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Abstract The smallest such distortion is denoted, (M), i.e.
We introduce the notion ofetric cotype a property of metric e (M) = inf{dist(f) : f: M — N}
spaces related to a property of normed spaces, cRistmacher Bourgain's embedding theorer][and Bartal's prob-

cotype Apart from settling a long standing open problem in metrigy ;i embedding theoren5| 16] established Hilbert
geometry, this property is used to prove the following dichotomy: ébacesﬁl and and convex combination of tree metrics as

family of metric spacest is either almost universal (i.e., Contain%seful host spaces for which the distortion of embedding
any finite metric space with any distortion 1), or there exists point metrics i0(log 1)

a > 0, and arbitrarily largex-point metrics whose distortion when It is therefore interesting to find out whether this ap-

embedded in any member 6t is at least2 ((logn)®). The same oy can gives distortions which are significantly better

property is also used to prove strong non-embeddability theore, fin the guarantee in Bourgain’s theorem. A concrete nat-
of Ly into L, wheng > max{2, p}. Finally we use metric cotype ural question in this vein is:

to obtain a new type of isoperimetric inequality on the discrete

torus. Is there a non-trivial class of metric spac¥sfor

_ which e (X) is significantly less thatog | X |, for

1 Introduction every finite metric spac& ?
1.1 An Embedding Dichotomy In the past decade the
theory of finite metric spaces has become an intensively in- Motivated by related questions, Arora, lasz, New-
vestigated topic in the theoretical computer science literatii@n, Rabani, Rabinovich and Vempa8} proved the fol-
due to its remarkable applicability to algorithm design.  lowing dichotomy.

One approach in this vein is to reduce optimizati .
problems over general metric spaces to a class of “spegﬁﬁEoREM 11 For any CIQSS}- of rT‘e”'C Spaces, . :
metrics which has more structure (e.g., convex combinatio&‘ Either 7"is almost universal, i.e., for any finite metric
of tree metrics/L, [5]), and solve the optimization problem spaceM, cx(M) = 1, or . - .
over the class of special metrics. The class of special metri%‘ for everyy > 1, there exists a finite metric spacd

spaces is chosen to balance between the structure needed forSUCh thater (M) > .

developing an algorithmic solution, and the “distance” of the  The proof is a simple corollary of Matéek’s bounded-
special metrics from the original metric. That “distancejistortion (BD) Ramsey theoreri29]. Arora et. al. conjec-

original metric. . classes of metrics
A useful measure for the “distance™ between metric

spaces is the distortion. CONJECTUREL.1. Let F be anormal metric class which
. . does not contain all finite metrics with distortion arbitrarily
DEFINITION 1.1. Given two metric spaceéM, dar) and cjose to1. Then there exists > 0 and arbitrarily large
(N, dy), and an injective mapping : M — A, we denote n-point metric spacesA,, such thaicr(M,) > (logn)®.
thedistortionof f by
Arora et. al. also give some supporting evidence for

dist(f) = sup dy(f(2), f(y) sup dm(®,y)  Conjecturel.1 to be true. Here we settle this conjecture
cyem  dn(m,y)  zyem dm(f(2), f(y))  positively, without any restriction on the clags Namely,
e e we prove

Snded abstract. A full version of thi ith all the detail THEOREM 1.2. For any classF of metric spaces:
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2. there existsx > 0 and a sequence of metric spaces3. Dvoretzky’s theorem (se@1, Chap. 14]) states that for
{M,}n>1, such that|M,| = n, and cx(M,) = anyn > 0 andn € N, anyn-dimensional normed space
Q ((logn)®). X contains ad dimensional linear subspadé C X
o . g :
For Hilbert spaceH, sup{cu(M) : |M| = n} — that is isomorphic ta§ with distortion1 + 7, where

O(logn) [8,126]. We do not know whether there exists a d = {y(logn). The logarithmic estimate od is

class of metric spaceg which is not almost universal, but t?n?jv;?];t? agisazﬁrgpl\tﬂoix:%} '?}g\[/'e ?hcz)v\\,,vivfr?atlzi?;gl,
for which sup{cx(M) : |M| = n} = O ((logn)?), for ' :

possible find such” which is 1 + 1 isomorphic to/g,
somes € (0,1). andd = Q. ,(n?/1%).

Theorem1.2is proved using a newly introduced prop-  The notions of type and cotype are clealityear no-
erty of metric spaces calledetric cotype Its origins come tions, since their definition involves addition and multipli-
from Banach space theory, which we review next. cation by scalars. However, in 1976 Ribe (s@B proved
that if X andY are uniformly homeomorphic Banach spaces
1.2 Banach Space's Perspectivdhe parallelogram (j.e., there exists a bijectiofi which is uniformly continu-
equality states that in Hilbert spaég for anyz,y € H, ous andf 1 is also uniformly continuous) thek is finitely
Vo,y € H lz — gl + |z +y|2 = 2 (||l‘\|2 4 ”sz) ~ representable .iIY,. and vice.versa)( is said to be finitely
representable il if there exists a constaif > 0 such that
It turns out that this equality characterizes Hilbert spag@y finite dimensional subspace Bfis K-isomorphic to a
(seeR]). For various reasons which will become clearer isubspace of). This theorem suggests that “local proper-
the sequel, researchers in Banach space theory generatiged of Banach spaces, i.e. properties which are invariant
this property into two “isomorphic” inequalities known tounder finite representability, have a purely metric character-
day as (Rademacher) type and cotype. ization. Finding explicit manifestations of this phenomenon
A Banach spaceX is said to have (Rademacher) typeor specific local properties of Banach spaces (such as type,
p > 0if there exists a constafit < oo such that for every. cotype and super-reflexivity), has long been a major driving
and everyrs, ..., z, € X, force in the bi-Lipschitz theory of metric spaces (<@ld¢r a
n discussion of this research program). Once this is achieved,
Z €j%j
j=1

<TP Z [EF one could define the notion of type and cotype of a metric
=1 space, and then hopefully transfer some of the deep theory
X is said to have (Rademacher) cotype> 0 if there
exists a constant’ < oo such that for every: and every

p

11 E
( ) ee{£1}" X
of type and cotype to the context of arbitrary metric spaces.

Enflo’s pioneering work12, (13, 14, [15] resulted in the
formulation of a non-linear notion of type, known today as

T w0 € X, Enflo type The basic idea is that given a Banach spate
n 1 1 andzy,...,z, € X, one can consider thear function
(1.2) EE{IEl}n foﬂj Z ca Z [l 11%- f{-11}" - X givenbyf(e) = 3, c;z;. Then(L.1)
j=l1 X j=1 becomes
The infimum overC' satisfying I.2) for anyn € N, and »
1,..., 2, € X is denoted’, (X). (1.3) Ec|f(e) = f(=a)lk
The notions of type and cotype of Banach spaces are the n
basis of a deep and rich theory which encompasses diverse = 7" ZEE 1fers o gj-1,85, 85415 8n) =
aspects of the local theory of Banach spaces. We refer to the =1
full version of this paper for references on these topics. Here fler, . i1, —€5, €541, &n) -

we mention only few highlights of this theory: One can thus say that a metric spasé, d,) has Enflo type

1. Kwapien’s Theorem [24] generalizes the isometricp if there exists a constafit such that for every, € N and
characterization of Hilbert space into an isomorph&veryf : {—1,1}" — M,
one: A Banach spac¥ is isomorphic (i.e., has a linear
bijection with finite distortion) to Hilbert space if and(1-4) Ec da(f(e), f(—€))”

only if it has type 2 and cotype 2. n
SszEde(f(gla~'~7€j—1>5j75j+1;-“35n)a
2. Denote bypx the supremum ovep such thatX has =
type p, and by bygx the infimum overg such thatX f(e e e o)
has cotype. The Maurey-Pisier theorerB85, 32] states Ly 2=l 7RG 2kl o En) )
that for anyn € N, and anyy > 0, X linearly contains There are two natural concerns abalig. First of all,

copies oft; and/}  with distortion at most + 7. while in the category of Banach spacds4 is clearly a



strengthening of1.3) (as we are not restricting only to lineaREMARK 1.1. Metric cotypey is really a class of inequali-
functionsf), it isn't clear whether1.4) follows from (1.3). ties, depending on the powsgre [1,¢]. In Banach spaces,
Indeed, this problem was posed by Enflo itB]] and in these inequalities are provably closely related (see the full
full generality it remains open. Secondly, we do not knoversion). Their mutual relationship in general metric spaces
if (1.4) is a useful notion, in the sense that it yields metris not yet understood. Different applications presented in
variants of certain theorems from the linear theory of typehis paper use different variants (power) of the metric cotype
The first issue is addressed Q] [36] where it is shown inequality.

that for Banach spaces, Rademacher typenplies Enflo

type p’ for every0 < p’ < p, and the same holds for a ) ) ] .

variant of Enflo type called BMW type. The second issue The following theorem is the main result of this paper:
turned out not be problematic either: Enflo found striki
applications of his notion of type to Hilbert's fifth proble
in infinite dimensions |13, [14, 15], and to the uniform
classification ofL, spacesi12. Bourgain, Miiman and
Wolfson [10] obtained a non-linear version of the Maurey-  Finging metric analogs of linear notions of normed

Pisier theorem for type3E, 32 mentioned above, yielding aspaces has proved to benefit the theory of finite metric
characterization of metric spaces which contain bi-Lipsch'géaces and algorithms. An example of this phenomenon
copies of the Hamming cube. A stronger notion of non-line@r Theorem1.2. That theorem actually follows from the

type, known as Markov type, was introduced by B&llip  foliowing theorem, whose proof is discussed in Secin
his study of theLipschitz extension problenThis important

notion has since found applications to various problems in
metric geometry and computer sciené, (6, 34]. THEOREM1.4. Let F be a family of metric spaces, then
Despite the vast amount of research on non-linear tyg&) (F) = oo iff for anym,n € N, cx([m]%) = 1, where
a non-linear notion of cotype remained elusive. Indeédd}]% isthe grid{0, ..., m—1}" equipied with the,, norm.
the problem of finding a notion of cotype which makes

sense for arbitrary metric spaces, and which coincides goreCiaI case (cotype infinity) of the Maurey-Pisier Theorem
almost coincides) with the notion of Rademacher coty 8 yp y y

. Byentioned above.
when restricted to Banach spaces, became a central open : . .
i : For perspective, we mention some previous examples of
problem in the field. _ X
this interaction between Banach space theory and computer

. . ) . . science:
1.3 Metric Cotype In this paper we define a metric notion I. Bourgain’s famous embedding theoreBis motivated

"PHEOREM1.3. Let X be a Banach space, ande [2, c0).
henX has metric cotype if and only if X has Rademacher
cotypeg. Moreover,3-Cy(X) < To(X) < 90C,(X).

Theorem1.4 can be viewed as a metric analog of a

cotype. by John’s theorem22]. Bourgain’s embedding tech-
DEFINITION 1.2. [Metric cotype] Let F be a family of nigue has found many applications in computer science
metric spaces angd > p > 0. We shall sayF has metric (see R1)).
cotypeg with powerp and with constant if for every integer  |l. Bourgain’s work on the metric interpretation of super-
n € N, there exists an even integset, such that for every reflexivity [9] has been followed up by computer scien-
M € Fandeveryf : ZI" — M, tists regarding the embeddability of of tree metrics in
Euclidean spaced$, 28,130,120, 25].

- m P lll. Ball's notion of Markov type4], partially motivated as

(2.5) ;E“’ [dM (f (x * EGJ) ’f(x)> } another metric analog for type, has been used by the

- computer science community to analyze the Euclidean
<IPmPn " a Ec o, [dm(f(z +€), f(2))], distortion of high-girth graphs, the Hamming cube, and
where the expectations above are taken with respect to their subset<JA .

uniformly choser: € Z" ande € {—1,0,1}" (here, and IV. Metric Ramsey theory (se®][and references therein)

in what follows we deng)te b§e;}"_, the standard basis of is used to prove lower bound for some online optimiza-
2=l tion problems, and was partially motivated as a metric

R™). Whenp = ¢, we simply call the condition above metric | D Kv's th
cotypeg. The smallest constahtwith which inequality(1.5) analog to Dvoretzky's theorem. ) ,
We hope that the present paper will serve as stimulus for

; (p) _ ;
holds true(g denoted’; ('7:)_' Whenp = ¢, vye write further exportation of ideas from the highly developed theory
Iy(F) = Tg"(F). We further introduce the notation of the geometry of Banach spaces to algorithmic research.

P} (F) = inf{q: TP (F) < o0 and
a(F) lg: T b 1.4 Other Applications We next consider various other

)
q(F) = inf{q : I'y(F) < oo} consequences of the metric cotype property.



Relative conductance ofZ7,. Since L, has cotype Strong nonembeddability results for L,. To state
max{2, ¢}, it also has metric cotypmax{2, ¢}. This fact these results we need the following weak notion of distance
is especially interesting fof.;. The metric cotype 2 with respecting embedding due to Gromag].
power 1 property ofL; can be reinterpreted in terms of a
new kind of a “relative conductance” property &, . DEFINITION 1.4. Let (M,dn) and (N, dy) be metric

spaces. A mapping : M — N is called acoarse em-
DEFINITION 1.3. LetGy = (V, E4) be ad; regular graph  peddingif there exists two non-decreasing functionss :
andG; = (V; Ez) be ad; regular graph, both on the samejp, o) — [0, 00) such thatlim,_., a(t) = oo, and for
set of vertices}’. The conductance @, relative t0G1is everyz,y € M, aldu(z,y)) < dav(f(z), f(y) <
defined as Bldpq (7).

. di|Ex(S,S) In Sectiorid we show:
P V) = = :
mm (V)= min o 8.5)
THEOREM1.6. For anyr > max{2,q}, ¢ > 1, ¢, does not
where for a graphG = (V. E) and A, B € V, E(A,B) coarsely embed i
denotes the edges i which intersect bottd and B.
Theorenil.€ generalizes a recent result of Johnson and Ran-
Note that the usual conductance of a regular graph ¢ narivony 23 who proved a special case of Theordt
be |rr11terptrﬁted|f?s a conductance relative to the compl\%s?enp € [1,2]. This completes the coarse classification of
grapW(Wl tsde fOOF;S) h ) L, spaces since it is knowR7,33] that L, coarsely embeds
e next define two graphs d¢f[},: in L, wheng < p or wheng < 2.
_ =y _m Similar results hold for another type of weak embedding
Ei={(z,y) e VxV: Jjx—y=Te; d m}, ) : ) X : :
1={@y) je—y=5e modm} called uniform embedding We will not discuss this topic
here, and refer to the full version of this paper for more
ﬁietails.

Ey={(z,y) €V xV:az—ye{-101}" modm}

The following theorem is implied by the cotype 2 wit

power 1 property of ;. Its proof is discussed in Secti@n 2 Nonlinear Maurey-Pisier Theorem

THEOREM 1.5. There exists universal constamts> o > 0 |n this section we sketch the proof of Theoré&md. The proof

such that for any: € N, andm € 4N, of Theorem1.2 does not require much more than what is
presented here, but due to space limitation will not be further
ﬁmm{ 1y > @pyyp (Zr,) > O‘mm{ a1} discussed.

In what follows we denote bdiag(Z”,) the graph on

An interesting application of Theorerm.5 is tight Zr in which z,y € Z" are adjacent if for every e

bounds on the embedding &£, grids inL;. {1 nb, @i —yi € {1 mod m}.

COROLLARY 1.1. Let [m] denotes the grid0,...,m —

1}" endowed with the/,, norm, thencr, ([m ]go) — DEFINITION 2.1. Given2 < g, afamily of metric spacé,
©(min{m,+/n}). The same holds for embedding intan integem and an even integern, IetF (]—‘ n,m) be the

Hilbert space. infimum over alll’ > 0 such that for every\/l € F, and

o " o everyf : Z, — M,
Quadratic inequalities on the cut-cone.An intriguing ’

aspect of Theorerd.2 is that L; has metric cotyp@ with

power 2. This inequality seems to be qualitatively stronggs ) Z/ ) ,f(:r))pdu(x)

than the cotype 2 with power 1 property bf. It is a non- 2

trivial inequality onZ; which involves distancesquared To

the best of our knowledge, all the known non-embeddabilitg T?m?n'~ E / dp (f (@ +e), f(2) du(z).
ae{il,O}" n

results forL; are based on Poindartype inequalities in

which distances are raised to the power By the cut-

cone representation df; metrics (seelll)]) it is enough

to prove any such inequality fotut metrics which are 9

particularly simple. Theoreit.3 seems to be the first truly Fg )(]:) - i‘ég(mlgf F( (f;n’m))'

“infinite dimensional” metric inequality ir.;. We believe

that understanding such inequalities bn deserves further For technical reasons that will become clear presently,

scrutiny, especially as they hint at certain non-trivial (argiven¢,n € N we denote by3(F;n, ¢) the infimum over

non-linear) interactions between cuts. B > 0 such that for every evem € N, everyM € F, and

With this notation,



everyf : Zn — M, Sub-multiplicativity is a key property of thB(F; ¢, s).

n ) LEMMA 2.2. For every four integerst, k,s,t € N,
@n Y / du (f (x+Ley) , f(x))? du) B(F; lh, st) < B(Fil,s) - B(F;k,1).

Proof. Let m be an even integer and take a functifn:
< B*n E n/ dm(f(z+e), f()’du(z). 2% — M, M € F. Fixz € Z% ande € {—1,1}*. Define
setE o, g: L, — Mbyg(y) = f(x + Zi:l Z§:1 Ejr(r—1)" Y5 "
Note thafl'(F; n,m), andB(F;n, ¢)-n'/? play roughly ej+(r—1)¢)- By the definition ofB (F; ¢, s), applied tog, for
the same role. Although the definition B{F;n, ¢) is more everyB; > B (F; ¢, s) we have that
complicated than that af(F; n, m), it will be easier to work

k 4
with it, since it is “tensorized” easily, as we shall see i
Lemma2.2. Z/ .CE + Z; z;gj—i-(r—l)f “YiCi+(r—1)e
r=1 7=
LEMMA 2.1. For every metric space(M,dn), every k
n,a € N, every evemn,r € Nwith0 < r < m, and every + sZsaJr(r_l)g : €a+(r_1)e)7
f:Zy — M, r=1
. $+ Ejt(r—1)¢ " Yj " €jr(r—1)¢ d,u 4 ( )
28) > / A (f (x4 (am +1)e;) , f(x))* dpa(x) ZZ oo o,
j=17Zp, .
. 2.2
- E dm(f (@ +€), f(x))dp(x).
sel=U Uz, daa(F(z+ DD egeene (05 +05) - e ire).
In particular, B(M;n,¢) < 1 for everyn € N and every "_ljfl
evernd € N.
) $+Zz€j+r )¢ Yj - Ci4(r— 1)@)) dMZf (y).
Proof. The left-hand side o0f4.8) depends only om, and r—=1j=1

remains unchanged if we replacdy m — r. We may thus "
assume that = 0 andr < m —r. Fixz € Z" and Averaging this inequality over € Z‘* ande € {-1, 1},

j €{1,...n}. Observe that and using the translation invariance of the Haar measure, we
get that
1= ( D*
{x—i— Z&A—ke]}k o ;
e 210 E 3 /
is a path of length- joining = and z + re; in the graph ce{E1} i Jutk

diag(Z7,). Thus the distance betweenandz + re; in k 9
the graphdiag(Z?,) equalsr. If (zx = wo,w1,...,w, = dm (f(ac+ sZeaHT,l)g . eaHr,l)Z),f(x)) dpzer (z)
x + re;) is a geodesic joining andz + re; in diag(Z?,), r=1

then by the triangle inequality 9 9
(2.9) < Bis Ese{fl}fk - dm (f(z+e), f(z )) dﬂZ{,’;( ).

dp(f(z +rej), f(x))? < TZdM flwg-1))*. Next we fixz € Z%, u € {1,...,£}, and define

hu . Zl:n - M by hu( ) - (.’)3 + 82521 Yr - €u+(7~,1)g>.
Observe that if we suni2(9) over all geodesics joining By the definition of B (F; k,t), applied toh,, for every
x andx + re; in diag(Z},), and then over alke € Z', By, > B(F;k,t)we have that
then in the resulting sum each edgediag(Z”,) appears

k
the same number of times. Thus, averaging this inequal ( ‘
overz € Z7, we get that y Y Fz+5D g sy + 5t €urione)

: 2
/" nlflo rej)’ f(x))2d/~‘($) f(ﬂc + szyr . eu+(r—1)4)) d/izfn (y)
< r2 EG{IEl}” [dM(f(fL‘ + 5)7 f(_%.))}Q —1

- Z/k At (hu(y + tej), hu(y))*duze (y)

Summing overj = 1,...,n we obtain the assertion. [ =7z,



ifi sn 1 i i .
< B E /Zk dM(hu(ere),hu(y))Qduzzc (1) satisfies8*",/n < 3, and that there exists a mapping :

ce {1}k m Z — M such that
= B3’k E }M/ N
S 1 Zlﬁn,
" (2.12) Z/ dag (f (2 + se;), f(@))? du(er)
=12
dm (f('r +s Z(yr + €u+(r71)5) ’ equ(T*l)f))
= S(mstn B[ du(fa o). f@) duo)
k ) ce{x1}n Jzn
f(.’b + s Z Yr - eu—‘—(r—l)()) d/iZﬁL (y)
r=1 Thencaq ([s/4]) < 1+ 8% /n.

I ticular, if B(M;n,s) =1th 4]7) = 1.
Summing this inequality over € {1, ..., ¢} and averaging n particular, if B(M;n, s) encar ([s/415)

overz € Z'*, we get, using2.10), that . i
As the proof of Lemm&.4 s too long to fit the current

format, we illustrate it by proving a weaker assertion.

Lk
Yo dm(f (@ sted), f(x)? du(x)
a=1

—1 /25 PROPOSITION2.1. Letn > 1 be an integer,m an even
¢ integer, ands an integer divisible byt. Assume that there
<B4’k E Z/ exists a mapping : Z" — M such that
66{:‘:1}““ u=1 Z{r’f
k 2 n
A (F(o 45D curene uroone) S @) du@) @13) S [ du(f (@4 sey) . () du()
r=1 j=1"Zn

< B2*kB3s*¢ E / d +e), > du(z). 2 2
= B s ez Jon m(f(x+e), f(x)) du(z) > s nge{]:IEl}n - dm(f(x +e), f(x))du(z).
This implies the required result. |

Thencaq ([s/4]) = 1.

LEMMA 2.3. Assume that there exist integets, /y > 1

such thatB(M; ng, £y) < 1. Then there exists < ¢ < oo Proof. Observe first of all thafd.13 and Lemma2.1imply

such that for every integer, F,(f) (M) < . thatm_ > 2s. In what follows we will use the following
numerical fact: lfa;,...,a, > 0and0 < b < %Z;Zl aj,

Sketch of a ProofLet ¢ < oo satisfy B(M,ng, 4y) < then

ngl/q. Iterating Lemme2.2 we get that for every integer r r

k, B(nk, k) < ng™/7. Denotingn = nf andm = 2¢%, this (2.14) > (a; —b)* <> _al — b7,

implies that for everyf : Z7', — M, j=1 j=1

n m 2 Forz € Zp, let G () (resp. G; (x)) be the set of all
(2.11) Z/Zn dm <f (fC + 5%‘) »f($)> dp(z) geodesics joining andz + se; (resp.x — se;) in the graph
j=1"%m diag(Z?). As we have seen in the proof of Lemrgal,
1-2 9 sinces is even, these sets are nonempty. Notice that i
& / dm(f(z+), f@) @) ) Shengt(z) = G- (), otherwiseG™ (z) N G (x) — 0.
Z J J J J
Denote byG" () = G (x) UG; (=), and forr € G5 (),

< m?n

e

n
m

Inequality 2.11) “almost implies” that"\”) (M; nk, 20k) =

O(1), except that the averaging ofis done ovef —1,1}" +1 ifredi()

instead of{—1,0,1}". This gap is overcome by averaging sg(m) = { /

(2.13) over all dimensions at most — details are omitted.

Extending the inequality to all (and not just powers of)

is done by a simple interpolation argument — details are Each geodesic i (x) has lengtts. We write eachr €

omitted. O ng(x) as a sequence of vertices= (7o = z,m1,...,7ms =
(E—f—Sg(ﬂ')S@j). USing QJ.A) with a; = dM(f(’]Tj)7 f(TFj,l))

LEMMA 2.4. Letn > 1 be an integer an even integer, andb = Lda (f (z + se;), f(z)), which satisfy the the

and s an integer divisible byl. Assume thaf) € (0,1) conditions of [2.14) due to the triangle inequality, we get

—1 otherwise



that for eachr € G (x), CLAIM 2.3. DenoteV = {z € ZI, : Vj 0 < z; <
£ and x; is even }. Then the following assertions hold true:

- 1. For everyz,y € V there existg € {1,...,n}, and a
(2.15) ;[d/‘/‘(ﬂm)’ f(me—)) pathm € g+( ) of lengths which goes througb: and
2 Y-

— 3dpm (f (z +sg(m)se;) , f(z))]

s 2. For Eeveryzx,y € V: ddiag(Zﬁz)(may) = den(xvy) =
<> dpm(f(m), f(me))? = ylloo-

k=1 , Sketch of a ProofLet j € {1,...,n} be such thaty, —
— Ydp (f ( +sg(m)se;) , f(@))”. z;| = ||z — yllo. We can take a geodesi¢ connecting

x with y, and then concatenating with 7”/, where int”’ the
By symmetry|G;" ()| = |G ()|, and this value is indepen-edges are reversed relativertpexcept in thgi-th coordinate.
dent ofx € Z7 andj € {1,...,n}. Denoteg = |g]i(x)|, Thus,n’ o " connecte, y, andz + 2|z — y||«€;. The path
and observe thay < 2. 275, Averaging [2.15 over all can now easily be continued 10+ se; in diag(Z?7,), since
x € Z% andr € gji(a:), and summing ovef € {1,...,n}, siseven.
we get that The second assertion is obvious. O

COROLLARY 2.1. Vz,y € V, dm(f(z), f(y)) = |z —
D 3Y I SED T AN R
9=, Teg; (@) £=1 Proof. Equality 2.17) implies that thed(f(z), f(z +
— Ldpq (f (2 +sg(m)sey) f(x))]de(x) se;)) = s, so applying the triangle inequality twice on the
) path constructed in Claif®.2 concludes the proof. O
gsnEi/ A (@ + ), £(@))? du(a)

This concludes the proof of Propositi@al, since the
mappingz +— /2 is a distortion1 bijection between

- - daa (f @+ se;), (@) du(e) (Vi dzy,) and(s/4]L. O
' LEMMA 2.5. Let F be a a family of metric spaces. Fix

(2.16) <o. g < oo and assume thafff)(]-";n,m) < oo. Then
n 1 (2) .

Thus, .16 implies that for everyr € Z", everyj e cr(Zy,) > n'/1/(20g" (F;n,m)).

{1,...,n}, everyr € G (x),and every € {1,..., s}, Proof. Fix M € F, a bijectionf : zZ» — M, and

(2-17) I > T (F;n,m). Then

(o), (o)) = = (f (o + sg(m)ses) F(9)

n

nm? m 2
W < / dm (f (IJF gej) »f(l')) dp(z)
CLAIM 2.1. For everyx € Z", ande,d € {—1,1}", Lip  j=17%x

< F2m2n17%

dp(f (@), f(z +€)) = dp(f(2), f (2 +5)). -

E d +é), 2d
Sketch of a Prooflf § = ¢ there is nothing to proves. ee{£1,0}" Jzn mlf(@+e), f(z)) dp(z)

Otherwise the two pair&e + 4, z), and(z, z + €) are clearly < T2m2nl-2 112,
part of some geodesic'@f(m+6), forsomej € {1,...,n}, - Lip*

and 2.17) implies their equality. O It follows thatdist(f) > n'/9/2T. 0
CLAIM 2.2. For everyz,y € Z7, ande,s € {—1,1}", We are now in a position to prove Theordnd.
d(f(@), flz+e)) = dm(f(), f(y +9)). Proof of Theorerd.4 We first assume that\” (F) = oo

for all ¢ < oco. By Lemma2.3 it follows that for every two
integersn, s > 1, B(F;n,s) = 1. Now the required result
follows from Lemme2.4.

In the other direction, assumE@)(]-') < oo. By
5, for anyn there existsn such thatex(Z7,) >

Proof. Take any path irliag(Z”,) containing bothz, z +
¢), and(y, y + 6) and apply Clain2.1for every consecutive
pair of edges along this path.

Without loss of generality we scale the distances l_emmaz

satisfy dag(f(z), f(x + ¢)) = 1, for anyz € Z" and n'/%/(20{(F)). Sincecy, - (Z2,) = 1, this implies that
e {-1,1}" there existn, n € N, for whichcz([m]%) > 1. O



3 Relative Conductance |S N {z,y}| =1and O otherwise. Then
In this section we discuss the proof of Theorérs,

: -1y
We begin with the lower bound ob g, , (Z},). Con- £ lluip - 111 ”L'p ‘m
sider a cut(S, S) of Z?,. We can associate with the cut a . | Brl - Y 0 yyens dzp, (2,y)
mappingf : Z" — {0, 1}, = | fllupllf~ llLip

|E | Z(z,y)GEl d m,($7y)
Bl S oen, 1@ — F@)lh

0 ifzesS >
= = 1BE.|- _
f(x) {1 otherwise. B2l - > e e 1/ (@) = f(»)lh
- | Byl - Z(z);éscm as Z( z,y) eE25 (z,y)
- |E . ds(z,
Fix T > I'$Y(Ly). Since{0,1} is anL, metric, we can 1Bl 2pscay, 05 2w per 5(7:9)
apply (1.5), and obtain thatn € N, 3m € 2N, > Bl 1E2(5 )|
= o#sczy, |Es| - |E1(S,S)
’ _ n = @E2/E1 (Z;nn)
m™"Ey(S, 5)| = ;ﬁe% A (flo+ Bes), f(@)] .
< T'mn'? E E [dp(f(z+¢), f(x))] On the other handy, (Z},) < cr,(Zy,) < min{%, 5\/n},

e€{£1,0}m z€Zy, which implies thatb g, /g, (Z7,,) < min{1, W%}-

= I'mn'/?(3m)™"|Ey(S, S)|.
4 Coarse Embedding

This implies that for every. € N, there existsn € 2N, In this section we prove Theorein6.
Let (NV,dy) and (M, dprq) be metric spaces. Faof :
N — M andt > 0 we define
(3.18) g () — 2 s pr ¥,

3 EL(S,9)] ~ m Q(t) = sup{dm(f(2), f(y)); dn(x,y) <t}, and

_ wy(t) = inf{drp(f(2), f(y)); dn(z,y) = t}.
Note that Def!1.2 only guarentees thexistenceof m for ClearlvQ) q d dqf
which (3.18 holds. However, in the full version we also early(l; andw; are non-decreasing, and for everyy €

investigate what is the value of for which (1) holds, and *V hwfh(dN(m f)) = dpm(f(2), /y)) < O <d/\gfi(x »¥))-
in this case we actually have thet € N, vVt € 4N, set With these definitionsf is a coarse embedding it (t) <

m = t[\/n]. Thenvf : Z — Ly, oo forall ¢ > 0 andlimy_. o wy(t) = oo.
DEFINITION 4.1. Denote bym® (M;n,T) the smallest
n even integern for which (1.5) holds. As before, whem= ¢
Z:IG]EZ [dM (f(z+ Zej), f(:r/))} we ertem(p)(/\/l; n,I) = mg(M;n,T).

1/2 LEMMA 4.1. Let (M, dn) be a metric space which con-
< mn se{:II:Ei,O}" me%;;[d”‘(f(x +e). f@)], tains at least two points. Then for every integerevery
I' > 0, and every; > 0, my(M;n,T') > nl/q/F_

This proves tha® g, /g, (Z tf) > Q(1/t). The extension to Proof. Fix u,v € M, and without loss of generality nor-
anym divisble by 4, follows from more elobaration of thesghalize the metric so thai(u,v) = 1. Denotem =

techniques. mqg(M;n,T). Let f : Z7 — M be the random mapping
The upper bound in Theorefs follows from embed- Such that for every: € Z7,, Pr(f(z) = u] = Pr[f(z) =
ding of Z" in Ly, as we now explain. v] = and{f( T)}zezn are independent random variables.

Then for every distinct,y € Z%, E[dum(f(z), f(y))P] =

. . Thus the required result foIIows by applyiria.€) to f
LEMMA 3.1.Vn € N Vm € 2N, cp,(Zy,) > % - and taking expectation.

i) zn). -
B2/ (Zn) LEMMA 4.2. Let(M, d ) be a metric space; an integer,

I' > 0,and0 < g < r. Then for every functioffi : £;) — M,
Proof. Consider an embedding : Z!, — L. Since finite and everys > 0,

L1 metrics are in the cut cone, there exists > 0, for
0 # S C Zj, such that for anyr,y € Zy, ||f(z) — nl/qwf(Zs)gqu(M;n,F)~Qf(

2rsnt/T )
f@Wl = ESCZ% asds(z,y), wheredg(x,y) is 1 when

mg(M;n,T)



Proof. Denotem, = m{”) (M;n,T), and defingy : Z" — References
M by

n 27rimj
9(@1s. s wn) = f(z se.m ej)' [1] N. Alon, R. M. Karp, D. Peleg, and D. B. West. A graph-
j=1 theoretic game and its application to the k-server problem.
Then SIAM J. Comput.24(1):78-100, 1995.
[2] D. Amir. Characterizations of inner product spacesl-

/ dm(g(x + ), g(x))du(z)do () ume 20 ofOperator Theory: Advances and Applications
{71’0,1}n Z:;

Birkhauser Verlag, Basel, 1986.
n NS VAN [3] S. Arora, L. Lowasz, I. Newman, Y. Rabani, Y. Rabinovich,
max Q¢ s
sy o (o(2 ))

2mie
e — 1 and S. Vempala. Local versus global properties of metric

spaces. ISODA '06: 17th annual Symposium on Discrete

IA

9rsnl/Tq Algorithms 2006.
Qf(ﬂ) . [4] K. Ball. Markov chains, Riesz transforms and Lipschitz
m maps.Geom. Funct. Anal2(2):137-172, 1992.

On the other hand, [5] Y. Bartal. Probabilistic approximations of metric space and
its algorithmic application. 187th Annual Symposium on
n q Foundations of Computer Sciengages 183-193, Oct. 1996.
Z/ dm (f (x—i— %ej) ,f(x)) dp(x) > ”Wf(QS)q- [6] V. Bartal, N. Linial, M. Mendel, and A. Naor. On metric

j=1"%mn Ramsey-type phenomenAnn. of Math, 2005. To appear.

[7] Y. Benyamini and J. LindenstraussGeometric nonlinear
functional analysis. Vol. lvolume 48 ofAmerican Mathe-
matical Society Colloquium Publicationg®\merican Mathe-
matical Society, Providence, RI, 2000.

[8] J. Bourgain. On Lipschitz embedding of finite metric spaces

as required. O in Hilbert spacelsrael J. Math, 52(1-2):46-52, 1985.

[9] J. Bourgain. The metrical interpretation of superreflexivity in

COROLLARY 4.1. Let M be a metric space and assume  Banach spacessrael J. Math, 56(2):222-230, 1986.

that there exist constantsI" > 0 such that for infinitely [10] J. Bourgain, V. Milman, and H. Wolfson. On type of metric

many integerse, m, (M;n,T) < ent/q. Then for every spacesTrans. Amer. Math. S0c294(1):295-317, 1986.

IN

By the definition ofm,(M;n,T") it follows that

2 1/r q
nwy(2s)? < ququ<%) ,

r > g, ¢, does not coarsely embed intel. [11] M. M. Deza and M. LaurentGeometry of cuts and metrics
volume 15 of Algorithms and Combinatorics Springer-
1 1. . 1
Proof. Chooses = ns~ = in Lemma4.2. Using Lemmé4.1 Verlag, Berlin, 1997.

11 . -+ [12] P. Enflo. On the nonexistence of uniform homeomorphisms
we get thatu; (2n<™") < Iy (2aT). Sinceq < r, it 1 betweenL,-spacesArk. Mat, 8:103-105, 1969. P
fOII%WZJ.hathm infe oo wy(t) < oo, SO f is not a coarse [13] P. Enflo. Topological groups in which multiplication on one
embedding. side is differentiable or linear.Math. Scand. 24:195-207

(1970), 1969.

In the f_uII version of thlqs paper we prove the f(.)”OWIon] P. Enflo. Uniform structures and square roots in topological
strengthening of Theore.3 for Banach spaces with type groups. |, Il Israel J. Math. 8 (1970), 230-252; ibid8:253—

larger than 1. 272, 1970.

THEOREM4.1. Let X be a Banach space with type IargeilS] P. Enflo. On infinite-dimensional topological groups. In

; ; SEminaire sur la @orrétrie des Espaces de Banach (1977—-
g;a(nXl' 7? nI:j) Tg?:ll-/q-)rhen there exists” > 0 for which 1978) pages Exp. No. 10-11, 1fcole Polytech., Palaiseau,
q ) Iy - .

1978.
Proof of Theorerd.6 Assume first thay > 2. thenL, has [16] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound
P : on approximating arbitrary metrics by tree metrics. Piro-
’;};p(eLZ,. :nlij) bx Tg?s{/e;?'l’;;eéiriﬁ::i‘? 2 f%ro\évglﬁgt ceedings of the 35th Annual ACM Symposium on Theory of
q\tgy 10, = : oy Ly

. Computing pages 448-455, 2003.
coarsely embed ii,. Wheng € [1,2), we use the well [17] T. Figiel, J. Lindenstrauss, and V. D. Milman. The dimension

known fact thatZ., coarsely embeds ih; [37]. O of almost spherical sections of convex bodiescta Math,
139(1-2):53-94, 1977.

Acknowledgments We are grateful to Keith Ball for several[18] M. Gromov. Metric structures for Riemannian and non-

valuable discussions. We thank Yuri Rabinovich for pointing  Riemannian spacesolume 152 ofProgress in Mathematics

out the connection to Matd&ek's BD Ramsey theorem. Birkhauser Boston Inc., Boston, MA, 1999. Based on the
Comments from the SODA’s referees helped in improving 1981 French original, With appendices by M. Katz, P. Pansu
the presentation. and S. Semmes, Translated from the French by Sean Michael

Bates.



[19] A. Gupta. Embedding tree metrics into low-dimensional
Euclidean spacedDiscrete Comput. Geom24(1):105-116,
2000.

[20] A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair. Cuts,
trees and;-embeddings of graphs. H0th Annual Sympo-
sium on Foundations of Computer Scienpages 399-408.
IEEE Computer Soc., Los Alamitos, CA, 1999.

[21] P. Indyk and J. Mataiek. Low Distortion Embeddings of
Finite Metric Spaceschapter 8. CRC Press, second edition
edition, 2004.

[22] F. John. Extremum problems with inequalities as subsidiary
conditions. InStudies and Essays Presented to R. Courant
on his 60th Birthday, January 8, 194&ages 187-204.
Interscience Publishers, Inc., New York, N. Y., 1948.

[23] W. B. Johnson and N. L. Randrianarivong, (p > 2) does
not coarsely embed into a Hilbert space. Manuscript, 2004.

[24] S. Kwapien. Isomorphic characterizations of inner product
spaces by orthogonal series with vector valued coefficients.
Studia Math, 44:583-595, 1972.

[25] J. R. Lee, A. Naor, and Y. Peres. Trees and Markov con-
vexity. In SODA '06: 17th annual Symposium on Discrete
Algorithms 2006.

[26] N. Linial, E. London, and Y. Rabinovich. The geometry of
graphs and some of its algorithmic applicatiofSombina-
torica, 15(2):215-245, 1995.

[27] N. Linial, A. Magen, and A. Naor. Girth and Euclidean
distortion. Geom. Funct. Anal12(2):380-394, 2002.

[28] N. Linial, A. Magen, and M. E. Saks. Low distortion
Euclidean embeddings of tredsrael J. Math, 106:339-348,
1998.

[29] J. Matosek. Ramsey-like properties for bi-Lipschitz map-
pings of finite metric space€omment. Math. Univ. Carolin.
33(3):451-463, 1992.

[30] J. Matosek. On embedding trees into uniformly convex
Banach spacedsrael J. Math, 114:221-237, 1999.

[31] J. Matowsek. Lectures on discrete geometmolume 212 of
Graduate Texts in MathematicSpringer-Verlag, New York,
2002.

[32] B. Maurey and G. Pisier. &ies de variables @htoires
vectorielles in@pendantes et progtes geonetriques des
espaces de BanacBtudia Math, 58(1):45-90, 1976.

[33] M. Mendel and A. Naor. Euclidean quotients of finite metric
spacesAdv. Math, 189(2):451-494, 2004.

[34] A. Naor, Y. Peres, O. Schramm, and S. Sheffield. Markov
chains in smooth Banach spaces and Gromov hyperbolic
metric spaces. Preprint, 2004.

[35] G. Pisier. Sur les espaces qui ne contiennent pds dei-
formement. INSemin. Maurey-Schwartz 1973-1974, Espaces
L?, Appl. radonif., @om. Espaces de Banach, Ex@ddll.
1974.

[36] G. Pisier. Probabilistic methods in the geometry of Banach
spaces. IProbability and analysis (Varenna, 1983plume
1206 of Lecture Notes in Math.pages 167-241. Springer,
Berlin, 1986.

[37] J. H. Wells and L. R. Williams.Embeddings and extensions
in analysis Springer-Verlag, New York, 1975. Ergebnisse
der Mathematik und ihrer Grenzgebiete, Band 84.



