
Quadratic Forms on Graphs

Noga Alon ∗ Konstantin Makarychev † Yury Makarychev ‡ Assaf Naor §

October 11, 2004

Abstract

We introduce a new graph parameter, called the Grothendieck constant of a graph G = (V, E),
which is defined as the least constant K such that for every A : E → R,

sup
f :V→S|V |−1

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉 ≤ K sup
f :V→{−1,+1}

∑

{u,v}∈E

A(u, v) · f(u)f(v).

The classical Grothendieck inequality corresponds to the case of bipartite graphs, but the case of
general graphs is shown to have various algorithmic applications. Indeed, our work is motivated
by the algorithmic problem of maximizing the quadratic form

∑
{u,v}∈E A(u, v)f(u)f(v) over all

f : V → {−1, 1}, which arises in the study of correlation clustering and in the investigation of
the spin glass model. We give upper and lower estimates for the integrality gap of this program.
We show that the integrality gap is O(log ϑ(G)), where ϑ(G) is the Lovász Theta Function of
the complement of G, which is always smaller than the chromatic number of G. This yields an
efficient constant factor approximation algorithm for the above maximization problem for a wide
range of graphs G. We also show that the maximum possible integrality gap is always at least
Ω(log ω(G)), where ω(G) is the clique number of G. In particular it follows that the maximum
possible integrality gap for the complete graph on n vertices with no loops is Θ(log n). More
generally, the maximum possible integrality gap for any perfect graph with chromatic number
n is Θ(log n). The lower bound for the complete graph improves a result of Kashin and Szarek
on Gram matrices of uniformly bounded functions, and settles a problem of Megretski and of
Charikar and Wirth.

1 Introduction

An important inequality of A. Grothendieck [14] (see also [21]) states that for every n×m matrix
(aij) and every choice of unit vectors x1, . . . , xn, y1, . . . , ym ∈ Sn+m−1 there exist a choice of signs
ε1, . . . , εn, δ1, . . . , δm ∈ {−1,+1} for which

n∑

i=1

m∑

j=1

aij〈xi, yj〉 ≤ KG

n∑

i=1

m∑

j=1

aijεiδj . (1)
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Here KG is a universal constant, the best value of which is unknown (in [20] it is shown that
KG ≤ π/[2 log(1 +

√
2)] = 1.782...). In [3] Grothendieck’s inequality was shown to have various

algorithmic applications including the efficient construction of Szemerédi partitions of graphs and
the estimation of the cutnorm of matrices, which yields efficient approximation algorithms for dense
graph problems, using the methods of [12].

A quadratic variant of Grothendieck’s inequality was studied in [10], where it was shown that
there is a universal constant C > 0 such that for every n×n matrix (aij) and every x1, . . . , xn ∈ Sn−1

there are signs ε1, . . . , εn ∈ {−1, +1} for which
∑

i,j∈{1,...,n}
i6=j

aij〈xi, xj〉 ≤ C log n
∑

i,j∈{1,...,n}
i6=j

aijεiεj . (2)

This was also proved by Megretski in [25] and by Nemirovski, Roos and Terlaky in [26]. Various
algorithmic applications of (2) were presented in [10], including an O(log n) approximation algo-
rithm for the maximum correlation clustering problem suggested in [6] (and discussed in greater
detail below) . The authors of [10] (as well as the author of [25]) asked whether the logarithmic
upper bound in (2) can be improved to a constant. In this paper we show that the logn term
in (2) is in fact optimal. Our construction is based on a refinement of a recent result of Kashin and
Szarek [19], who established an Ω(

√
log n) lower bound. Moreover, unlike in the classical functional

analytic setting, inequalities (1) and (2) belong to a more general family of inequalities, all of which
have algorithmic significance. Specifically, given a graph G = (V, E) we define the Grothendieck
constant of G, denoted K(G), to be the least constant K such that for every matrix A : V ×V → R:

sup
f :V→S|V |−1

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉 ≤ K sup
f :V→{−1,+1}

∑

{u,v}∈E

A(u, v) · f(u)f(v).

Grothendieck’s inequality (1) simply states that if G is bipartite then K(G) = O(1). On the other
hand, inequality (2) states that for the complete graph Kn, K(Kn) = O(log n).

In this paper we initiate a systematic study of the parameter K(G). We show that there is a
natural way to interpolate between the bipartite case (1) and the case of the complete graph (2).
Namely, we show that for every loop-free graph G, K(G) = O(log ϑ(G)), where ϑ(G) is the Lovász
theta function of the complement of G, denoted G. The theta function of a graph on the vertices
{1, . . . , n}, defined in [23], is the minimum of max1≤i≤n

1
〈xi,y〉2 , where the minimum is taken over all

choices of unit vectors xi and y such that xi and xj are orthogonal for every pair of non-adjacent
vertices i, j. As shown in [23], for every graph G, ω(G) ≤ ϑ(G) ≤ χ(G), where ω(G) is the clique
number of G and χ(G) is its chromatic number. It follows that K(G) = Θ(log ϑ(G)) = Θ(log χ(G))
for every perfect graph G. The proofs are algorithmic, and provide efficient randomized algorithms
that approximate the maximum possible value of a given quadratic form

∑

{u,v}∈E

A(u, v) · f(u)f(v) over all f : V → {−1, +1} (3)

up to a factor of K(G) for any loopless graph G.
Various related results are also obtained. We hope that this will initiate future investigation of

the interesting graph parameter K(G) and its algorithmic applications.
The rest of the paper is organized as follows. After presenting a few basic results and definitions

in Section 2, we prove, in Section 3, that K(G) ≤ O(log ϑ(G)), and obtain some related results.
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The fact that K(G) ≥ Ω(log ω(G)) is established in Section 4. Sections 5 and 6 contain some
algorithmic consequences, and various additional remarks including several new Grothendieck-type
inequalities. We end in Section 7, with several open problems.

2 Definitions and basic facts

Let G = (V, E) be a graph on n vertices, which may have self loops. We introduce the following
parameters:

Definition 2.1 (The Grothendieck constant of G). Denote by K(G) the least constant K such
that for every matrix A : V × V → R:

sup
f :V→Sn−1

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉 ≤ K sup
f :V→{−1,+1}

∑

{u,v}∈E

A(u, v) · f(u)f(v),

Definition 2.2 (The Gram representation constant of G). Denote by R(G) the infimum over
constants R such that for every f : V → Sn−1 there is a function F : V → L∞[0, 1] such that for
every v ∈ V we have ‖F (v)‖∞ ≤ R and for every {u, v} ∈ E,

〈f(u), f(v)〉 = 〈F (u), F (v)〉 ≡
∫ 1

0
F (u)(t)F (v)(t)dt.

We have the following simple characterization:

Lemma 2.3. Let G be a graph without self loops. Then K(G) = R(G)2.

Proof. In one direction fix R > R(G) and f : V → Sn−1. There is a function F : V → L∞[0, 1] such
that for every v ∈ V we have ‖F (u)‖∞ ≤ R and for every {u, v} ∈ E, 〈f(u), f(v)〉 = 〈F (u), F (v)〉.
Then for every A : V × V → R

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉 =
∫ 1

0


 ∑

{u,v}∈E

A(u, v) · 〈F (u)(t), F (v)(t)〉

 dt

≤ sup
g:V→[−R,R]

∑

{u,v}∈E

A(u, v) · g(u)g(v)

= R2 sup
g:V→{−1,+1}

∑

{u,v}∈E

A(u, v) · g(u)g(v),

where we have used the fact that since G has no self loops, the functional
∑
{u,v}∈E A(u, v)·g(u)g(v)

is linear in each of the variables {g(v)}v∈V .
In the reverse direction, by the separation theorem the validity of the inequality

sup
f :V→Sn−1

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉 ≤ K(G) sup
f :V→{−1,+1}

∑

{u,v}∈E

A(u, v) · f(u)f(v)

for all A : V × V → R, implies that for every f : V → Sn−1 there are weights {λg : g : V →
{−1, +1}} satisfying

∑
g:V→{−1,+1} λg = 1, λg ≥ 0 and for every {u, v} ∈ E

〈f(u), f(v)〉 = K(G)
∑

g:V→{−1,+1}
λg · g(u)g(v).
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Partition the interval [0, 1] into subintervals {Ig : g : V → {−1, +1}} such that the length of Ig is
λg. For every v ∈ V let F (v) be the function which takes the value

√
K(G)g(v) on Ig. The above

identity becomes simply: 〈f(u), f(v)〉 = 〈F (u), F (v)〉, as required.

Remark 2.1. The proof above easily implies that for every graph G (that may contain loops),
R(G)2 is equal to the following slight modification of K(G), denoted K ′(G), which is defined to be
the least constant K ′ such that for every matrix A : V × V → R:

sup
f :V→Sn−1

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉 ≤ K ′ sup
f :V→[−1,+1]

∑

{u,v}∈E

A(u, v) · f(u)f(v),

3 Upper bounds

Observe that if H is a subgraph of G then R(H) ≤ R(G). In [10] Charikar and Wirth show that
for the complete graph on n-vertices, denoted Kn, K(Kn) = O(log n). See also [25], [26] for similar
proofs. This fact is a corollary of the following estimate:

Lemma 3.1. Let Kª
n denote the complete graph on n vertices with self loops. Then

R(Kª
n ) = O

(√
log n

)
.

Proof. The simple argument we present is taken from [19]. Denote by σ the normalized surface
measure on Sn−1. By a straightforward computation, for some universal constant c,

σ

{
x ∈ Sn−1 : ‖x‖∞ ≤ c

√
log n

n

}
≥ 1− 1

2n
.

By rotation invariance, for every x ∈ Sn−1, the random variable on the orthogonal group O(n)
given by U 7→ Ux is uniformly distributed on Sn−1. It follows that for every f : V → Sn−1 there

is a rotation U ∈ O(n) such that for all v ∈ V , ‖Uv‖∞ ≤ c
√

log n
n . Let F (v) be the function on

[0, 1] such that F (v)(t) ≡ √
n · (Uf(v))j for (j − 1)/n ≤ t < j/n. Then ‖F (v)‖∞ = O(

√
log n) and

〈F (u), F (v)〉 = 〈U(f(u)), U(f(v))〉 = 〈f(u), f(v)〉. This shows that R(Kª
n ) = O

(√
log n

)
.

Remark 3.1. For any n ≥ 3, K(Kª
n ) = ∞. Indeed, suppose that 1/3 > ε > 0, and consider the 3

by 3 matrix Aij defined by Aij = −1 for all i 6= j and Aii = −1 + ε for all i. It is easy to see that
the maximum of the sum

∑
ij Aij〈ui, uj〉 for unit vectors ui is at least 3ε, whereas the maximum of

the quadratic form
∑

ij Aijxixj over {−1, 1}3 is 3ε − 1 , which is negative. In fact, for any graph
G that has at least one loop, if K(G) exists, then it must be 1 (as we can consider a matrix A in
which the only nonzero entry is −1, at the loop, or 1, at the loop).

Remark 3.2. When allowing negative entries on the diagonal, the integrality gap in the quadratic
program may be infinite, as observed above, since the maximum over the discrete cube may be
negative while the one over Gram matrices is positive. In fact, a stronger (simple) assertion holds.
If P and NP differ, there is no polynomial time algorithm that approximates the maximum of the
quadratic form above over the discrete cube up to any factor (even one that grows with n arbitrarily
fast). This is because by defining the matrix A as one corresponding to the maximum cut of a graph
(see [3] for a way to do it), and by putting an appropriate constant in, say, A11, letting all other
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diagonal entries of A be zero, we can, by an obvious binary search, find the value of the maximum
cut of a graph precisely, if we can determine if the maximum of the quadratic form over the discrete
cube is positive or negative.

We proceed to prove two theorems which strengthen the upper bound K(Kn) = O(log n).
In Section 4 we show that in fact K(Kn) = Ω(log n). This improves upon the lower bound of
Ω

(√
log n

)
which was proved by Szarek and Kashin in [19].

Definition 3.2. A strict vector k-coloring is a mapping s : V → `2, such that all vectors s(u) are
unit vectors, and for every two adjacent vertices u and v 〈s(u), s(v)〉 = −1/(k − 1).

A graph is strictly vector k-colorable if it has a strict vector k-coloring. The strict vector
chromatic number of a graph is the smallest real k for which the graph is strictly vector k-colorable.

The notion of strict vector colorability was introduced by Karger, Motwani, and Sudan in [18].
They showed that the strict vector chromatic number of a graph G is equal to the Lovász theta
function of the complement of G, ϑ(G) which is, of course, bounded by the chromatic number of
G.

Theorem 3.3. For any loop-free graph G = (V,E), K(G) = O
(
log ϑ(G)

)
.

Proof. The proof is based on the proof of Grothendieck’s inequality appearing in [15], but requires
several additional ideas as well.

Denote k = ϑ(G). Let s : V → `2 be a strict vector k-coloring of G. Let U = `2 ⊕ `2 ⊕ R1.
Define two mappings t, t̂ : V → U as follows

t(u) =

√
k − 1

k
s(u)⊕ 0⊕

√
1
k
e1

and

t̂(u) = 0⊕
√

k − 1
k

s(u)⊕
√

1
k
e1.

Then, t(u) and t̂(u) are unit vectors; for every adjacent vertices u and v we have 〈t(u), t(v)〉 = 0,
〈t̂(u), t̂(v)〉 = 0, and 〈t(u), t̂(v)〉 = 1/k.

Let g1, g2, . . . be i.i.d. standard Gaussian random variables, defined on some probability space
(Ω, P ). Consider the Gaussian Hilbert space H, which is defined as the following closed subspace
of L2(Ω):

H =

{ ∞∑

i=1

aigi :
∞∑

i=1

a2
i < ∞

}
.

The scalar product on L2(Ω) (and hence also on H) is defined for X,Y ∈ L2(Ω) by 〈X, Y 〉 = EX ·Y .
We denote by B(H) and B(L2(Ω)) the unit balls of H and L2(Ω), respectively.

Define:

Γ = sup
f :V→B(H)

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉

= sup
f :V→B(L2(Ω))

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉

= sup
f :V→B(U⊗L2(Ω))

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉,
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and
∆ = sup

f :V→[−1,+1]

∑

{u,v}∈E

A(u, v) · f(u)f(v).

Our goal is to show that Γ ≤ C log k ·∆.
Fix f : V → B(H) for which

Γ =
∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉.

The existence of f follows from a straightforward compactness argument.
For every M > 0 and f ∈ L2(Ω) denote

fM (x) =





f(x) if |f(x)| ≤ M
M if f(x) > M
−M if f(x) < −M.

Observe that the following identity holds true:

Γ =
∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉

=
∑

{u,v}∈E

A(u, v) · 〈f(u)M , f(v)M 〉

+
1
2

∑

{u,v}∈E

A(u, v) · 〈f(u) + f(u)M , f(v)− f(v)M 〉

+
1
2

∑

{u,v}∈E

A(u, v) · 〈f(u)− f(u)M , f(v) + f(v)M 〉. (4)

Now,
∑

{u,v}∈E

A(u, v) · 〈f(u)M , f(v)M 〉 = E
∑

{u,v}∈E

A(u, v) · f(u)M · f(v)M ≤ M2∆.

Consider the function h : V → U ⊗ L2(Ω) defined as follows:

h(u) =
1
4
t(u)⊗ (f(u) + f(u)M ) + 2k · t̂(u)⊗ (f(u)− f(u)M )

By the definition of Γ:
∑

{u,v}∈E

A(u, v) · 〈h(u), h(v)〉 ≤ max
u∈V

‖h(u)‖2
U⊗L2(Ω) · Γ

≤
(

1
2

+ 2k max
u∈V

‖f(u)− f(u)M‖L2(Ω)

)2

· Γ

≤

1

2
+ 2k

(√
2
π

∫ ∞

M
x2e−x2/2dx

)1/2



2

· Γ

≤
(

1
2

+ 8kMe−M2/4

)2

· Γ,
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where we have used the fact that all the elements of B(H) have the same distribution as a Gaussian
random variable with mean zero and variance at most one.

Now, by the definition of t(u) and t̂(u),
∑

{u,v}∈E

A(u, v) · 〈h(u), h(v)〉 =
1
2

∑

{u,v}∈E

A(u, v) · 〈f(u) + f(u)M , f(v)− f(v)M 〉

+
1
2

∑

{u,v}∈E

A(u, v) · 〈f(u)− f(u)M , f(v) + f(v)M 〉.

Plugging these estimates into (4) we get that:

Γ ≤ M2∆ +
(

1
2

+ 8kMe−M2/4

)2

· Γ.

Choosing, say, M = 4
√

log k and simplifying yields the required result.

Remark 3.3. Since the strict vector chromatic number is less than or equal to the chromatic
number χ(G), the result above implies that for any loop-free graph G, K(G) = O (log χ(G)).

Our next upper bound shows that for matrices with zeros on the diagonal whose entries are
highly non-uniform, a better bound can be obtained for the constant K in the inequality appearing
in Definition 2.1. This upper bound implies the O(log n) upper bound by the Cauchy-Schwartz
inequality.

Theorem 3.4. There exists a universal constant C > 0 such that for every n×n matrix (aij) with
aii = 0 for all i:

max
‖xi‖2=1

n∑

i,j=1

aij〈xi, xj〉 ≤ C log




∑n
i,j=1 |aij |√∑n

i,j=1 a2
ij


 · max

εi∈{−1,+1}

n∑

i,j=1

aijεiεj .

Proof. By the argument of [10], it is enough to show that the maximum of the quadratic form
〈Ax, x〉 over the discrete cube {−1, 1}n is at least Ω(σ), where σ2 =

∑
ij a2

ij . Let X be the random
variable X = 〈Ax, x〉, where x = (x1, . . . , xn) and xi are independent, identically distributed,
uniform random variables on {−1, 1}. As aii = 0 for all i, the expectation of X is zero. Moreover,
E(X2) =

∑
ij a2

ij = σ2. Since X is a polynomial of degree two, the Bonamie-Beckner inequality [8]
implies that E(X4) = O(σ4) (see also Lemma 3.3 in [4] for a direct argument). By part (ii) of
Lemma 3.2 in [4], if the expectation of a random variable X is 0, E(X2) = σ2 > 0 and E(X4) ≤ bσ4,
then X exceeds σ

4
√

b
with positive probability. This completes the proof.

It is worth noting that the proofs of both theorems above are algorithmic in the sense that they
provide, for any given graph G and any given A : V × V → R, an efficient randomized algorithm
for finding f : V → {−1, +1} for which the value of (3) is at least the fraction ensured by the
theorems, of the value of the natural semidefinite relaxation of (3) that can be computed efficiently
using standard techniques [13]. As the value of this relaxation can be realized by vectors in R|V |,
the algorithm simply has to generate |V | independent standard Gaussian random variables and
proceed as suggested by the proofs. A similar algorithm can be designed by replacing the Gaussian
random variables by independent, uniform Bernoulli random variables.
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4 A tight lower bound for the complete graph

In this section we refine the method of [19] and show that K(Kn) = Θ(log n).

Lemma 4.1. Let N be a minimal 1-net in Sd−1. Assume that there is a function F : N → L∞[0, 1]
such that for every distinct x, y ∈ N we have 〈x, y〉 = 〈F (x), F (y)〉, and for every x ∈ N we have
1 ≤ ‖F (x)‖2

2 ≤ 1 + d
3d+4 . Then

max
x∈N

‖F (x)‖∞ ≥
√

d

8
.

Proof. By standard volume estimates, |N | ≤ 3d. Let {ex}x∈N be the standard unit basis of RN .
For every x ∈ N define wx ∈ Rd ⊕ RN by wx = x +

√
‖F (x)‖2

2 − 1 · ex. Then ‖wx‖2 = ‖F (x)‖2

and for every distinct x, y ∈ N we have 〈wx, wy〉 = 〈x, y〉 = 〈F (x), F (y)〉. It follows that the
mapping T : span{wx : x ∈ N} → span{F (N )} given by T (wx) = F (x) is a linear isometry. Let
T̃ : Rd ⊕ RN → L2[0, 1] be an arbitrary linear isometry which extends T .

Let ψ1, . . . , ψd be an arbitrary orthonormal basis of T̃ (Rd) and for every t ∈ [0, 1] define

ρt =




d∑

i=1

ψi(t)√∑d
i=1 ψ2

i (t)
ψi


 · 1{∑d

i=1 ψ2
i (t)>0} ∈ T̃ (B),

where B denotes the unit ball of Rd. Since N is a 1-net in Sd−1, conv(N ) ⊇ 1
2B, so that

conv(T̃ (N )) ⊇ 1
2 T̃ (B). It follows that for every t ∈ [0, 1] there is some x(t) ∈ N such that

T̃ (x(t))(t) ≥ 1
2
ρt(t) =

1
2

√√√√
d∑

i=1

ψ2
i (t). (5)

Define A =
{

t ∈ [0, 1] :
∑d

i=1 ψ2
i (t) ≥ d

2

}
and for every x ∈ N put Ax = {t ∈ A : x(t) = x}.

Since
∑d

i=1

∫ 1
0 ψ2

i (t)dt = d and
∑d

i=1

∫
[0,1]\A ψ2

i (t)dt < d/2 it follows that
∑d

i=1

∫
A ψ2

i (t)dt > d/2.

It follows from (5) that
∑

x∈N
∫
Ax

T̃ (x)2(t)dt =
∫
A T̃ (x(t))2(t)dt > d/8. So, there is some x ∈ N

for which
∫
Ax

T̃ (x)2(t)dt ≥ d/(8|N |) > d/(8 · 3d).

We claim that ‖F (x)‖∞ >
√

d
8 . Indeed, assuming the contrary we have that for every t ∈ Ax,

T̃ (x)(t)− F (x)(t) > 1
2 T̃ (x)(t), since for every t ∈ Ax, T̃ (x)(t) ≥ 1

2ρt(t) ≥
√

d
4 . But

‖F (x)‖2
2 − 1 = ‖wx − x‖2

2 = ‖T̃ (wx)− T̃ (x)‖2
2 ≥

∫

Ax

[F (x)− T̃ (x)]2(t)dt ≥
∫

Ax

T̃ (x)2(t)
4

dt >
d

3d+4
,

contradicting our assumption.

Theorem 4.2. There exists a universal constant c > 0 such that for every integer n,

K(Kn) ≥ c log n.

Proof. Fix integers d, k and let N be a minimal 1-net in Sd−1. By the definition of the Gram
representation constant, applied to the multi-set in which each element of N appears exactly k
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times, there are {fx,i : x ∈ N , i ∈ {1, . . . , k}} ⊆ L∞[0, 1] such that ‖fx,i‖∞ ≤ R(Kk3d) for every x
and i, and for every distinct (x, i), (y, j) ∈ N × {1, . . . , k}:

〈fx,i, fy,j〉 =
{ 〈x, y〉 x 6= y

1 x = y.

Define F : N → L∞[0, 1] by F (x) = 1
k

∑k
i=1 fx,i. Then for every distinct x, y ∈ N we have that

〈F (x), F (y)〉 = 〈x, y〉. Moreover, for every x ∈ N , using Lemma 3.1, we have that

‖F (x)‖2
2 =

k(k − 1)
k2

+
1
k2

k∑

i=1

‖fx,i‖2
2 ≤ 1− 1

k
+

R(Kk3d)2

k
= 1 + O

(
log(k3d)

k

)
≤ 1 +

d

3d+4
, (6)

where we have chosen k = 6d, and d is assumed to be large enough. Now, for every distinct
i, j ∈ {1, . . . , k} we have that ‖fx,i‖2

2 + ‖fx,j‖2
2 ≥ 2〈fx,i, fx,j〉 = 2. Averaging this inequality over

all such i, j we find that 1
k

∑k
i=1 ‖fx,i‖2

2 ≥ 1. By (6) we deduce that 1 ≤ ‖F (x)‖2
2 ≤ 1 + d

3d+4 , so
that by Lemma 4.1, R(K18d) = Ω(

√
d). Since R(Kn) =

√
K(Kn) is increasing in n, it follows that

K(Kn) = Ω(log n).

5 Applications and examples

5.1 Algorithmic consequences

As mentioned at the end of Section 3, the proofs of all our upper bounds are algorithmic. It thus
follows that for any given symmetric matrix A we can find efficiently a function f : V → {−1, 1}
that approximates the maximum of the integer quadratic program (3) up to K(G), where G is the
graph on V whose edges are all pairs u, v for which A(u, v) 6= 0. Indeed, rounding the fractional
solution obtained by solving the natural semidefinite relaxation of (3) as suggested by the proofs,
we get a function f : V → [−1, 1] that approximates the maximum (and even the maximum of the
relaxation) up to K(G). As A(u, u) = 0 for all u, the left hand side of (3) is a linear function in
each entry f(u), and we can thus shift each value of f(u) that lies in the open interval (−1, 1), in
its turn, to the boundary, without decreasing the value of the quadratic form.

As observed in [3], the problem of finding the maximum of (3) is MAX-SNP hard even when
the graph G is bipartite, and hence it is interesting to find efficiently an approximation of it. Some
algorithmic applications (of the bipartite case) are given in [3]. Here we describe two additional
natural applications.

The first application arises in the study of the spin glass model in mathematical physics. In this
model, there is a system of atoms each of which has a spin that can point either up or down. Some
of the pairs of atoms have non-negligible interactions. The system can be described by a graph
G = (V, E), with a (not necessarily positive) weight A(u, v) for each edge {u, v} ∈ E. The atoms
are the vertices, the spin of the atom v is f(v) ∈ {−1, 1}, where 1 represents the “up” position, the
weights A(u, v) represent the interactions between u and v, and the energy of the system (when
there is no external field) is given by its Hamiltonian H = −∑

{u,v}∈E A(u, v)f(u)f(v). A ground
state is a state that minimizes the energy, and thus the problem of finding a ground state is precisely
that of finding the maximum of the integer program (3). See, e.g., [24], pp. 352-355, [27], and the
references therein for more details.

9



It is known that if the graph G is planar, one can find a ground set in polynomial time using
matching algorithms (see [7]), but in general this problem (which is equivalent to that of maximizing
(3)) is NP-hard (and in fact even hard to approximate). Our technique here thus supplies an
efficient way to find a configuration that approximates the minimum energy, and in many cases
this approximation is up to a constant factor.

An additional algorithmic application of the fact one can find efficiently an approximation of
(3) arises in the problem of maximizing correlation in correlation clustering.

Typical clustering problems involve the partitioning of a data set into classes which are small in
some quantitative (typically metric) sense. In contrast, in correlation clustering, first considered in
[6] (and referred to as clustering with qualitative information in [9]), we are given a judgement graph
G = (V, E) and for every {u, v} ∈ E a real number A(u, v) which is interpreted as a judgement of
the similarity of u and v. In the simplest case A(u, v) ∈ {1,−1}, where if A(u, v) = 1 then u, v are
said to be similar, and if A(u, v) = −1 then u, v are said to be dissimilar. Given a partition of V
into clusters, a pair is called an agreement if it is a similar pair within one cluster or a dissimilar
pair across two distinct clusters. Analogously, a disagreement is a similar pair across two different
clusters or a dissimilar pair in one cluster. In the maximum correlation problem (MAXCORR) the
goal is to partition V so that the correlation is maximized, where the correlation of a partition is
the difference of the number of agreements and the number of disagreements. In the case of general
weights, for a partition P of V into pairwise disjoint clusters, the value of the partition, denoted
by k(P ), is the sum of all positive entries A(u, v) for u, v that lie in the same cluster, minus the
sum of all positive entries A(u, v) for u, v that lie in distinct clusters, minus the sum of all values
|A(u, v)| for negative entries A(u, v), where u, v lie in the same cluster, plus the sum of all values
|A(u, v)| for negative entries A(u, v), where u, v lie in distinct clusters. The objective is to find a
partition P whose value approximates the maximum possible value over all partitions.

The authors of [10] show that (2) can be used to provide an Ω(1/ log n) approximation algorithm
for the maximum correlation in the correlation clustering problem when the judgement graph is
the complete graph on n vertices. They prove that the maximum possible value of k(P ) is at most
3 times the maximum between the value kn of the trivial partition into clusters of size 1, and the
maximum possible value v2 of a partition into two clusters. The latter is easily seen to be equivalent
to the maximum of (3), and hence any algorithm that finds a solution giving at least an α-fraction
of the maximum of (3) provides an α/3-approximation algorithm for the maximum correlation
clustering problem (this can be slightly improved to α

2+α by being a bit more careful- see [10]).
The authors of [10] conclude that there is an efficient Ω(1/ log n) approximation algorithm for the
maximum correlation clustering problem for any graph G with n vertices. By the results here, the
approximation guarantee can be improved to Ω(1/K(G)) = Ω(1/ log(ϑ(G))). In particular, this
is Ω(1) for any bounded degree graph or any graph with a bounded chromatic number or genus
- in all these cases and some additional ones considered in the next subsection no constant factor
approximation algorithm for MAXCORR was previously known.

5.2 Restricted families of graphs

By Theorems 3.3 and 4.2, if G is a graph containing a clique of size whose logarithm is proportional
to the logarithm of the theta function of G, then K(G) = Θ(log ω(G)). In particular, this holds
for any perfect graph G, as in this case ω(G) = χ(G) = ϑ(G). Note that it may be desirable to
optimize quadratic forms as in (3) for various classes of perfect graphs, like comparability graphs
or chordal graphs. Since the chromatic number of perfect graphs can be determined in polynomial
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time, it follows that in such cases we can determine the value of K(G) up to a constant factor,
and in case it is smaller than nε where n is the number of vertices, we can obtain a guaranteed
improved approximation of (3).

Moreover, by the remark above and the fact that ϑ(G) ≤ χ(G) for every G, K(G) = Θ(log(χ(G)))
for any graph G whose chromatic number is bounded by a polynomial of the size of its largest clique.
There are various known classes of such graphs, including complements of intersection graphs of
the edges of hypergraphs with certain properties. See, for example, [2], [11]. Another interesting
family of classes of graphs for which this holds is obtained as follows. Let k ≥ 2 be an integer, and
let Gk denote the family of all graphs which contain no induced star on k vertices. In particular,
G2 is the family of all unions of pairwise vertex disjoint cliques, and G3 is the family of all claw-free
graphs. An easy application of Ramsey Theorem implies that the maximum degree ∆ of any graph
G ∈ Gk whose largest clique is of size ω, is at most ωk−1. This implies that the chromatic number
χ of any such graph is at most ωk−1 + 1, showing that (for fixed k) its Grothendieck constant is
Θ(log ∆) = Θ(log ω) = Θ(log χ). Since the maximum degree (as well as the fact that G ∈ Gk for
some fixed k) can be computed efficiently, this is another case in which we can compute the value
of K(G) up to a constant factor.

A graph G is d-degenerate if any subgraph of it contains a vertex of degree at most d. It is easy
and well known that any such graph is d + 1-colorable, and that there is a linear time algorithm
that finds, for a given graph G, the smallest number d such that G is d-degenerate. In particular,
graphs of genus g are O(

√
g)-degenerate, implying that their Grothendieck constant is O(log g).

Other classes of graphs for which the clique number is proportional (with a universal constant)
to the chromatic number (and hence also to the theta function of the complement), are intersection
graphs of a family of homothetic copies of a fixed convex set in the plane- see [17]. A few additional
examples appear in the next subsection.

5.3 New Grothendieck-type inequalities

Theorem 3.3 enables us to generate new Grothendieck type Inequalities, and Theorem 4.2 can be
used to show that in some cases these are essentially tight. We list here several examples that seem
interesting.

Let m > 2k > 1 be integers. The Kneser graph S(m, k) is the graph whose n =
(
m
k

)
vertices are

all k-subsets of an m-element set, where two vertices are adjacent iff the corresponding subsets are
disjoint. The clique number of S(m, k) is clearly bm/kc, and as shown in [22], its chromatic number
is m− 2k + 2. Its theta function, computed in [23], is

(
m−1
k−1

)
, and as this graph is vertex transitive,

the product of its theta function and that of its complement is the number of its vertices (see [23]).
It thus follows that the theta-function of the complement of S(m, k) is m/k. We conclude that
the Grothendieck constant of S(m, k) is Θ(log(m/k)). This gives the following Grothendieck-type
inequality.

Proposition 5.1. There exists an absolute constant c such that the following holds. Let m > 2k > 1
be positive integers. Put M = {1, 2, . . . ,m}, n =

(
m
k

)
, and let A(I, J) be a real number for each

pair of disjoint k-subsets I, J of M . Then for every vectors xI of Euclidean norm 1, there are signs
εI ∈ {−1, 1} such that

∑

I,J⊂M
|I|=|J |=k

I∩J=∅

A(I, J)〈xI , xJ〉 ≤ c log
(m

k

) ∑

I,J⊂M
|I|=|J |=k

I∩J=∅

A(I, J)εIεJ .
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Moreover, the above inequality is tight, up to the constant factor c, for all admissible values of m
and k.

Let Dm denote the line graph of the directed complete graph on m vertices. This is the graph
whose vertices are all ordered pairs (i, j) with i, j ∈ M = {1, 2, . . . , m}, i 6= j, in which (i, j) is
adjacent to (j, k) for all for all admissible i, j, k ∈ M . It is known that the chromatic number of this
graph is (1 + o(1)) log2 m, and it is not difficult to see that its clique number is 2 and its fractional
chromatic number is at most 4, (see, for example, [5]). As shown in [23], the theta function of the
complement of any graph is bounded by its fractional chromatic number. This gives the following
inequality.

Proposition 5.2. There exists an absolute constant c such that the following holds. Let m be
a positive integer, and let A(i, j, k) be a real for each i, j, k ∈ M, i 6= j, j 6= k. Then for every
m(m−1) vectors xi,j , (i, j ∈ M, i 6= j) of Euclidean norm 1, there are signs εi,j ∈ {−1, 1} such that

∑

i,j,k∈M
i6=j 6=k

A(i, j, k)〈xi,j , xj,k〉 ≤ c
∑

i,j,k∈M
i 6=j 6=k

A(i, j, k)εi,jεj,k.

Let n = 2m, and let M be as before. Let G be the comparability graph of all subsets of M , ordered
by inclusion. Then G is a perfect graph, and its clique number is m + 1 = log n + 1. As G is
perfect, this is also its chromatic number (and the theta function of its complement), providing the
following inequality.

Proposition 5.3. There exists an absolute constant c such that the following holds. Let m be a
positive integer, put n = 2m, and let A(I, J) be a real for each I ( J ⊆ M . Then for every n
vectors xI , (I ⊆ M) of Euclidean norm 1, there are signs εI ∈ {−1, 1} such that

∑

I(J⊆M

A(I, J)〈xI , xJ〉 ≤ c log log n
∑

I(J⊆M

A(I, J)εIεJ .

This is tight, up to the constant c.

6 Further inequalities

6.1 Tensor products and analytic functions

Let G = (V,E) be an n-vertex graph and f1, . . . , fk : V → Sn−1. Consider the function f : V → `2

given by the tensor product f(v) = f1(v)⊗f2(v)⊗· · ·⊗fk(v). By the definition of K(G), for every
A : V × V → R we have that

∑

{u,v}∈E

A(u, v) ·
k∏

i=1

〈fi(u), fi(v)〉 ≤ K(G) max
g:V→{−1,+1}

∑

{u,v}∈E

A(u, v) · g(u)g(v).
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It follows that for every real analytic function Ψ : Rk → R, all of whose Taylor coefficients are
non-negative, the following inequality holds true:

∑

{u,v}∈E

A(u, v) · Ψ(〈f1(u), f1(v)〉, . . . , 〈fk(u), fk(v)〉)

≤ K(G) ·Ψ(1, . . . , 1) max
g:V→{−1,+1}

∑

{u,v}∈E

A(u, v) · g(u)g(v).

Similarly, there exists a function F : V → L∞[0, 1] such that for every v ∈ V , ‖F (v)‖∞ ≤
R(G) ·

√
Ψ(1, . . . , 1) and

{u, v} ∈ E =⇒ Ψ(〈f1(u), f1(v)〉, . . . , 〈fk(u), fk(v)〉) = 〈F (u), F (v)〉.

6.2 The homogenous Grothendieck inequality

The classical Grothendieck inequality has the following equivalent homogenous formulation: For
every n×m matrix (aij),

sup
xi,yj∈`2

∑n
i=1

∑m
j=1 aij〈xi, yj〉

maxi,j(‖xi‖2 · ‖yj‖2)
≤ KG · sup

xi,yj∈R

∑n
i=1

∑m
j=1 aijxiyj

maxi,j(|xi| · |yj |)) ,

where KG is Grothendieck’s constant. Therefore, there is a natural homogenous extension of
Grothendieck’s inequality to the case of arbitrary graphs (which is easily seen not to be equivalent to
the formulation we have studied before). We do not attempt to study this independently interesting
notion here, except for the following variant of Theorem 3.3:

Proposition 6.1. There is a universal constant C > 0 such that for every loop-free graph G =
(V, E) and for every A : V × V → R,

sup
f :V→`2

∑
{u,v}∈E A(u, v)〈f(u), f(v)〉

max{u,v}∈E(‖f(u)‖2 · ‖f(v)‖2)
≤ C log ϑ(G) · sup

f :V→R

∑
{u,v}∈E A(u, v)f(u)f(v)

max{u,v}∈E(|f(u)| · |f(v)|)
Proof. We shall use the notation of the proof of Theorem 3.3. Let Φ be the least constant φ > 0
such that for every f : V → L2(Ω)

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉 ≤ φ · max
{u,v}∈E

(‖f(u)‖L2(Ω) · ‖f(v)‖L2(Ω)

)
.

We clearly have that Φ ≤ |V |2 ·maxu,v∈V |A(u, v)| < ∞.
Fix ρ > 0 such that for every f : V → R

∑

{u,v}∈E

A(u, v) · f(u)f(v) ≤ ρ · max
{u,v}∈E

(|f(u)| · |f(v)|) .

We will conclude once we show that Φ ≤ C log k · ρ.
Fix f : V → H for which

∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉 ≥ Φ
2
· max
{u,v}∈E

(‖f(u)‖L2(Ω) · ‖f(v)‖L2(Ω)

)
.
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The existence of f follows from the fact that H and L2(Ω) are isometric.
Observe that the following identity holds true:

Φ
2

· max
{u,v}∈E

(‖f(u)‖L2(Ω) · ‖f(v)‖L2(Ω)

) ≤
∑

{u,v}∈E

A(u, v) · 〈f(u), f(v)〉)

=
∑

{u,v}∈E

A(u, v) ·
〈
f(u)M‖f(u)‖L2(Ω) , f(v)M‖f(v)‖L2(Ω)

〉

1
2

∑

{u,v}∈E

A(u, v) ·
〈
f(u) + f(u)M‖f(v)‖L2(Ω) , f(v)− f(v)M‖f(v)‖L2(Ω)

〉
+

1
2

∑

{u,v}∈E

A(u, v) ·
〈
f(u)− f(u)M‖f(v)‖L2(Ω) , f(v) + f(v)M‖f(v)‖L2(Ω)

〉
. (7)

Now,
∑

{u,v}∈E

A(u, v) ·
〈
f(u)M‖f(u)‖L2(Ω) , f(v)M‖f(v)‖L2(Ω)

〉
≤ M2 · max

{u,v}∈E

(‖f(u)‖L2(Ω) · ‖f(v)‖L2(Ω)

) · ρ.

Additionally, by the definition of Φ, the sum of additional terms in (7) is bounded by (as in Theorem
3.3) (

1
2

+ 8kMe−M2/4

)2

· Φ · max
{u,v}∈E

(‖f(u)‖L2(Ω) · ‖f(v)‖L2(Ω)

)
,

Plugging these estimates into (7) we get that:

Φ
2
≤ M2 · ρ +

(
1
2

+ 8kMe−M2/4

)2

· Φ.

Choosing M = 4
√

log k, and simplifying, yields the required result.

7 Open problems

The investigation of the parameter K(G) and the optimization problem (3) leads to several inter-
esting problems that remain open. In particular, we mention the following.

• Find an explicit family of matrices showing that K(Kn) = Ω(log n).

• Is there a lower bound for K(G) in terms of ϑ(G)?

• Can the optimal value of (3) be approximated efficiently within a constant factor ? It is easy
to see that this problem is MAX-SNP hard even for bipartite graphs, as observed in [3], but
it will be interesting to show that for general graphs it cannot be approximated efficiently to
within any constant factor.

• Let G = G(n, 1/2) be the random graph on n labelled vertices obtained by picking each pair
of distinct vertices to form an edge, randomly and independently, with probability 1/2. Is
it true that almost surely (that is, with probability that tends to 1 as n tends to infinity),
K(G) = Θ(log n) ?
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Note that it is known that the clique number of G is, almost surely, Θ(log n), and the theta
function of its complement is, almost surely, Θ(

√
n), (see [16]), implying that the Grothendieck

constant K(G) lies between Θ(log log n) and Θ(log n), and that for this example it differs
considerably either from the logarithm of the clique number or from that of the theta function
of G. Another example of a family of graphs with an even larger difference between these
logarithms is given in [1], where graphs on n vertices with clique number 2 for which ϑ(G) =
Θ(n1/3) are constructed.
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