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ABSTRACT
We prove that every n-point metric space of negative type
(in particular, every n-point subset of L1) embeds into a
Euclidean space with distortion O(

√
log n log log n), a result

which is tight up to the O(log log n) factor. As a conse-
quence, we obtain the best known polynomial-time approxi-
mation algorithm for the Sparsest Cut problem with general
demands. If the demand is supported on a subset of size k,
we achieve an approximation ratio of O(

√
log k log log k).

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—General

General Terms
Algorithms, Theory

Keywords
Approximation Algorithms, Sparsest Cut, Semidefinite Pro-
gramming, Metric Embeddings

1. INTRODUCTION
Geometric embeddings of finite metric spaces, a topic orig-

inally studied in geometric analysis, became an integral part
of theoretical computer science following work of Linial, Lon-
don, and Rabinovich [20]. They gave an algorithmic version
of a result of Bourgain [6] which shows that every n-point
metric space embeds into L2 with distortion O(log n). This
geometric viewpoint offers a way to understand the approx-
imation ratios achieved by linear programming (LP) and
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semidefinite programming (SDP) relaxations for cut prob-
lems [20, 4]. It soon became apparent that further progress
in understanding SDP relaxations would involve improv-
ing Bourgain’s general bound of O(log n) for n-point metric
spaces of negative type. For instance, the approximation ra-
tio achieved by a well-known SDP relaxation for the general
Sparsest Cut problem is known to coincide exactly with the
best-possible distortion bound achievable for the embedding
of n-point metrics of negative type into L1—a striking con-
nection between pure mathematics and algorithm design.

Further progress on these problems required new insights
into the structure of metric spaces of negative type, and the
design of more sophisticated and flexible embedding meth-
ods for finite metrics. Coincidentally, significant progress
was made recently on both these fronts. Arora, Rao and
Vazirani [3] proved a new structural theorem about metric
spaces of negative type and used it to design an O(

√
log n)-

approximation algorithm for uniform case of the Sparsest
Cut Problem. Krauthgamer, Lee, Mendel and Naor [16] in-
troduced a new embedding method called measured descent
which unified and strengthened many existing embedding
techniques, and they used it to solve a number of open prob-
lems in the field.

These breakthroughs indeed resulted in improved embed-
dings for negative type metrics; Chawla, Gupta, and Räcke [8]
used the structural theorem of [3] (specifically, its stronger
form in Lee [17]), in conjunction with measured descent to
show that every n-point metric of negative type embeds into
L2 with distortion O(log n)3/4. In the present work, we show
how one can achieve distortion O(

√
log n log log n). This al-

most matches the 35-year-old lower bound of
√

log n from
Enflo [10]. Our methods use the results of [3, 17, 8] essen-
tially as a “black box,” together with a delicate enhancement
of the measured descent technique.

Recall that a metric space (X, d) is said to be of negative

type if (X,
√

d) is isometric to a subset of Euclidean space. In
particular, it is well known that L1 is of negative type. (We
also remind the reader that L2 is isometrically equivalent
to a subset of L1.) The parameter c2(X), known as the
Euclidean distortion of X, is the least distortion with which
X embeds into Hilbert space, i.e. it is the minimum of
dist(f) = ‖f‖Lip · ‖f−1‖Lip over all bijections f : X ↪→ L2.
The mathematical investigation of the problem we study
dates back to the work of Enflo [10], who showed that the
Euclidean distortion of the Hamming cube Ωd = {0, 1}d

equals
√

d =
p

log2 |Ωd|.



The following natural question is folklore in geometric and
functional analysis:

“Is the discrete d-dimensional hypercube the most non-
Euclidean 2d-point subset of L1?”

A positive answer to this question would imply that any n-
point subset of L1 embeds in L2 with distortion O(

√
log n).

In fact, motivated by F. John’s theorem in convex geome-
try (see [24]), Johnson and Lindenstrauss [14] asked in 1983
whether every n-point metric space embeds into L2 with
distortion O(

√
log n). Here, the analogy between finite di-

mensional normed spaces and finite metric spaces is not com-
plete: Bourgain [6] has shown that for any n-point metric
space X, c2(X) = O(log n), and this result is existentially
optimal [20, 4]. By now we understand that finite metric
spaces (namely expander graphs) can exhibit an isoperimet-
ric profile which no normed space can achieve, and this is the
reason for the discrepancy with John’s theorem. However,
it is known (see [16]) that several natural restricted classes
of metrics do adhere to the O(

√
log n) Euclidean distortion

suggested by John’s theorem. (Additional remarks on re-
lationships to Banach spaces can be found in Section 5.)
Arguably, for applications in theoretical computer science,
the most important restricted class of metrics are those of
negative type, yet improvements over Bourgain’s theorem
for such metrics have long resisted the attempts of mathe-
maticians and computer scientists.

The present paper is devoted to proving that up to double
logarithmic factors, the answer to the above question is pos-
itive. This yields a general tool for the rounding of certain
classes of semi-definite programs. As a result, we obtain
the best-known polynomial time algorithm for the approxi-
mation of the Sparsest Cut problem with general demands,
improving over the previous bounds due to [8] and the pre-
ceding works [20] and [4] (which yield an O(log n) approx-
imation). This problem is described in Section 4. We now
state our main result.

Theorem 1.1. Let (X, d) be an n-point metric space of
negative type. Then

c2(X) = O
�p

log n · log log n
�
.

In Section 2.2, we present a high-level overview of the
proof.

Related work. Until recently, there was no real evidence
to the conjecture that any n-point subset of L1 embeds in
Hilbert space with distortion O(

√
log n). In the paper [18],

Lee, Mendel and Naor show that any n-point subset of L1

embeds into Hilbert space with average distortion O(
√

log n).
Arora, Rao, and Vazirani [3] have shown that O(

√
log n) dis-

tortion is achievable using a different notion of average dis-
tortion, which turns out to be more relevant for bounding
the actual distortion. As described above, combining their
result with the measured descent technique of Krauthgamer,
Lee, Mendel and Naor [16], Chawla, Gupta, and Räcke [8]
have recently proved that for any n-point metric space X
of negative type, c2(X) = O(log n)3/4. It was conjectured
[22, pg. 379] that n-point metrics of negative type embed
into L1 with distortion O(1). Recently, Khot and Vishnoi
[15] have obtained a lower bound of Ω(log log n)δ, for some
constant δ > 0.

Our results also suggest that the dimension reduction lower
bound of Brinkman and Charikar [7] (see also [19]) is tight
for certain distortions. They show that embedding certain
n-point subsets of L1 into `d

1 with distortion D requires that

d ≥ nΩ(1/D2). Theorem 1.1, together with theorems of John-
son and Lindenstrauss [14] and Figiel, Lindenstrauss, and
Milman [12], yields an embedding of every n-point subset of

L1 into `
O(log n)
1 with distortion O(

√
log n log log n).

2. PRELIMINARIES
In this section we present Theorem 2.1, which is one of

the main tools used in the proof of Theorem 1.1. It is a con-
catenation of the result of Arora, Rao, and Vazirani [3], its
strengthening by Lee [17], and the “reweighting” method
of Chawla, Gupta, and Räcke [8], who use it in conjunc-

tion with [16] to achieve distortion O(log
3
4 n). We now

present a high-level sketch of the proof. Complete details
can be found in the full version of [17], where a more gen-
eral result is proved; the statement actually holds for metric
spaces which are quasisymmetrically equivalent to subsets
of Hilbert space, and not only for those of negative type.
(See [13] for the definition of quasi-symmetry; the relevance
of such maps to the techniques of [3] was first pointed out
in [26]).

Theorem 2.1. There exist constants C ≥ 1 and 0 < p <
1
2

such that for every n-point metric space (Y, d) of negative
type and every ∆ > 0, the following holds. There exists
a distribution µ over subsets U ⊆ Y such that for every
x, y ∈ Y with d(x, y) ≥ ∆

16
,

µ

�
U : y ∈ U and d(x, U) ≥ ∆

C
√

log n

�
≥ p.

Proof (high-level sketch). Let g : Y → `2 be such
that

d(x, y) = ||g(x)− g(y)||22
for all x, y ∈ Y . By [23], there exists a map T : `2 → `2 such

that ||T (z)||2 ≤
√

∆ for all z ∈ `2 and

1

2
≤ ||T (z)− T (z′)||2

min{√∆, ||z − z′||2}
≤ 1.

for all z, z′ ∈ `2. As in [17], we let f : Y → Rn be the
map given by f = T ◦ g (we remark that this map can be
computed efficiently). Then f is a bi-Lipschitz embedding

(with distortion 2) of the metric space (Y,
p

min{∆, d}) into
the Euclidean ball of radius ∆.

Let 0 < σ < 1 be some constant. The basic idea is to
choose a random u ∈ Sn−1 and define

Lu = {x ∈ Y : 〈x, u〉 ≤ −σ
√

∆√
n
}

Ru = {x ∈ Y : 〈x, u〉 ≥ σ
√

∆√
n
}.

One then prunes the sets by iteratively removing any pairs
of nodes x ∈ Lu, y ∈ Ru with d(x, y) ≤ ∆/

√
log n. At the

end one is left with two sets L′u, R′u. The main result of [3,
17] is that with high probability (over the choice of u), the
number of pairs pruned from Lu ×Ru is not too large.

Let S∆ = {(x, y) ∈ Y ×Y : d(x, y) ≥ ∆
16
}. The reweighting

idea of [8] is to apply the above procedure to a weighted
version of the point set as follows. Let w : Y × Y → Z+ be
an integer-valued weight function on pairs, with w(x, y) =



w(y, x), w(x, x) = 0, and w(x, y) > 0 ⇐⇒ (x, y) ∈ S∆.
This weight function can be viewed as yielding a new set
of points where each point x is replaced by

P
y∈Y w(x, y)

copies, with w(x, y) of them corresponding to the pair (x, y).
One could think of running the above procedure on this
new point set; note that the pruning procedure above may
remove some or all copies of x. Then, as observed in [8], the
theorems of [3, 17] imply that with high probability, after
the pruning, we still have

X

x∈L′u,y∈R′u

w(x, y) ≥ 1
8

X
x,y

w(x, y).

The distribution µ mentioned in the statement of the theo-
rem is defined using a family of O(log n) weight functions de-
scribed below. Sampling from µ consists of picking a weight
function from this family and a random direction u ∈ Sn−1,
and then forming sets L′u, R′u as above using the weight func-
tion. One then outputs the set U of all points x for which
any “copy” falls into L′u.

Now we define the family of weight functions. The first
one has w(x, y) = n4 for all (x, y) ∈ S∆. Given any weight
function, obtain another one by doing the thought experi-
ment of picking a random u and constructing L′u, R′u for the
point set described by this weight function. For every pair
(x, y) ∈ S∆ that is left unpruned with probability ≥ 1

10
(i.e.,

is in L′u × R′u for ≥ 1/10 of the u ∈ Sn−1), we lower the
weight of w(x, y) by a factor 2. A simple argument (pre-
sented in [8]) shows that by repeating this O(log n) times
we obtain O(log n) weight functions such that for every
pair (x, y) ∈ S∆ the following is true: If one picks a ran-
dom weight function and a random direction u ∈ Sn−1 and
forms the set L′u, R′u according to the weight, then with
constant probability (over the choice of weight function and
u ∈ Sn−1), we have (x, y) ∈ L′u ×R′u.

2.1 Padded decomposability and random zero
sets

Theorem 2.1 is the only way the negative type property
will be used in what follows. It is therefore helpful to intro-
duce it as an abstract property of metric spaces. Let (X, d)
be an n-point metric space.

Definition 2.2 (Random zero-sets). Given ∆,
ζ > 0, and p ∈ (0, 1) we say that X admits a random zero
set at scale ∆ which is ζ-spreading with probability p if there
is a distribution µ over subsets Z ⊆ X such that for every
x, y ∈ X with d(x, y) ≥ ∆,

µ

�
Z ⊆ X : y ∈ Z and d(x, Z) ≥ ∆

ζ

�
≥ p.

We denote by ζ(X; p) the least ζ > 0 such that for every
∆ > 0, X admits a random zero set at scale ∆ which is ζ-
spreading with probability p. Finally, given k ≤ n we define

ζk(X; p) = max
Y⊆X
|Y |≤k

ζ(Y ; p).

With this definition, Theorem 2.1 implies that there exists
a universal constant p ∈ (0, 1) such that for every n-point
metric space (X, d) of negative type, ζ(X; p) = O(

√
log n).

We now recall the related notion of padded decomposabil-
ity. Given a partition P of X and x ∈ X we denote by
P (x) ∈ P the unique element of P to which x belongs. In

what follows we sometimes refer to P (x) as the cluster of x.
Following [16] we define the modulus of padded decompos-
ability of X, denoted αX , as the least constant α > 0 such
that for every ∆ > 0 there is a distribution ν over partitions
of X with the following properties.

1. For all P ∈ supp(ν) and all C ∈ P we have that
diam(C) < ∆.

2. For every x ∈ X we have that

ν{P : B(x, ∆/α) ⊆ P (x)} ≥ 1

2
.

As observed in [16], the results of [21, 5] imply that αX =
O(log |X|), and this will be used in our proof.

The following useful fact relates the notions of padded de-
composability and random zero sets. Its proof is motivated
by an argument of Rao [28].

Fact 2.3. ζ(X; 1/8) ≤ αX .

Proof. Fix ∆ > 0 and let P be a partition of X into
subsets of diameter less than ∆. Given x ∈ X we denote
by πP (x) the largest radius r for which B(x, r) ⊆ P (x). Let
{εC}C∈P be i.i.d. symmetric {0, 1}-valued Bernoulli random
variables. Let ZP be a random subset of X given by

ZP =
[

C∈P : εC=0

C .

If x, y ∈ X satisfy d(x, y) ≥ ∆ then P (x) 6= P (y). It
follows that

Pr[y ∈ ZP ∧ d(x, ZP ) ≥ πP (x)] ≥ 1

4
.

By the definition of αX , there exists a distribution over
partitions P of X into subsets of diameter less than ∆
such that for every x ∈ X with probability at least 1/2,
πP (x) ≥ ∆/αX . The required result now follows by consid-
ering the random zero set ZP .

2.2 Proof overview and connection to past work
Apart from Theorem 2.1, our presentation is self-contained.

In the informal description that follows, we omit unimpor-
tant constants, floors, ceilings, etc. in order to focus on the
essential ideas.

Let (X, d) be an arbitrary n-point metric space. First,
we recall that using αX = O(log n) it is easy to show that

c2(X) = O(log
3
2 n) for all finite metric spaces via the “triv-

ial” concatenation technique, where one uses a new set of
coordinates for each of the O(log Φ) relevant scales ∆ = 2k.
A single scale is handled by forming the map fk : X → L2

given by fk(x) = d(x, Zk), where Zk is a random zero-set
as in Definition 2.2. Using a standard contraction trick
(see Matousek’s survey chapter [22]), the dependence on
O(log Φ) is reduced to a dependence on O(log n).

To obtain Bourgain’s stronger bound c2(X) = O(log n),
Krauthgamer et al. [16] introduce a nontrivial way to glue
together the distributions arising from various scales. Let

ρ(x, R) = log |B(x,R)|
|B(x,R/4)| be the “local volume growth” at x.

In essence, the method of measured descent [16] shows that,
given ζ-spreading zero-sets for each scale 2k, it is possible to
construct a map ϕ : X → L2 which is O(

√
log n)-Lipschitz



and satisfies the following. For every k ∈ Z and every x, y ∈
X with d(x, y) ≈ 2k,

||ϕ(x)− ϕ(y)||2 ≥
p

ρ(x, 2k) · 2k

ζ

Using αX = O(log n), one can derive ζ ≈ O(log n), which

yields distortion O(log
3
2 n)/

p
ρ(x, 2k); this is again Ω(log

3
2 n)

in the worst case.
Using the decomposition lemma of [11], it is possible to

obtain ζ ≈ ρ(x, 2k). The resulting distortion for the pair x, y

is O(
p

(log n)ρ(x, 2k)) = O(log n), recovering Bourgain’s
bound. Combining this gluing technique with the improved
zero-sets available for metrics of negative type (Theorem

2.1), it is possible to achieve distortion O(log
3
4 n) [8]. To see

this, note that when ρ(x, 2k) ≤ √
log n, the above bound is

O(log
3
4 n). On the other hand, when ρ(x, 2k) ≥ √

log n, one
uses the negative type assumption to achieve ζ ≈ √

log n,

and the distortion is again O(log
3
4 n). In order to do better,

we must dispense with the auxiliary embedding correspond-
ing to ζ ≈ ρ(x, 2k), and instead employ a more delicate
technique.

If we could somehow achieve ζ ≈
p

ρ(x, 2k), then clearly

we would obtain distortion O(
√

log n) as the factors of ρ(x, 2k)
would cancel. It is currently unknown whether such distrib-
utions exist. The obstacle lies in the intrinsically “non-local”
structure of the Arora-Rao-Vazirani chaining argument [3].

Instead, we try to simulate a contribution of 2k/
p

ρ(x, 2k)
by applying Theorem 2.1 to localized random samples of
the space whose size n′ satisfies n′ ¿ n. Ideally the sam-
ples relevant to x would have n′ ≈ exp(ρ(x, 2k)) points so

that
√

log n′ ≈
p

ρ(x, 2k). On the other hand, the samples
must be dense enough so that the locally constructed map
admits a useful extension to the entire scale-2k neighbor-
hood of x. Making matters more difficult, the localization
and sampling processes must vary smoothly across the en-
tire space (to maintain the Lipschitz property), and must be
intimately intertwined with the descent construction across
all scales. To facilitate this requires a more delicate gluing
procedure, which is carried out in Section 3.1.

3. PROOF OF THEOREM 1.1
The main technical result of this paper is contained in the

following lemma.

Lemma 3.1 (Enhanced descent). Let (X, d) be an n-
point metric space and fix p ≤ 1/8, K ≥ 2 and ζ ≥ ζK(X; p).
For every m ∈ Z, let Sm(K) be the set
�

x ∈ X :
��B �x, 2m+5αX

��� ≤ K

16
·
����B
�

x,
2m−9

ζ

�����
�

.

Then there exists a mapping φ : X → L2 such that

1. ||φ(x)−φ(y)||22 ≤ O(log n log αX) d(x, y)2 for all x, y ∈
X,

2. For all m ∈ Z, x ∈ Sm(K) and y ∈ X such that
d(x, y) ∈ [2m−1, 2m],

||φ(x)− φ(y)||22 ≥
� p

64

�5

· d(x, y)2

ζ2
·

log
|B(x, 2m+5αX)|
|B(x, 2m+3/ζ)| (1)

Before proving Lemma 3.1 we show how it implies Theo-
rem 1.1. The argument below actually yields more general
results. For example if we assume that ζk(X; p) = O(log k)θ

for some p ∈ (0, 1/8), θ ≥ 1
2

and all k ≤ n then

c2(X) = Op((log n)θ
p

log αX log log n)

= Op((log n)θ log log n),

where Op(·) may contain an implicit constant which depends
only on p.

Proof of Lemma 3.1 =⇒ Theorem 1.1. Combining The-
orem 2.1, Lemma 3.1 and the fact that αX = O(log n) we ob-
tain the following statement. There exists a constant A > 0
such that for every K ≥ 2 there is a mapping φ : X → L2

satisfying the following conditions.

1. ‖φ(x) − φ(y)‖22 ≤ A log n · log log n · d(x, y)2 for all
x, y ∈ X.

2. Define S′m(K) to be the set
�

u ∈ X :
��B �u, 2m+5αX

��� ≤ K ·
����B
�

u,
2m

A
√

log K

�����
�

.

Then for all m ∈ Z, x ∈ S′m(K) and y ∈ X such that
d(x, y) ∈ [2m−1, 2m],

||φ(x)− φ(y)||22 ≥ d(x, y)2

A log K
· log

|B(x, 2m+5αX)|
|B(x, A2m/

√
log K)| .

Observe that for every m ∈ Z, S′m(n) = X. Hence, defin-

ing K0 = n and Kj+1 = K
1/A4

j , as long as Kj ≥ 2, we
obtain mappings φ0, . . . , φj : X → L2 satisfying

1. ||φj(x) − φj(y)||22 ≤ A log n · log log n · d(x, y)2 for all
x, y ∈ X.

2. For all x ∈ Sm(Kj) \ Sm(Kj+1) and y ∈ X such that
d(x, y) ∈ [2m−1, 2m]:

||φj(x)− φj(y)||22
≥ d(x, y)2

A log Kj
· log

|B(x, 2m+5αX)|
|B(x, A2m/

p
log Kj)|

=
d(x, y)2

A log Kj
· log

|B(x, 2m+5αX)|���B
�
x, A2m/

q
log KA4

j+1

����

=
d(x, y)2

A log Kj
· log

|B(x, 2m+5αX)|
|B(x, 2m/(A

p
log Kj+1))|

≥ d(x, y)2

A log Kj
· log Kj+1 =

d(x, y)2

A5
.

This procedure ends after N steps, where N ≤ log log n
log A

.

Every x ∈ Sm(KN ) satisfies

|B(x, 2m+5αX)| ≤ eA4 |B(x, 2m+1/A)|.
By the result of [16] there is a mapping φN+1 : X → L2

which is Lipschitz with constant O(
√

log n) and for every
x, y ∈ Sm(KN ), ‖φN+1(x)− φN+1(y)‖2 ≥ Ω(1) · d(x, y).

Consider the map Φ =
LN+1

j=0 φj , which is Lipschitz with

constant O
�√

log n · log log n
�
. For every x, y ∈ X choose

m ∈ Z such that d(x, y) ∈ [2m−1, 2m]. If x, y ∈ Sm(KN )
then

‖Φ(x)− Φ(y)‖2 ≥ ‖φN+1(x)− φN+1(y)‖2 ≥ Ω(1) · d(x, y).



Otherwise, there is j ∈ {0, . . . , N−1} such that x ∈ Sm(Kj)\
Sm(Kj+1), in which case

‖Φ(x)− Φ(y)‖2 ≥ ‖φj+1(x)− φj+1(y)‖2 ≥ Ω(1) · d(x, y).

3.1 Proof of Lemma 3.1: Enhanced descent
We begin with a simple definition.

Definition 3.2. For every x ∈ X and t > 0 define

κ(x, t) = max{κ ∈ Z : |B(x, 2κ)| < 2t}. (2)

The following simple lemma says that the values of κ(·, ·)
cannot change too rapidly when moving between nearby
points. This fact will be used several times in the ensu-
ing arguments, and played a similar role in [16]. We defer
the proof to the Appendix.

Lemma 3.3 (Smoothness). For x ∈ X, let i ∈ Z and
m, t ∈ Z+ be such that

��B(x, 2i+m−1)
�� ≤ 2t ≤

��B(x, 2i+m)
��.

Then every z ∈ X for which d(x, z) ≤ 2min{m,m+i−2} satis-
fies:

κ(z, t) ∈ {m + i− 3, m + i− 2, m + i− 1, m + i, m + i + 1}.

Notation. We introduce some notation which will be used
in the forthcoming proofs. Write α = αX , and for every
j ∈ Z let Pj denote a random partition of X satisfying the
following.

1. For all C ∈ Pj we have that diam(C) ≤ 2j+4α.

2. For every x ∈ X we have that ν{P : B(x, 2j+4) ⊆
Pj(x)} ≥ 1

2
.

We also fix p ∈ (0, 1/8) and for every k ≤ n let ζk =
ζk(X; p). For S ⊆ X let Ψj(S) denote a random zero set of
S at scale 2j−3 which is ζ|S|-spreading with probability p.

For each C ⊆ X let eC be a uniformly random subset of C
of size min{K, |C|}.

The distribution on Fréchet-type embeddings. The
embeddings we produce will be of Fréchet-type, i.e. every
coordinate fi : X → R will be of the form fi(x) = d(x, U)
for some U ⊆ X. Let I = [− log2 ζK + 3, log2 α + 6]∩ Z and
J = {0, 1, . . . , log2 n}. For each i ∈ I and t ∈ J , we describe
a distribution W i

t on sets. Our random embedding consists
of mapping x to f(x) = (d(x, W i

t ) : i ∈ I, t ∈ J). Such

a mapping is clearly Lipschitz with constant
p
|I| · |J | =

O(
√

log n · log α) (here we use Fact 2.3, i.e. ζK ≤ α).
Let {σm}m∈Z be a sequence of random variables taking

each of the values {0, 1, 2} with probability 1
3
, which are in-

dependent of all the other random variables appearing in this
proof. (In general, the reader should assume that samplings
from various distributions are independent of one another.)
Then the random subset W i

t is defined as

W i
t =

n
x ∈ X : σκ(x,t)−i = 0 or

�
x ∈ Ψκ(x,t)−i

�
˜Pκ(x,t)−i(x)

�
and σκ(x,t)−i = 1

�
or

�
x ∈ ˜Pκ(x,t)−i(x) and σκ(x,t)−i = 2

�o
.

For the rest of the proof, let m be any integer, fix x, y ∈
X such that d(x, y) ∈ [2m−1, 2m], and assume that x ∈
Sm(K). Let si = log2 |B(x, 2i+m)|, with smin I and smax I

corresponding to the smallest and largest i ∈ I. The next
claim follows from the “smoothness” of Lemma 3.3.

Claim 3.4. For i ∈ I and all t ∈ Z ∩ [si−1, si], every
w ∈ B(x, 2m/ζK) satisfies

m− 3 ≤ κ(w, t)− i ≤ m + 1.

Now we define

N(x) = #{(i, t) : i ∈ I, t ∈ [si−1, si] ∩ Z}
= #{t : t ∈ [smin I , smax I ] ∩ Z}.

Observe that

N(x) ≥ log2

|B(x, 2m+5α)|
|B(x, 2m+3/ζK)| .

We are going to get a contribution to ||f(x)−f(y)||22 from the
sets {W i

t } where t ∈ Z∩[si−1, si] for some i ∈ I. The number
of such pairs is N(x). Thus clearly we get the desired lower
bound (1) if we can prove that for these values of i and t,
we have

E |d(x, W i
t )− d(y, W i

t )|2 ≥
� p
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�5

· 22m

ζK
. (3)

To prove (3) we fix i ∈ I, t ∈ [si−1, si] ∩ Z and let

M = {m− 3, m− 2, m− 1, m, m + 1}
be the range of values from Claim 3.4.

3.1.1 Partitions and padding
For any j ∈ M we have that diam(Pj(x)) ≤ 2j+4α ≤

2m+5α, so B(x, 2m+5α) ⊇ Pj(x). Since x ∈ Sm(K), it
follows that |Pj(x)| ≤ K

16
|B(x, 2m−9/ζK)|. Recall that for

j ∈ M the random partition Pj satisfies

Pr[d(x, X \ Pj(x)) ≥ 2m+1] ≥ Pr[d(x, X \ Pj(x) ≥ 2j+4]

≥ 1/2.

Define the event

Ej
pad = {d(x, X \ Pj(x)) ≥ 2m+1},

and let

Epad =
\

j∈M

Ej
pad.

Note that, by independence, we have Pr[Epad] ≥ 2−5.
Suppose that Ej

pad occurs, then since d(x, y) ≤ 2m, we

have y ∈ Pj(x), implying Pj(x) = Py(x). Furthermore,
since

B(x, 2m−9/ζK) ⊆ Pj(x),

when we sample down Pj(x) to P̃j(x), a set of size at most
K, Lemma A.1, part (1), ensures that

Pr[P̃j(x) ∩B(x, 2m−9/ζK) = ∅] ≤ e−15.

To this end, we denote

Ej
hit =

n
P̃j(x) ∩B(x, 2m−9/ζK) 6= ∅

o
,

and we define Ehit =
T

j∈M Ej
hit. Since the events {Ej

hit}j∈M

are independent even after conditioning on Epad, the preced-
ing discussion yields the following lemma.



Lemma 3.5. Pr (Ehit ∩ Epad) ≥ 2−5(1− 5e−15) > 2−6.

3.1.2 Obtaining a separation
We introduce the following events which mark different

“phases” of the embedding. For ` ∈ {1, 2}, let

Eσ
` = {σj = ` for all j ∈ M} .

Note that Pr[Eσ
` ] ≥ 3−5 for each ` ∈ {1, 2}. Now we study

the distance from x to W i
t in phase 1.

Claim 3.6. If Eσ
1 ∩ Epad occurs, then

d(x, W i
t ) ≥ min

�
2m

ζK
, min

j∈M

n
d(x, Ψj(P̃j(x)))

o�
. (4)

Proof. Fix a point w ∈ B(x, 2m/ζK), and let j = κ(w, t)−
i. By Claim 3.4, j ∈ M , hence Epad implies that w ∈
Pj(x). Since Eσ

1 occurs, we have w ∈ W i
t if and only if

w ∈ Ψj(P̃j(x)).

If Epad ∩ Ehit occurs, then for each j ∈ M , there exists a

point wj ∈ P̃j(x) such that d(x, wj) ≤ 2m−9/ζK . So to get
a lower bound on d(x, W i

t ), we can restrict our attention to
{wj}j∈M .

Claim 3.7. If Ehit ∩ Epad ∩ Eσ
1 occurs and

d
�
wj , Ψj

�
P̃j(x)

��
≥ ε

for every j ∈ M , then

d(x, W t
i ) ≥ min

�
2m

ζK
, ε− 2m−9

ζK

�
.

Proof. For every j ∈ M ,

d
�
x, Ψj

�
P̃j(x)

��
≥ d

�
wj , Ψj

�
P̃j(x)

��
− d(x, wj)

≥ ε− 2m−9

ζK
.

Now apply Claim 3.6.

There are two types of points y ∈ X which occur in the
argument that follows. As a warmup, we first dispense with
the easy type.

Type I: There exists z ∈ B(y, 2m−7/ζK) for which κ(z, t)−
i 6∈ M.

Fix this z and let j′ = κ(z, t)−i. Assume that Ehit∩Epad∩Eσ
1

occurs, as well as the independent event σj′ = 0. Note that
using Lemma 3.5 along with independence, the probability
of this event is at least q = 2−6 · 3−5 · (1/3).

Now, applying the definition of ζK to the sets P̃j(x) =

P̃j(wj) for j ∈ M , we conclude that there is an event Ezero

which occurs with probability at least p5, and such that for
every j ∈ M ,

d
�
wj , Ψj

�
P̃j(x)

��
≥ 2j−3

ζK
≥ 2m−6

ζK
.

Applying Claim 3.7 with ε = 2m−6/ζK , we conclude that,
in this case,

d(x, W i
t ) ≥ 5 · 2m−9

ζK
.

Since σj′ = 0, we have z ∈ W i
t , hence with probability at

least q · p5 ≥ (p/16)5, we have

|d(x, W i
t )− d(y, W i

t )| ≥ 5 · 2m−9

ζK
− d(y, z) ≥ 2m−9

ζK
.

This completes the analysis of Type I points.

3.1.3 A case analysis on the fate ofy

We now analyze the complement of the set of Type I
points.

Type II: For all z ∈ B(y, 2m−7/ζK), κ(z, t)− i ∈ M .

First, we define the following key event.

Eclose =
n
∃j ∈ M, ∃z ∈ P̃j(y) such that

d(y, z) ≤ 2m−7

ζK
and κ(z, t)− i = j

�
.

(5)

Also, let Efar = ¬Eclose.
These two events concern the distance of y to the various

sample sets. Since we do not make the assumption that y ∈
Sm(K), we cannot argue that a random sample point lands
near y with non-negligible probability, thus we must handle
both possibilities Eclose and Efar. This is the main purpose
of the two phases, i.e. the events Eσ

` for ` ∈ {1, 2}. Thus the
proof now breaks down into two sub-cases corresponding to
the occurrences of Eclose and Efar, respectively.

Claim 3.8 (The close case). Conditioned on the event
Ehit ∩ Epad ∩ Eσ

1 ∩ Eclose occurring, with probability at least
p5,

|d(x, W i
t )− d(y, W i

t )| ≥ 2m−9

ζK
.

Proof. If the event Eclose∩Epad occurs, then there exists

some j0 ∈ M and z ∈ P̃j0(x) = P̃j0(y) such that d(y, z) ≤
2m−7/ζK and κ(z, t) − 1 = j0. Additionally, if Epad ∩ Ehit

occurs, then for every j ∈ M there is wj ∈ P̃j(x) with
d(wj , x) ≤ 2m−9/ζK . It follows that, for every j ∈ M ,

d(wj , z) ≥ d(x, y)− d(x, wj)− d(y, z)

≥ 2m−1 − 5 · 2m−9

ζK

≥ 2m−2

≥ 2j−3.

Hence applying the definition of ζK to the sets P̃j(x) for j ∈
M , we conclude that there is an event Ezero with probability
at least p5, independent of Ehit, Epad, Eclose and Eσ

1 , such that
if the event Ehit ∩ Epad ∩ Eclose ∩ Eσ

1 ∩ Ezero occurs then z ∈
Ψj0

�
P̃j0(y)

�
, and for every j ∈ M ,

d
�
wj , Ψj

�
P̃j(x)

��
≥ 2j−3

ζK
≥ 2m−6

ζK
.

Applying Claim 3.7, it follows that d(x, W i
t ) ≥ 5·2m−9

ζK
. Fur-

thermore, since z ∈ Ψj0

�
P̃j0(y)

�
and Eσ

1 occurs, we have

σj0 = 1, hence z ∈ W i
t . It follows that

|d(x, W i
t )− d(y, W i

t )| ≥ 5 · 2m−9

ζK
− d(y, z) ≥ 2m−9

ζK
,

completing the proof.



We now analyze the probability of the previous event.

Lemma 3.9. Pr[Ehit ∩ Epad ∩ Eσ
1 | Eclose] ≥ 2−6 · 3−5.

Proof. Since

Pr[Ehit ∩ Epad ∩ Eσ
1 | Eclose] = 3−5 · Pr[Ehit ∩ Epad | Eclose]

= 2−5 · 3−5 · Pr[Ehit | Epad, Eclose],

we need only argue that Pr[Ehit | Epad, Eclose] ≥ 1
2
. But this

follows by applying Lemma A.1, part 2(a), to the sets X =
Pj(x), A = B(x, 2m−9/ζK), B = B(y, 2m−7/ζK), and con-
cluding that

Pr[¬Ej
hit | Epad, Eclose] ≤ e(1−15K)/K ≤ e−14.

Thus Pr[Ehit | Epad, Eclose] ≥ 1− 5e−14 ≥ 1
2
.

Now we proceed to analyze the case when Efar occurs.
By Claim 3.4, every w ∈ B(x, 2m−9/ζK) satisfies κ(w, t) −
i ∈ M . By the pigeonhole principle, some j∗ ∈ M must
occur as the value of κ(w, t) − i in at least a 1

5
th of them.

Together with the growth condition implied by x ∈ Sm(K),
we conclude that

��{w ∈ B(x, 2m−9/ζK) : κ(w, t)− i = j∗}
��

≥ 16

5K
|B(x, 2m+5α)|

≥ 3

K
|B(x, 2m+5α)|.

Define the event E∗hit to be

{∃w ∈ P̃j∗(x) ∩B(x, 2m−9/ζK) with κ(w, t)− i = j∗},
and observe that by Lemma A.1, part (1), Pr[E∗hit] ≥ 1−e−3.

Claim 3.10 (The far case). If Epad ∩ Efar ∩ Eσ
2 ∩ E∗hit

occurs, then

|d(x, W i
t )− d(y, W i

t )| ≥ 2m−9

ζK
.

Proof. Assume that the event Epad ∩ Efar ∩ Eσ
2 ∩ E∗hit

occurs, and let w ∈ P̃j∗(x) ∩ B(x, 2m−9/ζK) be the point
guaranteed by E∗hit. Since σj = 2, we have w ∈ W i

t , so that
d(x, W i

t ) ≤ 2m−9/ζK).
On the other hand, we claim that d(y, W i

t ) ≥ 2m−7/ζK .
Indeed, first note that Epad implies that for all j ∈ M ,
d(y, X \ Pj(y)) ≥ 2m. Suppose that z ∈ W i

t and d(y, z) ≤
2m−7/ζK . Let j′ = κ(z, t)− i. In this case, we have j′ ∈ M ,

hence σj′ = 2, and this implies that z ∈ P̃j′(z) = P̃j′(y).
But in this case, Efar implies that d(y, z) > 2m−7/ζK , yield-
ing a contradiction. It follows that

|d(x, W i
t )− d(y, W i

t )| ≥ 2m−7

ζK
− 2m−9

ζK
≥ 2m−9

ζK
.

Lemma 3.11. Pr[Epad ∩ Eσ
2 ∩ E∗hit | Efar] ≥ 2−5 · 3−5 · (1−

e−3).

Proof.

Pr[Epad ∩ Eσ
2 ∩ E∗hit | Efar] = 3−5 · 2−5 · Pr[E∗hit | Efar, Epad]

≥ Pr[E∗hit | Epad]

≥ 3−5 · 2−5 · (1− e−3).

The penultimate inequality follows from the fact that con-
ditioning on Efar cannot decrease the probability of E∗hit, as
in Lemma A.1, part 2(b).

To finish with the analysis of the Type II points, we apply
Claim 3.8 together with Lemma 3.9 and Claim 3.10 with
Lemma 3.11 to conclude that

E|d(x, W i
t )− d(y, W i

t )|2 ≥ (Pr[Egood ∩ Eclose ∩ Eσ
1 ∩ Ezero]+

Pr[Epad ∩ Efar ∩ Eσ
2 ∩ E∗hit])

22m−18

ζ2
K

= (Pr[Eclose] Pr[Egood ∩ Eσ
1 ∩ Ezero | Eclose]+

Pr[Efar] Pr[Epad ∩ Eσ
2 ∩ E∗hit | Efar])

22m−18

ζ2
K

≥ 1
2

min{2−6 · 3−5 · p5, 2−5 · 3−5 · (1− e−3)}22m−18

ζ2
K

≥
� p
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�5 22m

ζ2
K

.

Since we have proved that (3) holds for both Type I points
and Type II points, the proof is complete.

4. THE SPARSEST CUT PROBLEM WITH
NON-UNIFORM DEMANDS

4.1 Computing the Euclidean distortion
In this section, we remark that the maps used to prove

Theorem 1.1 have a certain “auto-extendability” property
which will be used in the next section. We also recall that it
is possible to find near-optimal Euclidean embeddings using
semi-definite optimization.

Theorem 4.1. Let (Y, d) be an arbitrary metric space,
and fix a k-point subset X ⊆ Y . If the space (X, d) is a
metric of negative type, then there exists a probability space
(Ω, µ), and a map f : Y → L2(Ω, µ) such that

1. For every ω ∈ Ω, the map x 7→ f(x)(ω) is 1-Lipschitz.

2. For every x, y ∈ X,

||f(x)− f(y)||2 ≥ d(x, y)

C
√

log k log log k
,

where C > 0 is some universal constant.

Proof. We observe that the map used to prove Theorem
1.1 is a Fréchet embedding (note that the map from [16]
employed in the proof of Theorem 1.1 for the case x, y ∈
Sm(Kn) is also Fréchet). In other words, there is a proba-
bility space (Ω, µ) over subsets Aω ⊆ X for ω ∈ Ω, and we
obtain a map g : X → L2(µ) given by g(x)(ω) = d(x, Aω).
We can then define the extension f : Y → L2(µ) by

f(y)(ω) = d(y, Aω).

This ensures that the map x 7→ f(x)(ω) is 1-Lipschitz on Y
for every ω ∈ Ω.

Corollary 4.2. Let (Y, d) be an arbitrary metric space,
and fix a k-point subset X ⊆ Y . If the space (X, d) is a
metric of negative type, then there exists a 1-Lipschitz map
f : Y → L2 such that the map f |X : X → L2 has distortion
O(
√

log k log log k).

Now we suppose that (Y, d) is an n-point metric space and
X ⊆ Y is a k-point subset.



Claim 4.3. There exists a polynomial-time algorithm (in
terms of n) which, given X and Y , computes a map f :
Y → L2 such that f |X has minimal distortion among all
1-Lipschitz maps f .

Proof. We give a semi-definite program computing the
optimal f .

SDP (5.1)

max ε
s.t. xu ∈ Rn ∀u ∈ Y

(xu − xv)2 ≤ d(u, v)2 ∀u, v ∈ Y
(xu − xv)2 ≥ ε d(u, v)2 ∀u, v ∈ X

4.2 The Sparsest Cut
Let V be an n-point set with two symmetric weights on

pairs wN , wD : V × V → R+ (i.e. wN (x, y) = wN (y, x) and
wD(x, y) = wD(y, x)). For a subset S ⊆ V , we define the
sparsity of S by

ΦwN ,wD (S) =

P
u∈S,v∈S̄ wN (u, v)P
u∈S,v∈S̄ wD(u, v)

,

and we let Φ∗(V ) = minS⊆V ΦwN ,wD (S). (The set V is
usually thought of as the vertex set of a graph with wN (u, v)
supported only on edges (u, v), but this is unnecessary since
we allow arbitrary weight functions.)

Computing the value of Φ∗(V ) is NP-hard. The following
semi-definite program is a relaxation of Φ∗(V ).

SDP (5.2)

min
P

u,v∈V wN (u, v) (xu − xv)2

s.t. xu ∈ Rn ∀u ∈ VP
u,v∈V wD(u, v) (xu − xv)2 = 1

(xu − xv)2 ≤ (xu − xw)2 + (xw − xv)2

∀u, v, w ∈ V

Furthermore, an optimal solution to this SDP can be com-
puted in polynomial time.

The algorithm. We now give our algorithm for rounding
SDP (5.2). Suppose that the weight function wD is sup-
ported only on pairs u, v for which u, v ∈ U ⊆ V , and let
k = |U |. Let M = 20 log n.

1. Solve SDP (5.2), yielding a solution {xu}u∈V .

2. Consider the metric space (V, d) given by d(u, v) =
(xu − xv)2.

3. Applying SDP (5.1) to U and (V, d) (where Y = V
and X = U), compute the optimal map f : V → Rn.

4. Choose β1, . . . , βM ∈ {−1, +1}n independently and
uniformly at random.

5. For each 1 ≤ i ≤ M , arrange the points of V as
vi
1, . . . , v

i
n so that

〈βi, f(vi
j)〉 ≤ 〈βi, f(vi

j+1)〉 for each 1 ≤ j ≤ n− 1.

6. Output the sparsest of the Mn cuts

({vi
1, . . . , v

i
m}, {vi

m+1, . . . , v
i
n}),

1 ≤ m ≤ n− 1, 1 ≤ i ≤ M.

Claim 4.4. With constant probability over the choice of
β1, . . . , βM , the cut (S, S̄) returned by the algorithm has

Φ(S) ≤ O(
p

log k log log k)Φ∗(V ). (6)

Proof. Let S ⊆ Rn be the image of V under the map f .
Consider the map g : S → `M

1 given by g(x) = (〈β1, x〉, . . . , 〈βM , x〉).
It is well-known (see, e.g. [1, 24]) that, with constant prob-
ability over the choice of {βi}M

i=1 ⊆ Sn−1, g has distortion
O(1) (where S is equipped with the Euclidean metric). In
this case, we claim that (6) holds.

To see this, let S1, S2, . . . , SMn ⊆ V be the Mn cuts which
are tested in line (6). It is a standard fact that there exist
constants α1, α2, . . . , αMn such that for every x, y ∈ V ,

||g(f(x))− g(f(y))||1 =

MnX
i=1

αiρSi(x, y),

where ρSi(x, y) = 1 if x and y are on opposite sides of the
cut (Si, S̄i) and ρSi(x, y) = 0 otherwise.

Assume (by scaling) that g ◦ f : Y → `M
1 is 1-Lipschitz.

Let Λ be the distortion of g ◦ f . By Corollary 4.2, Λ =
O(
√

log k log log k). Recalling that wD(u, v) > 0 only when
u, v ∈ U ,

Φ∗(V ) ≥
P

u,v∈V wN (u, v)(xu − xv)2P
u,v∈U wD(u, v)(xu − xv)2

≥ 1

Λ

P
u,v∈V wN (u, v) ||g(f(u))− g(f(v))||1P
u,v∈U wD(u, v) ||g(f(u))− g(f(v))||1

=
1

Λ

PMn
i=1 αi

P
u,v∈V wN (u, v)ρSi(u, v)

PMn
i=1 αi

P
u,v∈U wD(u, v)ρSi(u, v)

≥ 1

Λ
min

i

P
u,v∈V wN (u, v)ρSi(u, v)P
u,v∈U wD(u, v)ρSi(u, v)

=
Φ(S)

Λ
.

This completes the proof.

5. CONCLUDING REMARKS

• There are two factors of O(
√

log log n) which keep our
bound from being optimal up to a constant factor. One
factor of

√
log log n arises because the ratio

|B(x, 2m+5αX)|
|B(x, 2m+3/ζK(X; p))|

in Lemma 3.1 involves a pair of radii R1 = 2m+5αX

and R2 = 2m+3/ζK(X; p) for which R1/R2 = Ω(log n).
This arises out of a certain non-locality property which
seems inherent to the method of proof in [3]. Note that
even improving the method to R1 ≈ 2m is insufficient,
as the ratio may still be quite large. The other fac-
tor arises because, in proving Theorem 1.1, we invoke
Lemma 3.1 with O(log log n) different values of the pa-
rameter K. It is likely removable by a more technical
induction, but we chose to present the simpler proof.



• It is an interesting open problem to understand the
exact distortion required to embed n-point negative
type metrics into L1. As mentioned, the best lower-
bound is Ω(log log n)δ [15]. We also note that assuming
an appropriate form of the Unique Games Conjecture
is true, the general Sparsest Cut problem is hard to
approximate within a factor of Ω(log log n)δ for some
δ > 0; this was recently shown independently in [15]
and [9].

• For the uniform case of Sparsest Cut, it is possible to
achieve a O(

√
log n) approximation in quadratic time

without solving the SDP [2]. Whether such an algo-
rithm exists for the general case is an open problem.

• There is no asymptotic advantage in embedding n-
point negative type metrics into Lp for some p ∈ (1,∞),
p 6= 2 (observe that since L2 is isometric to a subset
of Lp for all p ≥ 1, our embedding into Hilbert space
is automatically also an embedding into Lp). Indeed,
for 1 < p < 2 it is shown in [19] that there are ar-
bitrarily large n-point subsets of L1 that require dis-
tortion Ω(

p
(p− 1) log n) in any embedding into Lp.

For 2 < p < ∞ it follows from [27, 25] that there are
arbitrarily large n-point subsets of L1 whose minimal

distortion into Lp is 1 + Θ
�q

log n
p

�
(the dependence

on n follows from [27], and the optimal dependence on
p follows from the results of [25]). Thus, up to mul-
tiplicative constants depending on p (and the double
logarithmic factor in Theorem 1.1), our result is opti-
mal for all p ∈ (1,∞).

• Let (X, dX), (Y, dY ) be metric spaces and η : [0,∞) →
[0,∞) a strictly increasing function. A one to one map-
ping f : X ↪→ Y is called a quasisymmetric embedding
with modulus η if for every x, a, b ∈ X such that x 6= b,

dY (f(x), f(a))

dY (f(x), f(b))
≤ η

�
dX(x, a)

dX(x, b)

�
.

We refer to [13] for an account of the theory of quasi-
symmetric embeddings. Observe that metrics of nega-
tive type embed quasisymmetrically into Hilbert space.
It turns out that our embedding result generalizes to
any n point metric space which embeds quasisymmet-
rically into Hilbert space. Indeed, if (X, d) embeds
quasisymmetrically into L2 with modulus η then, as
shown in the full version of [17], there exists constants
p = p(η) and C = C(η), depending only on η, such
that ζ(X; p) ≤ C

√
log n.
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APPENDIX

A. MISC. PROOFS

Lemma A.1 (Sampling lemma). Suppose that k, n ∈
N, 1 ≤ k ≤ n. Let X be an n-point set and let eXk be chosen
uniformly at random from all k-point subsets of X. Then

1. For every A ⊆ X, Pr[ eXk ∩A = ∅] ≤ e−k|A|/n.

2. For every A, B ⊆ X such that A ∩B = ∅,
(a) Pr[ eXk ∩A = ∅ | eXk ∩B 6= ∅] ≤ Pr[ eXk−1 ∩A = ∅] ≤

e(1−k)|A|/n

(b) Pr[ eXk ∩A = ∅ | eXk ∩B = ∅] ≤ e−k|A|/n.

Proof. The proof of (1) is an easy calculation. To prove

2(a), note that choosing eXk uniformly subject to eXk∩B 6= ∅
is the same as first choosing z ∈ B uniformly at random,
then choosing a uniform k− 1 point subset S ⊆ X \ {z} and
returning S ∪ {z}.

Proof of Lemma 3.3. By definition,

|B(z, 2κ(z,t))| < 2t ≤ |B(x, 2κ(z,t)+1)|.
For the upper bound, we have

|B(x, 2κ(z,t) − 2m−s)| ≤ |B(z, 2κ(z,t))| < 2t ≤ |B(x, 2i+m)|,
implying that 2κ(z,t) − 2m−s < 2i+m, which yields 2κ(z,t) <
2m+1+i. For the lower bound, we have

|B(x, 2κ(z,t)+1 + 2m−s)| ≥ |B(z, 2κ(z,t)+1)|
≥ 2t ≥ |B(x, 2m+i−1)|.

We conclude that 2κ(z,t)+1 + 2m−s ≥ 2m+i−1, which implies
that 2κ(z,t)+1 ≥ 2m+i−2.


