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Abstract
In this note we show that every n-point ultrametric embeds with constant distortion

in `
O(log n)
p for every ∞ ≥ p ≥ 1. More precisely, we consider a special type of ultrametric

with hierarchical structure called a k-hierarchically well-separated tree (k-HST). We show
that any k-HST can be embedded with distortion at most 1+O(1/k) in `

O(k2 log n)
p . These

facts have implications to embeddings of finite metric spaces in low dimensional `p spaces
in the context of metric Ramsey-type theorems.

1 Introduction

An ultrametric is a metric space (X, d) such that for every x, y, z ∈ X,

d(x, z) ≤ max{d(x, y), d(y, z)}.
A more restricted class of finite metrics with an inherently hierarchical structure is that of

k-hierarchically well-separated trees, defined as follows:

Definition 1. [1] For k ≥ 1, a k-hierarchically well-separated tree (k-HST) is a metric space
whose elements are the leaves of a rooted finite tree T . To each vertex u ∈ T there is associated
a label ∆(u) ≥ 0 such that ∆(u) = 0 iff u is a leaf of T . It is required that if a vertex u is a
child of a vertex v then ∆(u) ≤ ∆(v)/k . The distance between two leaves x, y ∈ T is defined
as ∆(lca(x, y)), where lca(x, y) is the least common ancestor of x and y in T .

The notion of 1-HST coincides with that of an ultrametric. Any k-HST is also a 1-HST,
i.e., an ultrametric. However, for every k > 1 the class of k-HST is a proper subclass of
ultrametrics. Ultrametrics and k-HSTs have played a key role in recent work on embeddings
of finite metric spaces [2, 3, 4, 5].

Let f : X → Y be an embedding of the metric space (X, dX) into the metric space (Y, dY ).
We define the distortion of f by

dist(f) = sup
x,y∈X
x6=y

dY (f(x), f(y))
dX(x, y)

· sup
x,y∈X
x 6=y

dX(x, y)
dY (f(x), f(y))

.

We denote by cY (X) the least distortion with which X may be embedded in Y . When
cY (X) ≤ α we say that X α-embeds into Y . When there is a bijection f between two metric
spaces X and Y with dist(f) ≤ α we say that X and Y are α-equivalent.

The following proposition provides a comparison between ultrametrics and k-HSTs.
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Proposition 1 ([2]). For any k > 1, any ultrametric is k-equivalent to a k-HST.

A basic property of ultrametrics is:

Proposition 2 ([8]). Any ultrametric is isometrically embeddable in `2.

Since `2 isometrically embeds into Lp for every 1 ≤ p ≤ ∞, a similar result follows for
embeddings in `p. Moreover, a careful analysis the proof of the above proposition yields an
isometric embedding of any n-point HST into `

O(n)
p .

Here we consider the dimension for which ultrametrics and k-HST spaces embed with a
given distortion in `p, 1 ≤ p ≤ ∞. For `2 this is answered by the Johnson-Lindenstrauss
dimension reduction lemma [7] which states that for every ε > 0, any n-point metric space in
`2 can be (1+ε)-embedded in `

O(log n/ε2)
2 . Using [6], it follows that any set of n points in `2 can

be embedded with constant distortion into `
O(log n)
p for 1 ≤ p ≤ 2 and into `

O(
√

p(log n)p/2)
p for

p > 2. The main result of this note improves the the upper bound on the dimension required
to embed n-point ultrametrics into `p, p > 2, and gives additional structural information on
the problem for embeddings into low dimensional `p spaces for 1 ≤ p ≤ 2. Moreover, we
show that any n-point k-HST can be embedded in `p with constant distortion and dimension
logarithmic in n. Furthermore, the distortion approaches 1 as k grows.

Proposition 3. Fix an integer k > 5. Then for any 1 ≤ p < ∞, any k-HST can be
(

k+1
k−5

)
-

embedded in `h
p with h = dC(1 + k/p)2 log De, where D is the maximal out-degree of a vertex

in the tree defining the k-HST, and C > 0 is a universal constant.

Proposition 3 is proved in Section 2. Combining Proposition 1 and Proposition 3 we obtain:

Corollary 4. For any 1 ≤ p ≤ ∞, any n point ultrametric can be O(1)-embedded into `
O(log n)
p .

We also show how to apply this lemma to the metric Ramsey-type problems. A metric
Ramsey-type theorem states that a given metric space contains a large subset which can
be embedded with small distortion in some “well-structured” family of metric spaces (e.g.
Euclidean metrics). This can be formulated using the following notion.

Definition 2. Let M be some class of metric spaces. Denote by RM(α, n) the largest integer
m such that any n-point metric space has a subset of size m that α-embeds into a member of
M. When M = {`p}, we use Rp rather than R`p .

In [4] it is shown that for every 1 ≤ p ≤ ∞ and α > 2, Rp(α, n) ≥ n1−O( log α
α ) and for

every 0 < ε < 1, Rp(2 + ε, n) ≥ n
Ω
�

ε
log(2/ε)

�
. We refer to [4] and the references therein for

a comprehensive description metric Ramsey problems and their history. Using Lemma 3, we
prove the following variant of the result of [4] in which there is control on the dimension in
the metric Ramsey problem for `p, p ≥ 1. This application was our original motivation for
studying low-dimensional embeddings of ultrametrics.

Theorem 1. The following assertions hold:

1. There exist absolute constants c, C > 0 such that for all 1 ≤ p ≤ ∞ and for every α > 2,

R`d
p
(α, n) ≥ n1−C log α

α , where d = dc log ne .
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2. There are absolute constants C, c > 0 such that for every 0 < ε < 1, 1 ≤ p < ∞ and
every integer n,

R`d
p
(2 + ε, n) ≥ n

cε
log(2/ε) , where d =

⌈
C

εd(εp)−2e
log(2/ε)

log n

⌉
.

2 Embedding HSTs in low dimensional `p spaces

We follow Definition 1, and associate with any k-HST, the tree T defining the HST. An internal
vertex in T with out-degree 1 is said to be degenerate. If u is non-degenerate, then ∆(u) is
the diameter of the sub-space induced on the subtree rooted by u. Degenerate nodes do not
influence the metric on T ’s leaves, hence we may assume that all internal nodes are non-
degenerate. In particular for an HST X, diam(X) = ∆(root(T )), where T is the tree defining
X.

We make use of the following standard construction of codes, the proof of which is included
for the sake of completeness. In what follows, for w, v ∈ {0, 1}h, w ⊕ v denotes the point-wise
addition modulo 2 of v and w.

Lemma 5. For any h ∈ N, and τ ∈ (0, 1), there exists K ⊂ {0, 1}h such that the Hamming
distance between any two distinct elements of K is in the range [(1 − τ)h/2, (1 + τ)h/2] and
|K| ≥ behτ2/8c.
Proof. Let w, v ∈ {0, 1}h be random elements. Then by Chernoff bound, the probability that
w⊕v has less than (1−δ)h/2 1’s is at most e−δ2h/4. Similarly, the probability it has more than
(1 + δ)h/2 1’s is also at most e−δ2h/4. Given m random elements w1, . . . , wm ∈ {0, 1}h, the
probability that the distance between any two of them isn’t in the range [(1−δ)h/2, (1+δ)h/2]
is at most

(
m
2

)
2e−δ2h/4 < m2e−δ2h/4. Thus, choosing m = beδ2h/8c implies that with a positive

probability the subset K = {w1, . . . , wm} has the required properties.

Proof of Lemma 3. Let u be the root of the tree defining X and X1, . . . , Xs be the leaf sets of
subtrees rooted at the children of u. Note that s ≤ D. For p < ∞, let τ = (1 + k/p)−1/6. Set
h =

⌈
8τ−2 log s

⌉
, so that ehτ2/8 ≥ s. By Lemma 5 there exists K ⊂ {0, 1}h with all Hamming

distances in the range [(1− τ)h/2, (1 + τ)h/2] and |K| ≥ s. Choose s distinct c1, . . . , cs ∈ K.
By switching to c1 ⊕ c1, c2 ⊕ c1, . . . , cs ⊕ c1 we may assume that c1 = 0, in which case for
1 ≤ i ≤ s, ‖ci‖1 ≤ 1+τ

2 h.
Assume inductively that for each i we have an embedding φi : Xi → `h

p , such that:

• For all x, y ∈ Xi, k−5
k+1dXi(x, y) ≤ ‖φi(x)− φi(y)‖p ≤ dXi(x, y).

• For every x ∈ Xi, ‖φi(x)‖p ≤ diam(Xi).

Let λ =
(

1+τ
2 h

)−1/p k−2
k , and let ∆ = diam(X). Define an embedding φ : X → `h

p of X as
follows: for x ∈ Xi,

φ(x) = φi(x) + λ∆ci.

Then:

‖φ(x)‖p ≤ ‖φi(x)‖p + λ∆‖ci‖p ≤ diam(Xi) +
(

1 + τ

2
h

)−1/p k − 2
k

∆‖ci‖1/p
1

≤ ∆
k

+
k − 2

k
∆ < ∆.
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For x, y ∈ Xi, ‖φ(x)− φ(y)‖p = ‖φi(x)− φi(y)‖p, so by the induction hypothesis:

k − 5
k + 1

dX(x, y) ≤ ‖φ(x)− φ(y)‖p ≤ dX(x, y).

For x ∈ Xi, y ∈ Xj and i 6= j, we have dX(x, y) = ∆. Now

‖φ(x)− φ(y)‖p ≤ λ∆‖ci − cj‖p + ‖φi(x)‖p + ‖φj(x)‖p

≤ λ∆‖ci − cj‖1/p
1 + diam(Xi) + diam(Xj)

≤
(

1 + τ

2
h

)−1/p k − 2
k

∆
(

1 + τ

2
h

)1/p

+
2
k
∆ = ∆ = dX(x, y),

and

‖φ(x)− φ(y)‖p ≥ λ∆‖ci − cj‖p − ‖φi(x)‖p − ‖φj(x)‖p

≥ λ∆‖ci − cj‖1/p
1 − diam(Xi)− diam(Xj)

≥
(

1 + τ

2
h

)−1/p k − 2
k

∆
(

1− τ

2
h

)1/p

− 2
k
∆

≥
((

1− τ

1 + τ

)1/p k − 2
k

− 2
k

)
∆

≥
(

k

k + 1
· k − 2

k
− 2

k

)
∆ ≥ k − 5

k + 1
dX(x, y).

The last inequality holds for k > 5 and the preceding derivation follows from the definition of
τ :

(
1− τ

1 + τ

)1/p

≥ (1 + 3τ)−1/p ≥ (1 + 6τ/p)−1 = (1 + (1 + k/p)−1/p)−1 ≥ (1 + 1/k)−1.

3 Implications

Denote by UM the class of all ultrametrics. We will need the following theorem:

Theorem 2 ([4]). The following assertions hold for every integer n:

1. There exists an absolute constant C ′ > 0 such that for every α > 2,

RUM(α, n) ≥ n1−C′ log α
α .

2. There is an absolute constant c > 0 such that for any k ≥ 1 and 0 < ε < 1, for any
integer n:

Rk-HST(2 + ε, n) ≥ n
cε

log(2k/ε) .

Proposition 2 implies similar bounds for R2(α, n). We next show how to extend those
results for embedding into `

O(log n)
p by using Lemma 3.
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Proof of Theorem 1. We begin with the first claim of the theorem. Let C ′ > 0 be the constant
at the first assertion in Theorem 2, and let β be a universal constant such that any n-point ul-
trametric β embeds in `

O(log n)
p (Corollary 4). We choose C = βC ′, so that C log α

α ≥ C ′ log(α/β)
α/β .

From Theorem 2 we deduce that

RUM(α/β, n) ≥ n
1−C′ log(α/β)

α/β ≥ n1−C log α
α .

The subset described by this statement is (α/β)-equivalent to an ultrametric and so, by Corol-
lary 4, it is α-embeddable in `

O(log n)
p .

We next consider the second statement in the theorem. Let δ = ε/4 and k = b5 + 6/δc,
then by Theorem 2, there exists c′ > 0 such that Rk-HST(2 + δ, n) ≥ n

c′δ
log(2/δ) . Let M be an

arbitrary metric space. For an appropriate choice of c this means that M contains a subset
Y of size m = dn cε

log(2/ε) e that is (2 + δ)-equivalent to some k-HST X. By Proposition 3 and
our choice of k, there exists some constant C ′ > 0 such that X can be (1 + δ)-embedded in `d

p,
where

d = dC ′d(δp)−2e log me =
⌈
C

εd(εp)−2e
log(2/ε)

log n

⌉
,

for an appropriate choice of C. Therefore Y is (2 + δ)(1 + δ) ≤ (2 + ε)-embedded in `d
p.
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