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Abstract
Separating decompositions of metric spaces are an important
randomized clustering paradigm that was formulated by
Bartal in [Bar96] and is defined as follows. Given a metric
space (X, dX), its modulus of separated decomposability,
denoted SEP(X, dX), is the infimum over those σ ∈ (0,∞]
such that for every finite subset S ⊆ X and every ∆ > 0
there exists a distribution over random partitions P of S
into sets of diameter at most ∆ such that for every x, y ∈ S
the probability that both x and y do not fall into the same
cluster of the random partition P is at most σdX(x, y)/∆.
Here we obtain new bounds on SEP(X, ‖·‖X) when (X, ‖·‖X)
is a finite dimensional normed space, yielding, as a special
case, that

√
n . SEP(`n∞) .

√
n logn for every n ∈ N.

More generally,
√
n . SEP(`np ) .

√
nmin{p, logn} for every

p ∈ [2,∞]. This improves over the work [CCG+98] of
Charikar, Chekuri, Goel, Guha, and Plotkin, who obtained
this bound when p = 2, yet for p ∈ (2,∞] they obtained

the asymptotically weaker estimate SEP(`np ) . n1−1/p. One

should note that it was claimed in [CCG+98] that the bound

SEP(`np ) . n1−1/p is sharp for every p ∈ [2,∞], and in

particular it was claimed in [CCG+98] that SEP(`n∞) � n.
However, the above results show that this claim of [CCG+98]
is incorrect for every p ∈ (2,∞]. Our new bounds on
the modulus of separated decomposability rely on extremal
results for orthogonal hyperplane projections of convex
bodies, specifically using the work [BN02] of Barthe and the
author. This yields additional refined estimates, an example
of which is that for every n ∈ N and k ∈ {1, . . . , n} we

have SEP
(
(`n2 )6k

)
.
√

k log(en/k), where (`n2 )6k denotes
the subset of Rn consisting of all those vectors that have at
most k nonzero entries, equipped with the Euclidean metric.

The above statements have implications to the Lip-

schitz extension problem through its connection to ran-

dom partitions that was developed by Lee and the author

in [LN04, LN05]. Given a metric space (X, dX), let e(X) de-

note the infimum over those K ∈ (0,∞] such that for every
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Banach space Y and every subset S ⊆ X, every 1-Lipschitz

function f : S → Y has a K-Lipschitz extension to all of X.

Johnson, Lindenstrauss and Schechtman proved in [JLS86]

that e(X) . dim(X) for every finite dimensional normed

space (X, ‖·‖X). It is a longstanding open problem to deter-

mine the correct asymptotic dependence on dim(X) in this

context, with the best known lower bound, due to Johnson

and Lindenstrauss [JL84], being that the quantity e(X) must

sometimes be at least a constant multiple of
√

dim(X). In

particular, the previously best known upper bound on e(`n∞)

was the O(n) estimate of [JLS86]. It is shown here that for

every n ∈ N we have
√
n . e(`n∞) .

√
n logn, thus answer-

ing (up to logarithmic factors) a question that was posed by

Brudnyi and Brudnyi in [BB05, Problem 2]. More generally,

e(`np ) .
√

nmin{p, logn} for every p ∈ [2,∞], thus resolving

(negatively) a conjecture of Brudnyi and Brudnyi in [BB05,

Conjecture 5].

1 Introduction

Suppose that X is a set and P ⊆ 2X is a partition of
X. For every x ∈ X we denote by P(x) ⊆ X the unique
element of P to which x belongs. If (X, dX) is a metric
space and ∆ ∈ (0,∞) then a partition P ⊆ 2X is said
to be ∆-bounded if diamX(P(x)) 6 ∆ for every x ∈ X,
where diamX(S) = sup{dX(x, y) : x, y ∈ S} denotes
the diameter of a bounded nonempty subset S ⊆ X.

Fix a finite metric space (X, dX) and ∆ ∈ (0,∞).
Let P be a probability distribution over ∆-bounded par-
titions of X. Being a random “clustering” of X into
pieces of small diameter, P yields a certain random
“simplification” of the metric space (X, dX). For such
a simplification to be useful, one must add a require-
ment that it “mimics” the coarse geometric structure
of (X, dX) in some meaningful way. The literature con-
tains several nonequivalent definitions that achieve this
goal, leading to many powerful applications to both al-
gorithm design and pure mathematics. We shall not
attempt to survey here the extensive literature on this
topic, quoting instead the following definitions of sepa-
rating and padded random partitions, which are the most
popular notions of random partitions of metric spaces
(note that other useful variants appeared in the litera-
ture, as e.g. in [ABN11], but we shall not treat these



more specialized notions in the present article).

Definition 1. (separating random partition)
Suppose that (X, dX) is a finite metric space and
σ,∆ ∈ (0,∞). A distribution P over ∆-bounded
partitions of X is said to be σ-separating if

∀x, y ∈ X, P
[
P(x) 6= P(y)

]
6
σ

∆
dX(x, y). (1.1)

Definition 2. (padded random partition)
Suppose that (X, dX) is a finite metric space, δ ∈ (0, 1)
and p,∆ ∈ (0,∞). A distribution P over ∆-bounded
partitions of X is said to be (p, δ)-padded if

∀x ∈ X, P
[
BX

(
x,

∆

p

)
⊆ P(x)

]
> δ, (1.2)

where for every x ∈ X and r ∈ [0,∞) we let (as usual)

BX(x, r)
def
= {y ∈ X : dX(x, y) 6 r} denote the (closed)

ball of radius r centered at x.

Qualitatively, condition (1.1) asserts that despite
the fact that P decomposes X into clusters of small
diameter, nearby points are likely to fall into the same
cluster. In a similar vein, condition (1.2) asserts that
every point in X is likely to be “well within” its
cluster (its distance to the complement of its cluster
is at least a definite proportion of the diameter of
this cluster). Both of these requirements formulate
the (often nonintuitive) fact that the “boundaries” that
the random partition induces are “thin” in a certain
distributional sense, despite the fact that the partition
itself consists only of small diameter pieces. Neither of
the above two definitions implies the other, but it follows
from [LN03] that if P is a (p, δ)-padded distribution over
∆-bounded partitions of X then there exists a different
distribution P′ over 2∆-bounded partitions of X that is
4p/δ-separating.

The notions of separating and padded random par-
titions of metric spaces were introduced in the im-
portant works [Bar96, Bar99] of Bartal, which con-
tained decisive algorithmic applications and influenced
a flurry of subsequent works that obtained many
more applications in several directions (both algorith-
mic and geometric). Other works considered such
partitions implicitly, with a variety of applications;
see the works of Leighton–Rao [LR88], Awerbuch–
Peleg [AP90], Linial–Saks [LS91], Alon–Karp–Peleg–
West [AKPW91], Klein–Plotkin–Rao [KPR93] and
Rao [Rao99]. The nomenclature of Definition 1 and
Definition 2 comes from [GKL03, LN03, LN04, LN05,
KLMN05].

Given n ∈ N, the size-n modulus of separated de-
composability of a metric space (X, dX), denoted below

SEPn(X, dX) or simply SEPn(X) if the metric is clear
from the context, is the infimum over those σ ∈ (0,∞)
such that for every S ⊆ X with 1 6 |S| 6 n and ev-
ery ∆ ∈ (0,∞) there exists a σ-separating probability
distribution over ∆-bounded partitions of (S, dX). The
(finitary; see Section A.4.1 for an infinite version) mod-
ulus of separated decomposability of (X, dX) is defined
to be SEP(X, dX) = supn∈N SEPn(X, dX) ∈ (0,∞].
Analogously, given n ∈ N and δ ∈ (0, 1), denote by
PADnδ(X, dX) the infimum over those p ∈ (0,∞) such
that for every S ⊆ X with 1 6 |S| 6 n and ev-
ery ∆ ∈ (0,∞) there exists a (p, δ)-padded distribu-
tion over ∆-bounded partitions of (S, dX). Write also
PADδ(X, dX) = supn∈N PADnδ(X, dX).

By [Bar96] for every metric space (X, dX) and every
integer n > 2 we have SEPn(X) . log n. It was
observed in [GKL03] that [Bar96] also implicitly yields
the estimate PADn0.5(X) . log n. By [Bar96] both
of these estimates are sharp up to universal constant
factors. Here, and in what follows, we use standard
asymptotic notation. Namely, a . b (respectively
a & b) stands for a 6 cb (respectively a > cb) for some
universal constant c ∈ (0,∞). Also, a � b stands for
(a . b) ∧ (b . a).

The present article is devoted to probabilistic par-
titions of finite dimensional normed spaces. To the
best of our knowledge, this line of investigation origi-
nates in the work of Peleg–Reshef [PR98], motivated by
applications to network routing and distributed com-
puting. Subsequent work of Charikar–Chekuri–Goel–
Guha–Plotkin [CCG+98] sharpened and generalized the
bounds of [PR98], and has influenced several later
works; see e.g. the work [LN05] of Lee and the au-
thor, as well as the work [AI06] of Andoni–Indyk. Sim-
ilar partitioning schemes appeared implicitly in ear-
lier work [KMS98] of Karger–Motwani–Sudan on SDP-
based algorithms for graph colorings.

One cannot distinguish between n-dimensional
normed spaces through the asymptotic behavior of the
modulus of padded decomposability PADδ(·), as exhib-
ited by the following statement.

Theorem 1.1. Suppose that n ∈ N and δ ∈ (0, 1).
Then for every n-dimensional normed space (X, ‖ · ‖X)
we have

PADδ(X, ‖ · ‖X) � 1 +
n

log
(

1
δ

) .
The proof of Theorem 1.1, which is a quantitative
sharpening of results in [GKL03, LN03], appears in
Section B below. In light of Theorem 1.1, it is natural
to focus on relating the geometry of an n-dimensional
normed space (X, ‖ · ‖X) to its modulus of separated
decomposability SEP(X, ‖·‖X). Prior to stating general



results, we shall focus on the important special case of
the spaces `np . Here, given n ∈ N and p ∈ [1,∞], the
`np norm of a vector x = (x1, . . . , xn) ∈ Rn is defined as
usual by

‖x‖`np
def
=

( n∑
j=1

|xj |p
) 1

p

.

Thus ‖x‖`n2 is the usual Euclidean length of the vector
x, and ‖x‖`n∞ = maxj∈{1,...,n} |xj |.

Charikar, Chekuri, Goel, Guha and Plotkin proved
in [CCG+98] that

SEP(`np ) .

{
n

1
p if 1 6 p 6 2,

n1− 1
p if 2 6 p 6∞.

(1.3)

Another statement of [CCG+98] is that the bounds
in (1.3) are sharp up to universal constant factors.
This seems to satisfactorily end the line of research
on separating probabilistic partitions of finite subsets
of `np , in particular showing that SEP(`n2 ) �

√
n and

SEP(`n1 ) � SEP(`n∞) � n. However, here we show
that this claim of [CCG+98] is incorrect in the range
p ∈ (2,∞]; in particular we prove the better estimate
SEP(`n∞) .

√
n log n. An inspection of [CCG+98] re-

veals that it provides a complete proof of the sharpness
of (1.3) when 1 6 p 6 2, thus it is indeed the case that
in this range SEP(`np ) � n1/p. But, when p ∈ (2,∞]
the claimed sharpness of (1.3) is justified in [CCG+98]
while relying on a reference to “personal communica-
tion” with Indyk (April 1998). This reference never
appeared in print and we confirmed with Indyk that it
is indeed flawed. Our new bound is

Theorem 1.2. For every integer n > 2 and p ∈ [2,∞]
we have SEP(`np ) .

√
nmin{p, log n}.

The best available a priori bounds on SEP(X, ‖ · ‖X) for
an n-dimensional normed space (X, ‖·‖X) are contained
in the following theorem.

Theorem 1.3. For every n ∈ N and every n-
dimensional normed space (X, ‖ · ‖X) we have

√
n . SEP(X, ‖ · ‖X) . n.

Thus, we now know that
√
n . SEP(`n∞) .

√
n log n

and it remains an interesting open question to deter-
mine the precise asymptotic behavior of the quantity
SEP(`n∞). The upper bound on SEP(X, ‖ · ‖X) in The-
orem 1.3 follows from the upper bound SEP(`n2 ) .

√
n

of [CCG+98], combined with John’s theorem [Joh48]
which asserts that (X, ‖ · ‖X) is

√
n-bi-Lipschitz equiv-

alent to `n2 . For the lower bound on SEP(X, ‖ · ‖X) in
Theorem 1.3, it was shown by Bourgain–Szarek [BS88]

and independently by K. Ball (see [BS88, Remark 7],
[Sza91, Remark 7], [TJ89, Page 138]) that a simple
combination of the Dvoretzky–Rogers lemma [DR50]
and the Bourgain–Tzafriri restricted invertibility prin-
ciple [BT87] implies that there exists m ∈ {1, . . . , n}
with m � n such that `m1 admits a bi-Lipschitz embed-
ding into (X, ‖ · ‖X) with distortion O(

√
m). The lower

bound SEP(`m1 ) & m of [CCG+98] therefore implies that
SEP(X, ‖ · ‖X) & m/

√
m �

√
n.

Theorem 1.2 is a special case of a more general re-
sult that is presented in Section 1.2 below. This result
has various additional new implications to random par-
titions of subsets of Rn, and it also raises open prob-
lems that relate to independently interesting volumet-
ric questions in asymptotic convex geometry. We shall
now state two notable examples of our new partitioning
results.

Given p ∈ [1,∞], n ∈ N and k ∈ {1, . . . , n},
let (`np )6k denote the subset of Rn consisting of those
vectors with at most k nonzero coordinates, equipped
with the metric that is inherited from `np .

Theorem 1.4. For every p ∈ [1,∞], every integer
n > 2 and every k ∈ {1, . . . , n} we have

SEP
(
(`np )6k

)
. kmax{ 1

p ,
1
2}
√

log
(n
k

)
+ min{p, log n}.

The special case p = 2 of Theorem 1.4 asserts that
SEP((`n2 )6k) .

√
k log(en/k). We therefore obtain an

asymptotically improved probabilistic partition of those
subsets of n-dimensional Euclidean space that consist
solely of sparse vectors in the sense that in some or-
thonormal basis their support has size o(n). Theo-
rem 1.4 yield an analogous asymptotic improvement for
every p ∈ [1,∞]. The proof of Theorem 1.4 gives im-
proved results also in situations when the restriction on
the size of the support is “softened” to the requirement
that the coordinates decay sufficiently fast.

Despite the fact that the statement of Theorem 1.4
when p = 2 deals only with Euclidean metrics, its proof
relies on a variant of the “ball partitioning method”
(this method is recalled in Section 1.2 below) in which
the underlying construction utilizes balls with respect
to a non-Euclidean metric. Namely, we work with balls
in `nq for an appropriate choice of q (depending on k, n).
Such reasoning also leads to new bi-criteria random
partitions as described in the following theorem.

Theorem 1.5. Fix p ∈ [1,∞], an integer n > 2 and
∆ ∈ (0,∞). Then for every finite subset S ⊆ Rn
there exists a distribution P over partitions of S with
the following properties.

1. For every x ∈ S we have diam`np

(
P(x)

)
6 ∆.



2. For every x, y ∈ S we have

P
[
P(x) 6= P(y)

]
.
n

1
p

√
min{p, log n}

∆
· ‖x− y‖`n2 .

(1.4)

When p ∈ [1, 2) the random partition P of Theo-
rem 1.5 is guaranteed to have small clusters in the
sense that their diameter in the `np metric is at most
∆, which is more stringent than the requirement that
their Euclidean diameter is at most ∆ (because when
p 6 2 the `np norm is point-wise larger than the `n2
norm). This improvement on the size of the clusters
comes at the cost that in the probabilistic separation
requirement (1.4) the quantity that multiplies the Eu-
clidean distance ‖x − y‖2 increases from

√
n to n1/p.

When p ∈ (2,∞] this situation is reversed, i.e., we get
an asymptotic improvement in the separation guaran-
tee (1.4) at the cost of asking less of the cluster size,
namely the diameter of each cluster is now guaranteed
to be small in the `np metric rather than the more strin-
gent requirement that it is small in the Euclidean met-
ric. For example, the case p =∞ of Theorem 1.5 yields
a random partition P such that all of its clusters have
the property that for every two points in the same clus-
ter their jth coordinates are within ∆ of each other for
each j ∈ {1, . . . , n}. Such a cluster size can be achieved
while ensuring that

∀x, y ∈ S, P
[
P(x) 6= P(y)

]
.

√
log n

∆
· ‖x− y‖`n2 ,

which is an exponentially smaller probabilistic guaran-
tee than what would be possible if we required each
cluster to have small Euclidean diameter.

Observe that Theorem 1.5 easily implies both The-
orem 1.2 and Theorem 1.4. Indeed, if p ∈ [2,∞] then
by Hölder’s inequality we have

∀x, y ∈ Rn, ‖x− y‖`n2 6 n
1
2−

1
p ‖x− y‖`np ,

so that the probabilistic separation requirement (1.4)
is formally weaker than the corresponding separation
requirement in the `np metric that is asserted in Theo-
rem 1.2. In the setting of Theorem 1.4, fix p ∈ [1,∞]
and k ∈ {1, . . . , n}, and apply Theorem 1.5 to some fi-
nite subset S ⊆ (`np )6k with p replaced by some (soon
to be specified) q ∈ [p,∞], and with ∆ replaced by
∆/(2k)1/p−1/q. Since, by Hölder’s inequality once more,
we have

∀x, y ∈ (`np )6k, ‖x− y‖`np 6 (2k)
1
p−

1
q ‖x− y‖`nq ,

the random partition P thus obtained satisfies

diam`np

(
P(x)

)
6 (2k)

1
p−

1
q diam`nq

(
P(x)

)
6 (2k)

1
p−

1
q · ∆

(2k)
1
p−

1
q

= ∆

for every x ∈ S. Also, since

∀u, v ∈ (`np )6k, ‖u−v‖`n2 6 (2k)max{ 1
2−

1
p ,0}‖u−v‖`np ,

every x, y ∈ S satisfy

P
[
P(x) 6= P(y)

]
.
n

1
q

√
min{q, log n}

∆/(2k)
1
p−

1
q

· ‖x− y‖`n2

6
n

1
q (2k)

1
min{2,p}−

1
q
√

min{q, log n}
∆

· ‖x− y‖`np .

The conclusion of Theorem 1.4 now follows by optimiz-
ing this estimate over q ∈ [p,∞].

1.1 Lipschitz extension. Suppose that (X, dX) and
(Y, dY ) are metric spaces. Let e(X,Y ) denote the infi-
mum over those K ∈ [1,∞] with the following property.
Suppose that S ⊆ X is an arbitrary subset of X and
that L ∈ (0,∞). Consider also an arbitrary L-Lipschitz
function f : S → Y , i.e., dY (f(x), f(y)) 6 LdX(x, y)
for every x, y ∈ S. Then there exists F : X → Y that
extends f , i.e., F (x) = f(x) for every x ∈ S, such that
F is KL-Lipschitz, i.e., dY (F (x), F (y)) 6 KLdX(x, y)
for every x, y ∈ X. The Lipschitz extension problem
asks for bounds on e(X,Y ) in various situations. Such
questions on “smooth extrapolation from partial data”
have been intensively studied over the past century, and
a variety of deep results and applications have been ob-
tained, in addition to the development of powerful tech-
niques for the purpose of Lipschitz extension that sub-
sequently became useful in other areas. See the mono-
graph [BB12] for a (very small) sample of such results.

Denote by e(X) ∈ [1,∞] the supremum of the
quantity e(X,Y ) over all Banach spaces (Y, ‖ · ‖Y ).
Thus, the assertion e(X) < K means that for an
arbitrary Banach space Y , every 1-Lipschitz function
from an arbitrary subset of X can be extended to a
Y -valued K-Lipschitz function that is defined on all of
X. In this direction, the following classical Lipschitz
extension theorem is due to Johnson–Lindenstrauss–
Schechtman [JLS86].

Theorem 1.6. For every finite dimensional normed
space (X, ‖ · ‖X) we have e(X) . dim(X).

It remains a longstanding open problem to determine
whether or not Theorem 1.6 is asymptotically sharp.



In particular, the question of evaluating the rate at
which e(`np ) tends to ∞ as n → ∞ was posed ex-
plicitly by Brudnyi–Brudnyi in [BB05, Problem 2],
[BB07a, Problem 1.4], [BB07b]. The best known lower
bound, due to Johnson–Lindenstrauss [JL84], is that
e(`n1 ) &

√
n. The method of [JL84] (see also [MM10])

combined with [Sob41, Theorem 1.2] implies that also
e(`n∞) &

√
n (alternatively, this can be deduced by com-

bining [BB05, Theorem 4] and [BB07a, Theorem 1.2]).
It follows formally from this lower bound on e(`n∞) that
e(`np ) & n1/2−1/p for every p ∈ [2,∞], and it was
observed in [BB07a] that the construction of [Nao01]
(see also [LN05, Remark 5.3] or [NR15]) implies that
e(`np ) & 8

√
n (which is better when 2 6 p < 8/3). We

shall explain below how to deduce from [MN13] that the
stronger lower bound e(`np ) & n1/(2p) holds true when
2 6 p < 3. In particular, the best-known bounds in
the Euclidean setting are 4

√
n . e(`n2 ) .

√
n, and deter-

mining the correct asymptotics here is a natural open
problem that seems tractable; see Section A.

The previously best-known upper bound on e(`n∞)
was the O(n) estimate of [JLS86]. In [LN05] the
Lipschitz extension problem was related to probabilistic
partitions, and by combining the methods of [LN05]
with Theorem 1.2 we deduce the improved upper bound
e(`n∞) .

√
n log n. We therefore have

√
n . e(`n∞) .

√
n log n,

which answers the case p = ∞ of the above cited
question of Brudnyi–Brudnyi up to logarithmic factors.
More generally, e(`np ) .

√
nmin{p, log n} for every

p ∈ [2,∞]; due to [BB05, Theorem 3] and [BB07a,
Theorem 1.2] this answers Conjecture 5 of [BB05]
negatively. To state another example of a new Lipschitz
extension result that follows from the present work, by
Theorem 1.4 and [LN05] for every p ∈ [1,∞], n ∈ N and
k ∈ {1, . . . , n} we have

e
(
(`np )6k

)
. kmax{ 1

p ,
1
2}
√

log
(n
k

)
+ min{p, log n}.

Our proof of the bound e(`n∞) .
√
n log n yields an

extension procedure that differs from that of [JLS86].
Indeed, [JLS86] used a nontrivial variant of an exten-
sion method of Whitney [Whi34] for the purpose of
proving Theorem 1.6, while we use a randomized ball
partitioning method to produce a random partition that
could then be plugged into the approach of [LN05]. Here
the “balls” are suitably “rounded” versions of balls in
`n∞, which are cubes x + [−r, r]n for some x ∈ Rn and
r ∈ (0,∞). Specifically, we work with balls in `np for
p = log n. As we shall explain later, running our argu-
ment with actual cubes would only result in a new proof
of the bound e(`n∞) . n.

1.2 Ball partitioning and volumetric estimates
Suppose that n ∈ N and (X, ‖ · ‖X) is an n-dimensional
normed space. By choosing any Hilbertian norm | · |
on X we may identify X (as a real vector space) with
Rn. When X = `np we will take | · | = ‖ · ‖`n2 , but
in general it may be beneficial in the argument below
to choose a different auxiliary Hilbertian structure on
X. Once | · | has been chosen, X becomes equipped
with the standard Lebesgue measure. The volume of a
measurable subset A ⊆ Rn is denoted below by voln(A).
Given a a hyperplane H ⊆ X, the (n − 1)-dimensional
surface area of a measurable subset A ⊆ H is denoted
below by voln−1(A). Integration with respect to the
Lebesgue measure on either Rn or H is indicated below
by dx (this dual meaning of dx will not cause any
confusion in what follows).

The random partitions that we use here rely on
the randomized ball partitioning method, which is a
ubiquitous tool in metric geometry and algorithms.
To the best of our knowledge, this method was intro-
duced in [KMS98, CCG+98] in the context of normed
spaces, and it has become influential in the context
of general metric spaces due to its introduction in
that setting (with the new idea of randomizing the ra-
dius) by Calinescu–Karloff–Rabani [CKR01]. Related
ideas arose independently in other areas, as in e.g. the
works of E. Lindenstrauss [Lin01] and Nazarov–Treil–
Volberg [NTV03]. The construction is simple to de-
scribe. Recall that we are given a finite subset S ⊆ X,
and we wish to construct a distribution over random
partitions of S into pieces of diameter at most ∆. En-
close S by a large ball, i.e., fix R ∈ (0,∞) such that
RBX ⊇ S, where BX = {x ∈ X : ‖x‖X 6 1} de-
notes the unit ball of (X, ‖ · ‖X). Choose a sequence
of i.i.d. points {Xk}∞k=1 ⊆ X, each of which is dis-
tributed according to the normalized Lebesgue measure
on (R+ ∆/2)BX . Now define

P
def
=

S ∩
(
Xk +

∆

2
BX

)
r
k−1⋃
j=1

(
Xj +

∆

2
BX

)
∞

k=1

.

(1.5)

P is almost surely a partition of S into (by design)
clusters of diameter at most ∆. Note that many of the
sets that appear in (1.2) are empty, and P is actually
a finite collection of subsets of S. While initially the
sets in P are quite “tame,” e.g. they start out as balls
in X (intersected with S), as the construction proceeds
and we discard the balls that were used thus far, the
resulting sets become increasingly “jagged.” In partic-
ular, the set (Xk + (∆/2)BX) r

⋃k−1
j=1 (Xj + (∆/2)BX)

need not be connected. Nevertheless, we shall establish



below the following proposition.

Proposition 1.1. Let P be the random partition
in (1.2). Then diamX(P(x)) 6 ∆ for all x ∈ S and

P
[
P(x) 6= P(y)

]
6

4voln−1

(
Proj(x−y)⊥(BX)

)
∆voln(BX)

· |x− y|, (1.6)

for every x, y ∈ S.

Here Projz⊥ denotes the orthogonal projection onto the
subspace z⊥ ⊆ X which is orthogonal to a vector
z ∈ X, where orthogonality is relative to the auxiliary
Hilbertian norm | · |.

Corollary 1.1. Fix n ∈ N and an n-dimensional
normed space (X, ‖ · ‖X), equipped with an auxiliary
Hilbertian norm | · | with respect to which X is identified
with Rn. Then

SEP(X,‖ · ‖X)

6 sup
z∈Xr{0}

4voln−1

(
Projz⊥(BX)

)
voln(BX)

· |z|
‖z‖X

� sup
z∈∂BX

|z|voln−1

(
Projz⊥(BX)

)
voln(BX)

. (1.7)

Proposition 1.1 and Corollary 1.1 naturally lead to
the question of understanding those hyperplanes H ⊆ X
for which ProjH(BX) is maximal, and more generally
finding ways to bound such volumes of projections
from above. Questions of this type have been studied
for a long time in asymptotic convex geometry, with
the solution for X = `np , which is the main case
of interest here, being due to the work [BN02] of
Barthe and the author. Before examining this case, we
should note at the outset that pathological examples
are known to exist due to the work [Bal91] of K. Ball,
who obtained a strong counterexample to the classical
Shepard Problem [She64]. Specifically, it was proved
in [Bal91] that there exists an n-dimensional normed
space (X, ‖ · ‖X) equipped with a Hilbertian norm | · |
such that voln−1(Projz⊥(BX))/voln(BX) &

√
n for

every z ∈ X with |z| = 1. This example is shown
in [Bal91] to satisfy n

√
voln(BX) >

√
2. Since the

n’th root of the volume of the Euclidean unit ball in
Rn is bounded above and below by universal constant
multiples of 1/

√
n, it follows that for the overwhelming

majority of z ∈ BX we have |z| &
√
n. So, for Ball’s

example the right hand side of (1.7) is at least a constant
multiple of n. Note in passing that the right hand side
of (1.7) is always at most 2n; for a justification of this
simple fact, see e.g. the proof of [GNS12, Lemma 5.1].

Hence, Corollary (1.1) yields a different proof of the
upper bound of Theorem 1.3.

An examination of Proposition 1.1 in the special
case X = `np (and | · | = ‖ · ‖`n2 ) leads to Theorem 1.5,
and consequently, as we have explained earlier, also
to Theorem 1.2 and Theorem 1.4. It is instructive to
consider first the case p = ∞. Since B`n∞ = [−1, 1]n, a
simple argument (see [CF86]) shows that

∀ z ∈ Rn r {0},
voln−1(Projz⊥(B`n∞))

voln(B`n∞)
=
‖z‖`n1
2‖z‖`n2

.

So, if x−y = 1{1,...,n} is the all 1’s vector then the right
hand side of (1.6) equals 2n/∆. A naive application of
Proposition 1.1 therefore does not lead to the improved
bound SEP(`n∞) .

√
n log n. The idea is to apply

instead Proposition 1.1 with p = log n. In this case
we have ‖ · ‖`nlog n

� ‖ · ‖`n∞ , so SEP(`nlogn) � SEP(`n∞).

But, volumes in Rn and Rn−1 scale exponentially in n
so by “rounding off” the cube B`n∞ to the smooth convex
body B`nlog n

we have chance of changing the right hand

side of (1.6) significantly, so as to hopefully improve the
resulting upper bound on SEP(B`n∞). It turns out that
this idea works, as we shall now explain. Note that by
doing so the random partition of `n∞ that we thus obtain
is a ball partition that uses appropriate “rounded cubes”
rather than balls in the `n∞ metric itself.

By a straightforward computation (see e.g. [Pis89,
Chapter 1]), for every p ∈ (0,∞) we have

voln
(
B`np

)
=

2nΓ
(
1 + 1

p )n

Γ
(
1 + n

p

) . (1.8)

Suppose first that p ∈ [1, 2]. By [BN02, Theorem 12]
for every z ∈ Rn r {0} we have

voln−1

(
Projz⊥(B`np )

)
voln

(
B`np

) 6
voln−1(B`n−1

p
)

voln
(
B`np

)
(1.8)
=

Γ
(

1 + n
p

)
2Γ
(

1 + n−1
p

)
Γ
(

1 + 1
p

)
=

1 + 1
n +O

(
1
n2

)
2p

1
p Γ
(

1 + 1
p

) · n 1
p , (1.9)

where the last step uses Stirling’s approximation (with
standard error bounds; see e.g. [Nem15]). A substitu-
tion of (1.9) into (1.6) yields the case p ∈ [1, 2] of The-
orem 1.5.

If p ∈ (2,∞) then by [BN02, Theorem 10] for every



z ∈ Rn r {0} we have

voln−1

(
Projz⊥(B`np )

)
voln

(
B`np

)
6

voln−1

(
Proj(1,1,...,1)⊥(B`np )

)
voln

(
B`np

) . (1.10)

Let Z1, . . . , Zn be i.i.d. random variables whose density
φp : R→ R is given by setting for every t ∈ Rr {0},

φp(t)
def
=

exp
(
−|t|

p
p−1

)
2(p− 1)Γ

(
1 + 1

p

)
|t|

p−2
p−1

. (1.11)

By [BN02, Proposition 2] we have

voln−1

(
Proj(1,1,...,1)⊥(B`np )

)
voln−1

(
B`n−1

p

) =
E
[∣∣∣∑n

j=1 Zj

∣∣∣]
√
n · E

[
|Z1|

] . (1.12)

The combination of (1.10) and (1.12) yields a
sharp estimate on the right hand side of (1.6). This
estimate can be bounded from above by estimating
using Cauchy–Schwarz as follows.

E
[∣∣∣∑n

j=1 Zj

∣∣∣]
√
n · E

[
|Z1|

] 6

√
E
[
Z2

1

]
E
[
|Z1|

] =

√√√√ π(p− 1)

p sin
(
π
p

) , (1.13)

where the final step of (1.13) results from evaluat-
ing the corresponding expectations using the explicit
density (1.11), followed by a straightforward manipu-
lation using Euler’s reflection formula for the Γ func-
tion [Art64]. Since E [|Z1 + . . .+ Zn|] 6 nE [|Z1|], the
right hand side of (1.12) is also at most

√
n. This,

in combination with (1.8), (1.10), (1.12), (1.13), shows
that for every z ∈ Rn r {0} we have

voln−1

(
Projz⊥(B`np )

)
voln

(
B`np

)
6

Γ
(

1 + n
p

)
2Γ
(

1 + n−1
p

)
Γ
(

1 + 1
p

) ·
√√√√√min

 π(p− 1)

p sin
(
π
p

) , n


. n
1
p

√
min{p, n}, (1.14)

where the final step of (1.14) follows from Stirling’s
approximation (with more care one can show that the
implicit constant in (1.14) can be taken to be 1/2).

A substitution of (1.14) into (1.6) completes the
proof of Theorem 1.5 when p 6 log n. If p > log n
then apply Proposition 1.1 with p replaced by log n
and ∆ replaced by ∆/e. By Hölder’s inequality we

have ‖x‖`np 6 n1/ logn−1/p‖x‖`nlog n
6 e‖x‖`nlog n

for every
x ∈ Rn. Hence P is ∆-bounded in the `np norm, and
by (1.14) (with p replaced by log n) Theorem 1.5 follows
in the remaining range as well.

Remark 1. The above use of [BN02] led to sharp
bounds. But, one could obtain cruder estimates by using
instead the approach of Müller in [Mül90, Section 3] to
bound the volumes of projections of B`np . This, however,
yields a worse dependence on p in (1.14), and since in
our applications of this bound we take p to depend on
n (specifically p = log n), it results in an asymptoti-
cally larger (by a polylogarithmic factor) upper bound
on SEP(`n∞), as well as weaker upper bounds in Theo-
rem 1.4.

Roadmap The next section contains the proof of
Proposition 1.1. By the above arguments, this will com-
plete the justification of all of the theorems that were
presented in the Introduction other than Theorem 1.1.
The appendix contains a proof of Theorem 1.1, as well
as some further discussion.

2 Proof of Proposition 1.1

Recalling the construction that was described in Sec-
tion 1.2, we are given an n-dimensional normed space
(X, ‖ ·‖X) that is equipped with an auxiliary Hilbertian
norm | · |. We are also given a finite subset S ⊆ X. By
rescaling we may assume that ∆ = 2. Fixing R ∈ (0,∞)
such that S ⊆ RBX , we let {Xk}∞k=1 be i.i.d. points dis-
tributed according to the normalized Lebesgue measure
on (R + 1)BX . Thus, for every Lebesgue measurable
subset A ⊆ X and j ∈ N we have

P
[
Xj ∈ A

]
=

voln
(
A ∩

(
R+ 1)BX

)
voln

(
(R+ 1)BX

)
=

voln
(
A ∩

(
R+ 1)BX

)
(R+ 1)nvoln(BX)

. (2.15)

Let P be the random partition of S that we defined
in (1.2) and fix u, v ∈ S. Define a random integer
κ(u, v) ∈ N to be the smallest k ∈ N such that Xk ∈
(u+ (∆/2)BX)∪ (v+ (∆/2)BX). Then the definition of
P implies that we have the following equality of events.{

P(u) = P(v)
}

=
{
Xκ(u,v) ∈ (u +BX) ∩ (v +BX)

}
=

∞⋃
k=1

({
Xk ∈ (u +BX) ∩ (v +BX)

}
⋂( k−1⋂

j=1

{
Xj /∈ (u +BX) ∪ (v +BX)

}))
.



Consequently, using the fact that {Xk}∞k=1 are i.i.d. we
see that

P
[
P(u) = P(v)

]
= P

[
X1 ∈ (u +BX) ∩ (v +BX)

]
×
∞∑
k=1

P
[
X1 /∈ (u +BX) ∪ (v +BX)

]k−1

=
P
[
X1 ∈ (u +BX) ∩ (v +BX)

]
1− P

[
X1 /∈ (u +BX) ∪ (v +BX)

]
(2.15)

=
voln

(
(u +BX) ∩ (v +BX)

)
voln

(
(u +BX) ∪ (v +BX)

) , (2.16)

where for the last step of (2.16) use (u+BX)∪(v+BX) ⊆
(R+ 1)BX , which holds true because u, v ∈ S ⊆ RBX .

Lemma 2.1 below consists of a volumetric estimate
that allows one to bound the right hand side of (2.16).
Its proof is a simple application of standard reason-
ing using Fubini’s theorem. In fact, this estimate is
stated explicitly in Corollary 1 of Schmuckenschläger’s
work [Sch92], but its proof is not included in [Sch92], so
for completeness we shall include the elementary justi-
fication here. The main content of [Sch92, Corollary 1]
is a corresponding reverse inequality that is described
in Remark 3 below and whose proof in [Sch92] relies on
deeper ideas. This reverse inequality shows that our es-
timates here are sharp (up to lower order terms) when
|u− v| is small.

Lemma 2.1. For every u, v ∈ X we have

voln
(
(u +BX) ∩ (v +BX)

)
voln(BX)

> 1−
voln−1

(
Proj(u−v)⊥(BX)

)
voln(BX)

· |u− v|. (2.17)

Assuming the validity of Lemma 2.1 for the mo-
ment, we conclude the proof of Proposition 1.1 as fol-
lows. Since

voln
(
(u +BX) ∪ (v +BX)

)
= 2voln(BX)− voln

(
(u +BX) ∩ (v +BX)

)
,

we see that

P
[
P(u) 6= P(v)

]
(2.16)

= 1−
voln

(
(u +BX) ∩ (v +BX)

)
2voln(BX)− voln

(
(u +BX) ∩ (v +BX)

)
(2.17)

6
2|u− v|voln−1

(
Proj(u−v)⊥(BX)

)
voln(BX) + 2|u− v|voln−1

(
Proj(u−v)⊥(BX)

)
6

4voln−1

(
Proj(u−v)⊥(BX)

)
∆voln(BX)

· |u− v|. (2.18)

The penultimate step of (2.18) uses Lemma 2.1 and
the fact that the function s 7→ s/(2voln(BX) − s) is
increasing on the interval [0, 2voln(BX)). For the final
step of (2.18), recall that our normalization is ∆ = 2.
This completes the proof of Proposition 1.1.

Proof. [Proof of Lemma 2.1] Denoting t
def
= |v − u| and

x
def
= (v − u)/t, our goal is to prove that

voln(BX) 6 voln
(
BX ∩ (tx+BX)

)
+ t · voln−1

(
Projx⊥(BX)

)
. (2.19)

To prove (2.19), partition BX into the following three
sets.

U
def
= BX ∩ (tx+BX), (2.20)

V
def
=
{
y ∈ BX r (tx+BX) : Projx⊥(y) ∈ Projx⊥(U)

}
,

(2.21)

W
def
= BX r (U ∪ V )

=
{
y ∈ BX : Projx⊥(y) /∈ Projx⊥(U)

}
. (2.22)

A schematic depiction of this partition, as well as the
notation of ensuing reasoning, appears in Figure 1 be-
low. We recommend examining Figure 1 while reading
the following argument since it consists of a formal jus-
tification of a situation that is clear when one keeps the
geometric picture in mind.

Figure 1: A schematic depiction of the partition of
BX into the sets U, V,W (with the sets U,W be-
ing shaded), as well as the line segments parallel
to x that are used in the justification of the esti-
mate (2.19).



For every z ∈ Projx⊥(BX) let αz ∈ R be the smallest
real number such that z + αzx ∈ BX and let βz ∈ R
be the largest real number such that z + βzx ∈ BX .
Thus the intersection of the line z + Rx with BX is the
segment w + [αz,βz]x ⊆ Rn. Since |x| = 1, by Fubini’s
theorem we have

voln(BX)

=

ˆ
Proj

x⊥ (BX)

(βz − αz) dz

=

ˆ
Proj

x⊥ (U)

(βu − αu) du+

ˆ
Proj

x⊥ (W )

(βw − αw) dw.

(2.23)

For the final step of (2.23), note that by (2.22) we
have Projx⊥(BX) = Projx⊥(U) ∪ Projx⊥(W ), and the
sets Projx⊥(U),Projx⊥(W ) have disjoint interiors (in the
subspace x⊥).

Since U = BX ∩ (tx+BX) is convex, for every u in
the interior of Projx⊥(U) the line u+Rx intersects U in
an interval, say (u+Rx)∩U = u+[γu, δu]x with γu, δu ∈
R satisfying γu < δu such that u + γux, u + δux ∈ ∂U
and u + sx ∈ int(U) for every s ∈ (γu, δu). We
also know that (u + Rx) ∩ BX = u + [αu,βu]x with
u + αux, u + βux ∈ ∂BX . Thus [γu, δu] ⊆ [αu,βu].
Since u + γux ∈ U ⊆ tx + BX , it follows that we
have γw − t ∈ [αw,βw]. But also γu ∈ [αu,βu], so
βu − αu > t and therefore αu + t,βu − t ∈ [αu,βu],
or equivalently the vectors u+ (αu + t)x, u+ (βu − t)x
belong to BX . Because u + αux, u + βux ∈ ∂BX , it
follows that u+(αu+ t)x ∈ BX ∩ (tx+∂BX) ⊆ ∂U and
u+βux ∈ (∂BX)∩ (tx+BX) ⊆ ∂U . Hence γu = αu+ t
and δu = βu, from which we conclude that for every
u ∈ Projx⊥(U) we have

(u+ Rx) ∩ U = u+ [αu + t,βu]x. (2.24)

Therefore for every u ∈ Projx⊥(U) we also have

(u+ Rx) ∩ V (2.21)
= BX r

(
(u+ Rx) ∩ U

)
(2.24)

= u+ [αu,αu + t]x. (2.25)

Another application of Fubini’s theorem now implies

thatˆ
Proj

x⊥ (U)

(βu − αu) du

(2.24)∧(2.25)
=

ˆ
Proj

x⊥ (U)

vol1
(
(u+ Rx) ∩ U

)
du

+

ˆ
Proj

x⊥ (U)

tdu

= voln(U) + tvoln−1

(
Projx⊥(U)

)
(2.22)

= voln(U) + t
(
voln−1

(
Projx⊥(BX)

)
− voln−1

(
Projx⊥(W )

))
. (2.26)

Observe that the following implication holds true.

w ∈ Projx⊥(W ) =⇒ βw − αw 6 t. (2.27)

Indeed, if w ∈ Projx⊥(W ) yet βw − αw > t then
w + (βw − t)x belongs to the interval joining w + αwx
and w + βwx. By the convexity of BX we therefore
have w + (βw − t)x ∈ BX , or equivalently w + βwx ∈
tx+BX . Recalling that w+βwx ∈ BX , this means that
w+βwx ∈ BX∩(tx+BX). By the definition (2.20) of U ,
it follows that w ∈ Projx⊥(U). By the definition (2.22)
of W , this means that w /∈ Projx⊥(W ), a contradiction.
Having established (2.27) we see that

ˆ
Proj

x⊥ (W )

(βw − αw) dw

(2.27)

6 tvoln−1

(
Projx⊥(W )

)
. (2.28)

The desired estimate (2.19) now follows from a substi-
tution of (2.26) and (2.28) into (2.23).

Remark 2. In the final step of (2.18) we dropped the
nonnegative term 2|u− v|voln−1

(
Proj(u−v)⊥(BX)

)
from

the denominator. This quantity can be bounded from
below as follows.

2|u− v|voln−1

(
Proj(u−v)⊥(BX)

)
> ‖u− v‖Xvoln(BX). (2.29)

For completeness, we shall now present an elementary
justification of (2.29). Before doing so, note that by
substituting this estimate into the final step of (2.18)
and rescaling back to the case of general ∆ ∈ (0,∞)
(recall that (2.18) is carried out under the normalization
∆ = 2), we obtain the following slight strengthening of
the conclusion (1.6) of Proposition 1.1.

P
[
P(x) 6= P(y)

]
6

4voln−1

(
Proj(x−y)⊥(BX)

)
(2‖x− y‖X + ∆)voln(BX)

· |x− y|,



for every x, y ∈ S. Here is a quick justification
of (2.29), in which we continue with the notation
of the proof of Lemma 2.1. We need to show that
‖x‖Kvoln(BX) 6 2voln−1(Projx⊥(BX)). For every
z ∈ Projx⊥(BX) we have ‖z + αzx‖X , ‖z + βzx‖X 6 1.
So, (βz − αz)‖x‖X = ‖z + βzx − (z + αzx)‖X 6 2,
i.e., βz − αz 6 2/‖x‖X for every z ∈ Projx⊥(BX). The
verification of (2.29) is now completed as follows.

voln(BX) =

ˆ
Proj

x⊥ (BX)

(βz − αz) dz

6
ˆ
Proj

x⊥ (BX)

2

‖x‖X
dz

=
2

‖x‖X
voln−1(Projx⊥(BX)).

Remark 3. In [Sch92, Corollary 1] the following re-
verse estimate corresponding to (2.17) is given.

voln
(
(u +BX) ∩ (v +BX)

)
voln(BX)

6 exp

(
−

voln−1

(
Proj(u−v)⊥(BX)

)
voln(BX)

|u− v|
)
. (2.30)

The proof of (2.30) in [Sch92] relies on a more sub-
stantial use of Brunn–Minkowski theory than the (ele-
mentary) proof of (2.17). While we will not need to
use (2.30) here, it is worthwhile to recall it since it ex-
hibits that (2.17) is sharp when |u − v| is small (which
is often the most important case).
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Appendix

A Discussion and open questions

The purpose of this section is to present miscellaneous
comments on the topics that were covered in the Intro-
duction, including the description of some interesting
directions for future research.

The distortion of a metric space (M,dM ) in a metric
space (Z, dZ) is denoted by cZ(M) ∈ [1,∞]. Thus, the
quantity cZ(M) is the infimum over those D ∈ [1,∞]
for which there exists an embedding ϕ : M → Z and
s ∈ (0,∞) such that

sdM (x, y) 6 dZ(ϕ(x), ϕ(y)) 6 DsdM (x, y)

for every x, y ∈ M . We implicitly used in the Intro-
duction (see e.g. the paragraph immediately following
Theorem 1.3) the (trivial) fact that

SEP(M) 6 cZ(M)SEP(Z).

This is true because if S ⊆ M is finite then by the
definition of SEP(Z) for every σ > SEP(Z) and ∆ ∈
(0,∞) there exists a distribution over ∆/s-bounded
partitions P of ϕ(S) ⊆ Z such that

∀x, y ∈ S, P
[
P(ϕ(x)) 6= P(ϕ(y))

]
6
σdZ(ϕ(x)ϕ(y))

∆/s
.

Now, ϕ−1P = {ϕ−1(C) : C ∈ P} is a ∆-bounded
random partition of S that satisfies

∀x, y ∈ S, P
[
ϕ−1P(x) 6= ϕ−1P(y)

]
6
σdm(x, y)

∆
.

We similarly have e(M) 6 cZ(M)e(Z).

A.1 Convex geometry By combining the lower
bound on SEP(X, ‖ · ‖) of Theorem 1.3 with Corol-
lary 1.1, we obtain the following (sharp) classical-
looking convex-geometric statement. For every origin-
symmetric convex bodyK ⊆ Rn there exists a boundary



point z ∈ ∂K such that

‖z‖`n2 · voln−1(Projz⊥(K)) &
√
n · voln(K). (1.31)

After inquiring with experts in convex geometry, it
seems that this fact was not previously published, but
Erwin Lutwak found a different proof of (1.31) (based on
his unpublished work in collaboration with Deane Yang
and Gaoyong Zhang) that in addition yields the best
possible value of the implicit constant in (1.31). This
proof uses classical tools such as the Petty projection
inequality, mixed volumes and the Brunn–Minkowski
inequality, so it differs markedly from the roundabout
way by which we deduced (1.31). Lutwak’s proof
of (1.31) will be included in the full version of this paper.

Another convex-geometric consequence of the
present work is the following stability statement for the
hyperoctahedron B`n1 = {x ∈ Rn : |x1|+. . .+|xn| 6 1}.
Suppose that α,β ∈ (0,∞) and K ⊆ Rn is an origin-
symmetric convex body that satisfies

1

α
K ⊆ B`n1 ⊆ βK

(thus, the norm that is induced by K is αβ-bi-Lipschitz
equivalent to the `n1 norm). Then by the lower bound
SEP(`n1 ) & n of [CCG+98] combined with Corollary 1.1
there must exist z ∈ ∂K such that

‖z‖`n2 · voln−1(Projz⊥(K)) &
n

αβ
· voln(K). (1.32)

Recall that (1.31) holds true (for every origin-symmetric
convex body K ⊆ Rn and every boundary point z ∈
∂K) with the direction of the inequality reversed and√
n replaced by n. The basic assertion here is that

not only does the hyperoctahedron satisfy the extremal
estimate

sup
z∈∂B`n1

(
‖z‖`n2 · voln−1(Projz⊥(B`n1 ))

)
& nvoln(B`n1 ),

but in fact so does every symmetric convex body that
is a O(1) perturbation of it. The reason is that we
have SEP(`n1 ) � n, and also the quantity SEP(`n1 ) is
a bi-Lipschitz invariant that can be controlled using
Corollary 1.1. From the purely volumetric perspective
this isn’t so clear, because the volumes that appear
in (1.32) can scale exponentially in α,β. If possible,
it would be good to obtain a geometric proof of (1.32)
that does not proceed via the roundabout way by which
we deduced it here.

A.2 Finite subsets of `p and dimensionality
reduction Fix n ∈ N and a metric space (X, dX).
Recall that in the Introduction we defined SEPn(X, dX)

to be the suppremum over all the moduli of separated
decomposability of subsets of X of cardinality at most
n. In [CCG+98] it was shown that SEPn(`2) .

√
log n.

Indeed, this follows from the Johnson–Lindenstrauss
dimensionality reduction lemma [JL84], which asserts
that any n-point subset of `2 can be embedded with
O(1) distortion into `m2 with m . log n, combined with
the proof in [CCG+98] that SEP(`m2 ) .

√
m.

One might expect that the sharp bounds that we
now know for SEP(`np ) in the entire range p ∈ (1,∞)
(here sharpness is understood to be up to constants
that may depend only on p) also translate to improved
bounds on SEPn(`p). The term “improved” is used
here to mean any upper bound of the form o(log n),
since the benchmark general result is Bartal’s upper
bound [Bar96] of SEPn(X, dX) . log n, which holds
true for every metric space (X, dX). Note that Bartal’s
bound is known to be sharp [Bar96], so we cannot hope
to get a better bound for SEPn(`∞) despite the fact that
here we did succeed to obtain an improved upper bound
on SEP(`n∞).

The obstacle is, of course, that no dimensionality
reduction statement is known for arbitrary finite subsets
of `p whenever p ∈ [1,∞] r {2}, and it is even
known that polylogarithmic dimensionality reduction
(as in the Hilbertian setting [JL84]) is impossible when
p ∈ {1,∞}, with the case p = ∞ being due to
Matoušek [Mat96] and the case p = 1 being due to
Brinkman–Charikar [BC05] (when p ∈ [1,∞]r{1, 2,∞}
remarkably nothing is known, i.e., neither positive
results nor impossibility results are available, and it
is a major open problem to make any progress in this
setting). Despite this difficulty, we have the following
theorem that treats the range p ∈ [1, 2].

Theorem A.1. For every p ∈ (1, 2] we have

(log n)
1
p . SEPn(`p) .

(log n)
1
p

p− 1
.

The lower bound on SEPn(`p) of Theorem A.1 is nothing
more than the lower bound of [CCG+98]. An upper
bound of SEPn(`p) . Cp(log n)1/p for some Cp > 0 was
obtained when p ∈ (1, 2] by Lee and the author in the
manuscript [LN03]. Since [LN03] was never published
(and is not intended for publication), a complete proof
of the upper bound on SEPn(`p) that is stated in
Theorem A.1 is included in Section C below, where
we perform the argument with more care than the way
we initially did it in [LN03], so as to obtain the best
dependence on p that is achievable by this approach.
The proof relies on ideas of Marcus–Pisier [MP84], using
a structural result for p-stable processes. As such, it
leads to a bound that becomes weaker than Bartal’s



general O(log n) bound when p is close to 1. The (often
counterintuitive) deterioration of bounds as p → 1 is
indicative of the use of p-stable random variables for
geometric purposes (such an example appears in [JS82]).
Nevertheless, we conjecture that the dependence on p
can be improved in Theorem A.1.

Conjecture 1. The dependence on p in Theorem A.1

can be improved to SEPn(`p) . (log n)
1
p .

Note that Theorem A.1 yields an upper bound on
SEPn(`p) that is asymptotically better than O(log n)
if and only if

p = 1 +
log log log n− log log log log n+ω(1)

log log n
, (1.33)

where (as usual) ω(1) indicates any sequence that tends
to ∞ as n → ∞. A positive answer to Conjecture 1
would improve the requirement (1.33) to p = 1 +
O(1/ log log n), which would be sharp.

Question 1. Is it true that for every n ∈ N and
p ∈ (2,∞) we have limn→∞ SEPn(`p)/ log n = 0? More
ambitiously, is it true that there exists C(p) ∈ (0,∞)
such that SEPn(`p) . C(p)

√
log n?

A.3 Extremal projections In light of Corol-
lary 1.1, it is clearly of interest to obtain good up-
per bounds on the quantity that appears in the right
hand side of (1.7) for a variety classical normed spaces
(X, ‖ · ‖X). Examples of classes of spaces of interest
here include uniformly smooth/convex spaces, spaces of
nontrivial type, and zonoids. Other natural classes of
spaces, such as unconditional spaces and spaces with
finite cotype seem less relevant to the present context
since `n1 satisfies these properties while exhibiting the
largest possible asymptotic behavior of the right hand
side of (1.7). Note that despite being a low dimen-
sional zonotope, for the hypercube B`n∞ = [−1, 1]n the
right hand side of (1.7) also has the largest possible
asymptotic behavior. The pertinent question is there-
fore, given an n-dimensional normed space (X, ‖ · ‖X),
when can one find another finite-dimensional normed
space (Z, ‖ · ‖Z), say, dim(Z) = m, with good control
on the following quantity.

cZ(X) · sup
z∈∂BZ

4|z|volm−1

(
Projm−1z

⊥(BZ)
)

volm(BX)
.

Among the classical spaces for which it would be
interesting to evaluate exactly the extremal volumes of
hyperplane projections of their unit balls, we single out
the Schatten–von Neumann trace classes Snp . These are

the spaces of matrices Mn(C), equipped with the norm

‖A‖Sn
p

def
= Tr

(
(A∗A)

p
2

) 1
p

.

In particular, Sn∞ is the space of matrices Mn(C),
equipped with the usual operator norm. In our forth-
coming joint work with Schechtman [NS16], we prove
that when X = Snp the right hand side of (1.7) is

O(n1/p+1/2) = O(dim(Snp )1/(2p)+1/4) if p ∈ [1, 2], and
if p ∈ (2,∞) then the right hand side of (1.7) is
O(
√
p · n) = O(

√
p · dim(Snp )1/2). Thus, as a direct

application of Corollary 1.1 we have

e(Sn1 ) . SEP(Sn1 ) . n
3
2

and
e(Sn∞) . SEP(Sn∞) . n

√
log n.

Statements analogous to Theorem 1.4 for the set of
matrices with at most k nonzero singular values (or
whose singular values decay quickly) also follow. We
do not know if these bounds are sharp.

A.4 Lipschitz extension By the work [MN13] of
Mendel and the author (specifically, see Theorem 1.17
there), which itself builds on remarkable ideas on
Kalton [Kal04, Kal12], we have e(`n2 ) & 4

√
n. By

the Figiel–Lindenstrauss–Milman refinement [FLM77]
of Dvoretzky’s theorem, for every p ∈ (2,∞) and n ∈ N
there exists m ∈ N with m � pn2/p and c`np (`m2 ) 6 2.
We therefore see that

e(`np ) & e(`m2 ) & 4
√
m � 4

√
p · n

1
2p .

This lower bound is asymptotically better than
the previously best known lower bound e(`np ) &
nmax{1/8,1/2−1/p} if and only if 2 6 p < 3.

The currently best known bounds on e(`n2 ) are thus
4
√
n . e(`n2 ) .

√
n. We conjecture that e(`n2 ) �

√
n.

Further investigations of this question are deferred to
future research, but we wish to present here some
natural examples whose study seems promising for this
purpose, as well as being of independent interest. Given
a metric space (X, dX) and a subset Ω ⊆ X, consider
the mapping δΩ that assigns to every ω ∈ Ω the δ-
measure at ω, thought of as an element of the dual
of the Banach space Lipω0

(Ω) of R-valued Lipschitz
functions on Ω that vanish at a fixed point ω0 ∈ Ω.
Then δΩ is a 1-Lipschitz mapping and we denote by
Λ(X,Ω) the infimum over the Lipschitz constants of
mappings from X to Lipω0

(Ω)∗ that extend δΩ. If X is
an n-dimensional normed space and ε ∈ (0, 1) let Λε(X)
denote the supremum of Λ(X,Nε) over all ε-nets Nε of
the unit ball BX . Studying the parameter Λε(X) as ε



varies is a natural question. It isn’t even known whether
or not Λε(X) is monotone in ε. Note that we have the a
priori bound Λε(X) 6 e(X, ‖·‖X) . SEP(X, ‖·‖X) . n,
but we do not know what happens as ε → 0. We
conjecture that for some ε ∈ (0, 1) (depending on n)
we have Λε(`

n
2 ) &

√
n. If so, then this would imply

the sharp estimate e(`n2 ) �
√
n. Another example of a

natural quantity whose asymptotic behavior seems to
be unknown is Λ(`n2 ,Zn).

Since we find the following concrete question to be
especially tantalizing, we formulate it explicitly here
despite the fact that it is well-known and, in fact, it
is a special case of questions that we already recalled in
the Introduction.

Question 2. What is the asymptotic behavior of e(`n1 )?
As a start, is it true that e(`n1 ) = o(n)?

A.4.1 The infinitary setting Thus far we only
treated separating decompositions of finite subsets of a
metric space (X, dX). We did not even recall the defini-
tion of a random partition of an infinite metric space so
as to avoid the need to discuss somewhat cumbersome
measurability issues that are needed in the infinitary
setting but hold true automatically in the finitary set-
ting. While only the finitary setting is relevant to algo-
rithmic contexts, infinitary versions are needed for the
applications to Lipschitz extension. Motivated by this
need, a formalism for working with random partitions
of infinite metric spaces was developed in [LN05]. See in
particular Definition 3.1 and Definition 3.7 in [LN05] for
the measurability requirements of separating decompo-
sitions that imply the Lipschitz extension theorem that
was used here. The fact that these measurability re-
quirements are satisfied in our setting as well follows
automatically from [LN05]. Namely, in Lemma 3.16
of [LN05] this was carried out explicitly for the same
partition that is used here, but only in the special case
X = `n2 . While working with non-Euclidean norms in-
fluences the final quantitative bounds that are obtained
(which is our goal here), the fact that the underlying
norm was Euclidean played no role whatsoever in [LN05]
for the purpose of establishing the desired “soft” mea-
surability requirements. For this reason, the reasoning
of [LN05] suffices for our purposes as well. Specifically,
the random partition P that we treated in Section 2
is already a partition of a ball RBX (not just its fi-
nite subsets). This needs to be augmented in two ways.
Firstly, one needs to obtain a partition of all of X rather
than a bounded domain in X: This step is done by a
simple tiling argument in [LN05, Lemma 3.16] for the
Euclidean norm, and the same reasoning works with-
out any change for general norms. Secondly, one needs
to obtain a measurable selector of a point in a given

(arbitrary) closed subset F of X that is approximately
the nearest point in F to a given cluster in P: As ex-
plained in [LN05], this is a consequence of the classical
measurable selection theorem of Kuratowski and Ryll-
Nardzewski [KRN65], and the fact that in [LN05] the
underlying norm was Euclidean played no role for this
purpose as well. The conclusion of the above discussion
is that all of the upper bounds that we stated in the
Introduction on SEP(X, ‖ · ‖X), all of which are conse-
quences of Corollary 1.1, hold true for separating de-
compositions of all of X relative to an arbitrary closed
subset of X in the sense of [LN05]. Therefore, by a
combination of Lemma 2.1 and Theorem 4.1 of [LN05],
e(X, ‖ · ‖X) is bounded from above by a constant mul-
tiple of the right hand side of (1.7).

Remark 4. Despite the above discussion, it should be
clarified that readers who prefer to focus on the fini-
tary setting, or would rather not consider measurabil-
ity issues, can ignore the infinitary setup of [LN05]
altogether, provided that they do not care about Lip-
schitz extension theorems into certain exotic Banach
space targets (separable potential examples of which are
actually currently not known to exist!). Specifically,
by [LN05] the stated bounds for separating random par-
titions of finite subsets of a finite dimensional normed
space (X, ‖ · ‖X) yields extension theorems (with the
stated loss in the Lipschitz constant) for Y -valued map-
pings, with Y an arbitrary Banach space, from an ar-
bitrary finite subset S of X to an arbitrary finite sub-
set T of X that contains S. This statement is inter-
esting in its own right (and it encompasses the main
geometric content of the result). In addition, a stan-
dard weak∗ compactness argument, as carried out in
e.g. [Bal92, Nao01, BB07a], allows one to use this fini-
tary extension statement as a “black box” to formally
deduce the stated Lipschitz extension results from arbi-
trary subsets of X when the target Y is a dual Banach
space, or, more generally, is a Lipschitz retract of its
bi-dual Y ∗∗. This covers all the classical Banach spaces
as potential target spaces for Lipschitz extension, and
it is currently unknown if there exists a separable Ba-
nach space that fails to have this property. A clever
construction of a nonseparable Banach space that is not
a Lipschitz retract of its bi-dual was recently obtained
by Kalton in [Kal11].

B Proof of Theorem 1.1

Fix n ∈ N and an n-dimensional normed space (X, ‖ ·
‖X). When δ ∈ (0, 1) is a universal constant, the up-
per bound on PADδ(X, ‖ · ‖X) of Theorem 1.1 is due
to Gupta–Krauthgamer–Lee [GKL03], where the only
property that was used in the proof is that the dou-



bling constant (e.g. [Hei01]) of (X, ‖ · ‖X) is eO(n).
Specifically, following important ideas of Calinescu–
Karloff–Rabani [CKR01] and Fakcharoenphol–Rao–
Talwar [FRT03], given ∆ ∈ (0,∞) and a finite subset
S ⊆ X, a probability distribution P over ∆-bounded
partitions of S is constructed in [GKL03] with the prop-
erty that for every x ∈ S and t ∈ (0, 1/4] the probabil-
ity that (x+ t∆BX)∩ S is contained in P(x) is at least
1−Ctn, where C ∈ (0,∞) is a universal constant. This
shows that PADδ(X, ‖ · ‖X) 6 Cn/(1− δ).

Theorem 1.1 asserts an exponentially better de-
pendence of PADδ(X, ‖ · ‖X) on δ as δ → 0, and
that this dependence is sharp up to universal con-
stant factors. To establish the claimed upper bound on
PADδ(X, ‖ · ‖X), we shall rely on ideas of Mendel and
the author in [MN07]. Lemma B.1 below was proved
in [MN07, Lemma 3.1] in the special case when α = 1/2,
(X, dX) is a finite metric space and µ is the count-
ing measure on X (and with the factor 4 in the ex-
ponent in the right hand side of inequality (2.34) below
replaced by the worse constant 8). We take this op-
portunity to record a more streamlined proof of [MN07,
Lemma 3.1], though it is nothing more than a restruc-
turing of the ideas of [MN07] (a similar argument was
used in a slightly different setting in [NT10]).

Lemma B.1. Let (X, dX) be a metric space, equipped
with a nondegenerate Borel probability measure µ (non-
degeneracy means that µ assigns positive mass to every
ball of positive radius). Suppose that ∆ ∈ (0,∞) and
α ∈ (0, 1). Then there exists a probability distribution
P over ∆-bounded Borel partitions of X such that for
every x ∈ X and every p ∈ (2/α,∞) we have

P
[
BX

(
x,

∆

p

)
⊆ P(x)

]

>

µ
(
BX

(
x,
(
α
2 −

1
p

)
∆
))

µ
(
BX

(
x,
(

1
2 + 1

p

)
∆
))


4
(1−α)p

. (2.34)

Proof. Let {Xk}∞k=1 be i.i.d. random points in X, each
of which is distributed according to µ. Also, let R be
a random variable that is distributed uniformly on the
interval [α∆/2,∆/2], and is independent of {Xk}∞k=1.
Analogously to (1.2) (but now with a random radius),
define

P
def
=

BX(Xk,R) r
k−1⋃
j=1

BX(Xj ,R)


∞

k=1

.

Because µ is a nondegenerate measure, for every x ∈ X
and r ∈ (0,∞) with probability 1 we have

B(x, r) ∩ {X1,X2, . . .} 6= ∅.

Hence P is almost surely a partition of X. Moreover, P
is by design a ∆-bounded partition of X into Borel sets.

Fix x ∈ X and define hx : (0,∞) → R by setting

hx(r)
def
= log(µ(BX(x, r)) for every r ∈ (0,∞). Also, fix

p ∈ (2/α,∞). For every r ∈ [α∆/2,∞) define κr(x) to
be the smallest k ∈ N such that Xk ∈ BX(x,R + ∆/p).
As we explained above, κr(x) is well-defined almost
surely. Observe that if XκR(x) ∈ BX(x,R − ∆/p) then
by our definition of P we have BX(x,∆/p) ⊆ P(x).
Consequently,

P
[
BX

(
x,

∆

p

)
⊆ P(x)

]
> P

[
XκR(x) ∈ BX

(
x,R− ∆

p

)]
= ER

[ ∞∑
k=1

P
[
Xk ∈ BX

(
x,R− ∆

p

)]

×
k−1∏
j=1

P
[
Xj ∈ X rBX

(
x,R +

∆

p

)]]

= ER

[
µ

(
BX

(
x,R− ∆

p

))
×
∞∑
k=1

[
1− µ

(
BX

(
x,R +

∆

p

))]k−1 ]
= ER

[
exp

(
hx

(
R− ∆

p

)
− hx

(
R +

∆

p

))]
.

By Jensen’s inequality, we therefore see that

P
[
BX

(
x,

∆

p

)
⊆ P(x)

]
> exp

(
ER

[
hx

(
R− ∆

p

)]
− ER

[
hx

(
R +

∆

p

)])
= exp

(
2

(1− α)∆

ˆ ( 1
2−

1
p )∆

(α2 −
1
p )∆

hx(r) dr

− 2

(1− α)∆

ˆ ( 1
2 + 1

p )∆

(α2 + 1
p )∆

hx(r) dr

)

= exp

(
2

(1− α)∆

ˆ (α2 + 1
p )∆

(α2 −
1
p )∆

hx(r) dr

− 2

(1− α)∆

ˆ ( 1
2 + 1

p )∆

( 1
2−

1
p )∆

hx(r) dr

)
> exp

(
4

(1− α)p
hx

(
α∆

2
− ∆

p

)
− 4

(1− α)p
hx

(
∆

2
+

∆

p

))
, (2.35)

where in the last step of (2.35) we used the fact that
hx is nondecreasing. It remains to note that by the



definition of hx the right hand side of (2.35) is equal to
the right hand side of (2.34).

Proof. [Proof of Theorem 1.1] Suppose that n ∈ N
and that (X, ‖ · ‖X) is an n-dimensional normed space.
Fix also δ ∈ (0, 1). To prove the upper bound on
PADδ(X, ‖ · ‖X) in Theorem 1.1, take δ ∈ (0,∞) and a
finite subset S ⊆ X, and apply Lemma B.1 with µ being
the normalized Lebesgue measure on a ball that contains
S and with α = 1/2. We thus obtain a distribution
P over ∆-bounded partitions of S such that for every
p ∈ [8,∞) and x ∈ S we have

P
[
S ∩

(
x+

∆

p
BX

)
⊆ P(x)

]
> e−

cn
p

for some universal constant c ∈ (0,∞). So, by choosing
p = 8 + cn/ log(1/δ) we indeed obtain the desired
estimate PADδ(X, ‖ · ‖X) . 1 + n/ log(1/δ).

It remains to establish the matching lower bound
on PADδ(X, ‖ · ‖X). The proof below is a discrete
variant of a closely related argument that was carried
out in a continuous setting in the manuscript [LN03].
Since [LN03] was never published, and also the proof
in [LN03] ignores the dependence on δ while our goal
here is to establish a sharp bound in terms of all the
relevant parameters, we shall now present the complete
argument.

Fix ε ∈ (0, 1) and R ∈ (2,∞). Let Nε be an ε-
net of RBX , thus log |Nε| � n log(R/ε). Fix a Voronoi
tessellation {Vx}x∈Nε

of RBX that is induced by Nε.
Thus, for every x ∈ Nε we have that Vx is a Borel subset
of RBX that satisfies x ∈ Vx ⊆ x + εBX . Moreover,
{Vx}x∈Nε

forms a partition of RBX . So, for every
w ∈ RBX there is a unique net point x(w) ∈ Nε such
that w ∈ Vx(w).

Fix an arbitrary value p > PADδ(X, ‖ · ‖X), and
assume from now on that 0 < ε < 1/(2p) and R >
1/p − 2ε (eventually we will take ε → 0 and R → ∞).
By the definition of PADδ(X, ‖ · ‖X) there exists a
probability distribution P over 1-bounded partitions of
Nε such that

∀x ∈ Nε, P
[(
x+

1

p
BX

)
∩ Nε ⊆ P(x)

]
> δ.

(2.36)
For every x ∈ Nε define

P∗(x)
def
=

⋃
y∈P(x)

Vy =
{
w ∈ RBX : x(w) ∈ P(x)

}
.

Then {P∗(x)}x∈Nε
is a random partition of RBX .

We claim that for every y ∈ Nε the following

inclusion holds true.{
w ∈ X : w +

1− 2εp

p
BX ⊆ P∗(y)

}
+

1− 2εp

(1 + 2ε)p

(
P∗(y)− P∗(y)

)
⊆ P∗(y). (2.37)

Indeed, take any w ∈ X such that w+ 1−2εp
p BX ⊆ P∗(y)

and also take any u, v ∈ P∗(y). Then by the definition
of P∗ we have x(u), x(v) ∈ P(y). Since P is a 1-bounded
partition, we have ‖x(u)− x(v)‖X 6 1. Consequently,

‖u−v‖X 6 ‖u−x(u)‖X+‖x(u)−x(v)‖X+‖v−x(v)‖X
6 1 + 2ε.

Therefore 1−2εp
(1+2ε)p (u− v) ∈ 1−2εp

p BX , so the assumption

on w implies that w + 1−2εp
(1+2ε)p (u − v) ∈ P∗(y). This

is precisely the assertion in (2.37). By the Brunn–
Minkowski inequality (e.g. [Bal97]), (2.37) gives

voln
(
P∗(y)

) 1
n > 2

1− 2εp

(1 + 2ε)p
voln

(
P∗(y)

) 1
n

+ voln

({
w ∈ X : w +

1− 2εp

p
BX ⊆ P∗(y)

}) 1
n

.

Hence,

voln

({
w ∈ X : w +

1− 2εp

p
BX ⊆ P∗(y)

})
6

(
1− 2

1− 2εp

(1 + 2ε)p

)n
voln

(
P∗(y)

)
. (2.38)

Now,

voln

({
w ∈ RBX : w +

1− 2εp

p
BX ⊆ P∗

(
x(w)

)})
=
∑
y∈Nε

voln

({
w ∈ P∗(y) :

w +
1− 2εp

p
BX ⊆ P∗

(
x(w)

)})
(2.39)

=
∑
y∈Nε

voln

({
w ∈ P∗(y) :

w +
1− 2εp

p
BX ⊆ P∗(y)

})
(2.40)

6

(
1− 2

1− 2εp

(1 + 2ε)p

)n ∑
y∈Nε

voln
(
P∗(y)

)
(2.41)

=

(
1− 2

1− 2εp

(1 + 2ε)p

)n
Rnvoln(BX). (2.42)

Above, (2.39) holds true because {P∗(y)}y∈Nε
is a

partition of RBX . The identity (2.40) holds true



because, since by the definition of P∗ we have w ∈
P∗(x(w)) for every w ∈ RBX and the sets {P∗(y)}y∈Nε

are pairwise disjoint, if w ∈ P∗(y) for some y ∈ Nε
then necessarily P∗(x(w)) = P∗(y). The estimate (2.41)
uses (2.38), and (2.42) uses once more that {P∗(y)}y∈Nε

is a partition of RBX .
We next claim that for every w ∈ (R+ 2ε−1/p)BX

the following inclusion of events holds true.{(
x(w) +

1

p
BX

)
∩ Nε ⊆ P

(
x(w)

)}
⊆
{
w +

1− 2εp

p
BX ⊆ P∗

(
x(w)

)}
. (2.43)

Indeed, let w ∈ X satisfy ‖w‖X 6 R + 2ε − 1/p and
(x(w) + (1/p)BX) ∩ Nε ⊆ P(x(w)). Fix any z ∈ X
such that ‖w − z‖X 6 (1 − 2εp)/p. Then we have
‖z‖X 6 ‖w‖X+‖w−z‖X 6 R, so z ∈ RBX and therefore
x(z) ∈ Nε is well-defined. Now,

‖x(w)−x(z)‖X 6 ‖x(w)−w‖X+‖w−z‖X+‖z−x(z)‖X

6 ε+
1− 2εp

p
+ ε =

1

p
,

so our assumption on w implies that x(z) ∈ P(x(w)).
By the definition of P∗(x(w)), this means that z ∈
P∗(x(w)), thus completing the verification of (2.43).
Due to (2.36) and (2.43) we conclude that

∀w ∈
(
R− 1

p
+ 2ε

)
BX ,

P
[
w +

1− 2εp

p
BX ⊆ P∗

(
x(w)

)]
> δ. (2.44)

Finally,

δ

(
R− 1

p
+ 2ε

)n
voln(BX)

(2.44)

6
ˆ
(R− 1

p +2ε)BX

P
[
w +

1− 2εp

p
BX ⊆ P∗

(
x(w)

)]
dw

= E
[
voln

({
w ∈

(
R− 1

p
+ 2ε

)
BX :

w +
1− 2εp

p
BX ⊆ P∗

(
x(w)

)})]
(2.42)

6

(
1− 2

1− 2εp

(1 + 2ε)p

)n
Rnvoln(BX).

Hence,

n
√
δ

(
1− 1

pR
+

2ε

R

)
6 1− 2

1− 2εp

(1 + 2ε)p
.

By letting R → ∞ and then ε → 0, we conclude from
this estimate that

p >
2

1− n
√
δ
� 1 +

n

log
(

1
δ

) .
C Proof of Theorem A.1

Fix p ∈ (1, 2] and n ∈ N. Since the stated lower bound
on SEPn(`p) is due to [CCG+98], our goal here is to
prove the stated upper bound on SEPn(`p), i.e., that
for all x1, . . . , xn ∈ `p we have

SEP
(
{x1, . . . , xn}, ‖ · ‖`p

)
.

(log n)
1
p

p− 1
. (3.45)

We shall start with the following simple probabilistic
lemma that we record for ease of future use.

Lemma C.1. Suppose that p ∈ (1,∞) and let X be a
nonnegative random variable (defined on some proba-
bility space (Ω,P)) that satisfies the following Laplace
transform identity.

∀u ∈ [0,∞), E
[
e−uX

2
]

= e−u
p
2 . (3.46)

Then

E[X] =
Γ
(
1− 1

p

)
√
π

� p

p− 1
. (3.47)

Moreover, for every t ∈ (0,∞) we have

P
[
X 6 t

]
6 exp

(
−
(
p
2

) p
2−p

(
1− p

2

)
t

2p
2−p

)
. (3.48)

Proof. Suppose that α ∈ (0, 1). Then every x ∈ (0,∞)
satisfies

ˆ ∞
0

1− e−ux

u1+α
dx = xα

ˆ ∞
0

1− e−v

v1+α
dx

=
Γ(1− α)

α
xα, (3.49)

where the first step of (3.49) is a straightforward
change of variable and the last step of (3.49) follows
by integration by parts. The case α = 1/2 of (3.49)



implies that

E[X] = E
[

1

2
√
π

ˆ ∞
0

1− e−uX2

u
3
2

du

]
=

1

2
√
π

ˆ ∞
0

1− E
[
e−uX

2]
u

3
2

du

(3.46)
=

1

2
√
π

ˆ ∞
0

1− e−u
p
2

u
3
2

du

=
1

p
√
π

ˆ ∞
0

1− e−v

v1+ 1
p

dv

(3.49)
=

Γ
(
1− 1

p

)
√
π

.

The small ball probability estimate (3.48) is a
consequence of the following standard use of Markov’s
inequality. For every u, t ∈ (0,∞) we have

P
[
X 6 t

]
= P

[
e−uX

2

> e−ut
2
]

6 eut
2

E
[
e−uX

2
]

= eut
2−u

p
2 . (3.50)

The value of u ∈ (0,∞) that minimizes the right-hand
side of (3.50) is

u = u(p, t)
def
=
( p

2t2

) 2
2−p

.

A substitution of this value of u into (3.50) simplifies to
give the desired estimate (3.48).

Proof. [Proof of (3.45)] Fix distinct x1, . . . , xn ∈ `p. It
suffices to prove the validity of (3.45) when p ∈ (1, 2),
since the quantity that appears in the right-hand side
of (3.45) remains bounded as p → 2−, and every
finite subset of `2 embeds isometrically into `p for every
p ∈ [1, 2] (see e.g. [Woj91, Chapter III.A]). We shall
therefore assume in the remainder of the proof of (3.45)
that p ∈ (1, 2).

Marcus–Pisier proved [MP84, Section 2] the follow-
ing statement, using structural results for p-stable pro-
cesses (a precise deduction of the ensuing statement
from the formulations in [MP84] appears in [LMN05,
Lemma 2.1]). There exists a probability space (Ω,P)
and a P-to-Borel measurable mapping (ω ∈ Ω) 7→ Tω ∈
L(`p, `2) (here L(`p, `2) is the space of bounded oper-
ators from `p to `2, equipped with the strong operator
topology) such that for every ω ∈ Ω and x ∈ `p r {0}
the random variable

(ω ∈ Ω) 7→ ‖Tω(x)‖`2
‖x‖`p

(3.51)

has the same distribution as the random variable X of
Lemma C.1 (in particular, its distribution is indepen-
dent of the choice of x ∈ `p r {0}). Consequently, for

every i, j ∈ {1, . . . , n} we have

ˆ
Ω

∥∥Tω(xi)− Tω(xj)‖`2 dP(ω)

= ‖xi − xj‖`p · E[X]
(3.47)
�
‖xi − xj‖`p

p− 1
. (3.52)

It also follows from the above discussion and
Lemma C.1 that for every t ∈ (0,∞) we have

P
[ ⋂
i,j∈{1,...,n}

{
ω ∈ Ω :

‖Tω(xi)− Tω(xj)‖`2 > t‖xi − xj‖`p
}]

> 1−
∑

i,j∈{1,...,n}
i 6=j

P
[{
ω ∈ Ω :

‖Tω(xi)− Tω(xj)‖`2
‖xi − xj‖`p

< t

}]
(3.48)

> 1−
(
n

2

)
exp

(
−
(
p
2

) p
2−p

(
1− p

2

)
t

2p
2−p

)
. (3.53)

If we choose

t = t(n, p)
def
=

√
p

2

(
2− p
4 log n

) 1
p−

1
2

,

then the right hand side of (3.53) becomes greater than
1/2. In other words, this shows that there exists a
measurable subset A ⊆ Ω with P[A] > 1/2 such that
for every ω ∈ A and i, j ∈ {1, . . . , n},

‖xi−xj‖`p 6

√
2

p

(
4 log n

2− p

) 1
p−

1
2

‖Tω(xi)−Tω(xj)‖`2

6 4(log n)
1
p−

1
2 ‖Tω(xi)− Tω(xj)‖`2 , (3.54)

where the last step of (3.54) uses the elementary in-
equality (2/(2−p))(2−p)/(2p)

√
2/p 6 4, which holds true

(with room to spare) for every p ∈ [1, 2).
Since {Tω(x1), . . . , Tω(xn)} ⊆ `2 is a subset of

Hilbert space of cardinality at most n, by the Johnson–
Lindenstrauss dimensionality reduction lemma [JL84]
there exists k ∈ N with k . log n such that for every
ω ∈ Ω there exists a linear operator Qω : `2 → Rk such
that for every i, j ∈ {1, . . . , n} we have

‖Tω(xi)− Tω(xj)‖`2 6 ‖QωTω(xi)−QωTω(xj)‖`k2
6 2‖Tω(xi)− Tω(xj)‖`2 . (3.55)

An examination of the proof in [JL84] reveals that
the mapping ω 7→ Qω can be taken to be P-to-Borel



measurable, but actually Qω can be chosen from a fixed
finite list of operators (see [Ach03]), so measurability
is not an issue here (regardless, we will be dealing
below only with random partitions of the finite set
{x1, . . . , xn}, so measurability isn’t of concern in the
present setting, but it may become relevant to future
applications of these ideas in infinitary settings).

Fix ∆ ∈ (0,∞). By the case p = 2 of (1.3), there
exists a probability space (Θ,µ) and a mapping θ 7→ Rθ

that assigns a Borel partition of Rk to every θ ∈ Θ such
that for every (ω, θ) ∈ Ω×Θ and i ∈ {1, . . . , n} we have

diam`k2

(
Rθ
(
QωTω(xi)

))
6

∆

4(log n)
1
p−

1
2

, (3.56)

and also every ω ∈ Ω and i, j ∈ {1, . . . , n} satisfy

µ
({
θ ∈ Θ : Rθ

(
QωTω(xi)

)
6= Rθ

(
QωTω(xj)

)})
.

√
k

∆/
(

4(log n)
1
p−

1
2

)∥∥QωTω(xi)−QωTω(xi)
∥∥
`k2

.
(log n)

1
p

∆

∥∥Tω(xi)− Tω(xi)
∥∥
`2
, (3.57)

where the last step of (3.57) uses the right-hand in-
equality in (3.55) and the fact that k . log n. Note
that we are actually using here partitions of infinite sub-
sets of Rk rather than what is guaranteed by the bound
SEP(`k2) .

√
k of [CCG+98]. But, as we stated earlier,

the infinitary version of all our results follows from the
methodology of [LN05], and actually in the present Eu-
clidean setting the infinitary version that we are using
is derived explicitly in [LN05, Lemma 3.16].

Recalling the set A ⊆ Ω on which (3.54) holds
true for every i, j ∈ {1, . . . , n}, let ν be the probability
measure on A defined by ν[E] = P[E]/P[A] for every P-
measurable E ⊆ A (recall that P[A] > 1/2). For every
(ω, θ) ∈ A×Θ define a partition P(ω,θ) of {x1, . . . , xn}
by setting for every i ∈ {1, . . . , n},

P(ω,θ)(xi)

def
=
{
x ∈ {x1, . . . , xn} : x ∈ Rθ

(
QωTω(xi)

)}
. (3.58)

Then for every (ω, θ) ∈ A×Θ and every i ∈ {1, . . . , n}

we have

diam`p

(
P(ω,θ)(xi)

)
(3.58)

= max
u,v∈{1,...,n}

xu,xv∈Rθ
(
QωTω(xi)

) ‖xu − xv‖`p
(3.54)

6 4(log n)
1
p−

1
2

× max
u,v∈{1,...,n}

xu,xv∈Rθ
(
QωTω(xi)

) ‖Tω(xu)− Tω(xv)‖`2

(3.56)

6 4(log n)
1
p−

1
2

× max
u,v∈{1,...,n}

xu,xv∈Rθ
(
QωTω(xi)

) ‖QωTω(xu)−QωTω(xv)‖`k2

(3.56)

6 ∆. (3.59)

Also, every distinct i, j ∈ {1, . . . , n} satisfy

ν× µ
({

(ω, θ) ∈ A×Θ : P(ω,θ)(xi) 6= P(ω,θ)(xj)
})

(3.58)
=

ˆ
A

µ
({
θ ∈ Θ :

Rθ
(
QωTω(xi)

)
6= Rθ

(
QωTω(xj)

)})
dν(ω)

(3.57)

.
1

P[A]

ˆ
A

(log n)
1
p

∆

∥∥Tω(xi)− Tω(xi)
∥∥
`2

dP(ω)

6
2(log n)

1
p

∆

ˆ
Ω

∥∥Tω(xi)− Tω(xi)
∥∥
`2

dP(ω) (3.60)

(3.52)

.
(log n)

1
p

p− 1
·
‖xi − xj‖`p

∆
, (3.61)

where (3.60) uses the fact that P[A] > 1
2 . Due to (3.59)

and (3.61), the proof of (3.45) is complete.
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