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Abstract

This paper addresses two problems lying at the intersection of geometric analysis and theoretical
computer science: The non-linear isomorphic Dvoretzky theorem and the design of good approximate
distance oracles for large distortion. We introduce the notion of Ramsey partitions of a finite metric
space, and show that the existence of good Ramsey patrtitions implies a solution to the metric Ramsey
problem for large distortion (a.k.a. the non-linear version of the isomorphic Dvoretzky theorem, as
introduced by Bourgain, Figiel, and Milman ii8]). We then proceed to construct optimal Ramsey
partitions, and use them to show that for every (0, 1), anyn-point metric space has a subset of size
n'~¢ which embeds into Hilbert space with distorti@{1/¢). This result is best possible and improves
part of the metric Ramsey theorem of Bartal, Linial, Mendel and N&prih addition to considerably
simplifying its proof. We use our new Ramsey partitions to design the best known approximate distance
oracles when the distortion is large, closing a gap left open by Thorup and ZwiBKk]inNamely, we
show that for anyn point metric spac&, andk > 1, there exists a®(k)-approximate distance oracle
whose storage requiremem@s(n“l/ k), and whose query time is a universal constant. We also discuss
applications of Ramsey partitions to various other geometric data structure problems, such as the design
of efficient data structures for approximate ranking.
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1 Introduction

Motivated by the search for a non-linear version of Dvoretzky’s theorem, Bourgain, Figiel and Miinan [
posed the following problem, which is known today asnietric Ramsey problenGiven a target distortion

a > 1 and an integen, what is the largesk such thatany n-point metric space has a subset of dize
which embeds into Hilbert space with distortia? (Recall that a metric spac,(dx) is said to embed
into Hilbert space with distortion if there exists a mappin@ : X — L, such that for everyx,y € X, we
havedx(x,y) < [If(X) — f(Y)ll2 < adx(X,Y)). This problem has since been investigated by several authors,
motivated in part by the discovery of its applications to online algorithms — we reféf for[a discussion

of the history and applications of the metric Ramsey problem.

The most recent work on the metric Ramsey problem is due to Bartal, Linial, Mendel ancG\aadn¢
obtained various nearly optimal upper and lower bounds in several contexts. Among the reSitstimg
following theorem which deals with the case of large distortion: For ewegy(0, 1), anyn-point metric
space has a subset of size? which embeds into an ultrametric with distorti % (recall that an
ultrametric , dx) is a metric space satisfying for evexyy, z € X, dx(x, y) < max{dx(Xx, 2), dx(y, 2)}). Since
ultrametrics embed isometrically into Hilbert space, this is indeed a metric Ramsey theorem. Moreover, it
was shown inff] that this result is optimal up to the log{® factor, i.e. there exists arbitrarily largepoint
metric spaces any subset of which of si2e” incurs distortior2(1/<) in any embedding into Hilbert space.
The main result of this paper closes this gap:

Theorem 1.1. Let (X, dx) be ann-point metric space and € (0, 1). Then there exists a subsétc X with
Y| > n'~¢ such that(Y, dx) is equivalent to an ultrametric with distortion at md@j—‘.

In the four years that elapsed since our work§jrtifiere has been remarkable development in the struc-
ture theory of finite metric spaces. In particular, the theory of random partitions of metric spaces has been
considerably refined, and was shown to have numerous applications in mathematics and computer science
(see for examplell/, 25, 24, 1] and the references therein). The starting point of the present paper was
our attempt to revisit the metric Ramsey problem using random partitions. It turns out that this approach
can indeed be used to resolve the metric Ramsey problem for large distortion, though it requires the in-
troduction of a new kind of random partition, an improved “padding inequality” for known partitions, and
a novel application of the random partition method in the setting of Ramsey problems. In $:et@n
introduce the notion of Ramsey partitions, and show how they can be used to address the metric Ramsey
problem. We then proceed in Secti@8mo construct optimal Ramsey partitions, yielding Theored Our
construction is inspired in part by Bartal’s probabilistic embedding into t#leafd is based on a random
partition due to Calinescu, Kafiband Rabani9], with an improved analysis which strengthens the work
of Fakcharoenphol, Rao and Talwaf]. In particular, our proof of Theore.1is self contained, and con-
siderably simpler than the proof of the result frcdg) fuoted above. Nevertheless, the constructiorbpf [
is deterministic, while our proof of Theorefinl is probabilistic. Moreover, we do not see a simple way
to use our new approach to simplify the proof of another main resufijphfmely the phase transition at
distortiona = 2 (we refer to ] for details, as this result will not be used here). The result&pivhich
were used crucially in our worl2[7] on the metric version of Milman’s Quotient of Subspace theorem are
also not covered by the present paper.

Algorithmic applications to the construction of proximity data structures. The main algorithmic ap-
plication of the metric Ramsey theorem Bj |s to obtain the best known lower bounds on the competitive
ratio of the randomize#-server problem. We refer t&] and the references therein for more information



on this topic, as Theoreh 1 does not yield improve#-server lower bounds. However, Ramsey partitions
are useful to obtain positive results, and not only algorithmic lower bounds, which we now describe.

A finite metric space can be thought of as given bynits n distance matrix. However, in many algo-
rithmic contexts it is worthwhile to preprocess this data so that we store significantly less thambers,
and still be able to quickly find owtpproximatelythe distance between two query points. In other words,
quoting Thorup and Zwick31], “In most applications we are not really interestedaihdistances, we just
want the ability to retrieve them quickly, if neededhe need for such “compact” representation of metrics
also occurs naturally in mathematics; for example the methods developed in theroetical computer science
(specifically [L1, [2Q]) are a key tool in the recent work of ferman and Klartagllg] on the extension of
C™ functions defined on points inRY to all of RY.

An influential compact representation of metrics used in theoretical computer sciencepptbheimate
distance oracld3,'14,131,20]. Stated formally, al, S, Q, D)-approximate distance oracle on a finite metric
space X, dx) is a data structure that takes expected tini® preprocess from the given distance matrix,
takes spac§ to store, and given two query pointsy € X, computes in tim& a numberE(x, y) satisfying
dx(x,y) < E(x,y) < D-dx(x,y). Thus the distance matrix itselfisB € O(1), S = O(n?), Q = O(1), D = 1)-
approximate distance oracle, but clearly the interesti®inpactata structures in the sense tBat o(n?).

In what follows we will depart from the above somewhat cumbersome terminology, and simply discuss
D-approximate distance oracles (emphasizing the distoRigrand state in words the values of the other
relevant parameters (namely the preprocessing time, storage space and query time).

An important paper of Thorup and ZwicB1] constructs the best known approximate distance oracles.
Namely, they show that for every intedereveryn-point metric space has a2 1)-approximate distance
oracle which can be preprocessed on ti@?**/%), requires storag® (k- n**'/¥), and has query time
O(k). Moreover, it is shown in31] that this distortiofstorage trade®is almost tight: A widely believed
combinatorial conjecture of Eéd [16] is shown in B1] (see also(2€]) to imply that any data structure
supporting approximate distance queries with distortion at most 2 must be of size at Iea§z(n1+1/k)
bits. Since for large values &fthe query time of the Thorup-Zwick oracle is large, the problem remained
whether there exist good approximate distance oracles whose query time is a constant independent of the
distortion (i.e., in a sense, true “oracles”). Here we use Ramsey partitions to answer this question positively:
For any distortion, every metric space admits an approximate distance oracle with preprocessing time and
space almost as good as the Thorup-Zwick oracle (in fact, for distortions largeR(lwaym/ log logn) our
storage space is slightly better), but whose query time is a universal constant. Stated formally, we prove the
following theorem:

Theorem 1.2. For anyk > 1, everyn-point metric spacé€X, dx) admits aO(k)-approximate distance oracle
whose preprocessing time(B(n2+1/k log n), requiring storage spac® (n1+1/"), and whose query time is a
universal constant.

Another application of Ramsey patrtitions is to the construction of data structuraggmximate rank-
ing. This problem is motivated in part by web search and the analysis of social networks, in addition to being
a natural extension of the ubiquitous approximate nearest neighbor search proble2p28e#3] and the
references therein). In the approximate nearest neighbor search problem we aregil/em metric space
(X, dx), and a subset c X. The goal is to preprocess the data pomto that given a query poixte X\ Y
we quickly return a poiny € Y which is ac-approximate nearest neighborxfi.e. dx(x,y) < cdx(x,Y).
More generally, one might want to find the second closest poixirteY, and so forth (this problem has been
studied extensively in computational geometry, see for exar@plelp other words, by ordering the points
in X in increasing distance from € X we induce groximity rankingof the points ofX. Each point ofX



induces a dferent ranking of this type, and computingffieiently is a natural generalization of the nearest
neighbor problem. Using our new Ramsey partitions we design the following data structure for solving this
problem approximately:

Theorem 1.3.Fix k > 1, and ann-point metric spacéX, dx). Then there exist a data structure which can be
preprocessed in tim@ (kr?*1/*logn), uses onlyO (kn'**/) storage space, and supports the following type
of queries: Giverx € X, have “fast access” to a permutation of9 of X satisfying forevenl <i < j <n,
dx (x 709(i)) < O(K) - dx (x, 7(j)). By “fast access” tor® we mean that we can do the following:

1. Given a pointx € X, andi € {1, ..., n}, findz™(i) in constant time.

2. Foranyx, u € X, computej € {1,...,n} such that®™(j) = uin constant time.

As is clear from the above discussion, the present paper is a combination of results in pure mathematics,
as well as the theory of data structures. This exemplifies the close interplay between geometry and computer
science, which has become a major driving force in modern research in these areas. Thus, this paper “caters”
to two different communities, and we puftert into making it accessible to both.

2 Ramsey partitions and their equivalence to the metric Ramsey problem

Let (X, dx) be a metric space. In what follows fare X andr > 0 we letBx(x,r) = {y € X : dx(x,y) < r} be
theclosedball of radiusr centered ak. Given a partitionZ of X andx € X we denote by??(x) the unique
element of%? containingx. ForA > 0 we say that?? is A-bounded if for everyC € &2, diamC) < A. A
partition treeof X is a sequence of partitiofis?y},”  of X such that?, = {X]}, for allk > 0 the partition%

is 8K diam(X)-bounded, and¥?y,; is a refinement of# (the choice of 8 as the base of the exponent in this
definition is convenient, but does not play a crucial role here).SFpr> 0 we shall say that a distribution

Pr over partition tree§#},” , of X is completelys-padded with exponentif for every x € X,
Pr[v ke N, Bx(x 8- 8 diamX)) ¢ Z(x)| = IX|7.

We shall call such distributions over partition tré&@@msey partitions

The following lemma shows that the existence of good Ramsey patrtitions implies a solution to the metric
Ramsey problem. In fact, it is possible to prove the converse direction, i.e. that the metric Ramsey theorem
implies the existence of good Ramsey partitions (with appropriate dependence on the various parameters).
We defer the proof of this implication to Appends:as it will not be used in this paper due to the fact that
in Sectiori3 we will construct directly optimal Ramsey partitions.

Lemma 2.1. Let (X, dx) be ann-point metric space which admits a distribution over partition trees which
is completelys-padded with exponent. Then there exists a subsétc X with |Y| > n* which is8/3
equivalent to an ultrametric.

Proof. We may assume without loss of generality that didjng 1. Let {Z}, be a distribution over
partition trees ofX which is completely3-padded with exponent. We define an ultrametrip on X as
follows. Forx,y € X let k be the largest integer for whict(x) = Zi(y), and sep(x,y) = 8. Itis
straightforward to check thatis indeed an ultrametric. Consider the random suldsetX given by

Y:{xeX: YkeN, Bx(x,,8-8‘k)ggzk(x)}.



Then
ElY| = Z PI’[V k e N, Byx (x,ﬁ . 8—kdiam(x)) C ﬁzk(x)] > i,

XeX

We can therefore choodec X with |Y| > n'~” such that for alk € Y and allk > 0 we haveByx (x, 8- 87) C
Z(X). Fix x,y € X, and letk be the largest integer for whict(x) = Z(y). Thendx(xy) <
diam(Z(x)) < 87 = p(x,y). On the other hand, ik € X andy € Y then, sinceZ,1(X) # Z1(Y),
the choice ofY implies thatx ¢ Bx (y.3-871). Thusdx(x.y) > 8- 871 = £p(x.y). It follows that the
metricsdy andp are equivalent ofY with distortion §2. m|

3 Constructing optimal Ramsey partitions

The following lemma gives improved bounds on the “padding probability” of a distribution over partitions
which was discovered by Calinescu, Kdfland Rabani in9].

Lemma 3.1. Let (X, dx) be a finite metric space. Then for evexy> 0 there exits a distributiorPr over
A-bounded partitions oX such that for ever® <t < A/8 and everyx € X,
Bx(x. A/8))\ >
XX,
) @

Pr[Bx (xt) € 2(x)] = (m

Remark 3.1. The distribution over partitions used in the proof of Lem&diis precisely the distribution
introduced by Calinescu, Kaffoand Rabani in9]. In [17] Fakcharoenphol, Rao and Talwar proved the
following estimate for the same distribution

(2)

Pr[Bx (x,t) € 2(X)] > 1- O(% log IBx(x, A)| )

IBx(x, A/8)l)

Clearly the boundlX) is stronger than the boun@)( and this improvement is crucial for our proof of
Theorenil.1. The use of the “local ratio of balls” (or “local growth”) in the estime®® ¢f Fakcharoenphol,
Rao and Talwar was a fundamental breakthrough, which, apart from their striking applicatlod), ingds
since found several applications in mathematics and computer scienc2%s24; [1]).

Proof of Lemm&.1. Write X = {X3,...,Xs}. Let R be chosen uniformly at random from the interval
[A/4,A/2], and letr be a permutation ofl,...,n} chosen uniformly at random from all such permuta-
tions (here, and in what follow® andx are mdependent). Defir@; := Bx (Xr(1), R) and inductively for
2<j<n,

Cj = Bx Xﬂ(l)’ UC'

Finally we letZ? = {C4,...,Cy} \ {0}. Clearly &2 is a (randomi-bounded partition oiX.
For everyr e [A/4,A/2],

IBx(X,1r —1)|

Pr [Bx (x,t) C @(XMR: r] > m

3
Indeed, ifR = r, then the triangle inequality implies that if in the random order induced by the partition

on the points of the baByx(x, r + t) the minimal element is from the bdBx(x, r — t), thenBx (x,t) € £(X)
(draw a picture). This event happens with probab@é{%, implying (3).
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Write % =k + B, whereg € [0, 1) andk is a positive integer. Then

A2 B
PriBx(xt) ¢ 2(¥)] 2 %fm %dr (4)
AT [ERB(r -t 4 [T Bx(xr - 1)
- Zj 0L+2jt IBx(X,f+t)|dr+_j%:+2kt|Bx(X,r+t)|dr
. fkal’Bx x +2]t+s t)‘ds+ﬂ(é_ZKt)‘Bx(x,%+2kt—t)’
A Jo 10|Bx x, 4 +2]t+s+t)| A\4 |Bx(X,%+t)|
I (2 k—l‘BX x,%+2jt+s—t)’ i ( 8kt)|Bx(x,%+2kt—t)’
> — +|1-— (5)
A Jo Jo‘Bx X, 2 +2]t+s+t’ A |Bx(x,%+t)’
~ 4k 2t |Bx X,% + S-— t)| : . (1 8kt) |BX (X, % + 2kt — t)|
A |Bx(x,%+2t(k—1)+s+t)’ |Bx(X,%+t)’
‘Bx(x,%_t)’ 1k (1 Skt)’Bx(x,%+2kt—t)‘
A |Bx(x,%+2kt+t)| A |Bx x%+t)|
A _ s _
. ’Bx(x,4 t)| .|Bx X, & + 2kt t| ©
»’Bx(x,%+2kt+t)| |Bx x,§+t
_ ﬁ(é—k—l)
[Bx (x4~ 1) |Bx ,4+2kt—t| |Bx (x4 + 2t —t)[]*
- »’Bx(x,%+2kt+t)| |Bx ,7+t)| |Bx x,%+t)’
16t
i N
S Bx(x§ -9 ’ @
»'Bx(X,%+t)|

where in @) we usedd), in (5) we used the arithmetic me@eometric mean inequality, i®)(we used the
elementary inequalitya + (1 — 6)b > a’b’~?, which holds for alb € [0, 1] anda, b > 0, and in [7) we used

the fact thatg — k - 1 is negative.

The following theorem, in conjunction with Lemr@al, implies Theoreni. 1.

O

Theorem 3.2. For everya > 1, every finite metric spadgX, dx) admits a completel§/« padded random

partition tree with exponertt6/a.

Proof. Fix @ > 1. Without loss of generality we may assume that di@m€ 1. We construct a partition
tree{dkl_, of X as follows. Setp = {X}. Having definedsi we let #,; be a partition as in Lemmia.1

with A = 8% andt = A/ (the random partition?.1 is chosen independently of the random partitions

P, ..., ). Defineéi,1 to be the common refinement &f and %1, i.e.

Er1 ={CNC' : Ceé, C € Pl



The construction implies that for everye X and everyk > 0 we havegi1(X) = &k(X) N P1(X). Thus
one proves inductively that

—k k
VkeN, Bx(x 8—) C (X)) = VkeN, Bx(x 8—) C 8k(X).
From LemmaB.1and the independence %}, , it follows that

—k

—k
Pr|V ke N, Bx (x, 8—) - é”k(x)]
[07

Pr[v ke N, Bx (x, 87) - @k(x)]

ﬁ Pr [Bx (x ;k) C Wk(x)]

k=1
IBx(x, 87 Y)[]"
N lk_ﬂ Bx(x 89 ]

16 _16
IBx(x, 1/8) "= > [X[ .

v

4 Applications to proximity data structures

In this section we show how Theore®r can be applied to the design of various proximity data structures,
which are listed below. Before doing so we shall recall some standard facts about tree representations
of ultrametrics, all of which can be found in the discussion5h [Any finite ultrametric K, p) can be
represented by a trée = (V, E) with labelsA : V — (0, ), whose leaves ar¥, and such that it,v € V

andv is a child ofu thenA(v) < A(u). Givenx,y € X we then havey(x,y) = A (Ica(x, y)), wherelca(x, y)

is the least common ancestonoéndy in T. Fork > 1 the labelled tree described above is callédHST
(hierarchically well separated tree) if its labels satisfy the stronger decay contl(tipr: A(“) whenevewr

is a child ofu. The treeT is called an exadt-HST if we actually have an equalitMv) = A(“) whenevewn
is a child ofu. Lemma 3.5 in/§] implies any 1-HST witm-leaves isk-equivalent to zk-HST which can be
computed in timeO(n).

We start by proving several structural lemmas which will play a crucial role in the design of our new
data structures.

Lemma 4.1 (Extending ultrametrics). Let (X, dx) be a finite metric space, and> 1. Fix0 # Y € X, and
assume that there exits an ultrametrion Y such that for every,y € Y, dx(X,y) < p(X,y) < adx(X,y).
Then there exists an ultrametipcdefined on all oiX such that for every,y € X we havedx(x,y) < p(x,y),
and ifx e X andy € Y thenp(x, y) < 6adx(X,Y).

Proof. Let T = (V,E) be the 1-HST representation of with labelsA : V — (0, ). In other words, the
leaves ofT areY, and for everyx,y € Y we haveA(lca(x,y)) = p(X,y). It will be convenient to augmerit

by adding an incoming edge to the root witfparent(root))= co. This clearly does not change the induced
metric onY. For everyx € X\ Y lety € Y be its closest point itY, i.e. dx(X,y) = dx(X, Y). Letu be the
least ancestor offor which A(u) > dx(X, y) (such au must exist because we added the incoming edge to the
root). Letv be the child ofu along the path connectingandy. We add a vertew on the edgégu, v} whose



label isdx(x, y), and conneckto T as a child ofv. The resulting tree is clearly still a 1-HST. Repeating this
procedure for everyx € X\ Y we obtain a 1-HST whose leaves ar¥. Denote the labels oh by A.

Fix x,y € X, and letx’, y’ € Y the nearest neighbors gfy (respectively) used in the above construction.
Then

A(lcag(x.y))

max{A (Icag(x. X)) . A (Icar(y. ) . A (Icag (X y'))}
max{dX(X’ XI)? dX(y’ }/), dX(X” Y)}
dX(X7 Xl) + dX(y9 y,) + dX(X,’ y,)

3

> Zok(xy) ®)

\Y

\%

_Inthe reverse direction, ¥ € Xandy € Y letx’ € Y be the closest point il to x used in the construction
of T. Thendx(X',y) < dx(X', X) + dx(X,y) < 2dx(x,y). If Icaz(y, X’) is an ancestor dtas(x, xX’) then

A(lcaz(x.y)) = A(lcap(X.y)) = p(X.y) < @ dx(X,y) < 20 - dx(X.Y). (9)

If, on the other handcasz(y, X’) is a descendant dfaz(x, X’) then
A(lcar(x.y)) = A(lcap(x X)) = dx(x, X) < dx(x.Y). (10)

Scaling the labels of by a factor of 3, the required result is a combination®f (9) and (L0). m|

The following lemma is a structural result on the existence of a certain distribution over decreasing
chains of subsets of a finite metric space. In what follows we shall call such a distribusimcleastic
Ramsey chain

Lemma 4.2 (Stochastic Ramsey chains).et (X, dx) be ann-point metric space andd > 1. Then there
exists a distribution over decreasing sequences of subsetsXg 2 X1 2 Xo--- 2 Xg = 0 (sitself is a
random variable), such that for app > —-1/k,

s-1 K
p . nP+1/k
,E:o IXIP| < (max{ 17 ok 1}) nPri/k, (11)

and such that for eachh € {1,..., s} there exists an ultrametrip; on X satisfying for every,y € X,
pi(Xy) > dx(x,y), and ifx e X andy € Xj_1 \ Xj thenpj(x,y) < O(k) - dx(X,y).

E

Remark 4.1. In what follows we will only use the casgsc {0, 1, 2} in Lemma4.2. Observe that fop = 0,
(1) is simply the estimat&s < kn'/K,

Proof of Lemm&.2. By the TheorenB.2 and the proof of Lemma.1 there is a distribution over subsets
Y1 C Xg such thafE|Ys] > n}~X and there exists an ultrametg¢ on Y; such that every,y e Y; satisfy
dx(x,Y) < p1(x.y) < O(K) - dx(x, y). By Lemma4.1we may assume that is defined on all o, for every
X,y € Xwe havep1(x,y) > dx(x,y), and ifx € Xandy € Y thenpi(X,y) < O(K)-dx(x, y). DefineX; = Xo\Y1
and apply the same reasoningdg obtaining a random subsét C Xo\Y; and an ultrametrip,. Continuing
in this manner until we arrive at the empty set, we see that there are disjoint sifgsets,Ys € X, and

for eachj an ultrametrico; on X, such that forx,y € X we havepj(x,y) > dx(x,y), and forx € X,



y € Yj we havepj(x,y) < O(K) - dx(x,y). Additionally, writing X; := X\ UijzlYi, we have the estimate
E [|Yj||Y1, L Y,-_l] > X g2k,

The proof of (1) is by induction om. Forn = 1 the claim is obvious, and if > 1 then by the inductive
hypothesis

E Y1

IA

k
nP + (max 1}) X PR

1+p

p+1/k
o+ (max] —<_ 11| perrc(q - Ml '
1+ pk’ n
K . 1 Y1]
Pk 1) il
et (e finfo ) )

(max{ 1 +kpk’ l}) PR 4P — PRy

=~

s-1
2 Xl
=0

+

IA

nP + (max

Taking expectation with respect ¥ gives the required result. |

Remark 4.2. If one does not mind losing a factor Gflogn) in the construction time and storage of the
Ramsey chain, then an alternative to LemdinZiis to randomly and independently sammeénl/klog n)
ultrametrics from the Ramsey partitions.

Before passing to the description of our new data structures, we need to say a few words about the
algorithmic implementation of Lemm&Z2 (this will be the central preprocessing step in our constructions).
We should point out here that the computational model in which we will be working is the RAM model,
which is standard in the context of our type of data-structure problems (see for ex@ijjpldr fact, we
can settle for weaker computational models such as the “Unit cost floating-point word RAM model” — a
detailed discussion of these issues can be found in Section 220]of [

The natural implementation of the Calinescu-K#&rRabani (CKR) random partition used in the proof
of Lemma3.1 takesO (nz) time. Denote byd = ®(X) the aspect ratio oX, i.e. the diameter oX divided
by the minimal positive distance X. The construction of the distribution over partition trees in the proof of
Theoremi3.2 requires performin@(log ®) such decompositions. This results(h(n2 log <I>) preprocessing
time to sample one patrtition tree from the distribution. Using a standard technique (described for example
in |20, Sections 3.2-3.3]), we dispense with the dependence on the aspect ratio and obtain that the expected
preprocessing time of one partition treeﬂﬁn2 log n). Since the argument ii20] is presented in a slightly
different context, we shall briefly sketch it here.

We start by constructing an ultrametgion X, represented by an HS, such that for every,y € X,
dx(x,Y) < p(%y) < ndx(x,y). The fact that such a tree exists is containecbirLpmma 3.6], and it can be
constructed in tim® (nz) using the Minimum Spanning Tree algorithm. This implementation is dorfin |
Section 3.2]. We then apply the CKR random patrtition with diamatas follows: Instead of applying it to
the points inX, we apply it to the vertices of H for which

A
A(U) < = < A (parent(r)). (12)
Each such verteyu represents all the subtree rootedidin particular, we can choose arbitrary leaf descen-

dants to calculate distances — these distances are calculated using thalg)etaia they are all assigned
to the same cluster asin the resulting partition. This is essentially an application of the algorithm to an
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appropriate quotient ak (see the discussion ii27]). We actually apply a weighted version of the CKR
decomposition in the spirit 0B, in which, in the choice of random permutation, each vettes above
is chosen with probability proportional to the number of leaves which are descendan{saté that this
change alters the guarantee of the partition only slightly: We will obtain clusters boun &GijnZ)A,
and in the estimate on the padding probability the radii of the balls is changed by only a facteriynj}.
We also do not process each scale, but rather work in “event driven mode”: Vertiekearefput in a non
decreasing order according to their labels in a queue. Each time we pop a newwemekpartition the
spaces at all the scales in the rangéu), n°A(u)], for which we have not done so already. In doing so
we dfectively skip “irrelevant” scales. To estimate the running time of this procedure note that the CKR
decomposition at scald 8akes timeO(miz), wheremy is the number of vertices of H satisfying [2) with
A = 8. Note also that each vertex f participates in at mogD(logn) such CKR decompositions, so
>im = O(nlogn). Hence the running time of the sampling procedure in Lerdmds up to a constant
factor ¥ ¢ = O(n?logn).

The Ramsey chain in Lemrga2 will be used in two diferent ways in the ensuing constructions. For our
approximate distance oracle data structure we will just need that the ultrapesidefined onX;_; (and
not all of X). Thus, by the above argument, and Len#@ the expected preprocessing time in this case is
O(E X1 1Xj2log @(X;)) = O(n**/¥logn) and the expected storage spac® (& ¥5_11X;[) = O (n**1/¥).
For the purpose of our approximate ranking data structure we will really need the rnpgtiicbe defined
on all of X. Thus in this case the expected preprocessing time wid i logn - Es) = O(kr#*/*logn),

and the expected storage spac® & - Es) = O(kn1+1/ k).

1) Approximate distance oracles. Ourimproved approximate distance oracle is contained in Thebrgm
which we now prove.

Proof of Theorerd.2. We shall use the notation in the statement of Len#fa LetT; = (Vj,E;) and
Aj 1 Vj — (0, ) be the HST representation of the ultrametri¢which was actually constructed explicitly
in the proofs of Lemm2.1and Lemm&.2). The usefulness of the tree representation stems from the fact
that it very easy to handle algorithmically. In particular there exists a simple scheme that takes a tree and
preprocesses itin linear time so that it is possible to compute the least common ancestor of two given nodes
in constant time (se&ll, 6]). Hence, we can preprocess any 1-HST so that the distance between any two
points can be computed @(1) time.

For every pointx € X let iy be the largest index for whick € X; _1. Thus, in particularx € Y;,. We
further maintain for every € X a vector (in the sense of data-structunes}, of lengthiy (with O(1) time
direct access), such that fioe {0, ..., ix— 1}, vegi] is a pointer to the leaf representingn T;. Now, given
a queryx,y € X assume without loss of generality that< iy. It follows thatx,y € X; _1. We locate the
leavesx"= veg(ix], andy = veg/[iy] in T;,, and then computkea (X, ) to obtain anO(k) approximation
to dx(x,y). Observe that the above data structure only requirés be defined orXj_; (and satisfying the
conclusion of Lemmd.2for X,y € X;_1). The expected preprocessing timé)'énzwk log n). The size of

the above data structure(m(zjsz0 |Xj|), which is in expectatiom(n1+1/k)_ 5

Remark 4.3. Using the distributed labeling for the least common ancestor operation on trees oiZ3gleg [

the procedure described in the proof of Theoi®@can be easily converted todistance labelinglata
structure (we refer tad1, Section 3.5] for a description of this problem). We shall not pursue this direction
here, since while the resulting data structure is non-trivial, it does not seem to improve over the known
distance labeling schemal].



2) Approximate ranking. Before passing to our-approximate ranking data structure (TheolEi§) we
recall the setting of the problem. Thinking Bfas a metric o1, ..., n}, and fixinga > 1, the goal here is
to associate with every € X a permutationt® of {1, ..., n} such thatdx (x, 7®(i)) < e - dx (x, z0(j)) for
every 1< i < j < n. This relaxation of the exact proximity ranking induced by the metgi@llows us to
gain storageféiciency, while enabling fast access to this data. By fast access we mean that we can preform
the following tasks:
1. Given an element € X, andi € {1,...,n}, find z™(i) in O(1) time.
2. Given an element € X andy € X, find numbet € {1,...,n}, such thatr™®(i) =y, in O(1) time.
Before passing to the proof of Theordn® we require the following lemma.

Lemma 4.3. Let T = (V,E) be a rooted tree witm leaves. Forv € V, let % (v) be the set of leaves in
the subtree rooted at, and denotet(v) = | £ (V). Then there exists a data structure, that we Gille-
Ancestor, which can be preprocessed in tid¢n), and answers in tim@®(1) the following query: Given
¢ € N and a leafx € V, find an ancestou of x such thatft(u) < ¢ < {(parent())). Here we use the
conventiorY(parent(root))= co.

To the best of our knowledge, the data structure described in Lehfhhas not been previously studied.
We therefore include a proof of Lemrda3 in AppendixA| and proceed at this point to conclude the proof
of Theoreml.2

Proof of Theorerd.3. We shall use the notation in the statement of Len#fa LetT; = (Vj,E;) and

Aj 1V — (0, c0) be the HST representation of the ultrametricWe may assume without loss of generality
that each of these trees is binary and does not contain a vertex which has only one child. Before presenting
the actual implementation of the data structure, let us explicitly describe the permut&itivat the data
structure will use. For every internal vertex V; assign arbitrarily the value 0 to one of its children, and the
value 1 to the other. This induces a unique (lexicographical) order on the leaVgsNéxt, fix x € X and

ix such thatx € Y;,. The permutatiomr®™ is defined as follows. Starting from the leafn T;,, we scan the
path fromx to the root ofT; . On the way, when we reach a vertekom its childv, letw denote the sibling

of v, i.e. the other child ofi. We next output all the leafs which are descendants a€cording to the total
order described above. Continuing in this manner until we reach the rdgtwe obtain a permutatiod®

of X.

We claim that the permutatior? constructed above is @(k)-approximation to the proximity ranking
induced byx. Indeed, fixy,z € X such thaiCk - dx(x,y) < dx(x, 2), whereC is a large enough absolute
constant. We claim that will appear aftery in the order induced by®. This is true since the distances
from x are preserved up to a factor©{k) in the ultrametricT;, . Thus for large enoug@ we are guaranteed
thatdr, (X, y) < dr, (X 2), and therefordcar, (X, 2) is a proper ancestor d¢ar, (x,y). Hence in the order
just describe above,will be scanned before

We now turn to the description of the actual data structure, which is an enhancement of the data structure
constructed in the proof of Theoret?. As in the proof of Theorerd.2 our data structure will consist of
a “vector of the treed;”, where we maintain for eack € X a pointer to the leaf representingn each
T;. The remaining description of our data structure will deal with eachTfeseparately. First of all, with
each vertex € T; we also store the number of leaves which are the descendantseof.#7, (v)| (note that
all these numbers can be computed in ti@@) time using, say, depth-first search). With each leaf pf
we also store its index in the order described above, and there is a reverse indexing by a vector that allows,
given an index, to find the corresponding vertexdfil) time. Each internal vertex contains a pointer to its
leftmost (smallest) and rightmost (largest) descendant leaves. This data structure can be clearly constructed
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in O(n) time using, e.g., depth-first transversal of the tree. We now give details on how to answer the required
gueries using the “ammunition” we have listed above.

1. Using Lemmeéd4.3 find an ancestov of x such thatfr,(v) < i < fr,(parenty)) in O(1) time. Let
u = parent¢) (note thatv can not be the root). Let be the sibling ofv (i.e. the other child o).
Next we pick the leaf numbere(di— é’Tj(v)) + left(w) — 1, where leftv) is the index to the leftmost
descendant ofv.

2. Findu = Ica(x,y) (in O(1) time, using 21, 6]). Let vandw be the children ofi, which are ancestors
of x andy, respectively. Returir,(v) + ind(y) — left(w), where indy) is the index ofy in the total
order of the leaves of the tree.

This concludes the construction of our approximate ranking data structure. Because we need to have
the ultrametrico; defined on all ofX, the preprocessing time @(kn2+1/klog n) and the storage size is

O (kn*1/%), as required. O

Remark 4.4. Our approximate ranking data structure can also be used in a nearest neighbor heuristic called
“Orchard Algorithm” 28] (see alsol13, Sec. 3.2]). In this algorithm the vanilla heuristic can be used to
obtain the exact proximity ranking, and requires stor@g(az). Using approximate ranking the storage
requirement can be significantly improved, though the query performance is somewhat weaker due to the
inaccuracy of the ranking lists.

3) Computing the Lipschitz constant. Here we describe a data structure for computing the Lipschitz
constant of a functiorf : X — Y, where {,dy) is an arbitrary metric space. WhekK, flx) is adoubling
metric spacgsee P2)), this problem was studied it20]. In what follows we shall always assume tHat

is given inoracle form i.e. it is encoded in such a way that we can compute its value on a given point in
constant time.

Lemma 4.4. There is an algorithm that, given anpoint ultrametric(U, dy) defined by the HST = (V, E)
(in particular U is the set of leaves df), an arbitrary metric spacgy, dy), and a mappingf : U — Y,
returns in timeO(n) a numberA > 0 satisfying|| fllLip > A> 2 - [|flILip-

Proof. We assume thal is 4-HST. As remarked in the beginning of Sectiinthis can be achieved by
distorting the distances ld by a factor of at most 4, i@(n) time. We also assume that the tfestores for
every vertexs € V an arbitrary leak, € U which is a descendant #f(this can be easily computed @(n)
time). For a vertexi € V we denote by(u) its label (i.e.¥Y x,y € U, dy(x,y) = A(lca(x,y))).

The algorithm is as follows:

Lip-UM (T, f)
A<0
For every vertexi € T do
Letvy, ...V, be the children ofti.

v (F(xvy).F (% ))}

A — max{A, MaX%<i<r A(U)

OutputA.
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Clearly the algorithm runs in linear time (the total number of vertices in the t®@éjsand each vertex
is visited at most twice). Furthermore, by construction the algorithm outputy f||jp. It remains prove a

lower bound orA. Letxy, x; € U be such thaftf|.ip = % and denote = Ica(x, y). Letw;, w» be

the children ofu such thatx; € %5 (w;), andx, € £7(wW.). Letv; be the “first child” ofu as ordered by the
algorithm Lip-UM (notice that this vertex has special role). Then

Oy (f Gtun). F00) O (F (). £ ()
Az max{ MY AW }
L OO, ()
-2 A(u)
L1 an(). F) — diam(f(.Z (wy)) - diam(f (Zr(wo)
-2 A(u) '

If max{diam(f (% (w1))), diam(f (L (w1)))} < %dy(f(xl), f(x2)), then we conclude that

As L dr(fOx). f(Xz)),
4 A(u)

as needed. Otherwise, assuming that dig# (wy))) > %1 - dy(f(x1), f(x2)), there existz,Z € £ (wy)
such that
dv(f(2, £(2)) - dv(f(xa), F(x2))
du(z 2) A(u)/4
which is a contradiction. m|

= I fllLip,

Theorem 4.5. Givenk > 1, anyn-point metric spacé€X, dx) can be preprocessed in tin@(n2+1/k log n),

yielding a data structure requiring storag@ n1+1/") which can answer irO (n*¥/%) time the following
query: Given a metric spagg; dy) and a mappingf : X — Y, compute a valué > 0, such thaf|f||Lip >
A > || fllLip/O(K).

Proof. The preprocessing is simply computing the tr{e‘lqssjszl as in the proof of Theore/h.2. Denotes the
resulting ultrametrics by, p1), ..., (Us, ps). Givenf : X — Y, represent it ag; : U; — Y (as a mapping
gi is the same mapping d3. Use Lemma&.4to compute an estima#g of [|gillLip, and returrA := max A.

Since all the distances id; dominate the distances X, [[fllLip > llgillLp = A, sOllfllLip > A. On the

other hand, lek,y € X be such thalif|lijp = W By Lemmad4.2, there exists € {1,..., s} such

thatdy, (x, y) < O(K) - dx(x.Y), and hencégillLip > Il fllLip/O(k), And SOA > 3% - ligillLip > Il fllLip/O(K), as
required. Since we once more only need that the ultramejris defined onX;_; and not on all ofX, the
preprocessing time and storage space are the same as in TlikeérdBy Lemma4.2 the running time is
O(X1 IXjl) = O(n*1/%) (we have aD(X;|) time computation of the Lipschitz constanton edgh o

5 Concluding Remarks

An s-well separated pair decompositigiSPD) of ann-point metric spaceX, dx) is a collection of pair
of subsetg(A;, B)IM,, Ai, Bi c X, such that

1. Vx,y € Xif x # ythen & y) € UM, (A x By).
2. Foralli # j, (A x Bi)ﬂ(Aj X Bj) =0.
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3. Foralli e {1,..., M}, dx(A;, B)) > s- maX{diam(A;), diam(B;)}.

The notion of sWSPD was first defined for Euclidean spaces in an influential paper of Callahan and
Kosaraju [IL1], where it was shown that far-point subsets of a fixed dimensional Euclidean space there
exists such a collection of siz@(n) that can be constructed (B(nlogn) time. Subsequently, this concept
has been used in many geometric algorithms (8210]), and is today considered to be a basic tool in com-
putational geometry. Recently the definition and theient construction of WSPD were generalized to the
more abstract setting of doubling metri&0]20]. These papers have further demonstrated the usefulness
of this tool (see alsallg] for a mathematical application).

It would be clearly desirable to have a notion similar to WSPD in general metrics. However, as for-
mulated above, this is impossible to do in “high dimensional” spaces, since any 2-WSPDngfoamt
equilateral space must be of s2¢n?). The present paper suggests that Ramsey partitions might be a par-
tial replacement of this notion which works for arbitrary metric spaces. Indeed, among the applications of
WSPD in fixed dimensional metrics are approximate ranking (though this application does not seem to have
appeared in print — it was pointed out to us by Sariel Har-Peled), approximate distance {8c2&}, [
spanners3g, 20], and computation of the Lipschitz consta@f]. These applications have been obtained
for general metrics using Ramsey partitions in the present paper (spanners were not discussed here since our
approach does not seem to beat previously known constructions). We believe that this direction deserves
further scrutiny, as there are more applications of WSPD which might be transferable to general metrics
using Ramsey partitions.

Acknowledgments. We are grateful to Sariel Har-Peled for letting us use here his insights on the approx-
imate ranking problem. We also thank Yair Bartal for helpful discussions.

Appendices

A The Size-Ancestor data structure

In this appendix we prove Lemn#a2 Without loss of generality we assume that the Fedoes not contain
vertices with only one child. Indeed, such vertices will never be returned as an answer for a query, and thus
can be eliminated i®(n) time in a preprocessing step.

Our data structure is composed in a modular way of twtedent data structures, the first of which is
described in the following lemma, while the second is discussed in the proof of Ldn3rtet will follow.

Lemma A.1. Fix m € N, and letT be as in Lemm&.3 Then there exists a data structure which can
be preprocessed in tim@(n+ ”'?ng”), and answers in tim@(1) the following query: Giverf € N and
a leafx € V, find an ancestou of x such thatft(u) < {m < ¢(parent(i)). Here we use the convention

{(parent(root))= co.

Proof. Denote byX the set of leaves af. For every internal vertexe V, order its children non-increasingly
according to the number of leaves in the subtrees rooted at them. Such a choice of labels induces a unique
total order onX (the lexicographic order). Denote this orderfyand letf : {1,...,n} — X be the unique
increasing map in the total order For everyv € V, =1 (% (v)) is an interval of integers. Moreover, the

set of intervals{f‘1 (“AW): ve V} forms a laminar set, i.e. for every pair of intervals in this set either

one is contained in the other, or they are disjoint. For every write f~1 (% (v)) = Iy = [A,, By], where

Ay, By € NandA, < By. Fori € {1,...,[n/m]}andj € {1,...,[n/(im)]} let F;(j) be the set of vertices
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v € V such thatly| > im, I, N [(j — 1)im + 1, jim] # 0, and there is no descendantusatisfying these two
conditions. Since at most two disjoint intervals of length at l#astan intersect a given interval of length
im, we see that for all, j, |Fi(j)| < 2.

Claim A.2. Letx € X be a leaf ofT, and¢ € N. Letu € V be the least ancestor affor which£7(u) > ¢m.

Then
{Ica(x V): veFy q ff(r)r?D}

Proof. If ue F, ([ D then sinceu = Ica(x, u) there is nothing to prove. If on the other hand F, ([ f(x)])
then since we are assuming that tiafu) > ¢m, andly N [([fg(nxq)] 1)em+ 1, [f(x)]fm] # 0 (because

f(x) € 1u), it follows thatu has a descendamin F ([ f(x)]). Thusu = Ica(x, V), by the fact thaanyancestor
w of v satisfies/t(w) > ¢1(v) > ¢m, and the minimality of. O

The preprocessing of the data structure begins with ordering the children of vertices non-increasingly
according to the number of leaves in their subtrees. The following algorithm achieves it in linear time.

SORT-CHILDREN (u)
Compute{ét(u)}uev Using depth first search.
SortV non-increasingly according G (-) (use bucket sort- sed3, Ch. 9]).
Let (v;); be the seV sorted as above.
Initialize Yu € V, the listChildrenSortedList, = 0.
Fori =1to|V|do
Add v; to the end ofChildrenSortedListparenty)-

Computingf, and the interval$l },cv is now done by a depth first searchTothat respects the above
order of the children. We next compute(j) : i €{1,...,Iln/ml}, j € {1,...,[n/(im)]} using the following
algorithm:

SUBTREE-COUNT(u)
Letvy,..., Vv be the children ofi with [ly,| = [ly,| > --- > [ly,].
Fori « [|lyl/m] down to||l\,|/m] + 1 do
For j « [Au/(im)] to[By/(im)] do
Add uto Fi(j)
Forh <« 1tor -1do
Fori « [|ly,|/m] down to||ly,,,|/m| + 1 do
For j « [By,/(im)]+ 1to[By/(im)] do
Add uto Fi(j)
Forh « 1tor do call SUBTREE-COUNTY,).

Here is an informal explanation of the correctness of this algorithm. The only relevai; etghich will
contain the vertex € V are those in the range= [||ly,|/m] + 1, [|l,|/m]]. Above this ranged, does not meet
the size constraint, and below this range &flj) which intersect$, must also intersect one of the children
of u, which also satisfies the size constraint, in which case one of the descendantdldfe in F;(j). In
the aforementioned range, we adltb F;(j) only for j such that the interval [(— 1)im + 1, jim] does not
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intersect one of the children afin a set of size larger tham. Here we use the fact that the intervals of the
children are sorted in non-increasing order according to their size. Regarding running time, this reasoning
implies that each vertex af, and each entry if;(j), is accessed by this algorithm only a constant number

of times, and each access involves only constant number of computation steps. So the running time is

Ln/m] [n/(im)]
. nlogn
O(n+ Z |Fi(J)|)=O(n+ rr? )
i=1 =1

We conclude with the query procedure. Given a quegyX and( € N, access, ([@]} in O(1) time.

Next, for eachv € F, ([@]) check whethelca(x, v) is the required vertex (we are thus using here also the
data structure for computing thea of [21,6]. Observe also that sindE;(j)] < 2, we only have a constant
number of checks to do). By Clai#.2/this will yield the required result. m|

By settingm = 1 in LemmaA.1, we obtain a data structure for ti$&ze-Ancestor problem withO(1)
query time, buO(nlogn) preprocessing time. To improve upon this, werset @(logn) in LemmaA.1,
and deal with the resulting gaps by enumerating all the possible ways in which the rermiibdeaves
can be added to the tree. Exact details are given below.

Proof of Lemmal.2 Fix m = [(logn)/4]. Each subseA C {0,...,m— 1} is represented as a numbek #
{0,...,2™— 1) by #A = Yica 2. We next construct in memory a vectnum of size 2", whereenum[#A]
is a vector of sizen, with integer index in the rangd, . .., m}, such thaenum[#A][i] = |AN{0,...,i —1}|.
Clearlyenum can be constructed i@(2™m) = o(n) time.

For each vertexiwe compute and store:

e depth() which is the edge’s distance from the roouto

e (1(u), the number of of leaves in the subtree rooted. at

e The number #,, where

Ay ={ke(0,....,m-1} : uhas an ancestor with exactly(u) + k descendant leavps

We also apply the level ancestor data-structure, that @ft@rpreprocessing time, answers in constant time
queries of the form: Given a vertexand an integed, find an ancestor ai at depthd (if it exists) (such a
data structure is constructed irff). Lastly, we use the data structure from Lem#a

With all this machinary in place, a query for the least ancestor of aXdaving at least leaves
is answered in constant time as follows. First compute [£/m]. Apply a query to the data structure
of LemmaA.1, with x andqg, and obtainu, the least ancestor of such that/r(u) > gm If ¢1(u) > ¢
thenu is the least ancestor withleaves, so the data-structure retutnsOtherwise,fr(u) < ¢, and let
a = enum[#A,][¢ — ¢t (u)]. Note that depth() — a is the depth of the least ancestorwfaving at least
leaves, thus the query uses the level ancestor data-structure to return this ancestor. Clearly the whole query
takes a constant time.

It remains to argue that the data structure can be preprocessed in linear time. We already argued about
most parts of the data structure, afidu) and depthf) are easy to compute in linear time. Thus we are
left with computing #A, for each vertexu. This is done using a top-down scan of the tree (e.g., depth first
search). The root is assigned with 1. Each non-root vert@hose parent ig, is assigned

1 if &1(v) = ¢r(u) + m
HAY — .
#A,-20M-6(W 1 (mod 2" otherwise.
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It is clear that this indeed computed# The relevant exponents are computed in advance and stored in a
lookup table. |

Remark A.1. This data structure can be modified in a straightforward way to answer queries to the least
ancestor of a given size (in terms of the number of vertices in its subtree). It is also easy to extend it to
gueries which are non-leaf vertices.

B The metric Ramsey theorem implies the existence of Ramsey partitions

In this appendix we complete the discussion in Se@iby showing that the metric Ramsey theorem implies
the existence of good Ramsey partitions. The results here are not otherwise used in this paper.

Proposition B.1. Fix @ > 1 andy € (0, 1), and assume that everypoint metric space has a subset of size
n¥ which isa-equivalent to an ultrametric. Then evempoint metric spacéX, dyx) admits a distribution
over partition treed%x},_, such that for everx € X,

1-y
ni-¢ -

1 .
Pr|V k € N, By [x, — - 8 *diam(X) | € Z«(x)| >
96
Proof. Let (X, dx) be ann-point metric space. The argument starts out similarly to the proof of Lemgna
Using the assumptions and Lem#4d iteratively, we find a decreasing chain of subséts Xg 2 X; 2
Xo--- 2 Xs = 0 and ultrametricgy, . .., ps on X, such that if we denot¥; = X;j_1 \ X; then|Y;| > |Xj_1|‘/’,
for x,y € X, pj(x,y) > dx(x,y), and forx € X, y € Y; we havepj(x,y) < 6adx(X,y). As in the proof of
Lemmad.?, it follows by induction thas < ﬁ v,

By [5, Lemma 3.5] we may assume that the ultrameifican be represented by an exact 2-H§T=
(Vj, Ej), with vertex labels\r,, at the expense of replacing the factor 6 above by 12 AL dte the label of
the root ofTj, and denote fok € N, A'j‘ ={veVj: AnVv) = 27%A;). For everyv € Vj let %(v) be the
leaves ofTj which are descendants of Thus 22k := {Z(v) : ve A¥} is a 2*A; bounded partition oK
(boundedness is in the metdg). Fix x € Y; and letv be the unique ancestor &fin A'j‘. If ze Xis such
thatdx(x.2) < 13- - 27A; thenAr, (Icar;(x.2)) = pj(x.2) < 27%A;. It follows thatzis a descendant of so
thatze 2K(x) = Zj(V). Thus 2K(x) 2 Bx (% 13 - 274)-

Passing to powers of 8 (i.e. choosing for edcthe integerf such that 8~1diam(x) < 2_kAj <
8- diam(X) and indexing the above partitions usifidnstead ofk), we have thus shown that for every
j€{d,..., s} there is a partition tre{a@d}io such that for everx € Yj we have for alk,

1

Bx (x, o s—kdiam(X)) C BYX).

Since the set¥y, ..., YscoverX, ands < rl‘l_—_; the required distribution over partition trees can be obtained
: i+ 1% s|® ;
by choosing one of the partition treﬁk}kzo e, {%’k}kzo uniformly at random. O
Remark B.1. Motivated by the re-weighting argument 2], it is possible to improve the lower bound
in PropositionB.1 for ¢ in a certain range. We shall now sketch this argument. It should be remarked,
however, that there are several variants of this re-weighting procedure (like re-weighting again at each step),

so it might be possible to slightly improve upon Proposilf for a larger range af. We did not attempt
to optimize this argument here.
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Fix n € (0,1) to be determined presently, and I&t dx) be ann-point metric space. Duplicate each
point in X N’ times, obtaining a (semi-) metric spa¥éwith n**” points (this can be made into a metric
by applying an arbitrarily small perturbation). We shall define inductively a decreasing chain of subsets
X =Xy 2 X 2 X, 2 - asfollows. Forx € X, let hj(x) be the number of copies ofin X/ (thus
ho(x) = ). Having definedX;, let Yi;; C X' be a subset which is-equivalent to an ultrametric and
IYi+1l = [X/|”. We then define(/, ; via

Lhi(x)/2] there exists a copy ofin Yi.1
h (X) otherwise

hiza(X) = {
Continue this procedure until we arrive at the empty set. Observe that

1 1
’ N XY 4 I —
Psal = G = 5 IXT < X (1 2n(1+n)<1—w>)'

Thus|X/| < nt*7 - (1- WM)H- It follows that this procedure terminates af@(n®’@-*)logn)
steps, and by construction each pointXofappears in® (nlogn) of the subset¥;. As in the proof of
PropositiorB.1, by selecting each of thg uniformly at random we get a distribution over partition trees
{Z} o Such that for everx e X,

1 n
Pr[v k e N, By (x, o 8 d|am(X)) C %k(x)} > Q(m)

Optimizing overy € (0, 1), we see that as long as-1y > @ we can choosg = m yielding the
probabilistic estimate

1 1 1
Pr[VkeN, BX(X,@-S kdlam(X))g%k(x)} ZQ((l—w)Iogn‘ nl—w)'

This estimate is better than PropositiBri when@ <l-y< O( @)
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