A Note on Bipartite Graphs without $2 k$-Cycles.

ASSAF NAOR
Microsoft Research One Microsoft Way Redmond, WA 98052-6399
United States

JACQUES VERSTRAËTE
Faculty of Mathematics
University of Waterloo
200 University Avenue West
Waterloo, Canada N2L 3G1

The question of the maximum number $\operatorname{ex}\left(m, n, C_{2 k}\right)$ of edges in an m by n bipartite graph without a cycle of length $2 k$ is addressed in this note. For each $k \geq 2$, it is shown that

$$
\operatorname{ex}\left(m, n, C_{2 k}\right) \leq \begin{cases}(2 k-3)\left[(m n)^{\frac{k+1}{2 k}}+m+n\right] & \text { if } k \text { is odd } \\ (2 k-3)\left[m^{\frac{k+2}{2 k}} n^{\frac{1}{2}}+m+n\right] & \text { if } k \text { is even. }\end{cases}
$$

1. Introduction

In this note, we study the maximum number of edges in an m by n bipartite graph containing no $2 k$-cycles. This problem was studied in the papers by Erdős, Sós and Sárközy [3] and by Győri [4], in the context of a number theoretic problem. It is also related to the size of subsets of points in projective planes, such as arcs and caps. A connection to a geometric problem involving points and lines in Euclidean space is described in de Caen and Székely [1].

Throughout the material to follow, $\gamma(m, n, g, k)$ denotes the maximum number of edges in an m by n bipartite graph of girth at least $2 g$ containing no $2 k$-cycle. In particular, we write $\gamma(m, n, 2, k)=\operatorname{ex}\left(m, n, C_{2 k}\right)$, which is the maximum number of edges in a $2 k$ -cycle-free m by n bipartite graph. For $d, g \geq 2$, let $c(d, g)$ be the largest integer such that every bipartite graph of average degree at least $2 d$ and girth at least $2 g$ contains a cycle of length at least $c(d, g)$ with at least one chord. Our main result is as follows:

Theorem 1. Let $k, g \geq 2$ be integers. Then, for any d such that $c(d, g) \geq 2(k-g+1)$,

$$
\gamma(m, n, g, k) \leq \begin{cases}2 d\left[(m n)^{\frac{k+1}{2 k}}+m+n\right] & \text { if } k \text { is odd } \\ 2 d\left[m^{\frac{k+2}{2 k}} n^{\frac{1}{2}}+m+n\right] & \text { if } k \text { is even }\end{cases}
$$

Theorem 1 depends explicity on the parameter $c(d, g)$. Let us make a few remarks about
$c(d, g)$. First, a straightforward argument shows that $c(d, g) \geq 2 d(g-1)+1$. Stronger results were obtained by Erdős, Faudree, Rousseau, and Schelp [2]. We deduce from their paper that $c(d, g) \geq d^{g / 4}$. In particular, by using these two bounds on $c(d, g)$ in Theorem 1, we respectively obtain the following two corollaries:

Corollary 2.

$$
e x\left(m, n, C_{2 k}\right) \leq \begin{cases}(2 k-3)\left[(m n)^{\frac{k+1}{2 k}}+m+n\right] & \text { if } k \text { is odd } \\ (2 k-3)\left[m^{\frac{k+2}{2 k}} n^{\frac{1}{2}}+m+n\right] & \text { if } k \text { is even } .\end{cases}
$$

Corollary 3. For any number $\delta>0$, there exists a constant $c(\delta)$ such that

Using the requirement on $c(d, g)$ from Theorem 1 and the inequality $c(d, g) \geq d^{g / 4}$, a short computation shows that we may certainly take $c(\delta)=4^{4 / \delta}$ in Corollary 3. Recent results of Hoory [5] and of Lam [7] show that $\gamma(m, n, k, k)$ satisfies the bounds given in Corollary 3 , with $c(\delta)=1$. In the case $k \in\{2,3,5\}$, the existence of rank two geometries known as generalized polygons (see [6] for constructions) show that the constant $c(\delta)=1$ is best possible when $m=n$. The strength in Corollary 3 is that it shows that excluding cycles of length $O(\log k)$ has, to within an absolute constant factor, the same effect on the upper bounds as excluding all cycles of length at most $2 k$. On the other hand, our next result gives an indication that $\gamma(m, n, k, k)$ and $\gamma(m, n, 2, k)$ may differ substantially:

Theorem 4. For all integers m, n and $k \geq 3$,

$$
\gamma((k-1) m, n, k, k) \geq(k-1) \cdot \gamma(m, n, 2, k)
$$

If we make the assumption that for each even positive integer $k, \gamma(m, n, 2, k)$ is asymptotically $c_{1}(m n)^{1 / 2+1 /(2 k)}+c_{2}(m+n)$ as $m, n \rightarrow \infty$, for some constants c_{1}, c_{2}, then Theorem 4 gives

$$
\liminf _{m, n \rightarrow \infty} \frac{\gamma(m, n, k, k)}{\gamma(m, n, 2, k)} \geq \sqrt{k-1}
$$

Similar observations may be made for odd values of k, namely

$$
\liminf _{m, n \rightarrow \infty} \frac{\gamma(m, n, k, k)}{\gamma(m, n, 2, k)} \geq(k-1)^{1 / 2-1 /(2 k)}
$$

One can deduce from these observations and the constructions of generalized quadrangles and hexagons that

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{\gamma(n, 2 n, 3,3)}{\gamma(n, 2 n, 2,3)} \geq 2^{1 / 3} \\
& \liminf _{n \rightarrow \infty} \frac{\gamma(n, 2 n, 5,5)}{\gamma(n, 2 n, 2,5)} \geq 4^{1 / 5}
\end{aligned}
$$

The first inequality comes from [8] and the second inequality is implicit in the work of Lazebnik, Ustimenko and Woldar [6]. The next section is devoted to proving Theorem 1, and the construction for Theorem 4 is presented in Section 3.

2. Proof of Theorem 1

The main tool in our proof will be the first theorem in [9]. Although the next proposition is not the statement of this theorem, it is straightforward to verify, from the proof appearing in [9]:

Proposition 5. Let G be a bipartite graph of average degree at least $4 d$ and girth $2 g$. Then G contains cycles of $\frac{1}{2} c(2 d, 2 g)$ consecutive even lengths, the shortest of which has length at most twice the radius of G.

Proof of Theorem 1 We proceed by induction on $m+n$. Suppose, for a contradiction, that G is a bipartite graph without cycles of length at most $2 g-2$ and containing no $2 k$-cycle, with parts A and B of sizes m and n, respectively, and with more edges than the corresponding upper bound in Theorem 1. By Proposition 5, and using the definition of d in the statement of Theorem 1, it is sufficient to show that G contains a subgraph of radius at most k and average degree at least d. Indeed, since G has even girth $2 g$, Proposition 5 would then imply that there is an integer r such that $g \leq r \leq k$ and such that G contains the cycles $C_{2 r}, C_{2 r+2}, \ldots, C_{2 r+2 k-2 g}$. Since $2 k \in[2 r, 2 r+2 k-2 g]$ whenever $g \leq r \leq k$, one of these cycles has length $2 k$, as required.

Case 1. k is odd.
In this case, we may assume that the minimum degree in A is at least

$$
d_{A}=d \frac{m^{\frac{1}{2}+\frac{1}{2 k}}}{n^{\frac{1}{2}-\frac{1}{2 k}}}+d
$$

Indeed, if there was a vertex $v \in A$ with degree less than d_{A} then by deleting it we would arrive at an $m \times(n-1)$ bipartite graph G^{\prime} with

$$
\begin{aligned}
e\left(G^{\prime}\right)>e(G)-d_{A} & \geq 2 d m^{\frac{1}{2}+\frac{1}{2 k}}\left(n^{\frac{1}{2}+\frac{1}{2 k}}-\frac{1}{2} n^{-\frac{1}{2}+\frac{1}{2 k}}\right)+2 d(m+n)-d \\
& >2 d\left([m(n-1)]^{\frac{1}{2}+\frac{1}{2 k}}+(m+n-1)\right)
\end{aligned}
$$

so that G^{\prime} contains a $2 k$-gon by the inductive hypothesis. Similarly, we may assume that the minimum degree in B is at least

$$
d_{B}=d \frac{n^{\frac{1}{2}+\frac{1}{2 k}}}{m^{\frac{1}{2}-\frac{1}{2 k}}}+d
$$

Choose a vertex $v \in A$ and let H_{r} be the subgraph of G induced by vertices at distance at most r from v. Let us show that H_{r} has average degree at least d for some $r \leq k$. Suppose this cannot be done. Let D_{r} denote the set of vertices of H_{r} at distance
exactly r from v. Then the average number of neighbors in D_{r-1} of a vertex in D_{r} is less than d. It follows that if $D_{r} \subset A$, then $\left|D_{r-1}\right|\left(d_{B}-d\right)<d\left|D_{r}\right|$ and if $D_{r} \subset B$, then $\left|D_{r-1}\right|\left(d_{A}-d\right)<d\left|D_{r}\right|$. Therefore,

$$
\left|D_{r}\right|> \begin{cases}\left(\frac{d_{A}}{d}-1\right)\left|D_{r-1}\right|=\frac{m^{\frac{1}{2}+\frac{1}{2 k}}}{n^{\frac{1}{2}}-\frac{1}{2 k}}\left|D_{r-1}\right| & \text { if } r \text { is odd. } \\ \left(\frac{d_{B}}{d}-1\right)\left|D_{r-1}\right|=\frac{n^{\frac{1}{2}+\frac{1}{2 k}}}{m^{\frac{1}{2}-\frac{1}{2 k}}\left|D_{r-1}\right|} \quad \text { if } r \text { is even. }\end{cases}
$$

Iterating these inequalities for $r=1,2, \ldots, k$ we get that since k is odd,

$$
\left|D_{k}\right|>\left(\frac{m^{\frac{1}{2}+\frac{1}{2 k}}}{n^{\frac{1}{2}-\frac{1}{2 k}}}\right)^{\left\lceil\frac{k}{2}\right\rceil}\left(\frac{n^{\frac{1}{2}+\frac{1}{2 k}}}{m^{\frac{1}{2}-\frac{1}{2 k}}}\right)^{\left\lfloor\frac{k}{2}\right\rfloor}=m
$$

On the other hand, using the fact that k is odd once more, $D_{k} \subset B$, so that $\left|D_{k}\right| \leq m$, which is a contradiction. The proof of the second part is complete.

Case 2. k is even
The proof here is similar, so we only indicate the necessary changes to the argument. The inductive hypothesis implies that the minimum degree in A is at least:

$$
d_{A}^{\prime}=d \frac{m^{\frac{1}{2}+\frac{1}{k}}}{\sqrt{n}}+d
$$

and the minimum degree in B is at least:

$$
d_{B}=d \frac{\sqrt{n}}{m^{\frac{1}{2}-\frac{1}{k}}}+d
$$

We now start with a vertex $v \in B$, and repeat the above argument. Since k is even, $D_{k} \subset B$, so that $\left|D_{k}\right| \leq m$, but

$$
\left|D_{k}\right|>\left(\frac{m^{\frac{1}{2}+\frac{1}{k}}}{\sqrt{n}}\right)^{\frac{k}{2}}\left(\frac{\sqrt{n}}{m^{\frac{1}{2}-\frac{1}{k}}}\right)^{\frac{k}{2}}=m
$$

so we once more arrive at a contradiction.

3. Proof of Theorem 4

Suppose we are given an m by n bipartite graph H, of girth at least $2 k+2$. From H, we construct a $(k-1) m$ by n bipartite graph constaining no $2 k$-cycles, and with $k-1$ times as many edges as H. Let A, B be the parts of H, let $A_{1}, A_{2}, \ldots, A_{k-1}$ be disjoint sets, and let $\phi: \bigcup_{i=1}^{k-1} A_{i} \rightarrow A$ be defined so that ϕ restricted to A_{i} is a bijection $A_{i} \leftrightarrow A$. Define a new graph G with parts $\bigcup_{i=1}^{k-1} A_{i}$ and B, with edge set

$$
E=\{a b: \phi(a) b \in H\} .
$$

In words, we are taking $(k-1)$ identical edge-disjoint copies of H which share B as one of their parts. We now show that G has no $2 k$-cycles.

Suppose, for a contradiction, that G contains a $2 k$-cycle $C=\left(a_{1}, b_{1}, a_{2}, a_{2}, \ldots, a_{k}, b_{k}, a_{1}\right)$ with $b_{i} \in B$ for all $i \in\{1,2, \ldots, k\}$. Then

$$
W=\left(\phi\left(a_{1}\right), b_{1}, \phi\left(a_{2}\right), b_{2}, \ldots, \phi\left(a_{k}\right), b_{k}, \phi\left(a_{1}\right)\right)
$$

is a closed walk of length $2 k$ in H. As H has girth at least $2 k+2, W$ takes place on a tree $T \subset H$ with at most k edges. On the other hand, the tree contains the k vertices in $V(C) \cap B$, and there are at least two vertices $a, a^{\prime} \in V(C) \cap A_{i}$ for some $i \in\{1,2, \ldots, k-1\}$, by the pigeonhole principle. Now $\phi(a)$ and $\phi\left(a^{\prime}\right)$ are distinct, since ϕ restricted to A_{i} is a bijection. Therefore the tree has at least $k+2$ vertices, a contradiction. Therefore the graph G is $2 k$-cycle-free.

References

[1] de Caen, D.; Székely, L. A. The maximum size of 4- and 6-cycle free bipartite graphs on m, n vertices. Sets, graphs and numbers (Budapest, 1991), 135-142, Colloq. Math. Soc. János Bolyai, 60, North-Holland, Amsterdam, 1992.
[2] Erdős, P.; Faudree, R. J.; Rousseau, C. C.; Schelp, R. H. The number of cycle lengths in graphs of given minimum degree and girth. Paul Erdős memorial collection. Discrete Math. 200 (1999), no. 1-3, 55-60.
[3] Erdôs, P.; Sárközy, A.; Sós, V. T. On product representations of powers. I. European J. Combin. 16 (1995), no. 6, 567-588.
[4] Győri, E. C_{6}-free bipartite graphs and product representation of squares. Graphs and combinatorics (Marseille, 1995). Discrete Math. 165/166 (1997), 371-375.
[5] Hoory, S. The size of bipartite graphs with a given girth. J. Combin. Theory Ser. B 86 (2002), no. 2, 215-220.
[6] Lazebnik, F.; Ustimenko, V. A.; Woldar, A. J. Polarities and $2 k$-cycle-free graphs. 16th British Combinatorial Conference (London, 1997). Discrete Math. 197/198 (1999), 503513.
[7] Lam, T. Graphs without cycles of even length. Bull. Austral. Math. Soc. 63 (2001), no. 3, 435-440.
[8] Naor, A.; Verstraëte, J. A. On the Turán number for the hexagon. To appear in Adv. Math (2005).
[9] Verstraëte, J. A. Arithmetic progressions of cycle lengths in graphs. Combin. Probab. Comput 9 (2000) no 4. 369-373.

