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It is widely believed that for many optimization problems, no algorithm is substantially more efficient than exhaustive
search. This means that finding optimal solutions for many practical problems is completely beyond any current or
projected computational capacity. To understand the origin of this extreme ‘hardness’, computer scientists,
mathematicians and physicists have been investigating for two decades a connection between computational complexity
and phase transitions in random instances of constraint satisfaction problems. Here we present a mathematically
rigorous method for locating such phase transitions. Our method works by analysing the distribution of distances
between pairs of solutions as constraints are added. By identifying critical behaviour in the evolution of this distribution,
we can pinpoint the threshold location for a number of problems, including the two most-studied ones: random k-SAT
and random graph colouring. Our results prove that the heuristic predictions of statistical physics in this context are
essentially correct. Moreover, we establish that random instances of constraint satisfaction problems have solutions well
beyond the reach of any analysed algorithm.

Constraint satisfaction problems are at the heart of statistical physics,
information theory and computer science. Typically, they involve
a large set of variables, each taking values in a small domain, such
as {0, 1}, and a collection of constraints, each binding a few of
the variables by forbidding some of their possible joint values.
Examples include spin-glasses in statistical physics, error-correcting
codes in information theory, and satisfiability and graph colouring in
computer science.

Given a collection of constraints, a fundamental scientific question
is how many of them can be satisfied simultaneously. Value assign-
ments maximizing this number are known as ground states. We are
interested in ‘polynomial-time’ algorithms for finding ground states,
that is, algorithms whose running time is bounded by a polynomial
in the number of variables. In the k-SAT problem there are n binary
variables x1,…,xn, and each constraint (k-clause) forbids precisely
one out of the 2k possible values of some k . 2 variables; for example,
the 3-clause x1 _ x4 _ x6 means that (x1, x4, x6) – (0, 0, 1). Trivially,
one can determine the ground-states of a k-SAT instance in time 2n,
but such an exhaustive search is intractable even when n ¼ 300.
Many problems of practical interest, such as in chip design, often
have n ¼ 105 or more variables.

Starting with Cook’s pioneering work1, since the 1970s, thousands
of problems have been shown to be computationally equivalent to
k-SAT, from protein-folding to aircraft-crew scheduling. That is, an
efficient algorithm for k-SAT would immediately give an efficient
algorithm for all such problems. It is now widely believed that no
efficient algorithm exists for k-SAT, that is, that no algorithm can
solve all instances efficiently. This is the famous P – NP conjecture.
At the same time, it is possible that most instances of k-SAT can be
solved efficiently: perhaps, genuine hardness is only present in a
minuscule fraction of all instances. As a result, a major scientific
undertaking of the last twenty years has been the study of hardness
in typical instances of constraint satisfaction problems (CSPs),
generated by sampling uniformly at random among instances with
some fixed constraints-to-variables ratio.

A breakthrough2–5 of the 1990s was the discovery that in typical

instances, hardness appears to go along with phase transitions, as
suggested in the pioneering work of Fu and Anderson6 (for more
recent accounts see also refs 7 and 8). Specifically, for many CSPs,
computational experiments suggest that as constraint density
increases, the probability that all constraints can be satisfied drops
precipitously from near 1 to near 0; at around the same point, the
complexity of finding ground-states appears to increase steeply. In
the most-studied example, random instances of k-SAT are generated
by sampling uniformly, independently and with replacement m ¼ rn
constraints from among all possible ones on x1,…,xn. To understand
where the really hard problems are, let us define r k to be the largest
value such that for r , rk, with high probability all constraints can be
satisfied. (We will say that an event occurs with high probability
(w.h.p.) if its probability tends to 1 as n ! 1.) (Throughout
the paper, we will assume that k is arbitrarily large but fixed,
while n ! 1.) Similarly, define rk* to be the smallest value such
that for r. rk* ; w.h.p. not all constraints can be satisfied. The
Satisfiability Threshold Conjecture asserts that, in fact, rk ¼ rk* for
all k . 2 (Fig. 1).

A very simple probabilistic counting argument implies that rk* #
2k ln 2: because constraints are chosen independently, the probability
there exists at least one satisfying assignment is at most 2n (1–22k)rn,
a quantity that tends to 0 for r $ 2k ln 2. Heuristic techniques
of statistical physics9–11 also predict that the threshold scales, approxi-
mately, as 2k ln 2. On the other hand, all satisfiability algorithms that
have been rigorously analysed fail to find satisfying assignments for
densities above c2k/k (we give the bounds corresponding to the best
known c in Table 1). This creates a growing chasm between the largest
density for which algorithms can provably find solutions and the
smallest density for which solutions provably do not exist.
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Figure 1 | The Satisfiability Threshold Conjecture. See text for details.
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Here we resolve this tension by proving that solutions exist
much beyond the reach of all analysed algorithms. The key new
element of our approach is its focus on how the structure of the
space of solutions evolves as density is increased. As a result,
we simultaneously get rigorous results on the location of thresh-
olds and insights into why algorithms have such a hard time
approaching them. We present the following three concrete results
as an illustration of our method.

Statement of results

†We prove that for all k $ 3, the satisfiability threshold lies in the
interval (2k ln 2 2 k, 2k ln 2), thus pinpointing its location up to an
exponentially small second-order term. Heuristic techniques of
statistical physics predict12 explicit values for the satisfiability
threshold for each k $ 3 that scales as 2k ln 2 2 bk, where bk ! ð1þ
log 2Þ=2 (we discuss this point further in the ‘Discussion’ section).
(See Fig. 1.)

†We rigorously determine the asymptotic threshold location for
the optimization version of k-SAT, known as ‘Max k-SAT’,
with exponential accuracy. Notably, for this (harder) positive-
temperature problem there were no heuristic predictions using the
techniques from statistical physics. (See Fig. 2.)

†Given a network (graph) G, its chromatic number is the smallest
number of colours with which its nodes can be coloured so that
adjacent nodes receive different colours. A famous example of graph
colouring is the four-colour theorem13, which states that any planar
network (or ‘map’) has chromatic number at most four. Indeed, in
our example below (Fig. 3), three colours suffice. For general, non-
planar networks, though, the chromatic number can range anywhere
from one to the largest degree plus one.

We prove that this variability is due to a tiny minority of networks.
Specifically, we prove that if we pick a graph uniformly at random
among all graphs with average degree d, then with probability that
tends to 1 as n tends to infinity, its chromatic number is either kd or
kd þ 1, where kd is the smallest integer k such that d , 2k ln k. Thus,
fixing the average degree and restricting attention to typical networks
can replace planarity in yielding a chromatic number which is
essentially known a priori. (See Fig. 3.)

Our method

To resolve whether the failure of algorithms was due to a genuine lack
of solutions, as opposed to the difficulty of finding them, we use a
method that ignores individual solutions and captures, instead,
statistical properties of the entire solution-space. This statistical
point of view allows us to avoid the pitfall of computational
complexity; we can prove that solutions exist in random instances,
without the need to identify a solution for each instance (as
algorithms do).

Indeed, if random formulas are genuinely hard near the threshold,
then focusing on the existence of solutions rather than their efficient
discovery is essential: one cannot expect algorithms to provide
accurate results on the threshold’s location; they simply cannot get
there!

Our approach can be characterized as a ‘second moment’ method,
as it starts from the following basic fact: every non-negative random
variable X satisfies Pr½X . 0�$ E½X�2=E½X2�: We prove the existence
of solutions by applying this inequality to a random variable X that
captures an appropriate weighting of the solutions in a CSP. As we
will see shortly, such a weighting can be necessary. For example, in
random k-SAT, if we simply let X be the number of satisfying
assignments, then the ratio E½X�2=E½X2� is exponentially small in
n. An important first step in mitigating this problem was made in
ref. 14, where the inequality rk $ 2k21 ln 2 2 O(1) was established,
by assigning non-zero weight only to those satisfying assignments
whose complement is also satisfying.

Table 1 | Upper and lower bounds for the satisfiability threshold

k 3 4 5 7 10 20 21

Upper bound for rk* 4.51 10.23 21.33 87.88 708.94 726,817 1,453,635
Our lower bound for r k 2.68 7.91 18.79 84.82 704.94 726,809 1,453,626
Algorithmic lower bound for r k 3.52 5.54 9.63 33.23 172.65 95,263 181,453

The first row gives rigorous21,22 upper bounds for the location of the satisfiability threshold. The third row gives the largest densities for which some algorithm has been proved to find
solutions23,24. The second line represents our contribution and gives the largest densities for which we prove that solutions exist. Specifically, we prove that r k . 2k ln 2 2 k for all k, and our
lower bound converges to 2k ln22 kþ1

2 ln22 1 as k grows.

Figure 2 |Our results for randomMax k-SAT. Upper and lower bounds for
the critical density at which a typical k-SAT instance stops having a truth
assignment that satisfies 1 2 q22k fraction of its clauses, as a function of
q [ [0, 1). The points where the graphs intersect the vertical axis correspond
to the bounds for the satisfiability threshold (q ¼ 0). The red graph
corresponds to the rigorous upper bound TkðqÞ ¼ ½2k ln 2�=½12 qþ q lnq�:
The blue graph corresponds to the largest density for which any algorithm
has been proved25 to find assignments satisfying a 1 2 q22k fraction of all
clauses. Note that this graph is of the order of Tk(q)/k, thus rapidly diverging
from the red graph with k. In contrast, our lower bound in the green graph
converges exponentially fast to the red graph. Specifically, it is of the order of
Tk(q)(1 2 dk), where dk ¼ O(k22k/2).

Figure 3 | A planar map and its representation as a network, both properly
coloured.
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The key to our approach is a systematic search for weights that
asymptotically maximize the ratio E½X�2=E½X2� in the class of
tractable weights for which this ratio can be computed. Notably, in
choosing these weights we are free to use as hints non-rigorous ideas
and insights from physics, without compromising the rigour of the
final result. Indeed, while physicists, mathematicians and computer
scientists have been investigating the same constraint-satisfaction
problems for some time now, this was mostly done using disjoint
tool chests. Our approach, on the other hand, can be used in
conjunction with the physics heuristics to gain further insight into
the geometry of solution spaces; indeed this interaction is already
taking place.
The vanilla second moment method fails on random k-SAT. Given
any k-SAT instance F on n variables, let X ¼ X(F) be its number of
satisfying assignments. By computing E½X2� and E½X�2 for random
formulas with a given density r, denoted as Fk(n, rn), one can hope to
get a lower bound on the probability thatX . 0, that is, that Fk(n, rn)
is satisfiable. Unfortunately, as we show below, this direct application
fails dramatically because E½X2� is exponentially (in n) greater than
E½X�2 for every density r . 0. Nevertheless, this estimation is useful
because it points to the source of the problem and lays the foundation
for our later successful choice of X.

For a k-CNF formula with independent clauses c1, c2,…,cm it is
straightforward to show that:

E½X2� ¼ 2n
Xn
z¼0

n

z

 !
f Sðz=nÞ

m ð1Þ

where f S(a) ¼ 1 2 212k þ 22ka k is the probability that two fixed
truth assignments that agree on z ¼ an variables both satisfy a
randomly drawn clause. Observe that f is an increasing function of
a and that f S(1/2) ¼ (1 2 22k)2, which means that truth assign-
ments having overlap n/2 are uncorrelated.

Letting LSðaÞ ¼ ½2f SðaÞ
r�=½aað12aÞ12a� we see that E½X�2 ¼

ð2nð12 22kÞrnÞ2 ¼ ð4f Sð1=2ÞrÞn ¼ LSð1=2Þn: Because
n

an

 !
¼ ðaað12

aÞ12aÞ2n £ polyðnÞ we see from equation (1) that E½X2�$
ðmax0#a#1LSðaÞÞ

n £ polyðnÞ: Therefore, if there exists some a – 1/2
such that LS(a) . LS(1/2), then the second moment is exponen-
tially greater than the square of the expectation and we get only an
exponentially small lower bound for Pr[X . 0]. Put differently,
unless the dominant contribution to E½X2� comes from uncorrelated
pairs of satisfying assignments, that is, pairs with overlap n/2,
the second moment method fails. Unfortunately, for all r . 0,
we have L

0

Sð1=2Þ– 0: This is because the entropic factor 1ðaÞ ¼
1=ðaað12aÞ12aÞ is symmetric around a ¼ 1/2, while f S is
increasing in (0, 1). As a result, the derivative of LS becomes 0
only when the correlation benefit balances with the penalty of
decreasing entropy at some a . 1/2. We demonstrated this, for
k ¼ 5, in Fig. 4.

In general, given a real number a [ [0, 1], we would like to know
the number of pairs of satisfying truth assignments that agree on
z ¼ an variables in a random formula. Each term in the sum in
equation (1) gives us the expected number of such pairs. Although this
expectation overemphasizes formulas with more satisfying assign-
ments, it gives valuable information on the distribution of distances
among truth assignments in a random formula. For example, if for
some values of z (and k, r) this expectation tends to 0 with n, we can
infer that w.h.p. there are no pairs of truth assignments that agree on
z variables in a random k-CNF formula with density r.
Balance and the weighted second moment method. An attractive
feature of the second moment method is that we are free to apply it to
any random variable X ¼ X(F) such that X . 0 implies F is satisfi-
able. Sums of the form X ¼ Sjwðj;FÞ clearly have this property as
long as w(j, F) ¼ 0 when j is not a satisfying assignment. Such
weighting schemes can be viewed as transforms of the original
problem and can be particularly effective in exploiting insights into
the source of correlations.

With this in mind, let us consider random variables of the
form X ¼ SjPcwðj; cÞ; where w is some arbitrary function. (Even-
tually, we will require that w(j, c) ¼ 0 if j falsifies c.) Similarly
to equation (1), it is rather straightforward to prove that E½X2� ¼
2nSn

z¼0

n

z

 !
f wðz=nÞ

m; where f wðz=nÞ ¼ E½wðj; cÞwðt; cÞ� is the
correlation between two truth assignments j and t that agree on z
variables, with respect to a single random clause c. It is also not hard
to see that f wð1=2Þ ¼ E½wðj; cÞ�2; that is, truth assignments at
distance n/2 are uncorrelated for any function w. Thus, arguing as
in the previous section, we see that E½X2� is exponentially greater
than E½X�2 unless f

0

wð1=2Þ ¼ 0:
At this point we observe that because we are interested in random

formulas where literals are drawn uniformly, it suffices to consider
functions w such that: for every truth assignment j and every clause
c¼ l1 _ · · ·_ lk; w(j, c) ¼ w(v), where v i ¼ þ1 if li is satisfied
under j and v i ¼ 21 if li is not satisfied under j. (So, we will require
that w(21,…, 2 1) ¼ 0.) Letting A ¼ {21, þ 1}k and differentiat-
ing fw yields the geometric condition:

f
0

wð1=2Þ ¼ 0 ,
v[A

X
wðvÞv ¼ 0 ð2Þ

The condition in the right-hand side (r.h.s.) of equation (2) asserts
that the vectors in A, when scaled by w(v), must cancel. This gives us
another perspective on the failure of the vanilla second moment
method: when w ¼ wS is the indicator variable for satisfiability, the
condition in the r.h.s. of equation (2) does not hold because the

Figure 4 | Plots of entropy, correlation, and their product for the vanilla
second moment method. The function f S is plotted for k ¼ 5. The function
LS is plotted for k ¼ 5 with different values of r. Specifically, r ¼ 14, 16, 20
from top to bottom. The vertical line at a ¼ 1/2 highlights that LS is
maximized for a . 1/2.
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vector (21, 21,…, 2 1) has weight 0, while all other v [ A have
weight 1.

Note that the r.h.s. of equation (2) implies that in a successful
weighting each coordinate must have mean 0: each literal must be
equally likely to be þ1 or 21 when we pick truth assignments with
probability proportional to their weight under w. We will call truth
assignments with km/2 satisfied literal occurrences ‘balanced’.

To make the second moment method work we would like to
choose a function w that is ‘as close as possible’ to wS while being
balanced, that is, satisfy equation (2). For v [ A, let jvj denote its
number of þ1 values. Maximizing the relative entropy of w with
respect to wS subject to equation (2) yields:

wðvÞ ¼
0 if v ¼ ð21;…;21Þ

ljvj otherwise

(
ð3Þ

where l satisfies (1 þ l)k21 ¼ 1/(1 2 l). In Fig. 5 we plot the
functions fw and Lw corresponding to the w in equation (3) for
the same choice of k, r as in Fig. 4. For k $ 3, we prove15 that Lw is
maximized at a ¼ 1/2 as long as r# 2k ln 22 ðkþ 1Þ ln 2

2 2 12bk;
where bk ! 0. This implies that for such r, E½X2�, C�E½X�2; where
C ¼ C(k) . 0 is independent of n. By the second moment method
this implies Pr[X . 0] $ 1/C and by a result of Friedgut16, it follows
that r k $ r.

To gain additional insight into balanced assignments it helps to
think of Fk(n, m) as generated in two steps: first choosing the km
literal occurrences randomly, and then partitioning them into
clauses. Already, at the end of the first step, truth assignments that
satisfy many literal occurrences have significantly greater conditional
probability of being satisfying. But such assignments are highly
correlated because in order to satisfy many literal occurrences they
tend to agree with the majority truth assignment, and thus each
other, on more than half the variables. Our choice of l penalizes
satisfying assignments that satisfy more than half of all literal
occurrences in the formula: that is, more than a random assignment.
In other words, our random variable X curbs the tendency of
satisfying assignments to lean towards the majority vote assignment.
The fact that Lw is maximized at a ¼ 1/2 for densities almost all the

way to the random k-SAT threshold, means that for all such densities
the expected number of pairs of balanced assignments at distance n/2
is exponentially greater than the expected number of pairs of
balanced assignments at any other distance.

Random Max k-SAT

Say that a k-SAT instance with m clauses is ‘p-satisfiable’, where
p [ [0, 1], if there exists an assignment satisfying at least
(1 2 22k þ p22k)m clauses (observe that every k-CNF formula is
0-satisfiable since a random truth assignment satisfies (1 2 22k)m
clauses in expectation). We define r k(p) to be the largest value
such that for r , r k(p), w.h.p. a random formula Fk(n, rn) is
p-satisfiable. Similarly, we define rk* ðpÞ to be the smallest value
such that for r. rk* ðpÞ; w.h.p. a random formula Fk(n, rn) is not p-
satisfiable. So, in these terms, the Satisfiability Threshold Conjecture
amounts to rkð1Þ ¼ rk* ð1Þ:

As we saw earlier for the case p ¼ 1, that is, for satisfiability, a
major factor in the excessive correlations behind the failure of the
vanilla second moment method is that satisfying truth assignments
tend to lean toward the majority vote truth assignment. To avoid this
pitfall, again, we consider balanced truth assignments, this time
p-satisfying ones. Specifically, for j [ {0, 1}n we let:
(1) H ¼ H(j, F) be the number of satisfied literal occurrences in F
under j, minus the number of unsatisfied literal occurrences in F
under j, and
(2) U ¼ U(j, F) be the number of unsatisfied clauses in F under j,
minus m(1 2 p)/2k.
To focus on the desired truth assignments we fix b . 0 and
0 , g , 1 and define X(b, g) as:

Xðb;gÞ ¼
j

X
gHðj;FÞe2bUðj;FÞ ð4Þ

Because b . 0 and 0 , g , 1 we see that the truth assignments j for
which H(j, F) . 0 or U(j, F) . 0 are suppressed exponentially,
while the rest are rewarded exponentially. In statistical physics terms,
b can be interpreted as an inverse temperature, where perfect
satisfiability, analysed in the previous section, corresponds to 0
temperature, that is, b ! 1.

By applying the second moment method to X we pinpoint17 the
values of r k(p) and rk* ðpÞ with relative error that tends to zero
exponentially fast in k. Specifically, for every p [ (0, 1) let:

TkðpÞ ¼
2k ln 2

pþ ð12 pÞ lnð12 pÞ

and define Tk(1) ¼ 2k ln 2 so that Tk(·) is continuous on (0, 1].

Theorem 1

There exists a sequence d k ¼ O(k22k/2), such that for all k $ 2 and
p [ (0, 1]:

ð12 dkÞTkðpÞ, rkðpÞ# rk* ðpÞ, TkðpÞ

Random graph colouring

To generate a typical network with n nodes and average degree d, we
start with n isolated nodes and join each pair of them with probability
p ¼ d/(n 2 1), independently of all others. This is known as the
Erdös–Rényi G(n, p) model of random graphs. We prove:

Theorem 2

For any real number d . 0, let kd be the smallest integer k such that
d , 2k ln k. With high probability the chromatic number of a
random G(n, p) graph with average degree d is either kd or kd þ 1.

To prove Theorem 2 we start with n isolated nodes and repeat m
times: pick two nodes uniformly, independently, with replacement,
and join them. We claim that for every d . 0, if m ¼ dn/2, then
w.h.p. the chromatic number of the resulting (multi)graph G is either

Figure 5 | Plots of the correlation function and its product with entropy for
the weighted second moment method, when the weighing is given by
equation (3). The function fw is plotted for k ¼ 5. The function Lw is
plotted for k ¼ 5 with the same values of r as in Fig. 2, namely, r ¼ 14, 16, 20
from top to bottom. The vertical line at a ¼ 1/2 shows that Lw is maximized
at a ¼ 1/2 for r ¼ 14 and r ¼ 16, but at some a . 1/2 for r ¼ 20.
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kd or kd þ 1. By standard results of random graph theory18, this
implies Theorem 2. To prove our claim we first observe that the
probability that G is k-colourable is at most kn(1 2 1/k)dn/2, which
tends to 0 for d . 2k ln k. Our main contribution is to prove that
for slightly smaller d, namely d , 2(k 2 1) ln(k 2 1), w.h.p. G is
k-colourable. To do that we proceed as follows.

Let X ¼ X(G) be the number of balanced k-colourings of G, that is,
k-colourings in which all colour classes have equal size. We apply the
second moment method toX. To compute E½X2�we consider all pairs
j, t of candidate solutions (all pairs of balanced k-partitions of the n
vertices) and for each such pair determine the probability that both
k-partitions will assign distinct colours to the endpoints of a
randomly drawn edge. If aijn is the number of vertices having colour
i in j and colour j in t it is not hard to see that this probability is:

12
2

k
þ

i;j

X
a2
ij ð5Þ

Equation (5) highlights the main difficulty we need to overcome in
this context: whereas in satisfiability problems the overlap parameter
for a pair of solutions was a single integer (their Hamming distance),
now it is a k £ k matrix. As a result, to determine E½X2� we need to
resolve an entropy–energy tradeoff over doubly stochastic matrices, a
problem of major analytic difficulty.

More precisely, we show that E½X2� is dominated by the contri-
bution of the pairs of k-partitions whose overlap matrix A maximizes
the function:

gdðAÞ ¼2
i;j

X
aij logaij þ

d

2
�log 12

2

k
þ

i;j

X
a2
ij

0
@

1
A

The first term in gd measures the number of pairs of k-partitions that
have A as their overlap matrix, while the second term measures the
probability that such pairs will be valid k-colourings in a random
graph with average degree d. When a ij ¼ 1/k2 for all i, j, correspond-
ing to uncorrelated partitions, the first term is maximized while the
second is minimized. At the other extreme, when each row and
column has precisely one element equal to 1/k, corresponding to
perfectly correlated partitions, the first term is minimized while the
second term is maximized. If we interpret A as spreading a fixed
amount of mass over k2 cells, we see that there are two ‘forces’
that determine its shape: entropy, favouring flatness, and energy,
favouring the formation of peaks.

To resolve this entropy–energy tradeoff we develop general opti-
mization tools that we expect to be of much broader applicability. In
particular, we prove that as d is increased the maximizer switches
instantaneously from the perfectly flat matrix J k to a matrix in
which more than half the mass is captured by only k entries. At
that point the dominant contribution to E½X2� stops corresponding
to uncorrelated k-colourings and the second moment fails. Our result
follows by proving19 that the switch in the locus of the maximizer
occurs for some d . 2(k 2 1) ln(k 2 1).

Discussion

Our work implies that the physics predictions for certain key
combinatorial optimization and decision problems can be rigorously
justified. Indeed, recently, non-rigorous techniques of statistical
physics were used to derive11 predictions for the location of the
threshold for random k-SAT for every fixed k $ 3; for example, for
k ¼ 3, 4, 5 the predicted values are 4.267, 9.931 and 21.117,
respectively. These predictions are compatible with the rigorous
bounds and indeed, match the rigorous upper bound as k ! 1.
Similarly, for the graph colouring problem it was predicted in ref. 20
that the k-colourability transition occurs at d¼ 2k logk2 1þ oð1Þ;
which fits neatly between the rigorous upper and lower bounds we
state in the ‘Random graph colouring’ section.

The gap between our lower bound for the location of the

k-SAT threshold and the best-known algorithmic lower bound
rk ¼ Q(2k/k), seems to us the most significant remaining problem.
Indeed, the physics ideas mentioned above have motivated a new
satisfiability algorithm10,11 that performs extremely well for small
values of k, such as k ¼ 3. A rigorous analysis of this algorithm is still
lacking, and it remains unclear whether its success for values of r close
to the threshold extends to large k. Indeed, even evaluating the
algorithm experimentally is already intractable for moderate values
of k, such as k ¼ 10.

The success of the second moment method for balanced satisfying
truth assignments suggests that such assignments form a ‘mist’ in
{0, 1}n and, as a result, they might be hard to find by algorithms
based on local updates. (More precisely, the satisfying assignments
decompose into clusters whose diameter is much smaller than
the inter-cluster distances, as predicted in ref. 11.) Moreover, as k
increases the influence exerted by the majority vote assignment
becomes less and less significant as most literals occur very close to
their expected kr/2 times. As a result, as k increases, typical satisfying
assignments get closer and closer to being balanced, meaning that the
structure of the space of solutions for small values of k might be
significantly different from the structure for large values of k. Indeed,
an appealing intuitive explanation for the fact that our methods
succeed where all analysed algorithms fail is that the latter rely on
knowing part of a solution to get an indication on the values of the
unknown variables. The success of such a strategy inevitably requires
that the space of solutions is clustered, which means that solutions
are highly correlated. Our method, on the other hand, targets
situations in which solutions form a ‘sparse mist’ in the configuration
space. Thus, it draws strength precisely from the phenomenon that
causes algorithms to fail.

To summarize, the following key question remains: is there an
algorithmic threshold l k ¼ o(2k) so that for densities r . lk, no
polynomial-time algorithm can find a satisfying truth assignment
with probability bounded away from 0 as n ! 1?
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