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Abstract

For p ≥ 2 we consider the problem of, given an n×n matrix A = (ai j) whose diagonal entries vanish,
approximating in polynomial time the number

Optp(A) B max


n∑

i, j=1

ai jxix j : (x1, . . . , xn) ∈ Rn ∧

 n∑
i=1

|xi|
p

1/p

≤ 1

 .
When p = 2 this is simply the problem of computing the maximum eigenvalue of A, while for

p = ∞ (actually it suffices to take p ≈ log n) it is the Grothendieck problem on the complete graph,
which was shown to have a O(log n) approximation algorithm in [27, 26, 15], and was used in [15] to
design the best known algorithm for the problem of computing the maximum correlation in Correlation
Clustering. Thus the problem of approximating Optp(A) interpolates between the spectral (p = 2) case
and the Correlation Clustering (p = ∞) case. From a physics point of view this problem corresponds to
computing the ground states of spin glasses in a hard-wall potential well.

We design a polynomial time algorithm which, given p ≥ 2 and an n × n matrix A = (ai j) with zeros
on the diagonal, computes Optp(A) up to a factor p

e + 30 log p. On the other hand, assuming the unique
games conjecture (UGC) we show that it is NP-hard to approximate (2) up to a factor smaller than p

e +
1
4 .

Hence as p→ ∞ the UGC-hardness threshold for computing Optp(A) is exactly p
e (1 + o(1)).

1 Introduction

In this paper we consider the problem of maximizing a multilinear quadratic polynomial over a convex set
K ⊆ Rn. Namely, given a symmetric n × n matrix A = (ai j) whose diagonal entries vanish, the goal is to
approximate in polynomial time the number

max


n∑

i, j=1

ai jxix j : (x1, . . . , xn) ∈ K

 . (1)

In recent years there has been a lot of work on approximating such polynomials in the special case where K
is the hypercube (by convexity, it makes no difference if one considers the solid hypercube [−1, 1]n or the
discrete hypercube {−1, 1}n). The case of optimizing over the hypercube has a wide range of applications
to combinatorial optimization, and also has connections to topics in classical Banach space theory such as
Grothendieck’s inequality. We refer to [27, 26, 4, 15, 3, 5, 23, 2] and the references therein for both positive
and negative results in this case, as well as for their applications.
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Optimization over other bodies K is interesting as well. The case where K is a simplex has been in-
vestigated in [20, 16], partly in connection to problems in computational biology. The case when K is
a polytope with polynomially many facets is classical, and is among the most important non-linear opti-
mization problems, with a wide range of applications in operations research, computational biology and
economics (see [17, 10, 13] for more information on the computational complexity of such problems).

In this work our focus is on cases where K is the unit ball in `np for some parameter p. The specific
case mentioned above where K is the hypercube is obtained by setting p = ∞, and it is computationally
hard: an O(log n) approximation algorithm is known (it was discovered independently in [29], [28], [25],
and [15]), but it was shown to be NP-hard in [31], it was shown NP-hard to approximate within some
constant factor in [4], and in [5] it was shown to be NP-hard for any constant factor approximation. The
latter paper also showed that getting an approximation factor better than (log n)γ is quasi-NP hard for some
universal constant γ > 0, and that even improving on the O(log n) approximation can be ruled out under
some plausible complexity assumption.

Setting p = 2, on the other hand, corresponds to the case where K is the Euclidean unit ball, and is much
easier computationally. In this case the value in (1) is the maximum eigenvalue of the coefficient matrix
A = (ai j), and can be computed efficiently with arbitrarily good precision.

1.1 Our results

It is natural to ask what happens for values of p that lie between 2 and ∞. Roughly speaking, this set of
problems can be viewed as a smooth interpolation between Spectral Partitioning and Correlation Clustering
(the connection between (1) when K is the hypercube and the Correlation Clustering problem was discov-
ered in [15]). In this paper we investigate these problems and give both new algorithms and complexity
lower-bounds (the lower bounds being based on the Unique Games Conjecture). We note that the proofs
of our results use the assumption p ≥ 2, and therefore do not apply to the case 1 ≤ p < 2, which we did
not investigate. The case p = 1 was studied in [20, 16], and apart from that nothing seems to be known for
1 < p < 2.

The following theorem contains the approximation factors that we can achieve for 2 < p < ∞, as well
as the hardness factors that we can prove.

Theorem 1.1. There is a polynomial time algorithm which, given p ≥ 2 and an n×n matrix A = (ai j) whose
diagonal entries vanish, computes the number

max


n∑

i, j=1

ai jxix j : (x1, . . . , xn) ∈ Rn ∧

n∑
j=1

∣∣∣x j
∣∣∣p ≤ 1

 (2)

up to a factor p
e + 30 log p.

On the other hand, assuming the unique games conjecture, it is NP-hard to approximate (2) for any
constant p > 2 up to a factor smaller than p

e +
1
4 .

Hence, assuming the unique games conjecture, as p → ∞ the NP-hardness threshold of the quadratic
program (2) is p

e (1 + o(1)).
The unique games conjecture (UGC), which has been put forth by Khot [22], is a commonly used

assumption in complexity theory. We describe it formally in Section 2. The UGC has been used in the
context of hardness results for quadratic programs such as (1) in [23]. In Section 4 we also prove a hardness
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result for parameters p which depend polylogarithmically on n, based on a strengthening of the UGC. For
readers that are not familiar with the UGC let us say at this point that the hardness result in Theorem 1.1
should be viewed as evidence that efficiently computing (2) up to a factor smaller than p

e +
1
4 is hard.

When p is close to 2. Theorem 1.1 is stated asymptotically as p → ∞, but our hardness result actually
shows that for every δ ∈ (0, 1) and p > 2 it is UGC hard to approximate (2) up to a factor smaller than
(1 − δ)γ2

p, where γp is the p’th norm of a standard Gaussian random variable. Since

γp =

2p/2Γ
(

p+1
2

)
√
π


1/p

≥
√

1 + c(p − 2),

where c is universal constant, we also obtain a non-trivial hardness of approximation result for every p > 2.

1.2 The relation to spin glass models.

The problems described above are natural from the point of view of solid state physics, since they are
intimately related to the problem of efficient evaluation of ground states of spin glasses. In the spin glass
model we are given n particles, denoted by {1, . . . , n}, each of which has a spin, or magnetization, xi ∈ R.
The energy corresponding to each pair i, j in the system is proportional to xix j: we are given an n× n matrix
of pairwise interactions A = (ai j) ∈ Mn(R) (the diagonal entries are zeros), and the total energy of the system
is given by

∑n
i, j=1 ai jxix j. The system is constrained to be in a potential well, or equivalently, there is an

external magnetic field acting on the particles. A “hard wall” potential well1 would simply correspond to
imposing the constraint (x1, . . . , xn) ∈ K for some K ⊆ Rn.

Since nature seems to seek the state where the energy is minimized, many physicists are interested in the
computational complexity of computing the ground state, i.e. the configuration which minimizes the total
energy of the constrained system. This is precisely the problem described above (with the matrix A replaced
by −A). One reason why physicists would be interested in the computation complexity of a ground state is
that if this state is hard to find computationally, it may explain (or even predict) why certain systems cannot
settle in their ground state. On the other hand, if a system does settle in a computationally-hard ground state,
this would imply that it can somehow perform a hard computation.

There is a vast amount of literature on the computational aspects of the evaluation of ground states
of physical systems, as this corresponds to understanding efficient mechanisms for pattern formation (see
for example [33, 24]). The Ising case of the spin glass model corresponds to the assumption xi = ±1.
Computing the ground state in this famous simplified version clearly corresponds to (1) when K is the
hypercube. Rigorous algorithmic results on the Ising case were obtained in [12, 9, 7, 3, 8]. The Ising
model was introduced as a more tractable simplification of the original spin glass model, and in physically
realistic scenarios the magnetization of the particles should be allowed to take real values (actually the most
interesting case is when the spins are elements of the 2-dimensional sphere S 2).

Our results give strong evidence of a threshold behavior of the computational tractability of the ground
state, when the hard wall constraint corresponds to the `np ball, p > 2. We believe that this phenomenon holds

1Physicists often also consider “soft constraints”, in which we are given a potential V : Rn → R and we wish to minimize∑n
i, j=1 ai j xi x j + V(x1, . . . , xn) (note that this has a similar effect to requiring that (x1, . . . , xn) is in the set where V(x1, . . . , xn) is not

very large). The case when V(x1, . . . , xn) =
∑n

j=1 v(x j) is called the case of one body potentials, and it is studied explicitly in the
physics literature, including the especially important case v(x) = |x|p, which corresponds to the problems studied here (for example,
the Lp case is studied in [30, 11]).
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true for more general potentials (see the “Discussion and open problems” section). It would be interesting
to find a physical explanation of this computational phase transition2.

1.3 About the techniques

The algorithm that we design in Theorem 1.1 departs from the standard semidefinite programming approach
that was used in [26, 4, 15, 3] by considering the convex program (which is not an SDP for finite p) that
computes the quantity

Vecp(A) B max


n∑

i, j=1

ai j〈vi, v j〉 : {v1, . . . , vn} ⊆ R
n ∧

 n∑
i=1

‖vi‖
p
2

1/p

≤ 1

 .
This program can be solved with arbitrarily small error in polynomial time using Grötschel-Lovász-Schrijver
theory [18].

Let v1, . . . , vn ∈ R
n be the the output of this program. In the case p = ∞, which corresponds to the

constraint max1≤ j≤n ‖v j‖2 ≤ 1, one can proceed as follows. Since the value of Vec∞(A) depends only on the
scalar products {〈vi, v j〉}

n
i, j=1, we may replace v1, . . . , vn by Uv1, . . . ,Uvn for any orthogonal matrix U. A

standard computation shows that if we choose U uniformly at random among all n × n orthogonal matrices
then for each 1 ≤ j ≤ n and t > 0 the probability that (Uv j)k (the kth coordinate of Uv j) is greater than t√

n
is

at most e−Ω(t2). Hence we can use the union bound to select with positive probability an orthogonal matrix
U such that x jk B

√
cn/ log n · (Uv j)k ≤ 1 for all 1 ≤ i, j ≤ n, where c is a universal constant. Since by

definition

Vec∞(A) =
n∑

i, j=1

ai j〈vi, v j〉 =

n∑
i, j=1

ai j〈Uvi,Uv j〉 =
log n

c
·

1
n

n∑
k=1

n∑
i, j=1

ai jxikx jk,

there exists some 1 ≤ k ≤ n for which
∑n

i, j=1 ai jxikx jk ≥
c

log n Vec∞(A). We therefore get the required O(log n)
approximation algorithm (originally obtained in [29, 28, 25, 15]) by rounding v j to x jk ∈ [−1, 1].

For bounded p we wish to obtain a constant factor approximation, so there is no hope to use a union
bound. We overcome this problem via a bootstrapping argument which is a non-trivial adaptation of the
Gaussian Hilbert space approach to Grothendieck’s inequality [21] (this approach was previously used for
algorithmic purposes in [4, 3]). Namely, we take a standard Gaussian vector G ∈ Rn and consider the
scalars 〈v1,G〉, . . . , 〈vn,G〉. Rather than truncating each of the numbers 〈vi,G〉 separately, we consider the
event E =

{∑n
i=1 |〈vi,G〉|p ≤ M

}
for some appropriately chosen M > 0. Our rounding algorithm rounds the

vector v j to the number x j B
1

M1/p 〈v j,G〉1E. We show that this rounding procedure works by bounding the
expectation of the error term

∑n
i, j=1 ai j〈vi, v j〉 −

∑n
i, j=1 ai jxix j using Hölder’s inequality. This error term is

shown to be a small proportion of Vecp(A) for an appropriate choice of M and the exponent used in Hölder’s
inequality. A careful optimization of these two parameters yields the optimal p

e
(
1 + o(1)

)
integrality gap.

The details are presented in Section 3.

The hardness result in Theorem 1.1 is achieved via a reduction from the Unique Label Cover problem.
While the reduction is similar to the one used in [5], we need to reduce from the Unique Label Cover
problem (and hence use the UGC) rather than from the Label Cover problem. This complication, as well
as the fact that the soundness analysis is substantially more involved, stems in essence from the following

2It should be pointed out here that this type of “static” complexity phase transition is different from another popular research
direction in statistical physics—the relation between statistical phase transitions and average case hardness in random models. We
refer to [1] and the references therein for more information on this topic
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technical fact: if
∑n

i=1 εiai, where the εi are i.i.d. symmetric Bernoulli random variables, is bounded in
L∞, then

∑n
i=1 |ai| is bounded, while a bound on E

∣∣∣∑n
i=1 aiεi

∣∣∣p does not imply a bound on
∑n

i=1 |ai| which is
independent on n. This issue raises significant technical difficulties in the case of bounded p, analytic ideas
that we use to overcome them might be of independent interest in the context of computational hardness
results. See Section 4 for more details (specifically, the remark on the difference from the L∞ case on
page 14).

2 Preliminaries and notation

In this section we describe some definitions, notation, and basic facts that will be used throughout this paper.
We start with a formal definition of the Lp Grothendieck problem, which we also call the Lp Quadratic
Maximization problem.

Definition 2.1 (Lp Quadratic Maximization problem). The Quadratic Maximization problem over Lp, de-
noted QM(p) for short, is defined as follows. For a given parameter p ≥ 1 (which is possibly a function of
n), an instance of the QM(p) problem is a square matrix A = (ai j) ∈ Rn×n with zero diagonal entries. The
goal is to compute

Optp(A) B max


n∑

i, j=1

ai jxix j : (x1, . . . , xn) ∈ Rn ∧

n∑
i=1

|xi|
p ≤ 1

 .
Our hardness results will be based on the Unique Games Conjecture (see [22]). We shall now briefly

present the necessary background on this topic.
In what follows, for an integer r, we denote the set {1, 2, . . . , r} by [r].

Definition 2.2 (Unique Label Cover problem). An instance L of the Unique Label Cover problem, which
we denote ULC for short, is a tuple L = (V, E, r, {πe}e∈E), where V is a set of nodes, and E ⊆ V × V is a
symmetric set of directed edges, namely if (u,w) ∈ E then also (w, u) ∈ E. For a node v ∈ V , we define d(v)
to be the number of edges of the form (v,w) in E. We assume that E contains no loops, and that d(v) ≥ 1 for
every v ∈ V .

For every edge e = (u,w) ∈ E a permutation πe : [r] → [r] is given such that π(u,w) = π
−1
(w,u) for every

edge (u,w) ∈ E. A function A : V → [r] is called an assignment for L . We say that an edge e = (u,w) is
satisfied by A if A (w) = πe(A (u)). The goal in the Unique Label Cover problem is to find an assignment
which maximizes the fraction of satisfied edges. We denote the maximum fraction of satisfied edges in an
instance L by Opt(L ). The number r is called the number of labels in L .

Conjecture 2.3 (unique games conjecture). For any constants δ, ε > 0 satisfying δ + ε < 1 there is an
integer r = r(δ, ε) such that it is NP-hard to distinguish between ULC instances L with r labels for which
Opt(L ) ≤ δ, and instances with r labels for which Opt(L ) ≥ 1 − ε.

As noted in the introduction, the unique games conjecture was put forth by Khot in [22], and it is a
commonly used complexity assumption. Despite some recent works that tried to refute it (see the table
in [14] for a description of the known results), the unique games conjecture still stands. Moreover, even the
following stronger hypothesis has not been contradicted by any result so far.

Hypothesis 2.4 (The strong unique games hypothesis). There are positive constants c1, c2, c3 for which it is
NP-hard to distinguish between ULC instances L of size n with c1 log n labels for which Opt(L ) ≤ c2

log n ,
and instances with c1 log n labels for which Opt(L ) ≥ 1 − c3√

log n
.
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We shall now record some moment bounds for Gaussian random variables and sums of independent
random variables. These bounds will be used extensively in what follows.

Let g be a standard Gaussian random variable. Recall that we denote its p’th moment by γp, i.e. γp B

(E|g|p)1/p. Then

γ
p
p =

2
√

2π

∫ ∞

0
xpe−x2/2dx

(
x=
√

2t
)

=
2p/2
√
π

∫ ∞

0
t

p+1
2 −1e−tdt =

2p/2Γ
(

p+1
2

)
√
π

.

The following version of Stirling’s formula [6],√
2π
x
·

( x
e

)x
≤ Γ(x) ≤

√
2π
x
·

( x
e

)x
e

1
12x ,

implies that

γ
p
p ∈

√2
e

(
p + 1

e

)p/2

,

√
2
e

(
p + 1

e

)p/2

e
1

6(p+1)

 . (3)

In fact the following stronger lower bound holds true for p > 2 (This bound is optimal in terms of the second
order terms as p→ 2 and p→ ∞. Since we will not use it here, we shall not include its elementary, though
tedious, proof):

γ2
p ≥ max

{
1 +

(
1 −
γ + ln 2

2

)
(p − 2),

p
e
+

ln 2
e

}
, (4)

where γ = 0.5772... is Euler’s constant.

Lemma 2.5. Let X1, . . . , Xn be independent random variables such that EX j = 0 and
∑n

j=1 EX2
j = 1. Assume

also that for some δ ∈
(
0, e−4

)
we have

∑n
j=1 E|X j|

3 < δ. Then for every p ≥ 1,E
∣∣∣∣∣∣∣∣

n∑
j=1

X j

∣∣∣∣∣∣∣∣
p

1/p

≥ γp ·
(
1 − 4

(
log (1/δ)

)p/2 δ
)
.

Proof. By the Berry-Esseen theorem (see [19]. The constant we use below follows from [32]), for every
u > 0 we have

Pr


∣∣∣∣∣∣∣∣

n∑
j=1

X j

∣∣∣∣∣∣∣∣ ≥ u

 ≥ Pr(|g| ≥ u) − 2
n∑

j=1

E|X j|
3 ≥ Pr(|g| ≥ u) − 2δ.

Therefore, for every a > 0 we have

E

∣∣∣∣∣∣∣∣
n∑

j=1

X j

∣∣∣∣∣∣∣∣
p

=

∫ ∞

0
pup−1 Pr


∣∣∣∣∣∣∣∣

n∑
j=1

X j

∣∣∣∣∣∣∣∣ ≥ u

 du ≥
∫ a

0
pup−1 Pr(|g| > u)du − 2δap

≥

√
2
π

∫ a

0
upe−u2/2du − 2δap = γ

p
p −

√
2
π

∫ ∞

a
upe−u2/2du − 2δap. (5)

Choosing a = γp
√

log(1/δ) yields the required result, where we use the bound
∫ ∞

a upe−u2/2du ≤ 2ap−1e−a2/2,
which holds whenever a2 > 2p—this estimate follows from the inequality∫ ∞

a
upe−u2/2du = ap−1e−a2/2 + (p − 1)

∫ ∞

a
up−2e−u2/2du ≤ ap−1e−a2/2 +

p − 1
a2

∫ ∞

a
upe−u2/2du.

The proof of Lemma 2.5 is complete. �
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For large p we will need a better bound, which is contained in the following lemma. Recall that a random
variable X is symmetric if X and −X have the same distribution.

Lemma 2.6. Let X1, . . . , Xn be independent symmetric random variables such that
∑n

j=1 EX2
j = 1. Fix p ≥ 2

and assume that max1≤ j≤n

√
EX2

j ≤
2
p . ThenE

∣∣∣∣∣∣∣∣
n∑

j=1

X j

∣∣∣∣∣∣∣∣
p

1/p

≥

√
p
e
−

2
√

p
.

Proof. Let k ∈ N be the largest integer such that 2k ≤ p. Denote a j B
√
EX2

j , so that
∑n

j=1 a2
j = 1, and

write δ B max1≤ j≤n |a j| ≤
2
p ≤

1
k . Note that

E

 n∑
j=1

X j


2k

=
∑

`1,...,`n∈N∪{0}
`1+···+`n=k

(2k)!∏n
j=1(2` j)!

n∏
j=1

EX2` j
j ≥

(2k)!
2k

∑
S⊆{1,...,n}
|S |=k

∏
j∈S

a2
j . (6)

On the other hand

1 =

 n∑
j=1

a2
j


k

=
∑

`1,...,`n∈N∪{0}
`1+···+`n=k

k!∏n
j=1 ` j!

n∏
j=1

a2` j
j

≤ k!
∑

S⊆{1,...,n}
|S |=k

∏
j∈S

a2
j +

n∑
j=1

a2
j

∑
r1,...,rn∈N∪{0}
r1+···+rn=k−1

r j≥1

k
r j + 1

·
(k − 1)!∏n

i=1 ri!

n∏
i=1

a2ri
i

≤ k!
∑

S⊆{1,...,n}
|S |=k

∏
j∈S

a2
j +

kδ2

2

∑
r1,...,rn∈N∪{0}
r1+···+rn=k−1

∣∣∣{1 ≤ j ≤ n : r j ≥ 1}
∣∣∣ (k − 1)!∏n

i=1 ri!

n∏
i=1

a2ri
i

≤ k!
∑

S⊆{1,...,n}
|S |=k

∏
j∈S

a2
j +

k(k − 1)δ2

2

∑
r1,...,rn∈N∪{0}
r1+···+rn=k−1

(k − 1)!∏n
i=1 ri!

n∏
i=1

a2ri
i

= k!
∑

S⊆{1,...,n}
|S |=k

∏
j∈S

a2
j +

k(k − 1)δ2

2

 n∑
j=1

a2
j


k−1

= k!
∑

S⊆{1,...,n}
|S |=k

∏
j∈S

a2
j +

k(k − 1)δ2

2
.

Hence, ∑
S⊆{1,...,n}
|S |=k

∏
j∈S

a2
j ≥

1 − k(k−1)δ2
2

k!
≥

1
2k!
. (7)
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Combining (7) with (6) we get that

E
∣∣∣∣∣∣∣∣

n∑
j=1

X j

∣∣∣∣∣∣∣∣
p

1
p

≥

E
 n∑

j=1

X j


2k

1
2k

≥

(
(2k)!

2k+1k!

) 1
2k

≥

√
2k
e
−

1

4
√

k
≥

√
p
e
−

2
√

p
,

where we used Stirling’s formula and the fact that p ≥ 2k ≥ p − 2. �

3 A p
e (1 + o(1)) approximation algorithm for QM(p)

Let A = (ai j) ∈ Mn(R) be an n × n matrix with zeros on the diagonal and fix p ≥ 2. Recall that

Optp(A) = max


n∑

i, j=1

ai jxix j : {x1, . . . , xn} ⊆ R ∧
n∑

i=1

|xi|
p ≤ 1

 , (8)

We define the following parameter:

Vecp(A) B max


n∑

i, j=1

ai j〈vi, v j〉 : {v1, . . . , vn} ⊆ L2 ∧

n∑
i=1

‖vi‖
p
2 ≤ 1

 . (9)

Claim 3.1. There is a PTAS for computing Vecp(A).

Proof. Let Pn denote the space of all n × n matrices P ∈ Mn(R) which are positive semidefinite. We
also write K B

{
(mi j) ∈ Mn(R) :

∑n
i=1 |mii|

p/2 ≤ 1
}
. Since p ≥ 2 the set K is convex. Moreover, K has a

polynomial time membership oracle (more generally, any body given by
∑n

i=1 f (|mii|) ≤ 1, where f is convex
and computable, has polynomial time membership oracle). It follows from the Grötschel-Lovász-Schrijver
convex optimization theory [18] that there is a PTAS for computing the maximum of the linear functional∑n

i, j=1 ai jmi j on Pn ∩ K. This maximum is precisely Vecp(A). �

Theorem 3.2. We have the following inequality:

Optp(A) ≤ Vecp(A) ≤
( p

e
+ 30 log p

)
· Optp(A).

Therefore there is a polynomial time algorithm which computes Optp(A) up to a factor of
(

p
e + 30 log p

)
.

Proof. The left hand inequality in Theorem 3.2 is obvious. As is often the case with Grothendieck-type
inequalities, we will work with the Gaussian Hilbert Space—this approach to Grothendieck’s inequality
first appeared in print in a paper of Johnson and Lindenstrauss [21], and was used extensively in [4, 3]. Let
g1, g2, . . . be i.i.d. standard Gaussian random variables, and assume that they are defined on some probability
space (Ω,Pr). The Gaussian Hilbert space H is the closure in L2(Ω) of the linear span of {g1, g2, ...}. By the
definition of Vecp(A) (and a simple compactness argument) there are h1, . . . , hn ∈ H such that

n∑
i=1

(
Eh2

i

)p/2
≤ 1 and E

n∑
i, j=1

ai jhih j = Vecp(A).

8



Fix M > 1 which will be determined later, and consider the event

S B


n∑

i=1

|hi|
p > M ·

2p/2Γ
(

p+1
2

)
√
π

 . (10)

The crucial point to note here is that since each hi is a Gaussian random variable we have the identity
E|hi|

p = γ
p
p

(
Eh2

i

)p/2
. Markov’s inequality implies that

Pr[S ] ≤
∑n

i=1 E|hi|
p

M ·
2p/2Γ

( p+1
2

)
√
π

≤
1
M

n∑
i=1

(
Eh2

i

)p/2
≤

1
M
. (11)

Now (11), and an application of Hölder’s inequality, implies that for every q > 1,

B B
n∑

i=1

(
E (hi1S )2

)p/2
≤

n∑
i=1

(
Eh2q

i

) p
2q (Pr[S ])

p(q−1)
2q ≤

n∑
i=1

2qΓ
(
q + 1

2

)
√
π

(
Eh2

i

)q


p
2q

1

M
p(q−1)

2q

=

2qΓ
(
q + 1

2

)
Mq−1 √π


p

2q n∑
i=1

(
Eh2

i

)p/2
≤

2qΓ
(
q + 1

2

)
Mq−1 √π


p

2q

.

Hence, an application of the definition of Vecp(A) to the vectors hi1S
B1/p ∈ L2(Ω) implies that

E
n∑

i, j=1

ai jhih j1S ≤ B2/pVecp(A) ≤

2qΓ
(
q + 1

2

)
Mq−1 √π


1/q

· Vecp(A). (12)

On the other hand, the definition of Optp(A) implies that

E
n∑

i, j=1

ai jhih j1Ω\S =

M ·
2p/2Γ

(
p+1

2

)
√
π


2/p

E
n∑

i, j=1

ai j
hi(

M ·
2p/2Γ

( p+1
2

)
√
π

)1/p ·
h j(

M ·
2p/2Γ

( p+1
2

)
√
π

)1/p 1Ω\S

≤

M ·
2p/2Γ

(
p+1

2

)
√
π


2/p

Optp(A). (13)

Combining (12) and (13) we get that

Vecp(A) = E
n∑

i, j=1

ai jhih j = E
n∑

i, j=1

ai jhih j1S + E
n∑

i, j=1

ai jhih j1Ω\S

≤

2qΓ
(
q + 1

2

)
Mq−1 √π


1/q

· Vecp(A) +

M ·
2p/2Γ

(
p+1

2

)
√
π


2/p

Optp(A). (14)

The right-hand side of (14) is mimimized for

M =

 p(q − 1)
2q

·

2qΓ
(
q + 1

2

)
√
π


1/q

·

 √
π

2p/2Γ
(

p+1
2

)2/p

·
Vecp(A)
Optp(A)


pq

pq+2q−p

. (15)

9



Plugging this value of M into (14) we get the inequality

Vecp(A) ≤
[
Vecp(A)

] 2q
pq+2q−p

·
[
Optp(A)

] p(q−1)
pq+2q−p

·

2qΓ
(
q + 1

2

)
√
π


2

pq+2q−p 2p/2Γ
(

p+1
2

)
√
π


2(q−1)

pq+2q−p

(

2q
p(q − 1)

) p(q−1)
pq+2q−p

+

(
p(q − 1)

2q

) 2q
pq+2q−p

 ,
which simplifies to give the bound,

Vecp(A)
Optp(A)

≤

2p/2Γ
(

p+1
2

)
√
π


2/p

·

2qΓ
(
q + 1

2

)
√
π


2

p(q−1)

(

2q
p(q − 1)

) p(q−1)
pq+2q−p

+

(
p(q − 1)

2q

) 2q
pq+2q−p


1+ 2q

p(q−1)

. (16)

Choosing q = 2 in (16), and using the bounds in (3), yields the required result. But, if we optimize over
q we get better bounds. This yields in particular much better approximation factors for small p. For large p
the correct choice of q is q = Θ(log p), and the bound that we get becomes

Vecp(A) ≤
(

p
e
+

2
e

log p +
2
e

log log p + O (1)
)

Optp(A).

In any case, the proof of Theorem 3.2 is complete. �

Remark 3.3. As described in the introduction, the above algorithm does not only compute an approximation
to Optp(A)—it also rounds the vectors v1, . . . , vn ∈ R

n for which Vecp(A) is approximately attained to scalars
x1, . . . , xn satisfying

∑n
i=1 |xi|

p ≤ 1 and
∑n

i, j=1 ai jxix j ≤
(

p
e + 30 log p

)
· Optp(A). Indeed, we can concretely

realize the Gaussians hi that appeared in the proof of Theorem 3.2 as hi = 〈vi,G〉, where G is a standard
Gaussian vector in Rn. We then define xi B

1
M̃1/p 〈vi,G〉1Ω\S , where analogously to (15),

M̃ =

 p(q − 1)
2q

·

2qΓ
(
q + 1

2

)
√
π


1/q

·

 √
π

2p/2Γ
(

p+1
2

)2/p

·

( p
e
+ 30 log p

)
pq

pq+2q−p

,

q ≈ log p and S is as in (10). By repeating the argument in the proof of Theorem 3.2 with the value M̃
instead of the value M in (15), i.e. by replacing the term Vecp(A)

Optp(A) in the definition of M with its a priori bound
which we already proved, shows that this rounding procedure yields the desired approximation factor.

4 UGC hardness

In this section we will make use of the notation and definitions in Section 2. We also require the following
definition.

Definition 4.1. For p ≥ 2 and ε > 0 let φ(p, ε) be the smallest φ > 0 such that for all n ∈ N if (a1, . . . , an) ∈
Rn satisfy

∑n
i=1 a2

i = 1 and maxi∈[n] a2
i ≤ φ thenE

∣∣∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣∣∣
p1/p

≥ (1 − ε)γp,

10



where ε1, . . . , εn are i.i.d. symmetric ±1 Bernoulli random variables. The existence of φ(p, ε) follows from
Lemma 2.5. Moreover, Lemma 2.6, combined with (3) implies that

φ

(
p,

10
p

)
≤

4
p2 . (17)

It will be convenient to introduce the following notation. Given p ≥ 1 and a function f : X → R defined
on a finite set X, we write Ex∈X f (x) B 1

|X|
∑

x∈X f (x) and ‖ f ‖p B (Ex∈X | f (x)|p)1/p (thus in what follows Lp

norms will correspond exclusively to uniform distributions on finite sets). If µ is a probability distribution µ
on X then we use the notation Ex∼µ f (x) B

∫
X f (x)dµ(x).

The main result of this section is the following reduction.

Theorem 4.2. There exists a reduction algorithm from ULC to QM(p) which, given a ULC instance L =

(V, E, r, {πe}e∈E), outputs an instance A of QM(p). The reduction algorithm runs in time polynomial in |V |
and 2r, and has the following properties:

• Completeness: Optp(A) ≥ Opt(L ) −
1
|V |

• Soundness: For every ε > 0 it holds that

Optp(A) ≤

 4γ12
p

ε4φ(p, ε)2 · Opt(L )

(p−2)/p

+
1 + 2ε + 3/ |V |

(1 − ε)γ2
p
+

1
|V |
. (18)

The proof of Theorem 4.2 spans the rest of this section, but before we commence with it, let us prove a
corollary that follows from it if we assume the unique games conjecture, and one that follows if we assume
the strong unique games hypothesis.

Corollary 4.3. Let p > 2 be any constant, and let δ > 0 be a constant such that (1−δ)γ2
p > 1. Then assuming

the unique games conjecture, it is NP-hard to approximate QM(p) within a factor (1 − δ)γ2
p. Using (4) it

follows that assuming the unique games conjecture it is NP-hard to approximate QM(p) within a factor
p
e +

1
4 (note that we are using a crude, sub-optimal in terms of the additive constant term, version of (4)

here).

Proof. Set ε′ = ε = δ/8, and pick δ′ > 0 small enough so that d′ < 1 − ε′ and 4γ12
p

ε4φ(p, ε)2 · δ
′

(p−2)/p

≤
δ

4γ2
p
.

From the unique games conjecture we have that there exists an integer r, such that it is NP-hard to
distinguish between instances L of ULC with r labels for which Opt(L ) ≥ 1 − ε′, and instances with r
labels for which Opt(L ) ≤ δ′. The reduction stated in Theorem 4.2 maps instances L of the first kind
into QM(p) instances A with Optp(A) ≥ 1 − ε′ − 1/|V | = 1 − δ/8 − 1/|V | (note that the reduction runs in
polynomial time). We call such instances ‘yes’ instances.

By the soundness property, it maps instances L of the latter kind into instances A satisfying

Optp(A) ≤
δ

4γ2
p
+

1 + 2ε + 3/|V |
(1 − ε)γ2

p
+

1
|V |
≤
δ

4γ2
p
+

1 + δ/2 + 3/|V |
γ2

p
+

1
|V |
.

These are called ‘no’ instances.
Thus the ratio between the values of Optp(A) for ‘yes’ and for ‘no’ instances tends, as |V | goes to infinity,

to a number which is greater than (1 − δ)γ2
p. This completes the proof of Corollary 4.3. �
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Corollary 4.4. Let p = p(n) be a parameter such that p(n) = o
(
(log n)

1
32
)
. Then assuming the strong unique

games hypothesis, it is NP-hard to approximate QM(p) within a factor p
e − O(1).

Proof. This is proved similarly to Corollary 4.3, using δ = 100/p and using Hypothesis 2.4 instead of
the unique games conjecture. Also, when following the proof of Corollary 4.3, one should use the bound
from (17) so that the value needed for δ′ is not smaller than c2

log n , where c2 is as in Hypothesis 2.4. �

4.1 The reduction

Let us begin by describing the reduction algorithm. Let L = (V, E, r, {πe}e∈E) be an instance of ULC. The
reduction will make use of the following parameters:

D B |V |3 · |E| · 22r and B B |V |2 · |E| · 22r. (19)

Some notation. Given L , the reduction should output a square matrix A with zero diagonal entries. Equiv-
alently, we prefer to think of the output of the reduction as a multilinear form defined on vectors F, and to
write A(F) instead of 〈AF, F〉 (multilinearity, i.e. linearity in each of the coordinates of the vector, is equiv-
alent in matrix notation to A having zero entries on the diagonal).

The coordinates. It will be convenient to use meaningful indices for the coordinates of F. For every node
v ∈ V there will be D · d(v) sets of coordinates

{
C j

v

}
j∈[D·d(v)]

. Each such set C j
v will contain 2r coordinates,

labeled
{
C j

v(x)
}

x∈{−1,1}r
. These coordinates serve as encodings of assignments for v: For F to encode the

assignment i for v, it should satisfy

∀ j ∈ [D · d(v)], ∀x ∈ {−1, 1}r FC j
v(x) = xi.

Given a vector F with coordinates indexed as above, we define a function f j
v : {−1, 1}r → R for every

v ∈ V and j ∈ [D · d(v)], by setting
f j
v (x) = FC j

v(x)

(for simplicity of notation, we keep the dependency of f j
v on F implicit). We also define for every v ∈ V a

function fv : {−1, 1}r → R by taking

fv(x) B E j∈[D·d(v)]
[
f j
v (x)

]
. (20)

The distribution µ. Before we proceed to define the value of the multilinear form A on F, let us note that
for every q ≥ 1 we can write the Lq norm of a vector F as follows. Let µ be the probability distribution on
V defined by µ(v) B d(v)

|E| (recall that we defined d(v) to be just the outgoing degree of v, and therefore this
really is a probability distribution). Then for every q ≥ 1,

‖F‖q =
(
Ev∼µE j∈[D·d(v)]

∥∥∥∥ f j
v

∥∥∥∥q

q

)1/q
. (21)

Equation (21) follows directly from the definition of the functions f j
v . Since q ≥ 1, it now follows from the

triangle inequality in Lq and from (20) that(
Ev∼µ‖ fv‖

q
q

)1/q
≤ ‖F‖q. (22)
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The inner and outer forms. We are ready to define the quadratic form A. Although A is defined over
the coordinates of the vector F, it will be easier to describe it as a form over the Fourier coefficients of the
functions { fv}v∈V . Such a quadratic form is also a quadratic form over F since each of these coefficients can
be written as a linear combination of the coordinates of F. We shall deal with the multilinearity of the form
later.

The form A will be a sum of two terms, one called the inner term and the other, the outer term. The
inner term will serve to prevent A from taking large values unless the functions { fv}v∈V associated with F are
very close to being linear homogeneous. The role of the outer term is, roughly, to allow A to obtain large
values on vectors F which encode assignments for L that satisfy a large fraction of the edges.

For each v ∈ V , we define a quadratic form Av on F by

Av(F) B −B ·
∑

S⊆[r]
|S |,1

f̂v(S )2.

We take the inner term to be
Ainner(F) B Ev∼µ [Av(F)] .

For every edge e = (u,w) ∈ E we let

Ae(F) B
∑
i∈[r]

f̂u(i) f̂w(πe(i)),

and define the outer term to be
Aouter B Ee∈E [Ae(F)] .

The quadratic form. We define A′(F) = Ainner(F) + Aouter(F). We would have liked to take A′ as the
output of the reduction algorithm, but it turns out to have some non-multilinear terms (i.e. some non-zero
diagonal entries in matrix language). For simplicity of analysis, we therefore first establish the completeness
and soundness properties for A′ as it is defined here. In Subsection 4.4 we slightly change A′ to remove the
diagonal entries, obtaining the final quadratic form A, and show that for every vector F with ‖F‖p ≤ 1,

|A′(F) − A(F)| ≤
1
|V |
. (23)

Running time. It is obvious from the construction that the form A′ can be constructed in time polynomial
in |V | and in 2r as required. This will also hold for the actual form A, that is defined in Subsection 4.4.

Our next step is to establish, in the next two subsections, the completeness and soundness properties of
A′, and therefore, assuming (23), also of A.

4.2 Completeness

To get the completeness property we start with an assignment A : V → [r] for L which satisfies an Opt(L )
fraction of the edges, and use is to get a vector F with ‖F‖p ≤ 1 such that A′(F) = Opt(L ). Assuming (23),
this gives the completeness property.
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The vector F. We define F by

∀ v ∈ V, ∀ j ∈ [D · d(v)], ∀ x ∈ {−1, 1}r, FC j
v(x) = xA (v) .

It is clear that ‖F‖p = 1, since all of its coordinates are either 1 or −1, and that the functions { fv}v∈V associated
with F satisfy

∀ v ∈ V, x ∈ {−1, 1}r, fv(x) = xA (v) . (24)

The functions fv are therefore linear, which implies that Ainner(F) = 0. It also follows from (24) that for
every edge e ∈ E, the value of Ae(F) is 1 if A satisfies e and 0 otherwise, and therefore

Aouter(F) = Ee ∈ E [Ae(F)] = Pr
e∈E

[A satisfies e] = Opt(L ).

Overall, we thus have A′(F) = Ainner(F) + Aouter(F) = Opt(L ), as desired.

4.3 Soundness

To establish the soundness property, let F be any vector with ‖F‖p ≤ 1. We shall prove that

A′(F) ≤

 4γ12
p

ε4φ(p, ε)2 · Opt(L )

(p−2)/p

+
1 + 2ε + 3/ |V |

(1 − ε)γ2
p
, (25)

and then the soundness property will follow from (25) together with (23). We assume w.l.o.g. that A′(F) ≥ 0.

Our aim is to use the vector F to define an assignment for L , which will prove that Opt(L ) is large
enough to make (25) hold.

On the difference between the Lp case and the L∞ case. Our definition of the assignment for L is dif-
ferent than that in [5]. In that paper every v ∈ V was given a multi-assignment by taking all the elements
i ∈ [r] for which | f̂v(i)| was greater than a certain threshold. The assignment for v was then chosen randomly
from among the elements of its multi-assignment. Since in [5] the L∞ norm of F was bounded by 1, it was
possible there to get a bound on

∑n
i=1 | f̂v(i)|, and therefore on the size of the multi-assignment (using the fact

that the L∞ norm of a linear function f equals
∑n

i=1 | f̂ (i)|). Since here we only have a bound on the Lp norm
of F, that approach does not work and the definition of the multi-assignment, as well as its analysis, are
more involved.

Before we define the assignment for L we make the following definitions and observations.

Claim 4.5. Suppose that a real number tv is associated with every node v ∈ V. Then

Ee=(u,w)∈E [tutw] ≤ Ev∼µ
[
|tv|2

]
. (26)

Proof. Consider the set of pairs {(v, j)}v∈V, j∈[d(v)] as a set of indices, and define a vector X by X(v, j) = tv. Then
the r.h.s. of (26) equals ‖X‖22. The l.h.s. of (26) is the inner product of X with a vector whose coordinates
are simply a permutation of the coordinates of X (this follows from the fact that E is symmetric). Hence
(26) follows from the Cauchy-Schwarz inequality. �

The following claim follows by the same argument as in Claim 4.5.
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Claim 4.6. Let S ⊆ E be a symmetric subset (that is, if (u,w) ∈ S then also (w, u) ∈ S ), and let {tv}v∈V be
any real numbers. Then ∑

(u,w)∈S

tutw ≤
∑

(u,w)∈S

|tu|2.

The linear part of the functions fv play an important role later on. Let us set a notation for them.

Definition 4.7. For every v ∈ V, let f l
v denote the linear homogeneous part of fv, namely f l

v(x) =
∑

i∈[r] f̂v(i)xi.
Let f h

v = fv − f l
v.

We next establish some properties of the functions f l
v and f h

v .

Claim 4.8. max
v∈V, x∈{−1,1}r

(
| f h

v (x)|
)
≤ 2r ·

√
|E|
B
=

1
|V |
.

Proof. First, note that

Aouter(F) = Ee=(u,w)∈E

∑
i∈[r]

f̂u(i) f̂w(πe(i))


≤ Ee=(u,w)∈E

[
‖ fu‖2‖ fw‖2

]
(Cauchy-Schwarz)

≤ Ev∼µ
[
‖ fv‖22

]
≤ ‖F‖22 by Claim 4.5 and by (22)

≤ ‖F‖2p ≤ 1.

Hence, since we assumed that A′(F) ≥ 0, we have from the definition of Ainner, µ, and the functions f h
v

that

−1 ≤ Ainner(F) = −B · Ev∼µ

[∥∥∥ f h
v

∥∥∥2
2

]
= −B ·

∑
v∈V d(v)

∥∥∥ f h
v

∥∥∥2
2

|E|
.

It follows that

max
v∈V

(∥∥∥ f h
v

∥∥∥2
1

)
≤ max

v∈V

(∥∥∥ f h
v

∥∥∥2
2

)
≤
|E|
B
,

and therefore that

max
v∈V, x∈{−1,1}r

(
| f h

v (x)|
)
≤ 2r max

v∈V

(∥∥∥ f h
v

∥∥∥
1

)
≤ 2r ·

√
|E|
B
=

1
|V |
,

where the last equality follows from the definition of B (19). This completes the proof of the claim. �

Claim 4.9.
[
Ev∼µ

∥∥∥ f l
v

∥∥∥p
p

]1/p
≤ 1 +

1
|V |
.

Proof. Using the triangle inequality in Lp we have

[
Ev∼µ

∥∥∥ f l
v

∥∥∥p
p

]1/p
≤

[
Ev∼µ‖ fv‖

p
p

]1/p
+

[
Ev∼µ

∥∥∥ f h
v

∥∥∥p
p

]1/p (22)
≤ ‖F‖p + max

v∈V, x∈{−1,1}r

(
| f h

v (x)|
)
≤ 1 +

1
|V |
,

where the last inequality follows from Claim 4.8 and the assumption that ‖F‖p ≤ 1. �
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Influential coordinates. We now identify the influential coordinates in the functions f l
v, which will serve

as the basis for getting an assignment for L . For this purpose, we pick the parameters

a B
γ2

p

φ(p, ε)
and b B

γ4
p · a

ε2 ,

where φ(p, ε) is as in Definition 4.1. We define for every v ∈ V subsets α(v), β(v), γ(v) ⊆ [r] as follows: α(v)
is taken to be the set of size a of coordinates i ∈ [r] for which | f̂v(i)| is largest (ties are broken arbitrarily).
β(v) is taken to be the set of b coordinates3 with the largest values of | f̂v(i)| among [r] \ α(v), and γ(v) is
defined by γ(v) = [r] \ (α(v) ∪ β(v)).

For every v ∈ V , define f αv (x) B
∑

i∈α(v) f̂v(i)xi, f βv (x) B
∑

i∈β(v) f̂v(i)xi, f γv (x) B
∑

i∈γ(v) f̂v(i)xi. So that
f αv + f βv + f γv = f l

v.

The assignment for L . We view the sets {α(v) ∪ β(v)}v∈V as a multi-assignment for L , namely an assign-
ment of several values for each v ∈ V . We say that an edge e = (u,w) ∈ E is satisfied by the multi-assignment
if there exists an i ∈ α(u) ∪ β(u) such that πe(i) ∈ α(w) ∪ β(w). We define S ⊆ E to be the set of edges that
are satisfied by the multi-assignment. Note that S is a symmetric set.

We use the multi-assignment to choose a random assignment A for L , choosing A (v) to be a uniformly
distributed element in α(v) ∪ β(v). In this case, each edge e ∈ S is satisfied by A with probability at least(

1
a+b

)2
, and therefore

|S |
|E|
≤ (a + b)2 · Opt(L ). (27)

Bounding A’(F). We are now ready to bound A′(F). We first bound it by a sum of several terms, and then
bound each term separately.

A′(F) ≤ Aouter(F) = Ee=(u,w)∈E

∑
i∈[r]

f̂u(i) f̂w(πe(i))


= Ee=(u,w)∈E


∑

i∈α(u)∪β(u)
πe(i)∈α(w)∪β(w)

f̂u(i) f̂w(πe(i))

 (28)

+ Ee=(u,w)∈E


∑

i∈α(u)
πe(i)∈γ(w)

f̂u(i) f̂w(πe(i))

 + Ee=(u,w)∈E


∑

i∈γ(u)
πe(i)∈α(w)

f̂u(i) f̂w(πe(i))

 (29)

+ Ee=(u,w)∈E


∑

i∈β(u)
πe(i)∈γ(w)

f̂u(i) f̂w(πe(i))

 + Ee=(u,w)∈E


∑

i∈γ(u)
πe(i)∈α(w)

f̂u(i) f̂w(πe(i))

 . (30)

We use the following lemmas to bound the above terms.

Lemma 4.10. (28) ≤
(
(a + b)2 · Opt(L )

)(p−2)/p
.

3To be precise, we should have take the size of α(v) and β(v) to be dae and dbe respectively. However for simplicity we disregard
this minor issue.
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Lemma 4.11. (29) ≤ 2 ·
√

a
b
=

2ε
γ2

p
.

Lemma 4.12. (30) ≤
1 + 3/ |V |
(1 − ε)γ2

p
.

Using the bounds from Lemma 4.10, Lemma 4.11, and Lemma 4.12, and substituting the values of a
and b, we get (25) and establish the soundness property of A′ (and assuming (23), also the soundness of A).
Let us now prove these three lemmas.

Proof of Lemma 4.10. To prove this lemma we need the following claim.

Claim 4.13. Let S ⊆ E be a symmetric subset, and let {tv}v∈V be real numbers. Then

Ee=(u,w)∈E [tutw · 1S (e)] ≤
(
|S |
|E|

)(p−2)/p

·
[
Ev∼µ|tv|p

]2/p
, (31)

where 1S denotes the indicator of the set S .

Proof. For every v ∈ V , let s(v) = |({v}×V)∩S |
d(v) . Then by the definition of µ,

Ev∼µ [s(v)] =
1
|E|
·
∑
v∈V

|({v} × V) ∩ S | =
|S |
|E|
. (32)

Now by Claim 4.6,

Ee=(u,w)∈E [tutw · 1S (e)] =
1
|E|
·

∑
(u,w)∈S

tutw

≤
1
|E|
·

∑
(u,w)∈S

|tu|2

=
1
|E|
·
∑
v∈V

d(v) · s(v) · |tv|2

= Ev∼µ
[
s(v) · |tv|2

]
≤

[
Ev∼µs(v)p/(p−2)

](p−2)/p
·
[
Ev∼µ|tv|p

]2/p

≤
[
Ev∼µs(v)

](p−2)/p
·
[
Ev∼µ|tv|p

]2/p

(32)
=

(
|S |
|E|

)(p−2)/p

·
[
Ev∼µ|tv|p

]2/p
,

and the proof of Claim 4.13 is complete. �

We are now ready to bound (28). By our definition of S and by the Cauchy-Schwarz inequality we have
that

(28) ≤ Ee=(u,w)∈E
[
1S (e) · ‖ fu‖2 · ‖ fw‖2

]
≤

(
|S |
|E|

)(p−2)/p

·
[
Ev∼µ‖ fv‖

p
2

]2/p
(by Claim 4.13)

≤
(
(a + b)2 · Opt(L )

)(p−2)/p
·
[
Ev∼µ‖ fv‖

p
p

]2/p
(by (27))

≤
(
(a + b)2 · Opt(L )

)(p−2)/p
, (by (22))
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as claimed. �

Proof of Lemma 4.11. By the symmetry of E, the two terms in (29) are equal. Using the Cauchy-Schwarz
inequality we thus have that

(29) = 2Ee=(u,w)∈E


∑

i∈α(u)
πe(i)∈γ(w)

f̂u(i) f̂w(πe(i))

 ≤ 2Ee=(u,w)∈E

‖ fu‖2 ·


∑
i∈α(u)
πe(i)∈γ(w)

f̂w(πe(i))2


1/2 . (33)

We now consider the sum inside the square-root in (33). From the definition of γ(w), we know that whenever
πe(i) ∈ γ(w),

f̂w(πe(i))2 ≤

∥∥∥ f l
w

∥∥∥2
2

a + b
≤
‖ fw‖22
a + b

(this is because larger coefficients would have gone into α(w) or β(w)). Also, since |α(u)| = a, the number
of summands in the sum in (33) is at most a, and so for every w,

∑
i∈α(u)
πe(i)∈γ(w)

f̂w(πe(i))2


1/2

≤

√
a

a + b
· ‖ fw‖2 ≤

√
a
b
· ‖ fw‖2. (34)

Substituting (34) in (33), we get

(29) ≤ 2 ·
√

a
b
· Ee=(u,w)∈E

[
‖ fu‖2 · ‖ fw‖2

]
≤ 2 ·

√
a
b
· Ev∼µ

[
‖ fv‖22

]
(using Claim 4.5)

≤ 2 ·
√

a
b
· ‖F‖22 (using (22))

≤ 2 ·
√

a
b
=

2ε
γ2

p
. (by the definition of a and b)

This completes the proof of Lemma 4.11 �

Proof of Lemma 4.12. Using Cauchy-Schwarz and (22) we have that

(30) ≤ Ee=(u,w)∈E


∑

i∈β(u)∪γ(u)
πe(i)∈β(w)∪γ(w)

∣∣∣∣ f̂u(i)
∣∣∣∣ ∣∣∣∣ f̂w(πe(i))

∣∣∣∣


≤ Ee=(u,w)∈E

[∥∥∥∥ f βu + f γu
∥∥∥∥

2
·

∥∥∥∥ f βw + f γw
∥∥∥∥

2

]
≤ Ev∼µ

[∥∥∥∥ f βv + f γv
∥∥∥∥2

2

]
. (35)

For every v ∈ V we would now like to bound
∥∥∥∥ f βv + f γv

∥∥∥∥2

2
by considering two cases. If∥∥∥∥ f βv + f γv

∥∥∥∥2

2
≥

1
γ2

p
·
∥∥∥ f l

v

∥∥∥2
2 (36)
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then by the choice of the parameter a and the definition of β(v) and γ(v), we have that all of the squares of

the Fourier coefficients of f βv + f γv are smaller than 1
a ·

∥∥∥ f l
v

∥∥∥2
2 =

φ(p,ε)
γ2

p
·
∥∥∥ f l

v

∥∥∥2
2 ≤ φ(p, ε) ·

∥∥∥∥ f βv + f γv
∥∥∥∥2

2
. So the

definition of φ(p, ε), together with the fact that f αv is a symmetric random variable which is independent of
the random variable f βv + f γv , we deduce that∥∥∥ f l

v

∥∥∥2
p =

∥∥∥∥ f αv + f βv + f γv
∥∥∥∥2

p
≥

∥∥∥∥ f βv + f γv
∥∥∥∥2

p
≥ (1 − ε)γ2

p ·

∥∥∥∥ f βv + f γv
∥∥∥∥2

2
. (37)

On the other hand, if (36) does not hold, then∥∥∥∥ f βv + f γv
∥∥∥∥2

2
≤

1
γ2

p
·
∥∥∥ f l

v

∥∥∥2
p ≤

1
(1 − ε)γ2

p
·
∥∥∥ f l

v

∥∥∥2
p, (38)

and thus (38) hold in both cases. Continuing (35), we therefore have that

(30) ≤
1

(1 − ε)γ2
p
· Ev∼µ

[∥∥∥ f l
v

∥∥∥2
p

]
≤

1
(1 − ε)γ2

p
·

[
Ev∼µ

∥∥∥ f l
v

∥∥∥p
p

]2/p
≤

1 + 3/|V |
(1 − ε)γ2

p
,

where in the last inequality we used Claim 4.9. This completes the proof of Lemma 4.12. �

4.4 Removing diagonal entries

To complete the proof of the Theorem 4.2, it remain to define the actual form A, which will have no diagonal
entries (that is, no non-multilinear terms), and to prove that it satisfies (23).

Identifying the source of diagonal entries. Let us begin by identifying the source of diagonal entries in
A′. First, note that all the terms in Aouter are multilinear. This is true since it contains sums of terms of the
form f̂u(i1) · f̂w(i2), where (u,w) ∈ E. Since by definition there are no loops in E, f̂u(i1) and f̂w(i2) are linear
combinations of disjoint coordinates in F, and thus their product is multilinear in the coordinates of F.

As for Ainner, it is a weighted sum of terms of the form

Av(F) = −B ·
∑

S⊆[r]
|S |,1

f̂v(S )2,

where from the definition of fv we have that

f̂v(S )2 =
(
E j∈[D·d(v)]

[
f̂ j
v (S )

])2
=

1
D2 · d(v)2 ·

∑
j1, j2∈[D·d(v)]

f̂ j1
v (S ) f̂ j2

v (S ).

Here the only terms that may contribute diagonal entries are those for which j1 = j2, which are of the form
f̂ j
v (S )2.

Defining A. Let us therefore define for every v ∈ V

A∗v(F) B −B ·
∑

S⊆[r]
|S |,1

f̂v(S )2 +
B

D2 · d(v)2 ·
∑

j∈[D·d(v)]

∑
S⊆[r]
|S |,1

f̂ j
v (S )2,
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and set
A∗inner(F) B Ev∼µ

[
A∗v(F)

]
and A B A∗inner + Aouter.

Now A does not have nonzero diagonal entries. Let us verify that it satisfies (23). For every F such that
‖F‖p ≤ 1, ∣∣∣A′(F) − A(F)

∣∣∣ = ∣∣∣Ainner(F) − A∗inner(F)
∣∣∣

= Ev∼µ

 B
D2 · d(v)2 ·

∑
j∈[D·d(v)]

∑
S⊆[r]
|S |,1

f̂ j
v (S )2


≤

B
D
· Ev∼µE j∈[D·d(v)]


∑

S⊆[r]
|S |,1

f̂ j
v (S )2


(dropping a factor of 1/d(v) inside the expectation)

≤
B
D
· Ev∼µE j∈[D·d(v)]

∥∥∥∥ f j
v

∥∥∥∥2

2
≤

B
D
=

1
|V |
,

where the last inequality follows from (21), and the last equality is from the choice of the parameters B and
D. This gives (23), and concludes the proof of Theorem 4.2.

5 Discussion and open problems

Several open problems arise naturally from our work. We list some of them below.

• Both our algorithm, and our hardness result, do not yield anything non-trivial when 1 ≤ p < 2. It
would be interesting to understand QM(p) in this case as well. When p = 1 it is easy to see that
Opt1(A) is up to a factor of 2 the same as maxi, j∈[n] |ai j|. Thus there is a trivial factor 2 approximation
algorithm for QM(1). We have recently learned from Elad Hazan and Nimrod Megiddo (personal
communication) that they obtained a PTAS for QM(1).

• We did not try to prove an integrality gap lower bound for the convex program that we used in Sec-
tion 3, though we believe that a matching integrality gap should follow from an adaptation of the
method used in [3].

• Is γ2
p the true hardness threshold for QM(p) for every fixed p > 2 (i.e. not only asymptotically as

p→ ∞)?

• It would be interesting to study the complexity of correlated quadratic programs on more general
bodies K ⊆ Rn. Although our methods give non-trivial results in other cases, we did not pursue this
research direction. In particular, if K =

{
x ∈ Rn :

∑n
i=1 v(|xi|) ≤ 1

}
, where v : R+ → R+ is convex

(and computable), i.e. in the case of general one body potentials, a tempting conjecture would be that
if v

(√
t
)

is convex then the hardness threshold is (Ev(g))2, where g is a standard Gaussian random
variable.
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• Is it possible to remove the UGC assumption in Theorem 1.1? Is it possible to prove a standard NP-
hardness result in this context? Perhaps the complexity assumptions that appear in [5] can be used
here as well.

• Is there a sharp hardness threshold in the Ising case (i.e. the L∞ problem in (1))? Currently the gap
between the known upper and lower bounds in this case is large, and it would be interesting to get
sharp results as in the case of finite p.
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