Low Dimensional Embeddings of Ultrametrics

Yair Bartal ${ }^{*} \quad$ Nathan Linial ${ }^{\dagger} \quad$ Manor Mendel ${ }^{\ddagger} \quad$ Assaf Naor

May 20, 2003

Abstract

In this note we show that every n-point ultrametric embeds with constant distortion in $\ell_{p}^{O(\log n)}$ for every $\infty \geq p \geq 1$. More precisely, we consider a special type of ultrametric with hierarchical structure called a k-hierarchically well-separated tree (k-HST). We show that any k-HST can be embedded with distortion at most $1+O(1 / k)$ in $\ell_{p}^{O\left(k^{2} \log n\right)}$. These facts have implications to embeddings of finite metric spaces in low dimensional ℓ_{p} spaces in the context of metric Ramsey-type theorems.

1 Introduction

An ultrametric is a metric space (X, d) such that for every $x, y, z \in X$,

$$
d(x, z) \leq \max \{d(x, y), d(y, z)\}
$$

A more restricted class of finite metrics with an inherently hierarchical structure is that of k-hierarchically well-separated trees, defined as follows:
Definition 1. [1] For $k \geq 1$, a k-hierarchically well-separated tree (k-HST) is a metric space whose elements are the leaves of a rooted finite tree T. To each vertex $u \in T$ there is associated a label $\Delta(u) \geq 0$ such that $\Delta(u)=0$ iff u is a leaf of T. It is required that if a vertex u is a child of a vertex v then $\Delta(u) \leq \Delta(v) / k$. The distance between two leaves $x, y \in T$ is defined as $\Delta(\operatorname{lca}(x, y))$, where lca (x, y) is the least common ancestor of x and y in T.

The notion of 1-HST coincides with that of an ultrametric. Any k-HST is also a 1-HST, i.e., an ultrametric. However, for every $k>1$ the class of k-HST is a proper subclass of ultrametrics. Ultrametrics and k-HSTs have played a key role in recent work on embeddings of finite metric spaces $[2,3,4,5]$.

Let $f: X \rightarrow Y$ be an embedding of the metric space $\left(X, d_{X}\right)$ into the metric space $\left(Y, d_{Y}\right)$. We define the distortion of f by

$$
\operatorname{dist}(f)=\sup _{\substack{x, y \in X \\ x \neq y}} \frac{d_{Y}(f(x), f(y))}{d_{X}(x, y)} \cdot \sup _{\substack{x, y \in X \\ x \neq y}} \frac{d_{X}(x, y)}{d_{Y}(f(x), f(y))}
$$

We denote by $c_{Y}(X)$ the least distortion with which X may be embedded in Y. When $c_{Y}(X) \leq \alpha$ we say that $X \alpha$-embeds into Y. When there is a bijection f between two metric spaces X and Y with $\operatorname{dist}(\mathrm{f}) \leq \alpha$ we say that X and Y are α-equivalent.

The following proposition provides a comparison between ultrametrics and k-HSTs.

[^0]Proposition 1 ([2]). For any $k>1$, any ultrametric is k-equivalent to a k-HST.
A basic property of ultrametrics is:
Proposition 2 ([8]). Any ultrametric is isometrically embeddable in ℓ_{2}.
Since ℓ_{2} isometrically embeds into L_{p} for every $1 \leq p \leq \infty$, a similar result follows for embeddings in ℓ_{p}. Moreover, a careful analysis the proof of the above proposition yields an isometric embedding of any n-point HST into $\ell_{p}^{O(n)}$.

Here we consider the dimension for which ultrametrics and k-HST spaces embed with a given distortion in $\ell_{p}, 1 \leq p \leq \infty$. For ℓ_{2} this is answered by the Johnson-Lindenstrauss dimension reduction lemma [7] which states that for every $\epsilon>0$, any n-point metric space in ℓ_{2} can be $(1+\epsilon)$-embedded in $\ell_{2}^{O\left(\log n / \epsilon^{2}\right)}$. Using [6], it follows that any set of n points in ℓ_{2} can be embedded with constant distortion into $\ell_{p}^{O(\log n)}$ for $1 \leq p \leq 2$ and into $\ell_{p}^{O\left(\sqrt{p}(\log n)^{p / 2}\right)}$ for $p>2$. The main result of this note improves the the upper bound on the dimension required to embed n-point ultrametrics into $\ell_{p}, p>2$, and gives additional structural information on the problem for embeddings into low dimensional ℓ_{p} spaces for $1 \leq p \leq 2$. Moreover, we show that any n-point k-HST can be embedded in ℓ_{p} with constant distortion and dimension logarithmic in n. Furthermore, the distortion approaches 1 as k grows.

Proposition 3. Fix an integer $k>5$. Then for any $1 \leq p<\infty$, any $k-H S T$ can be $\left(\frac{k+1}{k-5}\right)$ embedded in ℓ_{p}^{h} with $h=\left\lceil C(1+k / p)^{2} \log D\right\rceil$, where D is the maximal out-degree of a vertex in the tree defining the $k-H S T$, and $C>0$ is a universal constant.

Proposition 3 is proved in Section 2. Combining Proposition 1 and Proposition 3 we obtain: Corollary 4. For any $1 \leq p \leq \infty$, any n point ultrametric can be $O(1)$-embedded into $\ell_{p}^{O(\log n)}$.

We also show how to apply this lemma to the metric Ramsey-type problems. A metric Ramsey-type theorem states that a given metric space contains a large subset which can be embedded with small distortion in some "well-structured" family of metric spaces (e.g. Euclidean metrics). This can be formulated using the following notion.

Definition 2. Let \mathcal{M} be some class of metric spaces. Denote by $R_{\mathcal{M}}(\alpha, n)$ the largest integer m such that any n-point metric space has a subset of size m that α-embeds into a member of \mathcal{M}. When $\mathcal{M}=\left\{\ell_{p}\right\}$, we use R_{p} rather than $R_{\ell_{p}}$.

In [4] it is shown that for every $1 \leq p \leq \infty$ and $\alpha>2, R_{p}(\alpha, n) \geq n^{1-O\left(\frac{\log \alpha}{\alpha}\right)}$ and for every $0<\varepsilon<1, R_{p}(2+\varepsilon, n) \geq n^{\Omega\left(\frac{\varepsilon}{\log (2 / \varepsilon)}\right)}$. We refer to [4] and the references therein for a comprehensive description metric Ramsey problems and their history. Using Lemma 3, we prove the following variant of the result of [4] in which there is control on the dimension in the metric Ramsey problem for $\ell_{p}, p \geq 1$. This application was our original motivation for studying low-dimensional embeddings of ultrametrics.

Theorem 1. The following assertions hold:

1. There exist absolute constants $c, C>0$ such that for all $1 \leq p \leq \infty$ and for every $\alpha>2$,

$$
R_{\ell_{p}^{d}}(\alpha, n) \geq n^{1-C \frac{\log \alpha}{\alpha}}, \quad \text { where } \quad d=\lceil c \log n\rceil
$$

2. There are absolute constants $C, c>0$ such that for every $0<\epsilon<1,1 \leq p<\infty$ and every integer n,

$$
R_{\ell_{p}^{d}}(2+\epsilon, n) \geq n^{\frac{c \epsilon}{\log (2 / \epsilon)}}, \quad \text { where } \quad d=\left\lceil C \frac{\varepsilon\left\lceil(\varepsilon p)^{-2}\right\rceil}{\log (2 / \epsilon)} \log n\right\rceil \text {. }
$$

2 Embedding HSTs in low dimensional ℓ_{p} spaces

We follow Definition 1, and associate with any k-HST, the tree T defining the HST. An internal vertex in T with out-degree 1 is said to be degenerate. If u is non-degenerate, then $\Delta(u)$ is the diameter of the sub-space induced on the subtree rooted by u. Degenerate nodes do not influence the metric on T 's leaves, hence we may assume that all internal nodes are nondegenerate. In particular for an $\operatorname{HST} X, \operatorname{diam}(X)=\Delta(\operatorname{root}(T))$, where T is the tree defining X.

We make use of the following standard construction of codes, the proof of which is included for the sake of completeness. In what follows, for $w, v \in\{0,1\}^{h}, w \oplus v$ denotes the point-wise addition modulo 2 of v and w.

Lemma 5. For any $h \in \mathbb{N}$, and $\tau \in(0,1)$, there exists $K \subset\{0,1\}^{h}$ such that the Hamming distance between any two distinct elements of K is in the range $[(1-\tau) h / 2,(1+\tau) h / 2]$ and $|K| \geq\left\lfloor e^{h \tau^{2} / 8}\right\rfloor$.
Proof. Let $w, v \in\{0,1\}^{h}$ be random elements. Then by Chernoff bound, the probability that $w \oplus v$ has less than $(1-\delta) h / 21$'s is at most $e^{-\delta^{2} h / 4}$. Similarly, the probability it has more than $(1+\delta) h / 21^{\prime}$'s is also at most $e^{-\delta^{2} h / 4}$. Given m random elements $w_{1}, \ldots, w_{m} \in\{0,1\}^{h}$, the probability that the distance between any two of them isn't in the range [(1- $\delta) h / 2,(1+\delta) h / 2]$ is at most $\binom{m}{2} 2 e^{-\delta^{2} h / 4}<m^{2} e^{-\delta^{2} h / 4}$. Thus, choosing $m=\left\lfloor e^{\delta^{2} h / 8}\right\rfloor$ implies that with a positive probability the subset $K=\left\{w_{1}, \ldots, w_{m}\right\}$ has the required properties.

Proof of Lemma 3. Let u be the root of the tree defining X and X_{1}, \ldots, X_{s} be the leaf sets of subtrees rooted at the children of u. Note that $s \leq D$. For $p<\infty$, let $\tau=(1+k / p)^{-1} / 6$. Set $h=\left\lceil 8 \tau^{-2} \log s\right\rceil$, so that $e^{h \tau^{2} / 8} \geq s$. By Lemma 5 there exists $K \subset\{0,1\}^{h}$ with all Hamming distances in the range $[(1-\tau) h / 2,(1+\tau) h / 2]$ and $|K| \geq s$. Choose s distinct $c_{1}, \ldots, c_{s} \in K$. By switching to $c_{1} \oplus c_{1}, c_{2} \oplus c_{1}, \ldots, c_{s} \oplus c_{1}$ we may assume that $c_{1}=0$, in which case for $1 \leq i \leq s,\left\|c_{i}\right\|_{1} \leq \frac{1+\tau}{2} h$.

Assume inductively that for each i we have an embedding $\phi_{i}: X_{i} \rightarrow \ell_{p}^{h}$, such that:

- For all $x, y \in X_{i}, \frac{k-5}{k+1} d_{X_{i}}(x, y) \leq\left\|\phi_{i}(x)-\phi_{i}(y)\right\|_{p} \leq d_{X_{i}}(x, y)$.
- For every $x \in X_{i},\left\|\phi_{i}(x)\right\|_{p} \leq \operatorname{diam}\left(X_{i}\right)$.

Let $\lambda=\left(\frac{1+\tau}{2} h\right)^{-1 / p} \frac{k-2}{k}$, and let $\Delta=\operatorname{diam}(X)$. Define an embedding $\phi: X \rightarrow \ell_{p}^{h}$ of X as follows: for $x \in X_{i}$,

$$
\phi(x)=\phi_{i}(x)+\lambda \Delta c_{i} .
$$

Then:

$$
\begin{aligned}
\|\phi(x)\|_{p} & \leq\left\|\phi_{i}(x)\right\|_{p}+\lambda \Delta\left\|c_{i}\right\|_{p} \leq \operatorname{diam}\left(X_{i}\right)+\left(\frac{1+\tau}{2} h\right)^{-1 / p} \frac{k-2}{k} \Delta\left\|c_{i}\right\|_{1}^{1 / p} \\
& \leq \frac{\Delta}{k}+\frac{k-2}{k} \Delta<\Delta
\end{aligned}
$$

For $x, y \in X_{i},\|\phi(x)-\phi(y)\|_{p}=\left\|\phi_{i}(x)-\phi_{i}(y)\right\|_{p}$, so by the induction hypothesis:

$$
\frac{k-5}{k+1} d_{X}(x, y) \leq\|\phi(x)-\phi(y)\|_{p} \leq d_{X}(x, y)
$$

For $x \in X_{i}, y \in X_{j}$ and $i \neq j$, we have $d_{X}(x, y)=\Delta$. Now

$$
\begin{aligned}
\|\phi(x)-\phi(y)\|_{p} & \leq \lambda \Delta\left\|c_{i}-c_{j}\right\|_{p}+\left\|\phi_{i}(x)\right\|_{p}+\left\|\phi_{j}(x)\right\|_{p} \\
& \leq \lambda \Delta\left\|c_{i}-c_{j}\right\|_{1}^{1 / p}+\operatorname{diam}\left(X_{i}\right)+\operatorname{diam}\left(X_{j}\right) \\
& \leq\left(\frac{1+\tau}{2} h\right)^{-1 / p} \frac{k-2}{k} \Delta\left(\frac{1+\tau}{2} h\right)^{1 / p}+\frac{2}{k} \Delta=\Delta=d_{X}(x, y)
\end{aligned}
$$

and

$$
\begin{aligned}
\|\phi(x)-\phi(y)\|_{p} & \geq \lambda \Delta\left\|c_{i}-c_{j}\right\|_{p}-\left\|\phi_{i}(x)\right\|_{p}-\left\|\phi_{j}(x)\right\|_{p} \\
& \geq \lambda \Delta\left\|c_{i}-c_{j}\right\|_{1}^{1 / p}-\operatorname{diam}\left(X_{i}\right)-\operatorname{diam}\left(X_{j}\right) \\
& \geq\left(\frac{1+\tau}{2} h\right)^{-1 / p} \frac{k-2}{k} \Delta\left(\frac{1-\tau}{2} h\right)^{1 / p}-\frac{2}{k} \Delta \\
& \geq\left(\left(\frac{1-\tau}{1+\tau}\right)^{1 / p} \frac{k-2}{k}-\frac{2}{k}\right) \Delta \\
& \geq\left(\frac{k}{k+1} \cdot \frac{k-2}{k}-\frac{2}{k}\right) \Delta \geq \frac{k-5}{k+1} d_{X}(x, y) .
\end{aligned}
$$

The last inequality holds for $k>5$ and the preceding derivation follows from the definition of τ :

$$
\left(\frac{1-\tau}{1+\tau}\right)^{1 / p} \geq(1+3 \tau)^{-1 / p} \geq(1+6 \tau / p)^{-1}=\left(1+(1+k / p)^{-1} / p\right)^{-1} \geq(1+1 / k)^{-1}
$$

3 Implications

Denote by UM the class of all ultrametrics. We will need the following theorem:
Theorem 2 ([4]). The following assertions hold for every integer n :

1. There exists an absolute constant $C^{\prime}>0$ such that for every $\alpha>2$,

$$
R_{\mathrm{UM}}(\alpha, n) \geq n^{1-C^{\prime} \frac{\log \alpha}{\alpha}} .
$$

2. There is an absolute constant $c>0$ such that for any $k \geq 1$ and $0<\epsilon<1$, for any integer n :

$$
R_{k-\mathrm{HST}}(2+\epsilon, n) \geq n^{\frac{c \epsilon}{\log (2 k / \epsilon)}} .
$$

Proposition 2 implies similar bounds for $R_{2}(\alpha, n)$. We next show how to extend those results for embedding into $\ell_{p}^{O(\log n)}$ by using Lemma 3.

Proof of Theorem 1. We begin with the first claim of the theorem. Let $C^{\prime}>0$ be the constant at the first assertion in Theorem 2, and let β be a universal constant such that any n-point ultrametric β embeds in $\ell_{p}^{O(\log n)}$ (Corollary 4). We choose $C=\beta C^{\prime}$, so that $C \frac{\log \alpha}{\alpha} \geq C^{\prime} \frac{\log (\alpha / \beta)}{\alpha / \beta}$. From Theorem 2 we deduce that

$$
R_{\mathrm{UM}}(\alpha / \beta, n) \geq n^{1-C^{\prime} \frac{\log (\alpha / \beta)}{\alpha / \beta}} \geq n^{1-C \frac{\log \alpha}{\alpha}} .
$$

The subset described by this statement is (α / β)-equivalent to an ultrametric and so, by Corollary 4, it is α-embeddable in $\ell_{p}^{O(\log n)}$.

We next consider the second statement in the theorem. Let $\delta=\epsilon / 4$ and $k=\lfloor 5+6 / \delta\rfloor$, then by Theorem 2, there exists $c^{\prime}>0$ such that $R_{k-\mathrm{HST}}(2+\delta, n) \geq n^{\frac{c^{\prime} \delta}{\log (2 / \delta)}}$. Let M be an arbitrary metric space. For an appropriate choice of c this means that M contains a subset Y of size $m=\left\lceil n^{\frac{c \epsilon}{\log (2 / \epsilon)}}\right\rceil$ that is $(2+\delta)$-equivalent to some k-HST X. By Proposition 3 and our choice of k, there exists some constant $C^{\prime}>0$ such that X can be $(1+\delta)$-embedded in ℓ_{p}^{d}, where

$$
d=\left\lceil C^{\prime}\left\lceil(\delta p)^{-2}\right\rceil \log m\right\rceil=\left\lceil C \frac{\epsilon\left\lceil(\epsilon p)^{-2}\right\rceil}{\log (2 / \epsilon)} \log n\right\rceil,
$$

for an appropriate choice of C. Therefore Y is $(2+\delta)(1+\delta) \leq(2+\epsilon)$-embedded in ℓ_{p}^{d}.

References

[1] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In 37th Annual Symposium on Foundations of Computer Science, pages 184-193, 1996.
[2] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 183-193, 1998.
[3] Y. Bartal, B. Bollobás, and M. Mendel. Ramsey-type theorems for metric spaces with applications to online problems, 2002. A preliminary version appeared in FOCS '01.
[4] Y. Bartal, N. Linial, M. Mendel, and A. Naor. On Metric Ramsey-type Phenomena. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, 2003.
[5] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by tree metrics. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, 2003.
[6] T. Figiel, J. Lindenstrauss, and V. D. Milman. The dimension of almost spherical sections of convex bodies. Acta Math., 139(1-2):53-94, 1977.
[7] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), pages 189-206. Amer. Math. Soc., Providence, RI, 1984.
[8] Alex J. Lemin. Isometric embedding of ultrametric (non-Archimedean) spaces in Hilbert space and Lebesgue space. In p-adic functional analysis (Ioannina, 2000), volume 222 of Lecture Notes in Pure and Appl. Math., pages 203-218. Dekker, New York, 2001.

Yair Bartal, Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel. yair@cs.huji.ac.il

Nathan Linial, Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel. nati@cs.huji.ac.il
Manor Mendel, Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel. mendelma@cs.huji.ac.il
Assaf Naor, Theory Group, Microsoft Research, One Microsoft Way 113/2131, Redmond WA 98052-6399, USA.
anaor@microsoft.com

[^0]: *Supported in part by a grant from the Israeli National Science Foundation
 ${ }^{\dagger}$ Supported in part by a grant from the Israeli National Science Foundation
 ${ }^{\ddagger}$ Supported in part by the Landau Center.

