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Partitions of metric spaces 

Let                be a metric space and     a partition 
of X.    
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Random partitions  

- Key goal in several areas of computer science 
and mathematics: use a          bounded partition 
to “simplify” the metric space.  
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Random partitions  

- Key goal in several areas of computer science 
and mathematics: use a          bounded partition 
to “simplify” the metric space.  

- The partition should “mimic” the coarse 
geometric structure (at distance scale      ) in some 
meaningful way.  

- Regions near boundaries should be “thin.” 

- Quite paradoxical, but randomness helps here… 
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Separating random partitions 

Definition (Bartal, 1996): Suppose that                
is a metric space and                     

A distribution      over        bounded random 
partitions of X is said to be       separating if  

 

 
(Implicit in several early works, variety of applications: Leighton-
Rao [1988], Auerbuch-Peleg [1990], Linial-Saks [1991], Alon-
Karp-Peleg-West [1991], Klein-Plotkin-Rao [1993], Rao [1999].) 
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Modulus of separated decomposability 

Denote by                 the minimum             such 
that for every              there is a       separating 
distribution over         bounded random 
partitions of   

 

Note: we are ignoring here technical 
measurability issues that are important for 
mathematical applications in the infinite setting. 
For TCS purposes, it suffices to deal with random 
partitions of finite subsets of X. 

SEP(X) ¾ > 0
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Theorem (Bartal, 1996): If                  then   

 

 

 

Goal of present work: to study                  for 
finite dimensional normed spaces X (and subsets 
thereof).   

 

Originated in Peleg-Reshef [1998], followed by 
important work of Charikar-Chekuri-Goel-Guha-
Plotkin [1998].  
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Sharp a priori bounds 

Theorem: Suppose that X is an n-dimensional 
normed space. Then  

 

 

The upper bound follows from [CCGGP98].  

The lower bound hasn’t been noticed before: it 
follows from a theorem of Bourgain-Szarek 
(1988) that is a consequence of the Bourgain-
Tzafriri restricted invertibility principle (1987).  

p
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Both bounds are asymptotically sharp, as shown 
in [CCGGP98]. In fact, it is proved there that 

 

 

For                       and   
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In [CCGGP98], Charikar-Chekuri-Goel-Guha-Plotkin 
asserted that 

 

 

 

The upper bound on                   in the above 
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asserted that 

 

 

 

The upper bound on                   in the above 
equivalence is valid as stated for all                        
but we show here that the matching lower bound 
is incorrect when                       Thus, in particular, 
we obtain an asymptotically better probabilistic 
clustering of, say,              
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Theorem: For every  

 

 

 

In particular, the previous best known bound 
when               was                            (and this was 
asserted in [CCGGP98] to be sharp), but here we 
show that actually   
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The source of the error in [CCGGP98] was that it 
relied on unpublished work of Indyk (1998) that 
was not published since then; we confirmed 
with Indyk as well as with some of the authors 
of [CCGGP98] that there is indeed a flaw in the 
(unpublished) work of Indyk that was cited.  

 

There is no flaw in the proof of [CCGGP98] in the 
range                    i.e.,  p 2 [1; 2];

p 2 [1; 2] =) SEP(`np) ³ n
1
p :



Refined probabilistic partitions for 
sparse or rapidly decaying vectors 

 For              and                            denote by               
the subset of        consisting of all of those 
vectors with at most k nonzero entries, 
equipped with the       metric.     

 

Theorem: For every             we have   
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The special case             becomes 

 

 

 

A curious aspect of this bound is that despite 
the fact that it is a statement about Euclidean 
geometry, our proof involves non-Euclidean 
geometric considerations. Specifically, the 
ubiquitous “iterative ball partitioning method” is 
applied to balls in       with      
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Mixed-metric random partitions  

Theorem: For every                    and              there 
exists a distribution     over random partitions of 
with the following properties. 

1) 

2)   For every 
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In particular, the special case             shows that 
one can obtain a random partition of        into 
clusters of        diameter at most      yet with the 
exponentially stronger Euclidean separation 
property         
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Iterative ball partitioning method  

Karger-Motwani-Sudan (1998), 

Charikar-Chekuri-Goel-Guha-Plotkin (1998), 

Calinescu-Karloff-Rabani (2001). 

 

Iteratively remove balls of radius           centered 
at i.i.d. points in the normed space X.   
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Theorem: Let             be a norm on        and let     
be the random partition that is obtained using 
iterative ball partitioning where the underlying 
balls are balls of radius          in the norm              
Then (by design)                                     for all       
and for every                    we have   
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Sharp when the right hand side is < 1 (using

SchmuckenschlÄager [1992]).



Extremal hyperplane projections 

The previously stated theorems about random 
partitions of       follow from this general 
theorem in combination with the evaluation of 
the extremal volumes of hyperplane projections 
of the unit ball of      that were obtained by 
Barthe-N. (2002).     

`np

`np



Extremal hyperplane projections 

Theorem (Barthe-N., 2002): For every                    
the following function is increasing in p.   

 

 

 

When               the above ratio attains its maximum 
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The need to use an auxiliary metric 

In the special case of         if one applies iterative 
ball partitioning using balls in the intrinsic metric 
(which are in this case simply axis-parallel 
hypercubes                           ), then one obtains a 
separation modulus of n.  

In other words, one cannot obtain our better 
estimate                                         using the intrinsic 
metric of the space that we wish to partition!    
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The need to use an auxiliary metric 

Our bound follows by applying this procedure 
using balls in the metric that is induced from 

 

The metrics on       and            are O(1)-equivalent 
(the balls in            are “rounded cubes”). But the 
corresponding volumes change drastically, which 
allows our theorem to yield a better (almost 
sharp) bound on      

`nlogn:

`n1 `nlogn
`nlogn

SEP(`n1):



Further applications 

• Solution of longstanding open problems on the 
extension of Lipschitz functions. 

• Improved probabilistic partitions of the 
Schatten-von Neumann trace classes       and 
their subset consisting of all the matrices of 
rank at most k (N.-Schechtman, forthcoming); 
improved Lipschitz extension theorems for  

• New volumetric stability theorems.  

• Several additional results in full journal version. 
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