1))
and b = 1

sdM (f (x + sej) , f(x)), which satisfy the the
conditions of (2.14) due to the triangle inequality, we get



that for eachπ ∈ G±j (x),

(2.15)
s∑

`=1

[
dM(f(π`), f(π`−1))

− 1
sdM (f (x + sg(π)sej) , f(x))

]2

≤
s∑

k=1

dM(f(π`), f(π`−1))2

− 1
sdM (f (x + sg(π)sej) , f(x))2 .

By symmetry|G+
j (x)| = |G−j (x)|, and this value is indepen-

dent ofx ∈ Zn
m andj ∈ {1, . . . , n}. Denoteg = |G±j (x)|,

and observe thatg ≤ 2 · 2ns. Averaging (2.15) over all
x ∈ Zn

m andπ ∈ G±j (x), and summing overj ∈ {1, . . . , n},
we get that

1
g

n∑

j=1

∫

Zn
m

∑

π∈G±j (x)

s∑

`=1

[
dM(f(π`), f(π`−1))

− 1
sdM (f (x + sg(π)sej) , f(x))

]2
dµ(x)

≤ snEε

∫

Zn
m

dM(f(x + ε), f(x))2 dµ(x)

− 1
s

n∑

j=1

∫

Zn
m

dM (f (x + sej) , f(x))2 dµ(x)

≤ 0.(2.16)

Thus, (2.16) implies that for everyx ∈ Zn
m, every j ∈

{1, . . . , n}, everyπ ∈ G±j (x), and everỳ ∈ {1, . . . , s},
(2.17)

dM(f(π`), f(π`−1)) =
1
s
dM (f (x + sg(π)sej) , f(y))

CLAIM 2.1. For everyx ∈ Zn
m, andε, δ ∈ {−1, 1}n,

dM(f(x), f(x + ε)) = dM(f(x), f(x + δ)).

Sketch of a Proof.If δ = ε there is nothing to proves.
Otherwise the two pairs(x+ δ, x), and(x, x+ ε) are clearly
part of some geodesic inG±j (x+δ), for somej ∈ {1, . . . , n},
and (2.17) implies their equality. ¤

CLAIM 2.2. For everyx, y ∈ Zn
m, and ε, δ ∈ {−1, 1}n,

dM(f(x), f(x + ε)) = dM(f(y), f(y + δ)).

Proof. Take any path indiag(Zn
m) containing both(x, x +

ε), and(y, y + δ) and apply Claim2.1for every consecutive
pair of edges along this path. ¤

Without loss of generality we scale the distances to
satisfy dM(f(x), f(x + ε)) = 1, for any x ∈ Zn

m and
ε ∈ {−1, 1}n.

CLAIM 2.3. DenoteV =
{
x ∈ Zn

m : ∀j 0 ≤ xj ≤
s
2 and xj is even

}
. Then the following assertions hold true:

1. For everyx, y ∈ V there existsj ∈ {1, . . . , n}, and a
pathπ ∈ G+

j (x) of lengths which goes throughx and
y.

2. For everyx, y ∈ V , ddiag(Zn
m)(x, y) = dZn

m
(x, y) =

‖x− y‖∞.

Sketch of a Proof.Let j ∈ {1, . . . , n} be such that|yj −
xj | = ‖x − y‖∞. We can take a geodesicπ′ connecting
x with y, and then concatenatingπ′ with π′′, where inπ′′ the
edges are reversed relative toπ, except in thej-th coordinate.
Thus,π′ ◦ π′′ connectx, y, andx + 2‖x− y‖∞ej . The path
can now easily be continued tox + sej in diag(Zn

m), since
s is even.

The second assertion is obvious. ¤

COROLLARY 2.1. ∀x, y ∈ V , dM(f(x), f(y)) = ‖x −
y‖∞.

Proof. Equality (2.17) implies that thedM(f(x), f(x +
sej)) = s, so applying the triangle inequality twice on the
path constructed in Claim2.3concludes the proof. ¤

This concludes the proof of Proposition2.1, since the
mapping x 7→ x/2 is a distortion1 bijection between
(V, dZn

m
) and[s/4]n∞. ¤

LEMMA 2.5. Let F be a a family of metric spaces. Fix
q < ∞ and assume thatΓ(2)

q (F ;n, m) < ∞. Then

cF
(
Zn

m

) ≥ n1/q/(2Γ(2)
q (F ;n,m)).

Proof. Fix M ∈ F , a bijection f : Zn
m → M, and

Γ > Γ(2)
q (F ; n,m). Then

nm2

4‖f−1‖2Lip

≤
n∑

j=1

∫

Zn
m

dM
(
f

(
x +

m

2
ej

)
, f(x)

)2

dµ(x)

≤ Γ2m2n1− 2
q

E
ε∈{±1,0}n

∫

Zn
m

dM(f(x + ε), f(x))2dµ(x)

≤ Γ2m2n1− 2
q ‖f‖2Lip.

It follows thatdist(f) ≥ n1/q/2Γ. ¤

We are now in a position to prove Theorem1.4.

Proof of Theorem1.4. We first assume thatΓ(2)
q (F) = ∞

for all q < ∞. By Lemma2.3 it follows that for every two
integersn, s > 1, B(F ;n, s) = 1. Now the required result
follows from Lemma2.4.

In the other direction, assumeΓ(2)
q (F) < ∞. By

Lemma2.5, for anyn there existsm such thatcF
(
Zn

m

) ≥
n1/q/(2Γ(2)

q (F)). Sincec[m]mn∞ (Zn
m) = 1, this implies that

there existm,n ∈ N, for whichcF ([m]n∞) > 1. ¤



3 Relative Conductance

In this section we discuss the proof of Theorem1.5,
We begin with the lower bound onΦE2/E1(Zn

m). Con-
sider a cut(S, S̄) of Zn

m. We can associate with the cut a
mappingf : Zn

m → {0, 1},

f(x) =

{
0 if x ∈ S

1 otherwise.

Fix Γ > Γ(1)
2 (L1). Since{0, 1} is anL1 metric, we can

apply (1.5), and obtain that∀n ∈ N, ∃m ∈ 2N,

m−n|E1(S, S̄)| =
n∑

j=1

E
x∈Zn

m

[
dM

(
f(x + m

2 ej), f(x)
)]

≤ Γmn1/2 E
ε∈{±1,0}n

E
x∈Zn

m

[dM(f(x + ε), f(x))]

= Γmn1/2(3m)−n|E2(S, S̄)|.

This implies that for everyn ∈ N, there existsm ∈ 2N,

(3.18) ΦE2/E1(Z
n
m) =

n|E2(S, S̄)|
3n|E1(S, S̄)| ≥ Γ−1

√
n

m
.

Note that Def.1.2 only guarentees theexistenceof m for
which (3.18) holds. However, in the full version we also
investigate what is the value ofm for which (1.5) holds, and
in this case we actually have that∀n ∈ N, ∀t ∈ 4N, set
m = td√ne. Then∀f : Zn

m → L1,

n∑

j=1

E
x∈Zn

m

[
dM

(
f(x + m

2 ej), f(x)
)]

≤ Γmn1/2 E
ε∈{±1,0}n

E
x∈Zn

m

[dM(f(x + ε), f(x))],

This proves thatΦE2/E1(Zn
t
√

n
) ≥ Ω(1/t). The extension to

anym divisble by 4, follows from more elobaration of these
techniques.

The upper bound in Theorem1.5 follows from embed-
ding ofZn

m in L1, as we now explain.

LEMMA 3.1. ∀n ∈ N ∀m ∈ 2N, cL1(Zn
m) ≥ m

2 ·
ΦE2/E1(Z

n
m).

Proof. Consider an embeddingf : Zn
m → L1. Since finite

L1 metrics are in the cut cone, there existsαS ≥ 0, for
∅ 6= S ⊆ Zn

m such that for anyx, y ∈ Zn
m, ‖f(x) −

f(y)‖1 =
∑

S⊂Zn
m

αSδS(x, y), whereδS(x, y) is 1 when

|S ∩ {x, y}| = 1 and 0 otherwise. Then

‖f‖Lip · ‖f−1‖Lip · 2
m

= ‖f‖Lip‖f−1‖Lip

|E1| ·
∑

(x,y)∈E2
dZn

m
(x, y)

|E2| ·
∑

(x,y)∈E1
dZn

m
(x, y)

≥
|E1| ·

∑
(x,y)∈E2

‖f(x)− f(y)‖1
|E2| ·

∑
(x,y)∈E1

‖f(x)− f(y)‖1

=
|E1| ·

∑
∅6=S⊆Zn

m
αS

∑
(x,y)∈E2

δS(x, y)

|E2| ·
∑
∅6=S⊆Zn

m
αS

∑
(x,y)∈E1

δS(x, y)

≥ min
∅6=S⊆Zn

m

|E1| · |E2(S, S̄)|
|E2| · |E1(S, S̄)|

= ΦE2/E1(Z
n
m).

¤
On the other handcL1(Zn

m) ≤ cL2(Zn
m) ≤ min{m

2 , π
2

√
n},

which implies thatΦE2/E1(Zn
m) ≤ min{1, π

√
n

m }.

4 Coarse Embedding

In this section we prove Theorem1.6.
Let (N , dN ) and (M, dM) be metric spaces. Forf :

N →M andt > 0 we define

Ωf (t) = sup{dM(f(x), f(y)); dN (x, y) ≤ t}, and

ωf (t) = inf{dM(f(x), f(y)); dN (x, y) ≥ t}.
ClearlyΩf andωf are non-decreasing, and for everyx, y ∈
N , ωf (dN (x, y)) ≤ dM(f(x), f(y)) ≤ Ωf (dN (x, y)).
With these definitions,f is a coarse embedding ifΩf (t) <
∞ for all t > 0 andlimt→∞ ωf (t) = ∞.

DEFINITION 4.1. Denote bym
(p)
q (M;n, Γ) the smallest

even integerm for which(1.5) holds. As before, whenp = q

we writem
(p)
q (M;n, Γ) = mq(M; n,Γ).

LEMMA 4.1. Let (M, dM) be a metric space which con-
tains at least two points. Then for every integern, every
Γ > 0, and everyq > 0, mq(M; n, Γ) ≥ n1/q/Γ.

Proof. Fix u, v ∈ M, and without loss of generality nor-
malize the metric so thatdM(u, v) = 1. Denotem =
mq(M; n,Γ). Let f : Zn

m → M be the random mapping
such that for everyx ∈ Zn

m, Pr[f(x) = u] = Pr[f(x) =
v] = 1

2 , and{f(x)}x∈Zn
m

are independent random variables.
Then for every distinctx, y ∈ Zn

m, E [dM(f(x), f(y))p] =
1
2 . Thus the required result follows by applying (2.6) to f ,
and taking expectation. ¤
LEMMA 4.2. Let (M, dM) be a metric space,n an integer,
Γ > 0, and0 < q ≤ r. Then for every functionf : `n

r →M,
and everys > 0,

n1/qωf (2s) ≤ Γmq(M;n, Γ) · Ωf

( 2πsn1/r

mq(M;n, Γ)

)
.



Proof. Denotem = m
(p)
q (M; n, Γ), and defineg : Zn

m →
M by

g(x1, . . . , xn) = f
( n∑

j=1

se
2πixj

m ej

)
.

Then
∫

{−1,0,1}n

∫

Zn
m

dM(g(x + ε), g(x))qdµ(x)dσ(ε)

≤ max
ε∈{−1,01,}n

Ωf

(
s

( n∑

j=1

∣∣∣e
2πiεj

m − 1
∣∣∣
r
)1/r)q

≤ Ωf

(2πsn1/r

m

)q

.

On the other hand,

n∑

j=1

∫

Zn
m

dM
(
f

(
x + m

2 ej

)
, f(x)

)q
dµ(x) ≥ nωf (2s)q.

By the definition ofmq(M;n, Γ) it follows that

nωf (2s)q ≤ ΓqmqΩf

(2πsn1/r

m

)q

,

as required. ¤

COROLLARY 4.1. Let M be a metric space and assume
that there exist constantsc, Γ > 0 such that for infinitely
many integersn, mq(M;n, Γ) ≤ cn1/q. Then for every
r > q, `r does not coarsely embed intoM.

Proof. Chooses = n
1
q− 1

r in Lemma4.2. Using Lemma4.1
we get thatωf

(
2n

1
q− 1

r
) ≤ cΓΩf (2πΓ) . Sinceq < r, it

follows that lim inft→∞ ωf (t) < ∞, so f is not a coarse
embedding. ¤

In the full version of this paper we prove the following
strengthening of Theorem1.3 for Banach spaces with type
larger than 1.

THEOREM 4.1. Let X be a Banach space with type larger
than 1 and cotypeq. Then there existsΓ > 0 for which
mq(X; n,Γ) = O(n1/q).

Proof of Theorem1.6. Assume first thatq ≥ 2. thenLq has
type 2, and by Theorem4.1, there existsΓ > 0 for which
mq(Lq;n, Γ) = O(n1/q). By Corollary 4.1, `r does not
coarsely embed inLq. Whenq ∈ [1, 2), we use the well
known fact thatLq coarsely embeds inL2 [37]. ¤
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Birkhäuser Verlag, Basel, 1986.

[3] S. Arora, L. Lov́asz, I. Newman, Y. Rabani, Y. Rabinovich,
and S. Vempala. Local versus global properties of metric
spaces. InSODA ’06: 17th annual Symposium on Discrete
Algorithms, 2006.

[4] K. Ball. Markov chains, Riesz transforms and Lipschitz
maps.Geom. Funct. Anal., 2(2):137–172, 1992.

[5] Y. Bartal. Probabilistic approximations of metric space and
its algorithmic application. In37th Annual Symposium on
Foundations of Computer Science, pages 183–193, Oct. 1996.

[6] Y. Bartal, N. Linial, M. Mendel, and A. Naor. On metric
Ramsey-type phenomena.Ann. of Math., 2005. To appear.

[7] Y. Benyamini and J. Lindenstrauss.Geometric nonlinear
functional analysis. Vol. 1, volume 48 ofAmerican Mathe-
matical Society Colloquium Publications. American Mathe-
matical Society, Providence, RI, 2000.

[8] J. Bourgain. On Lipschitz embedding of finite metric spaces
in Hilbert space.Israel J. Math., 52(1-2):46–52, 1985.

[9] J. Bourgain. The metrical interpretation of superreflexivity in
Banach spaces.Israel J. Math., 56(2):222–230, 1986.

[10] J. Bourgain, V. Milman, and H. Wolfson. On type of metric
spaces.Trans. Amer. Math. Soc., 294(1):295–317, 1986.

[11] M. M. Deza and M. Laurent.Geometry of cuts and metrics,
volume 15 of Algorithms and Combinatorics. Springer-
Verlag, Berlin, 1997.

[12] P. Enflo. On the nonexistence of uniform homeomorphisms
betweenLp-spaces.Ark. Mat., 8:103–105, 1969.

[13] P. Enflo. Topological groups in which multiplication on one
side is differentiable or linear.Math. Scand., 24:195–207
(1970), 1969.

[14] P. Enflo. Uniform structures and square roots in topological
groups. I, II. Israel J. Math. 8 (1970), 230-252; ibid., 8:253–
272, 1970.

[15] P. Enflo. On infinite-dimensional topological groups. In
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