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We want to prove the inequality

‖x + y‖2p + ‖x− y‖2p
2

≥ ‖x‖2p + (p− 1)‖y‖2p, 1 < p < 2, (1)

where x,y ∈ Rd are arbitrary vectors. (The proof can also be extended for vectors in `p

or functions in Lp, but some things come out slightly simpler in finite dimension.) This
exposition is based on a sketch given as the first proof of Proposition 3 in Ball, Carlen,
and Lieb [1]. The second proof from that paper has been worked out by Assaf Naor; see
http://www.cims.nyu.edu/~naor/homepage/files/inequality.pdf. I consider the first
proof somewhat more conceptual and accessible for a non-expert.

First we pass to an inequality formally stronger than (1), with the same right-hand side:(
‖x + y‖pp + ‖x− y‖pp

2

)2/p

≥ ‖x‖2p + (p− 1)‖y‖2p. (2)

To see that the l.h.s. of (2) is never smaller than the l.h.s. of (1), we use the following well-
known fact: The qth degree average

(
aq+bq

2

)1/q
is a nondecreasing function of q for a, b fixed.

We apply this with a = ‖x + y‖2p, b = ‖x− y‖2p, q = 1 and q = p/2 < 1, and we see that the
new inequality indeed implies the old one. The computation with the new inequality is more
manageable.

It is instructive to see what (2) asserts if the vectors x,y are replaced by real numbers x, y.
For simplicity, let us re-scale so that x = 1, and suppose that y is very small. Then the l.h.s.

becomes
(

(1+y)p+(1−y)p

2

)2/p
, and a Taylor expansion of this gives (1+p(p−1)y2/2+O(y3))2/p =

1 + (p − 1)y2 + O(y3), while the r.h.s. equals 1 + (p − 1)y2. So both sides agree up to the
quadratic term, and in particular, we see that the coefficient p− 1 in (2) cannot be improved.
(This kind of argument doesn’t show a similar kind of tighthess for the previous inequality
(1), though, but as is discussed in [1], the apparently stronger inequality (2) can be deduced
from the validity of the seemingly weaker (1) for all Lp spaces.)

The basic idea of the proof of (2) is this: With x and y fixed, we introduce an auxiliary
real parameter t ∈ [0, 1], and we consider the functions L(t) and R(t) obtained by substituting
ty for y in the left-hand and right-hand sides of (2), respectively. That is,

L(t) :=
(
‖x + ty‖pp + ‖x− ty‖pp

2

)2/p

R(t) := ‖x‖2p + (p− 1)t2‖y‖2p.
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Evidently L(0) = R(0) = ‖x‖2p. We would like to verify that the first derivatives L′(t)
and R′(t) both vanish at t = 0 (this is easy), and that for the second derivatives we have
L′′(t) ≥ R′′(t) for all t ∈ [0, 1], which will imply L(1) ≥ R(1) by double integration.

We have R′(t) = 2(p− 1)t‖y‖2p (so L(0) = 0) and R′′(t) = 2(p− 1)‖y‖2p.
For dealing with L(t), it is convenient to write f(t) := (‖x + ty‖pp + ‖x− ty‖pp)/2. Then

L′(t) =
2
p
f(t)

2
p
−1

f ′(t)

=
2
p
f(t)

2
p
−1 p

2

∑
i

(
|xi + tyi|p−1sgn(xi + tyi)yi − |xi − tyi|p−1sgn(xi − tyi)yi

)
(we note that the function z 7→ |z|p has a continuous first derivative, namely, p|z|p−1sgn(z),
provided that p > 1). The above formula for L′(t) shows L′(0) = 0.

For the second derivative we have to be careful, since the graph of the function z 7→ |z|p−1

has a sharp corner at z = 0, and thus the function isn’t differentiable there for our range of
p. We thus proceed with the calculation of L′′(t) only for those t with xi ± tyi 6= 0 for all i,
which excludes finitely many values. Then

L′′(t) =
2
p

(
2
p
− 1
)

f(t)
2
p
−2

f ′(t)2 +
2
p
f(t)

2
p
−1

f ′′(t)

≥ 2
p
f(t)

2
p
−1

f ′′(t)

= f(t)
2
p
−1(p− 1)

(∑
i

|xi + tyi|p−2y2
i +

∑
i

|xi − tyi|p−2y2
i

)
.

Next, we would like to bound the sums in the last formula using ‖x‖p and ‖y‖p. We use
the so-called reverse Hölder inequality, which asserts, for nonnegative ai’s and strictly positive
bi’s,

∑
i aibi ≥ (

∑
i a

r
i )1/r(

∑
i b

s
i )

1/s, where 0 < r < 1 and 1
s = 1 − 1

r < 0. This inequality
is not hard to derive from the “usual” Hölder inequality

∑
i aibi ≤ ‖a‖p‖b‖q, 1 < p < ∞,

1
p + 1

q = 1. In our case we use the reverse Hölder inequality with r = p/2, s = p/(p − 2),
ai = y2

i , and bi = |xi + tyi|p−2 or bi = |xi − tyi|p−2, and we arrive at

L′′(t) ≥ (p− 1)f(t)
2
p
−1‖y‖2p

(
‖x + ty‖pp + ‖x− ty‖pp

)
= 2(p− 1)‖y‖2p.

We have thus proved L′′(t) ≥ R′′(t) for all but finitely many t. The function L′(t) − R′(t)
is thus continuous in (0, 1) and nondecreasing on each of the open intervals between the
excluded values of t (by the Mean Value Theorem), and so L′(t) ≥ R′(t) for all t. The desired
conclusion L(1) ≥ R(1) follows, again by the Mean Value Theorem.
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