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Abstract
In this note we show that every n-point ultrametric embeds with constant distortion
in E,? (o8 n) for every oo > p > 1. More precisely, we consider a special type of ultrametric
with hierarchical structure called a k-hierarchically well-separated tree (k-HST). We show
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that any k-HST can be embedded with distortion at most 1+ O(1/k) in ég(k 10£)  These
facts have implications to embeddings of finite metric spaces in low dimensional ¢, spaces
in the context of metric Ramsey-type theorems.

1 Introduction

An wultrametric is a metric space (X, d) such that for every z,y,z € X,
d(z, z) < max{d(z,y),d(y, 2)}.

A more restricted class of finite metrics with an inherently hierarchical structure is that of
k-hierarchically well-separated trees, defined as follows:

Definition 1. [1] For k > 1, a k-hierarchically well-separated tree (k-HST) is a metric space
whose elements are the leaves of a rooted finite tree T'. To each vertex u € T there is associated
a label A(u) > 0 such that A(u) = 0 iff u is a leaf of T'. It is required that if a vertex u is a
child of a vertex v then A(u) < A(v)/k . The distance between two leaves x,y € T is defined
as A(lca(z,y)), where lca(x,y) is the least common ancestor of x and y in 7.

The notion of 1-HST coincides with that of an ultrametric. Any k-HST is also a 1-HST,
i.e., an ultrametric. However, for every k > 1 the class of k-HST is a proper subclass of
ultrametrics. Ultrametrics and k-HSTs have played a key role in recent work on embeddings
of finite metric spaces [2, 3, 4, 5].

Let f: X — Y be an embedding of the metric space (X, dx) into the metric space (Y, dy).
We define the distortion of f by

dst(f) — sup W@ W) dx()

syex  dx(@y)  ayex dy(f(2), f(y))
TFY TF#Y
We denote by cy(X) the least distortion with which X may be embedded in Y. When
cy (X) < a we say that X a-embeds into Y. When there is a bijection f between two metric
spaces X and Y with dist(f) < o we say that X and Y are a-equivalent.
The following proposition provides a comparison between ultrametrics and k-HSTs.
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Proposition 1 ([2]). For any k > 1, any ultrametric is k-equivalent to a k-HST.
A basic property of ultrametrics is:
Proposition 2 ([8]). Any ultrametric is isometrically embeddable in {5.

Since {9 isometrically embeds into L, for every 1 < p < oo, a similar result follows for
embeddings in ¢,. Moreover, a careful analysis the proof of the above proposition yields an
isometric embedding of any n-point HST into 61?(").

Here we consider the dimension for which ultrametrics and k-HST spaces embed with a
given distortion in £,, 1 < p < oco. For /> this is answered by the Johnson-Lindenstrauss

dimension reduction lemma [7] which states that for every e > 0, any n-point metric space in
2
¢y can be (1+¢€)-embedded in Eg(log n/e), Using [6], it follows that any set of n points in £3 can

be embedded with constant distortion into Eg(logn) for 1 < p < 2 and into Zg (vP(logn)/?) for
p > 2. The main result of this note improves the the upper bound on the dimension required
to embed n-point ultrametrics into ¢,, p > 2, and gives additional structural information on
the problem for embeddings into low dimensional £, spaces for 1 < p < 2. Moreover, we
show that any n-point k-HST can be embedded in ¢, with constant distortion and dimension
logarithmic in n. Furthermore, the distortion approaches 1 as k grows.

Proposition 3. Fiz an integer k > 5. Then for any 1 < p < oo, any k-HST can be (%)—

embedded in EZ with h = [C(1+ k/p)?log D], where D is the mazimal out-degree of a vertex
in the tree defining the k-HST, and C > 0 is a universal constant.

Proposition 3 is proved in Section 2. Combining Proposition 1 and Proposition 3 we obtain:

Corollary 4. For any 1 < p < oo, any n point ultrametric can be O(1)-embedded into Eg(log m),

We also show how to apply this lemma to the metric Ramsey-type problems. A metric
Ramsey-type theorem states that a given metric space contains a large subset which can
be embedded with small distortion in some “well-structured” family of metric spaces (e.g.
Euclidean metrics). This can be formulated using the following notion.

Definition 2. Let M be some class of metric spaces. Denote by Ryq(c, n) the largest integer
m such that any n-point metric space has a subset of size m that a-embeds into a member of
M. When M = {/,,}, we use R, rather than Ry, .

In [4] it is shown that for every 1 < p < oo and o > 2, R,(c,n) > n1=O(%%%) and for

every 0 < e <1, R,(24+¢,n) > nQ(log(ﬁ) We refer to [4] and the references therein for
a comprehensive description metric Ramsey problems and their history. Using Lemma 3, we
prove the following variant of the result of [4] in which there is control on the dimension in
the metric Ramsey problem for ¢,, p > 1. This application was our original motivation for
studying low-dimensional embeddings of ultrametrics.

Theorem 1. The following assertions hold:

1. There exist absolute constants ¢, C > 0 such that for all 1 < p < 0o and for every a > 2,

Rgg(a, n) > nl_clo%, where d = [clogn].



2. There are absolute constants C,c > 0 such that for every 0 < e < 1,1 < p < 00 and
every integer n,

ce —2
Rgg(2 +€,n) > nlos/9, where d = [CW log n-‘ .

log(2/e)
2 Embedding HSTs in low dimensional ¢, spaces

We follow Definition 1, and associate with any k-HST, the tree T' defining the HST. An internal
vertex in 7" with out-degree 1 is said to be degenerate. If u is non-degenerate, then A(u) is
the diameter of the sub-space induced on the subtree rooted by u. Degenerate nodes do not
influence the metric on 7T’s leaves, hence we may assume that all internal nodes are non-
degenerate. In particular for an HST X, diam(X) = A(root(T')), where T is the tree defining
X.

We make use of the following standard construction of codes, the proof of which is included
for the sake of completeness. In what follows, for w,v € {0, 1}h7 w @ v denotes the point-wise
addition modulo 2 of v and w.

Lemma 5. For any h € N, and 7 € (0,1), there exists K C {0,1}" such that the Hamming

distance between any two distinct elements of K is in the range [(1 — 7)h/2,(1 4+ 7)h/2] and
K| > /8],

Proof. Let w,v € {0,1}" be random elements. Then by Chernoff bound, the probability that
w®o has less than (1—-49)h/2 1’s is at most e~0°h/4 . Similarly, the probability it has more than
(14 8)h/2 I's is also at most e 9"/4. Given m random elements w1, ..., wy, € {0,1}", the
probability that the distance between any two of them isn’t in the range [(1—39)h/2, (1+5)h/2]
is at most (7;) 2e9°h/4 < m2e=0%h/4, Thus, choosing m = {e‘;Qh/SJ implies that with a positive
probability the subset K = {ws, ..., wy,} has the required properties. O

Proof of Lemma 3. Let u be the root of the tree defining X and Xj,..., X be the leaf sets of
subtrees rooted at the children of u. Note that s < D. For p < oo, let 7 = (1 +k/p)~1/6. Set
h = [877?log s|, so that eh™/8 > 5. By Lemma 5 there exists K C {0,1}" with all Hamming
distances in the range [(1 — 7)h/2, (1 4+ 7)h/2] and | K| > s. Choose s distinct ¢y, ..., ¢cs € K.
By switching to ¢; @ ¢1,¢0 ® c1,...,¢s D c1 we may assume that ¢; = 0, in which case for
1<i<s, el < 3h.

Assume inductively that for each i we have an embedding ¢; : X; — EZ, such that:

o Forall z,y € X;, i52dx,(2,y) < [6i(2) — 6 W)llp < dx.(2,y).
e For every z € X, ||¢i(2)|, < diam(X;).
Let A = (H%h)_l/p k—;Q, and let A = diam(X). Define an embedding ¢ : X — ﬂz of X as

follows: for z € X,
o(z) = ¢i(z) + AAc;.

Then:
: l+7 \ P k-2
6@, < ool + Ml < diam(x) + (55 70)  E 2 Al
A k-2
< —+ —A<A.
= k‘+ A <



For z,y € X, ||¢p(z) — o(y)|lp = ||¢i(x) — ¢i(y)||p, so by the induction hypothesis:

k—25

w1 y) < l6@) = oWl < dx(w,y).

For xz € X;, y € X; and i # j, we have dx(z,y) = A. Now

lp(x) = dW)lly < AAllei — ¢jllp + l¢s(@)llp + 5 ()l
AAlc; — ¢|[iP + diam(X;) + diam(X;)

“p 1/p

A
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and

[o(x) = &)l

Y

AAllei = ¢jllp = lgi()lp = [0l
> AA||e; — chi/p — diam(X;) — diam(Xj)

l+7 \ Pk—2 (1-7\Y" 2

<2h> kA<2h> A
1-7\"" k-2 2

> ~Z)A

- ((1+T> k k)

ko k-2 2 k—5
- z_Z > ° .
<k4—1 k k>‘5—'k+1dXC“y)

v

The last inequality holds for £ > 5 and the preceding derivation follows from the definition of
T

Y
G - 7'> e (L+3r) P = (1+6r/p) ' =1+ (L+k/p)7 /)7 2 (L+1/k)7"

3 Implications

Denote by UM the class of all ultrametrics. We will need the following theorem:
Theorem 2 ([4]). The following assertions hold for every integer n:
1. There exists an absolute constant C' > 0 such that for every o > 2,

Rum(a,n) > nl_cllo%.

2. There is an absolute constant ¢ > 0 such that for any k > 1 and 0 < € < 1, for any
nteger n:
Ry ust(2 4 €,n) > nlek/q,

Proposition 2 implies similar bounds for Ra(a,n). We next show how to extend those
results for embedding into E;? (logn) by using Lemma 3.



Proof of Theorem 1. We begin with the first claim of the theorem. Let C’ > 0 be the constant
at the first assertion in Theorem 2, and let 3 be a universal constant such that any n-point ul-
trametric 3 embeds in Eo(logn) (Corollary 4). We choose C' = SC’, so that C’lo% > C’%.
From Theorem 2 we deduce that

C/IOg(/é ) 1*0105‘0‘

Rum(a/B,n) > n >n

The subset described by this statement is («/3)-equivalent to an ultrametric and so, by Corol-

lary 4, it is a-embeddable in Ko(log n)

We next consider the second statement in the theorem. Let § = €/4 and k= 54+6/0],

then by Theorem 2, there exists ¢’ > 0 such that Rg.psT(2+d,n) > n108<2/5) Let M be an
arbitrary metric space. For an appropriate choice of ¢ this means that M contains a subset
Y of size m = [nﬁw that is (2 4 d)-equivalent to some k-HST X. By Proposition 3 and
our choice of k, there exists some constant C’ > 0 such that X can be (1 + §)-embedded in EZ,

where ’ )_21
€l (ep
“los 2/

for an appropriate choice of C. Therefore Y is (24 §)(1 +J) < (2 + €)-embedded in EZ. O

4= CT(on) togm] = | logn|.
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