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Abstract

This article investigates, by probabilistic methods, various geometric questions on
Bn

p , the unit ball of `n
p . We propose realizations in terms of independent random vari-

ables of several distributions on Bn
p , including the normalized volume measure. These

representations allow us to unify and extend the known results of the sub-independence
of coordinate slabs in Bn

p . As another application, we compute moments of linear
functionals on Bn

p which gives sharp constants in Khinchine’s inequalities on Bn
p and

determines the ψ2-constant of all directions on Bn
p . We also study the extremal values

of several Gaussian averages on sections of Bn
p (including mean width and `-norm), and

derive several monotonicity results as p varies. Applications to balancing vectors in `2
and to covering numbers of polyhedra complete the exposition.

1 Introduction

For p > 0 and a sequence of real numbers x = (xi)∞i=1 denote ‖x‖p = (
∑∞

i=1 |xi|p)1/p. For
p = ∞ we set ‖x‖∞ = supi∈N |xi|. The space of all infinite sequences x with ‖x‖p < ∞
is denoted `p. Similarly, the space Rn equipped with the quasi-norm ‖ · ‖p is denoted
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`n
p . Finally, the unit balls of `n

p and `p are defined as Bn
p = {x ∈ Rn; ‖x‖p ≤ 1} and

Bp = {x ∈ RN; ‖x‖p ≤ 1}, respectively.
The geometry of `n

p spaces in general, and the geometry of the `n
p balls in particular, has

been intensively investigated in the past decades. A particular topic of interest has been
the evaluation of the extremal volumes of sections and projections of Bn

p . Apart from their
intrinsic interest, such questions have applications in several probabilistic and geometric
contexts, some of which will be described below. The purpose of the present article is to
obtain several new results of this flavor. We represent various geometric parameters of Bn

p

probabilistically, and apply methods from Probability Theory to estimate them.

In Section 2 we introduce representations in terms of independent random variables of
some distributions on Bn

p , including the volume measure on Bn
p . Obtaining concrete real-

izations of the (normalized) volume measure on a general convex body K ⊂ Rn seems to be
a hopeless task. For general bodies one is therefore reduced to hunting for approximations,
and this has been successfully achieved via Markov chain methods by Kannan-Lovasz-
Simonovits [16] (which paper is actually the last in a long list of articles obtaining similar
approximate representations. We refer to [16] and the references therein for an accurate
historic depiction of the subject). The simpler structure of Bn

p allows us to give the fol-
lowing representation of the volume measure (which extends to p > 0 classical results for
p ∈ {1, 2,∞}).
Theorem 1. Let g1, . . . , gn be i.i.d. random variables with density 1/(2Γ(1 + 1/p))e−|t|p

(t ∈ R), and let Z be an exponential random variable independent of g1, . . . , gn (i.e. the
density of Z is e−t, t ≥ 0). Denote G = (g1, . . . , gn) ∈ Rn and consider the random vector

V =
G

(
∑n

i=1 |gi|p + Z)1/p
.

Then V generates the normalized volume measure on Bn
p , i.e. for every measurable A ⊂ Rn,

P (V ∈ A) =
vol(A ∩Bn

p )
vol(Bn

p )
.

Section 2.1 provides a simple probabilistic perspective to the sub-independence of coor-
dinate slabs on Bn

p . This remarkable fact was originally proved by Ball-Perissinaki [3] for
the volume measure and in [20] for the cone measure. We establish this property for more
general distributions, combining an extension of Theorem 1 with arguments similar to the
proof of the classical FKG inequality [14].

In Section 2.2, Theorem 1 is applied to the study of the moments of linear functionals
on Bn

p for p ≥ 1. Answering a question posed to us by A. Giannopoulos, we estimate the
best constants in the Khinchine inequality on Bn

p and describe the so-called ψ2-directions
of Bn

p .

Section 3 is devoted to the analysis of the extremal values of several geometric param-
eters of sections of Bn

p for p > 0. A classical result of Meyer and Pajor [19] states that for
every k-dimensional subspace E of Rn, if p ≤ 2 then volk(E ∩Bn

p ) ≤ volk(Bk
p ), and if p ≥ 2

then volk(E ∩ Bn
p ) ≥ volk(Bk

p ). In Section 3.1 we show that for every 0 ≤ α ≤ k, every
0 ≤ β ≤ p and every k-dimensional subspace E of Rn, if 0 < p ≤ 2 then

∫

Sn−1∩E
‖x‖−α

p dx ≤
∫

Sk−1

‖x‖−α
p dx and

∫

Sn−1∩E
‖x‖β

pdx ≥
∫

Sk−1

‖x‖β
pdx,
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and if 2 < p ≤ ∞ then
∫

Sn−1∩E
‖x‖−α

p dx ≥
∫

Sk−1

‖x‖−α
p dx and

∫

Sn−1∩E
‖x‖β

pdx ≤
∫

Sk−1

‖x‖β
pdx.

The case α = k in the above inequalities is just a restatement of the Meyer-Pajor theorem.
The case β = p follows from the following stronger monotonicity result, proved in Section
3.1, that the mapping

p > 0 7→
∫
Sn−1∩E ‖x‖p

pdx∫
Sk−1 ‖x‖p

pdx

is increasing in p.
Since Gaussian and spherical averages of homogeneous functions are proportional, these

facts can be restated in terms of moments of Gaussian vectors. Note that the above quanti-
ties encompass useful classical parameters of the geometry of Banach spaces, such as mean
width and `-norm (see [25]).

The proofs appear in Section 3.1 and consist of finding probabilistic expressions of
various expectations of Gaussian vectors on subspaces of Rn, and then applying stochastic
orderings to estimate them.

In Section 3.2 we apply the Brascamp-Lieb inequality to obtain estimates in the other
direction.

Section 3.3 deals with the case of the cube Bn∞. We derive the following distributional
inequalities, valid for all k-dimensional subspaces E ⊂ Rn and every r > 0

γk(rBk
∞) ≤ γE(E ∩ rBn

∞) ≤ γk

(
r

√
n

k
Bk
∞

)
,

where γk, γE denote the standard Gaussian measure on Rk and E, respectively. The right-
hand side of the above inequality follows from the Brascamp-Lieb inequality, and the left-
hand side from the following monotonicity result: for every k-dimensional subspace E ⊂ Rn,
the function

r > 0 7→ γE(E ∩ rBn∞)
γk(rBk∞)

,

is non-increasing.
Sections 3.4 and 3.5 are devoted to applications of the previous results. Section 3.4

deals with the Komlós conjecture which asks whether there is a universal constant c >
0 such that for every x1, . . . , xm ∈ Bn

2 , there are signs ε1, . . . , εm ∈ {−1, 1} for which
‖∑m

i=1 εixi‖∞ ≤ c. This challenging problem remains unsolved, and the best upper bound
on c, due to Banaszczyk [4], is c = O

(√
log n

)
. In this section we show that our estimates,

together with Banaszczyk’s theorem, yield an infinite dimensional version of this result,
which implies in particular a better upper bound when m = o(n).

Proposition 1. There is an absolute constant C > 0 such that for every integer m > 0
and every x1, . . . , xm ∈ `∞, there are signs ε1, . . . , εm ∈ {−1, 1} for which

∥∥∥∥∥
m∑

i=1

εixi

∥∥∥∥∥
∞
≤ C

√
log d · max

1≤1≤m
‖xi‖2 ≤ C

√
log m · max

1≤1≤m
‖xi‖2,

where d is the dimension of the linear span of x1, . . . , xm.
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Section 3.5 answers a question posed to us by M. Talagrand, concerning the number of
cubes required to cover a convex hull of a finite number of points in `2. Given two convex
sets K, L ⊂ `∞, denote by N(K, L) the minimal number of translates of L required to
cover K (this number may be infinite). Obtaining sharp bounds on this parameter is of
fundamental importance in several problems in convex geometry (see e.g. [25]), probability
(see e.g. [18]) and operator theory (see e.g. [24]). Given A ⊂ `∞ we denote by absconv(A)
the convex hull of A ∪ (−A). The main result of Section 3.5 is

Proposition 2. There exists an absolute constant C > 0 such that for every integer m,
ε > 0 and 2 ≤ p ≤ ∞, for all x1, . . . , xm in the unit ball of `2,

log N(absconv{x1, . . . , xm}, εBp) ≤ C
log m

εp/(p−1)
.

Such a statement is already known for p = 2 by the results of Carl-Pajor [13]. From
Schütt’s results [30] on the entropy of the identity operator between `d

2 and `d
p, if the points

x1, . . . , xm are assumed to be in an ambient `d∞ then such an inequality is valid with the
term log m replaced by log max(m, d). Proposition 2 bounds the covering number of the
polyhedron absconv{x1, . . . , xm} ⊂ Bd

2 in terms of the number of its vertices, independently
of the ambient dimension.

2 Representation of Measures on Bn
p

We begin by stating a probabilistic representation of the cone measure on ∂Bn
p which is

due to Schechtman-Zinn [28] and independently to Rachev-Rüschendorf [27]. This repre-
sentation has applications of probabilistic and geometric nature [21, 8, 20].

Let K be convex symmetric body in Rn. Recall that the cone measure on ∂K, denoted
µK , is defined for A ⊂ ∂K by

µK(A) =
vol(ta; a ∈ A, 0 ≤ t ≤ 1)

vol(K)
.

Thus, µK(A) is the volume of the cone with base A and cusp 0, normalized by the volume of
K. Alternately, µK is the unique measure for which the following polar integration formula
holds: for every f ∈ L1(Rn),

∫

Rn

f(x)dx = n · vol(K)
∫ ∞

0
rn−1

∫

∂K
f(rz)dµK(z)dr.

Schechtman-Zinn and Rachev-Rüschendorf proved the following

Theorem 2 ([28, 27]). Let g1, . . . , gn be i.i.d. random variables with density e−|t|p/(2Γ(1+
1/p)), t ∈ R. Consider the random vector G = (g1, . . . , gn) ∈ Rn, and denote

Y =
G

‖G‖p
=

G

(
∑n

i=1 |gi|p)1/p
.

Then Y is independent of ‖G‖p. Moreover, Y generates the measure µBn
p
, i.e. for every

measurable A ⊂ ∂Bn
p , µBn

p
(A) = P (Y ∈ A).

We propose the following extension:
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Theorem 3. Let G = (g1, . . . , gn) be a random vector as in Theorem 2. Let W be a
nonnegative random variable with distribution h, and independent of G. Then the random
vector

G
(
‖G‖p

p + W
) 1

p

generates the measure h({0})µBn
p

+ Ψ λBn
p
, where λBn

p
stands for Lebesgue’s measure re-

stricted to Bn
p , and for x ∈ Bn

p , Ψ(x) = ψ(‖x‖p), where for r ∈ [0, 1]

[
Γ
(
1 +

1
p

)]n

ψ(r) =
1

(1− rp)
n
p
+1

∫

(0,∞)
wn/pe−

rpw
1−rp dh(w). (1)

Proof. Note that the density of |gi|p is

d

du
P (|gi| ≤ u1/p) =

2u
1
p
−1

p
· 1
2Γ(1 + 1/p)

e−u =
1

Γ(1/p)
u

1
p
−1

e−u, u > 0.

In other words, |gi|p has a gamma(1/p, 1) distribution. By the additivity property of the
gamma semigroup, the random variable ‖G‖p

p =
∑n

i=1 |gi|p has a gamma(n/p, 1) distribu-
tion, i.e. its density is 1/Γ(n/p)u

n
p
−1

e−u (u ≥ 0).

For any f ∈ L1(Rn), and conditioning on W ,

Ef

(
G

(‖G‖p
p + W )1/p

)
=

∫

[0,∞)
Ef

(
G

(‖G‖p
p + w)1/p

)
dh(w).

Since G/‖G‖p and ‖G‖p are independent, then for every w > 0:

Ef

(
G

(‖G‖p
p + w)1/p

)
= Ef

(( ‖G‖p
p

‖G‖p
p + w

)1/p
G

‖G‖p

)
=

=
1

Γ(n/p)

∫ ∞

0
u

n
p
−1

e−uEf

((
u

u + w

)1/p G

‖G‖p

)
du

=
1

Γ(n/p)

∫ 1

0

(
rpw

1− rp

)n
p
−1

e−
rpw
1−rp · Ef

(
r

G

‖G‖p

)
prp−1w

(1− rp)2
dr,

where we have made the change of variable u
u+w = rp. Hence,

Ef

(
G

(‖G‖p
p + W )1/p

)
− h({0})Ef

(
G

‖G‖p

)

=
p

Γ(n/p)

∫

(0,∞)
wn/p

∫ 1

0

rn−1

(1− rp)
n
p
+1

e−
rpw
1−rp · Ef

(
r

G

‖G‖p

)
dr dh(w)

=
n

Γ
(

n
p + 1

)
∫ 1

0

rn−1

(1− rp)
n
p
+1

(∫

(0,∞)
wn/pe−

rpw
1−rp dh(w)

)
Ef

(
r

G

‖G‖p

)
dr.

On the other hand, let ω be a probability measure on Bn
p with `p-radial density φ(‖x‖p)

(x ∈ Bn
p ). By the polar coordinate integration formula for µBn

p
, the representation from

5



Theorem 2 and the fact that vol(Bn
p ) =

h
2Γ
�

1
p
+1
�in

Γ
�

n
p
+1
� ,

∫

Rn

f(x)dω(x) = nvol(Bn
p )

∫ 1

0
rn−1φ(r)Ef

(
r

G

‖G‖p

)
dr

=
n

[
2Γ

(
1
p + 1

)]n

Γ
(

n
p + 1

)
∫ 1

0
rn−1φ(r)Ef

(
r

G

‖G‖p

)
dr,

from which the result easily follows.

Since (1) holds true for dh(w) = e−w1{w>0} dw and ψ(r) = 1[0,1](r)

vol(Bn
p ) , we have established

Theorem 1. We now study more general distributions. By making the change of variable
s = rp

1−rp in (1) obtain the following representation theorem. We refer to the book [32] for
completely monotone functions and the Laplace transform.

Theorem 4. Let ν be a probability measure on Rn with density ψ(‖x‖p)1[0,1](‖x‖p). Assume
that the function

s 7→ 1

(1 + s)
n
p
+1

ψ

((
s

1 + s

)1/p
)

, s > 0

is completely monotone. Then there is a positive random variable W such that for every
measurable A ⊂ Rn,

ν(A) = P

(
G

(‖G‖p
p + W )1/p

∈ A

)
,

and the density of W is given by
[
2Γ

(
1
p + 1

)]n

wn/p
L−1

[
s 7→ 1

(1 + s)
n
p
+1

ψ

((
s

1 + s

)1/p
)]

(w), w > 0,

where L is the Laplace transform.

Next, we single out an interesting case for which the above theorem may be applied:
when W is a gamma(α, 1) random variable, the density of W is h(w) = 1/Γ(α)wα−1e−w,
and thus [

2Γ
(

1
p

+ 1
)]n

ψ(r) =
1

Γ(α)(1− rp)
n
p
+1

∫ ∞

0
w

n
p
+α−1

e−
w

1−rp dw

=
(1− rp)

n
p
+α

Γ(α)(1− rp)
n
p
+1

∫ ∞

0
w

n
p
+α−1

e−wdw

=
(1− rp)α−1Γ

(
n
p + α

)

Γ(α)
.

Corollary 3. Let W be a gamma(α, 1) random variable. Then the random vector G

(‖G‖p
p+W)1/p

generates the measure on Bn
p with density

f(x) =
Γ

(
n
p + α

)

Γ(α)
[
2Γ

(
1
p + 1

)]n (1− ‖x‖p
p)

α−11[0,1](‖x‖p). (2)

6



Finally let us give a geometric interpretation of some of our representations. Fix two
integers m,n and consider the orthogonal projection of the cone measure on ∂Bn+m

p onto
the first n coordinates. By the Schechtman-Zinn Theorem, this measure is generated by
the random vector

(g1, . . . , gn)
(∑n

i=1 |gi|p +
∑m+n

i=n+1 |gi|p
)1/p

.

The random variable
∑m+n

i=n+1 |gi|p is independent of g1, . . . , gn and has a gamma(m/p, 1)
distribution. Hence, the above discussion leads to the following extension of classical obser-
vations about Bn

1 and Bn
2 (for these sets the cone measure coincides with the better studied

normalized surface measure).

Corollary 4. When p is an integer, the orthogonal projection of the cone measure on ∂Bn+p
p

onto the first n coordinates is the (normalized) volume measure on Bn
p . More generally, for

arbitrary p > 0, the orthogonal projection of the cone measure on ∂Bn+m
p onto the first n

coordinates has density

f(x) =
Γ

(
n+m

p

)

Γ
(

m
p

) [
2Γ

(
1
p + 1

)]n (1− ‖x‖p
p)

m
p
−11[0,1](‖x‖p).

2.1 An application: sub-independence of coordinate slabs

The sub-independence of coordinate slabs in Bn
p is helpful in the study of the Central Limit

Problem [1, 21] and of various deviation inequalities [20, 7]. More precisely, this property
is enjoyed by the normalized volume measure on Bn

p , as proved analytically in [3] and
geometrically in [1]. It was established probabilistically in [20] for the cone measure on Bn

p .
In this section we combine our representation results with an argument of [20] in order to
derive sub-independence of coordinate slabs for a wider class of distributions. We require
the following result:

Theorem 5 ([6]). Let X1, . . . , Xn be independent symmetric random variables. Assume
that Xi has density ψi = e−Vi, where Vi is locally integrable. For X = (X1, . . . , Xn), the
random vector X

‖X‖p
is independent of the random variable ‖X‖p if and only if there are

b1, . . . , bn > −1 and a, c1, . . . , cn > 0 such that for every 1 ≤ i ≤ n, ψi(x) = ci|x|bie−a|x|p.

Remark: As a consequence of this characterization, setting for k ≤ n, Xk := (X1, . . . , Xk)
(where we write for simplicity X for Xn), it follows that the independence of X

‖X‖p
from

‖X‖p guarantees for every k < n the independence of Xk

‖Xk‖p
from ‖Xk‖p.

The following lemma was essentially proved in [20]. It was stated there for the cone
measure on ∂Bn

p , but the proof carries through to the more general setting. We sketch
the argument for the sake of completeness. Our geometric interest lead us to consider
symmetric variables, but it is clear that the result concerns nonnegative variables.

Lemma 5. Let X1, . . . , Xn be independent symmetric random variables. For i = 1, . . . , n−
1, assume that Xi has density ψi = exp(−Vi), where Vi is locally integrable. We write
µn for the law of |Xn|. Denote X = (X1, . . . , Xn), Xn−1 = (X1, . . . , Xn−1) and assume
that Xn−1

‖Xn−1‖p
is independent of ‖Xn−1‖p. Let f1, . . . , fn : [0,∞) → [0,∞) be nonnegative
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non-decreasing functions. Then

E

[
n∏

i=1

fi

( |Xi|
‖X‖p

)]
≤

n∏

i=1

Efi

( |Xi|
‖X‖p

)
.

Proof. The proof is by induction on n. Assume that n > 1 and that the required inequality
holds for n− 1. Conditioning on |Xn|,

E

[
n∏

i=1

fi

( |Xi|
‖X‖p

)]
=

=
∫

R+

E

{[
n−1∏

i=1

fi

(
|Xi|

(‖Xn−1‖p
p + rp)1/p

)]
· fn

(
r

(‖Xn−1‖p
p + rp)1/p

)}
dµn(r).

Note that by Theorem 5, Xn−2

‖Xn−2‖p
and ‖Xn−2‖p are independent, so that we may apply

the inductive hypothesis. Denote by ϕ the density of ‖Xn−1‖p and by the independence of
Xn−1

‖Xn−1‖p
and ‖Xn−1‖p it follows that for every r > 0

E

{[
n−1∏

i=1

fi

(
|Xi|

(‖Xn−1‖p
p + rp)1/p

)]
· fn

(
r

(‖Xn−1‖p
p + rp)1/p

)}
=

=
∫ ∞

0
ϕ(u)fn

(
r

(up + rp)1/p

)
· E

[
n−1∏

i=1

fi

(
u

(up + rp)1/p
· |Xi|
‖Xn−1‖p

)]
du

≤
∫ ∞

0
ϕ(u)fn

(
r

(up + rp)1/p

)
·

n−1∏

i=1

Efi

(
u

(up + rp)1/p
· |Xi|
‖Xn−1‖p

)
du

For u > 0 let hu(r) = fn

(
r

(up+rp)1/p

)
and

ku(r) =
n−1∏

i=1

Efi

(
u

(up + rp)1/p
· |Xi|
‖Xn−1‖p

)
dr.

Thus hu is non-decreasing and ku is non-increasing and if X ′
n is an independent copy of

Xn then [hu(|Xn|)−hu(|X ′
n|)] · [ku(|Xn|)− ku(|X ′

n|)] ≤ 0 point-wise. Taking expectation of
this inequality,

∫

R+

hu(r)ku(r)dµn(r) ≤
(∫

R+

hu(r)dµn(r)
)(∫

R+

ku(r)dµn(r)
)

,

implying that

E

[
n∏

i=1

fi

( |Xi|
‖X‖p

)]
≤

∫

R+

∫ ∞

0
ϕ(u)hu(r)ku(r) dudµn(r)

≤
∫ ∞

0
ϕ(u)

(∫

R+

hu(r)dµn(r)
)(∫

R+

ku(r)dµn(r)
)

du

=
n∏

i=1

Efi

( |Xi|
‖X‖p

)
.
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The main result of this section is contained in the following theorem.

Theorem 6. Let G = (g1, . . . , gn) be a random vector with independent coordinates with
distribution e−|t|p/(2Γ(1 + 1/p)) dt, t ∈ R. Let W be a nonnegative random variable, inde-
pendent from G. Let ν be the distribution (supported on Bn

p ) of the vector

G

(‖G‖p
p + W )

1
p

.

Then for every s1, . . . , sn > 0,

ν

(
n⋂

i=1

{|xi| ≥ si}
)
≤

n∏

i=1

ν
({|xi| ≥ si}

)
.

Proof. Assume that ε is a random variable independent of G and W which takes the values
+1,−1 with probability 1/2. We set X = (g1, . . . , gn, εW 1/p) ∈ Rn+1. By Theorem 2 G

‖G‖p

and ‖G‖p are independent, so we can apply Lemma 5 to X, with fi(x) = 1[si,∞)(x) for
i = 1, . . . , n and fn+1 = 1. Hence,

P

(
n⋂

i=1

{ |gi|
(‖G‖p

p + W )1/p
≥ si

})
≤

n∏

i=1

P

({ |gi|
(‖G‖p

p + W )1/p
≥ si

})
.

Remarks:
1) By the very same proof, one can see that the conclusion of Lemma 5 holds for

nonnegative, non-increasing functions. Thus Theorem 6 also holds for symmetric slabs
{|xi| ≤ si}.

2) We have obtained subindependence of coordinate slabs for a class of measures on Bn
p ,

described in Theorem 3. This unifies the previously known occurrences of such subinde-
pendence, since the cone measure µn

p and the normalized volume measure on Bn
p belong to

this class. We obtain new concrete examples, as the measures να with density

fα(x) =
Γ

(
n
p + α

)

Γ(α)
[
2Γ

(
1
p + 1

)]n (1− ‖x‖p
p)

α−11[0,1](‖x‖p).

Since these measures να are isotropic, an immediate consequence of Theorem 6 is that they
enjoy the Central Limit Property in the sense that Theorem 5 of [21] holds for them. We
refer to that paper for details.

2.2 An application: moment inequalities on Bn
p for p ≥ 1

In what follows, given two sequences of positive real numbers (ai)i∈I , (bi)i∈I the notation
ai ∼ bi refers to the fact that there are constants c and C such that for all i ∈ I, cai ≤ bi ≤
Cai. We emphasize that such c, C are always absolute numerical constants.

We can relate moments of linear functionals on Bn
p to moments of linear functionals

of the random vector G = (g1, . . . , gn) with independent coordinates with distribution
e−|t|p/(2Γ(1 + 1/p)) dt:

9



Lemma 6. For every integer n ≥ 1, every p, q ≥ 1 and every a ∈ Rn one has
(

1
vol(Bn

p )

∫

Bn
p

∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣
q

dx

)1/q

∼ 1

(max{n, q})1/p

(
E

∣∣∣
n∑

i=1

aigi

∣∣∣
q
)1/q

.

Proof. Denote a = (a1, . . . , an). By the probabilistic representation of the volume measure
on Bn

p established in Theorem 1,

1
vol(Bn

p )

∫

Bn
p

∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣
q

dx = E
∣∣∣∣
〈

G

(‖G‖p
p + Z)1/p

, a

〉∣∣∣∣
q

= E

[( ‖G‖p
p

‖G‖p
p + Z

)q/p ∣∣∣∣
〈

G

‖G‖p
, a

〉∣∣∣∣
q
]

=

[
E

( ‖G‖p
p

‖G‖p
p + Z

)q/p
]
·
[
E

∣∣∣∣
〈

G

‖G‖p
, a

〉∣∣∣∣
q]

=

[
E

( ‖G‖p
p

‖G‖p
p + Z

)q/p
]
· E |〈G, a〉|q
E‖G‖q

p
,

where we have used the independence of G
‖G‖p

and ‖G‖p. Applying this identity to a =
(1, 0, . . . , 0) yields

1
E‖G‖q

p

[
E

( ‖G‖p
p

‖G‖p
p + Z

)q/p
]

=
1

vol(Bn
p )E|g1|q

∫

Bn
p

|x1|qdx.

Now, E|g1|q =
Γ
�

q+1
p

+1
�

(q+1)Γ
�

1
p
+1
� , and for every p, q ≥ 1

1
vol(Bn

p )

∫

Bn
p

|x1|qdx =
2vol(Bn−1

p )
vol(Bn

p )

∫ 1

0
uq(1− up)

n−1
p du

=
2

[
2Γ

(
1
p + 1

)]n−1
Γ

(
n
p + 1

)

Γ
(

n−1
p + 1

) [
2Γ

(
1
p + 1

)]n
1
p

∫ 1

0
v

q+1
p
−1(1− v)

n−1
p dv

=
Γ

(
n
p + 1

)

Γ
(

n−1
p + 1

)
Γ

(
1
p + 1

) ·
Γ

(
q+1

p + 1
)

Γ
(

n−1
p + 1

)

(q + 1)Γ
(

n+q
p + 1

) .

Therefore,

1
E‖G‖q

p

[
E

( ‖G‖p
p

‖G‖p
p + Z

)q/p
]

=
Γ

(
n
p + 1

)

Γ
(

n+q
p + 1

) ,

and by Stirling’s formula, there are constants c, C > 0 such that for all n, q, p ≥ 1,

c
1

(max{n, q})1/p
≤


 Γ

(
n
p + 1

)

Γ
(

n+q
p + 1

)



1/q

≤ C
1

(max{n, q})1/p
.
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For independent symmetric random variable with log-concave cumulated distribution
function, Kwapien and Gluskin [15] obtained an almost exact expression of moments of
linear functionals. We apply their result to obtain:

Proposition 7. Let n ≥ 1 be an integer. Let p, q ≥ 1 and a1 ≥ a2 ≥ · · · ≥ an ≥ 0. Then

(
E

∣∣∣
n∑

i=1

aigi

∣∣∣
q
)1/q

∼ q1/p
(∑

i≤q

a
p/(p−1)
i

)(p−1)/p
+
√

q
(∑

i>q

a2
i

)1/2
,

The proof of Proposition 7 requires some preparation.

Lemma 8. For every t > 0 ∫ ∞

t
e−up

du ≤ e−tp

ptp−1
,

and for every t ≥ 1, ∫ ∞

t
e−up

du ≥ e−tp

2ptp−1
.

In addition, the function t 7→ ∫∞
t e−up

du is log-concave.

Proof. For every t > 0
∫ ∞

t
e−up

du ≤
∫ ∞

t

up−1

tp−1
e−up

du =
e−tp

ptp−1
.

To prove the reverse inequality assume that t ≥ 1. Integrating by parts,
∫ ∞

t
e−up

du =
∫ ∞

t
u1−p · up−1e−up

du =
e−tp

ptp−1
− p− 1

p

∫ ∞

t

e−up

up
du ≥ e−tp

ptp−1
−

∫ ∞

t
e−up

du

which implies the assertion.
Finally, set f(t) =

∫∞
t e−up

du. In order to show that f is log-concave it suffices show
that f ′′f − (f ′)2 ≤ 0 point-wise. Now,

f ′′(t)f(t)− f ′(t)2 = e−tp
(

ptp−1

∫ ∞

t
e−up

du− e−tp
)
≤ 0,

by the first assertion we proved.

Proof of Proposition 7. For notational convenience we write the proof for p > 1 only. The
case p = 1 follows by taking limits. In what follows g denotes a random variable with
density 1/(2Γ(1 + 1/p))e−|t|p . Let θp > 0 be such that P (θp|g| ≥ 1) = 1/e. Denote
N(t) = − log P (θp|g| ≥ t) and let N∗(t) be the Legendre transform of N , i.e. N∗(t) =
sup{ts − N(s); s > 0}. By Lemma 8, N is convex, and a result of Gluskin and Kwapien
[15] states that in this case,

(
E

∣∣∣∣∣
n∑

i=1

aigi

∣∣∣∣∣
q)1/q

∼ θp


inf



t > 0;

∑

i≤q

N∗
(

qai

t

)
≤ q



 +

√
q

( ∑

i>q

a2
i

)1/2



11



where a1 ≥ a2 ≥ . . . ≥ an ≥ 0. We shall prove below that there exists universal constants
c, c′, C, C ′ > 0 such that for all p ≥ 1, c′ ≤ θp ≤ C ′, for all t > 0, (N∗(t))(p−1)/p ≤ Ct and
for all t ≥ 2, (N∗(t))(p−1)/p ≥ ct. Let

t0 = inf



t > 0;

∑

i≤q

N∗
(

qai

t

)
≤ q





then it is easy to see that there exists a universal constant C > 0 such that

t0 ≤ Cq1/p

(∑

i≤q

a
p/(p−1)
i

)(p−1)/p

.

Moreover, if i0 is the biggest integer less than q such that qai0−1/t0 ≥ 2 then

∑

i≤q

N∗
(

qai

t0

)
≥

∑

i≤i0−1

(
Cqai

t0

)p/(p−1)

which shows that

t0 ≥ Cq1/p

( ∑

i≤i0−1

a
p/(p−1)
i

)(p−1)/p

and t0 >
qai0

2
.

It is now clear that

q1/p

(∑

i≤q

a
p/(p−1)
i

)(p−1)/p

≤ q1/p

( ∑

i≤i0−1

a
p/(p−1)
i

)(p−1)/p

+ q1/p(q − i0 + 1)(p−1)/pai0

≤ t0
C

+
(

q − i0 + 1
q

)(p−1)/p

t0 ≤ ct0.

To prove the bounds on θp, note that since |g| has uniformly bounded density in p, there is
an absolute constant c > 0 such that for every s > 0, P (|g| ≥ s) ≥ 1−cs. If s = c−1(1−e−1)
then P (|g| ≥ s) ≥ P (|g| ≥ 1/θp), which shows that θp ≤ s−1 ≤ C. On the other hand,
Lemma 8 implies that there is an absolute constant c′ for which P (|g| ≥ c′) ≤ 1/e = P (|g| ≥
1/θp), and thus θp ≥ 1/c′.

It remains to prove the above mentioned bounds on N∗. Lemma 8 shows that for every
s ≥ θp,

N(s) ≥ sp

θp
p

+ log p + (p− 1) log
(

s

θp

)
+ log Γ(1 + 1/p) ≥

(
s

θp

)p

.

Hence, for every s ≥ θp

ts−N(s) ≤ ts−
(

s

θp

)p

≤ max
s>0

{
ts−

(
s

θp

)p}
≤ θpt

p/(p−1)

p1/(p−1)
≤ Ctp/(p−1).

For 0 < s < θp, st−N(s) ≤ θpt = O
(
tp/(p−1)

)
, and the upper bound for N∗ follows.

The lower bound in Lemma 8 shows that there are absolute constants c, C > 1 such that

for s ≥ cθp, N(s) ≤
(

Cs
θp

)p
. If t ≥ cp−1Cpp/θp then for s =

(
θp

C

)p/(p−1) (
t
p

)1/(p−1)
≥ cθp,

N∗(t) ≥ st−N(s) ≥ st−
(

Cs

θp

)p

=
(

1− 1
p

)(
tθp

C

)p/(p−1) 1
p1/(p−1)

.
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We may therefore assume that t ≤ (cC)p−1p. By our choice of θp, N(1) = 1, which implies
that for all t ≥ 2,

N∗(t) ≥ t−N(1) ≥ t

2
≥ tp/(p−1)

2cCp1/(p−1)
,

completing the proof.

The results of this sections may be combined to obtain the following exact expression,
up to universal constants: for a1 ≥ a2 ≥ · · · ≥ an ≥ 0

(
1

vol(Bn
p )

∫

Bn
p

∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣
q

dx

)1/q

∼
q1/p

(∑
i≤q a

p/(p−1)
i

)(p−1)/p
+
√

q
(∑

i>q a2
i

)1/2

(max{n, q})1/p
. (3)

which virtually allows one to solve any question related to moment estimates on Bn
p .

2.2.1 Khinchine inequalities

A well known variant of Khinchine’s inequality states that for every 1 ≤ p, q < ∞ and every
integer n there are A(p, q, n), B(p, q, n) > 0 such that for every (a1, . . . , an) ∈ Rn:

A(p, q, n)

(
n∑

i=1

a2
i

)1/2

≤
(

1
vol(Bn

p )

∫

Bn
p

∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣
q

dx

)1/q

≤ B(p, q, n)

(
n∑

i=1

a2
i

)1/2

,

and we assume that A(p, q, n), B(p, q, n) are the best constants for which the above inequal-
ity holds for all (a1, . . . , an) ∈ Rn. We determine A(p, q, n) and B(p, q, n), up to absolute
multiplicative constants.

Theorem 7. For every integer n and for every 1 ≤ q < ∞ and 1 ≤ p ≤ 2,

A(p, q, n) ∼
√

q

n1/p
min

{
1,

√
n

q

}
and B(p, q, n) ∼ min

{
1,

( q

n

)1/p
}

while for 2 < p < ∞,

A(p, q, n) ∼ min
{

1,
( q

n

)1/p
}

and B(p, q, n) ∼
√

q

n1/p
min

{
1,

√
n

q

}
.

This is a consequence of (3) and of the following:

Lemma 9. For every a = (a1, . . . , an) ∈ Sn−1, if 1 < p ≤ 2 then

√
q max

{
1,

(
q

n

) 1
p
− 1

2

}
≤ q1/p

( ∑

i≤q

a
p/(p−1)
i

)(p−1)/p

+
√

q

(∑

i>q

a2
i

)1/2

≤
√

2 · q1/p.

If 2 < p < ∞ then

q1/p ≤ q1/p

(∑

i≤q

a
p/(p−1)
i

)(p−1)/p

+
√

q

(∑

i>q

a2
i

)1/2

≤
√

2q min

{
1,

(
n

q

) 1
2
− 1

p

}
.

Furthermore, these inequalities are optimal, up to universal constants.
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Proof. Assume that 1 < p ≤ 2. Since
√

a +
√

b ≤ √
2
√

a + b,

q1/p

(∑

i≤q

a
p/(p−1)
i

)(p−1)/p

+
√

q

(∑

i>q

a2
i

)1/2

≤ q1/p

( ∑

i≤q

a2
i

)1/2

+
√

q

(∑

i>q

a2
i

)1/2

≤
√

2 · q1/p

Similarly, if q > n then

q1/p

( ∑

i≤q

a
p/(p−1)
i

)(p−1)/p

+
√

q

( ∑

i>q

a2
i

)1/2

= q1/p

(∑

i≤n

a
p/(p−1)
i

)(p−1)/p

≥ q1/p

n
1
p
− 1

2

and if q ≤ n,

q1/p

( ∑

i≤q

a
p/(p−1)
i

)(p−1)/p

+
√

q

( ∑

i>q

a2
i

)1/2

≥ √
q.

The fact that these inequalities are best possible up to universal constants follows by consid-
ering in each case the vectors (1, 0, . . . , 0), (1/

√
n, . . . , 1/

√
n) or (1/

√
q, . . . , 1/

√
q, 0, . . . , 0)

when q ≤ n. The proof of the case p ≥ 2 is equally simple.

2.2.2 ψ2-directions

We start with a few definitions. Let α ∈ [1, 2] and set µ to be a probability measure on Rn.
For a measurable function f : Rn → R, define the following Orlicz norm associated with α
and µ by

‖f‖ψα(µ) := inf
{

λ > 0;
∫

e|f/λ|αdµ ≤ 2
}

.

It is well known that ‖f‖ψα(µ) ∼ supq≥1 q−
1
α

( ∫ |f |q dµ
) 1

q
. Given a vector θ in the unit

sphere Sn−1 of Rn, one says that θ defines a ψα direction for µ with a constant C > 0 if
the function fθ(x) = 〈x, θ〉 satisfies

‖fθ‖ψα(µ) ≤ C
(∫

|fθ|2 dµ
) 1

2
.

In other words the moment of fθ of order q is bounded from above by a constant times
Cq1/α times the second moment of fθ.

From now on consider a convex body K ⊂ Rn, with the center of mass at the origin.
Such a body is said to be a ψα body with constant C if all directions θ ∈ Sn−1 are ψα with
a constant C, with respect to the uniform probability measure on K. It follows from the
Brunn-Minkowski inequality that convex bodies are ψ1 with a uniform constant, and any
improvement on this estimate would be very useful. Note that the notion of ψ2-bodies is
crucial in Bourgain’s bound on the isotropy constant [12] of convex bodies. This motivated
recent works on the ψ2-directions of convex bodies. In fact, it is not even clear that there
exists a universal constant C such that any convex body (of any dimension) admits at least
one ψ2-direction with constant C. This question of V. Milman was solved in very special
cases such as zonoids (Paouris [23]) and unconditional bodies (Bobkov and Nazarov [11]
show that the main diagonal is ψ2). Thanks to equation (3) we are able to study these
questions for Bn

p .

Proposition 10. There exists C > 0 such that
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1. For every n ≥ 1 and every p ≥ 2, Bn
p is a ψ2-body with constant C.

2. For every n ≥ 1 and every p ∈ [1, 2], Bn
p is a ψp-body with constant C.

The first point was actually a consequence of results in [7], where subindependence was
also used.

Proof. Without loss of generality we consider a direction θ ∈ Sn−1 with θ1 ≥ θ2 ≥ · · · ≥
θn ≥ 0. Fix q ≥ 1. Equation (3) gives, with obvious notation

(
EBn

p
|〈X, θ〉|q

) 1
q

(
EBn

p
|〈X, θ〉|2

) 1
2

∼
(

n

max{n, q}
) 1

p

·

q

1
p

(∑

i≤q

θp′
i

) 1
p′ +

√
q
(∑

i>q

θ2
i

) 1
2


 , (4)

where p′ = p/(p− 1).
The result now follows from obvious estimates. Indeed, since n/max{n, q} ≤ 1, for

p ≥ 2, Hölder’s inequality implies that ‖(θi)i≤q‖p′ ≤ min{n, q}1/2−1/p‖(θi)i≤q‖2 ≤ q1/2−1/p.
Hence, the right-hand side in (4) is less than 2

√
q. For p ∈ [1, 2], it is evident that

‖(θi)i≤q‖p′ ≤ ‖(θi)i≤q‖2 ≤ 1 and thus the ratio of moments is bounded by a constant
times q1/p.

Next, we describe the ψ2 constant on Bn
p of every direction for 1 ≤ p ≤ 2.

Proposition 11. Let p ∈ [1, 2]. For any integer n ≥ 1 and θ ∈ Sn−1, θ is a ψ2-direction of
Bn

p and the best constant for which it is ψ2 is, up to an absolute multiplicative constants,
n1/p−1/2‖θ‖p′.

Observe that from the above result, the direction of the main diagonal is ψ2. For
p = 1 we recover a result of Bobkov and Nazarov [10] (let us note that in that paper, the
authors give another moment estimate for Bn

1 , which can be recovered by our method, and
which implies that most directions are ψ2−ε. Moreover Bobkov and Nazarov show that
these moment upper estimates for Bn

1 can be transferred to isotropic unconditional convex
bodies).

Proof. Assume, as we may, that θ1 ≥ θ2 ≥ · · · ≥ θn ≥ 0. For q < n the right-hand side of
(4) is equal to

q
1
p ‖(θi)i≤q‖p′ +

√
q‖(θi)i>q‖2 ≤ √

q
(
n

1
p
− 1

2 ‖(θi)i≤n‖p′ + 1
)
≤ 2

√
q n

1
p
− 1

2 ‖(θi)i≤n‖p′ ,

where we used Hölder’s inequality in the form 1 = ‖(θi)i≤n‖2 ≤ n
1
p
− 1

2 ‖(θi)i≤n‖p′ .

If q ≥ n the right-hand side of (4) is n
1
p ‖θ‖p′ ≤ √

q n
1
p
− 1

2 ‖(θi)i≤n‖p′ . For q = n, it is
easy to see that the estimate cannot be improved by more than a universal factor.

3 Extremal Geometric Parameters of Sections of Bn
p , p > 0

In what follows we will denote by G a standard Gaussian vector. If E ⊂ Rn is a k-
dimensional subspace then G will still stand for a standard Gaussian vector on E (which
is well defined due to rotational invariance).
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3.1 Bounds via stochastic ordering

In this section, we present monotonicity properties for sections of Bn
p as p > 0 varies. We

follow the approach of Meyer and Pajor [19]. They proved that for a fixed vector subspace
of dimension k in Rn, the ratio Volk(E∩Bn

p )/Volk(Bk
p ) is non-decreasing in p ≥ 1. This was

later extended to p > 0 and to `p-sums of arbitrary spaces of finite dimension (see [5] and
the reference therein). We are interested in Gaussian averages of the `p-norm on sections.
Our results will recover in several ways the latter result on the volume.

We will use the notion of peaked ordering on measures. Given two absolutely continuous
measures µ and ν on Rd, one says that ν is more peaked than µ and writes µ ≺ ν if for
every symmetric bounded convex set C

µ(C) ≤ ν(C).

In the following statement, we put together the properties that we need. They follow from
more general results by Kanter [17].

Proposition 12. Let µ, ν be probability measures on R, with even densities which are
non-increasing on [0,∞). If µ ≺ ν then for every n ≥ 1 one has µ⊗n ≺ ν⊗n.

The aim of the next two lemmas is to relate Gaussian averages of the `p-norm on sub-
spaces to the values of some product measures. Let E ⊂ Rn be a subspace with dim(E) = k.
We denote by PE the orthogonal projection from Rn onto E and let uk+1, . . . , un be an
orthonormal basis of E⊥. Set

B∞(E⊥) =

{
x ∈ E⊥; sup

i=k+1,...,n
|〈x, ui〉| ≤ 1

2

}

and for ε > 0,
E(ε) =

{
x ∈ Rn; x− PE(x) ∈ εB∞(E⊥)

}
.

Lemma 13. Let E be a k-dimensional subspace of Rn and set h to be a continuous function
in L1(Rn, γn), with the following property: there exist K, η > 0 such that for every x ∈ Rn

one has |h(x)| ≤ Ke‖x‖22/(2+η). Then
∫

E
h(x)dγE(x) = lim

ε→0

(
2π

ε2

)n−k
2

∫

E(ε)
h(x)dγn(x).

Proof. Fix some ε > 0. By the rotational invariance of the Gaussian measure,

(2π)n/2

∫

E(ε)
h(x)dγn(x) =

∫

Rn

e−
‖x‖22

2 1E(ε)(x)h(x)dmn(x)

=
∫

E×εB∞(E⊥)
e−

‖a‖22
2
− ‖b‖22

2 h(a + b)dmE(a)dmE⊥(b)

= εn−k

∫

E×B∞(E⊥)
e−

‖a‖22
2 e−ε2

‖c‖22
2 h(a + εc)dmk(a)dmn−k(c).

By continuity and dominated convergence, the latter integral converges when ε goes to zero
to

voln−k(B∞(E⊥))
∫

E
e−

‖a‖22
2 h(a)dmk(a),

which gives the claimed result.
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Fix 0 < p, λ < ∞, let α(p, λ) = 2
∫∞
0 e−λtp−t2dt and set µp,λ to be the probability

measure on R defined by

dµp,λ(t) = e−λα(p,λ)p|t|p−α(p,λ)2t2 dt.

Lemma 14. Let E be a k-dimensional subspace of Rn and 0 < p, λ < ∞. Then

Ee
− λ

2p/2
‖G‖p

E∩Bn
p

Ee
− λ

2p/2
‖G‖p

Bk
p

= lim
ε→0

εk−nµ⊗n
p,λ(E(ε)).

Proof. By Lemma 13,

Ee
− λ

2p/2
‖G‖p

E∩Bn
p = lim

ε→0

(
2π

ε2

)n−k
2

∫

E(ε)
e
−λ‖x‖p

p

2p/2
− ‖x‖22

2 dmn(x)

= lim
ε→0

(
2π

ε2

)n−k
2

2n/2α(p, λ)n

∫

E
�

ε√
2α(p,λ)

� e−λα(p,λ)p‖x‖p
p−α(p,λ)2‖x‖22dmn(x)

= lim
ε→0

2k/2α(p, λ)k

(
2π

ε2

)n−k
2

µ⊗n
p,λ(E(ε)).

Thus, applied to E = Rk × {0n−k} with ui = ei for i > k, this identity yields

Ee
− λ

2p/2
‖G‖p

Bk
p = lim

ε→0
2k/2α(p, λ)k

(
2π

ε2

)n−k
2

(∫ ε/2

−ε/2
e−λα(p,λ)p|x|p−α(p,λ)2x2

dx

)n−k

= 2k/2α(p, λ)k(2π)
n−k

2 ,

from which the required result follows.

In the forthcoming lemmas and propositions, we look for comparison results in the sense
of the peaked ordering, between measures of the form µp,λ. We start with useful facts about
the constants α(p, λ) which appear in the definition of µp,λ.

Lemma 15. Let λ > 0 and 0 < p < q < ∞. Then α

(
p, λ

Γ( p+1
2 )

)
< α

(
q, λ

Γ( q+1
2 )

)
.

Proof. By its definition,

α(p, λ) = 2
∫ ∞

0
e−λtp−t2dt =

√
π · E exp

(
−λ|g|p

2p/2

)
,

where g is a standard Gaussian random variable. Recall that

E|g|p =
2p/2

√
π

Γ
(

p + 1
2

)
,

and thus

α


p,

λ

Γ
(

p+1
2

)

 =

√
π · E exp

(
− λ|g|p√

π · E|g|p
)

.

Therefore, Lemma 15 follows from the following result:
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Lemma 16. Fix 0 < p < q < ∞ and let X be a non-negative random variable with
EXq < ∞. Then for every convex function f : [0,∞] → [0,∞),

Ef

(
Xp

EXp

)
≤ Ef

(
Xq

EXq

)
.

Proof. Let t0 be defined by t
1/p
0 (EXp)1/p = t

1/q
0 (EXq)1/q. Clearly,

E
[
f

(
Xp

EXp

)
− f

(
Xq

EXq

)]
=

∫ t0

0
f ′(t)h(t)dt +

∫ ∞

t0

f ′(t)h(t)dt, (5)

where h(t) = P (Xp ≥ tEXp)− P (Xq ≥ tEXq). Since h ≥ 0 on [0, t0] and h ≤ 0 on [t0,∞)
and

∫∞
0 h(t)dt = 0, then

∫ t0

0
f ′(t)h(t)dt +

∫ ∞

t0

f ′(t)h(t)dt =
∫ t0

0
[f ′(t)− f ′(t0)]h(t)dt +

∫ ∞

t0

[f ′(t)− f ′(t0)]h(t)dt ≤ 0,

where we have used the fact that f ′ is non-decreasing. Combined with (5), this completes
the proof.

Proposition 17. Let 0 < p < q, and λ1, λ2 > 0. Then:

a) If q ≥ 2 and α(p, λ1) > α(q, λ2) then µp,λ1 ≺ µq,λ2.

b) If q < 2 and α(p, λ1) < α(q, λ2) then µp,λ1 ≺ µq,λ2.

c) If p < 2 and q ≥ 2 then without any restriction on λ1 and λ2, µp,λ1 ≺ µq,λ2.

d) If 0 < p < 2 and λ1 < λ2 then µp,λ2 ≺ µp,λ1.

e) If p > 2 and λ1 < λ2 then µp,λ1 ≺ µp,λ2.

Proof. Define h : [0,∞) → R by

h(a) =
∫ a

0

[
e−λ1α(p,λ1)ptp−α(p,λ1)2t2 − e−λ2α(q,λ2)qtq−α(q,λ2)2t2

]
dt.

In order to prove that µp,λ1 ≺ µq,λ2 one has to show that h(a) ≤ 0 for all a ≥ 0. Note that
h(0) = limx→∞ h(x) = 0, and if

ψ(t) = −λ1α(p, λ1)ptp−2 − α(p, λ1)2 + λ2α(q, λ2)qtq−2 + α(q, λ2)2

then sign(h′) = sign(ψ).
In case a), lima→0 ψ(a) < 0 and lima→∞ ψ(a) > 0. Hence h′ < 0 in a neighborhood of

0 and h′(a) > 0 for a large enough. If there were some a0 > 0 such that h(a0) > 0 then it
would follow that h′ must have at least 3 zeros. Thus ψ would also have 3 zeros, implying
that ψ′ has at least 2 zeros. This is impossible since

ψ′(t) = −λ1(p− 2)α(p, λ1)ptp−3 + λ2(q − 2)α(q, λ2)qtq−3

clearly has at most one zero.
Cases b) and c) are just as simple. To prove case d) one must show that the function

ψ(t) =
(
λ2α(p, λ2)p − λ1α(p, λ1)p

)
tp−2 + α(p, λ2)2 − α(p, λ1)2
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is first positive and then negative. Since it changes signs only once, it is enough to check
this at zero and infinity. Observe that

α(p, λ) = 2
∫ ∞

0
e−λtp−t2dt and λ1/pα(p, λ) = 2

∫ ∞

0
e
−tp− t2

λ2/p dt,

so that α(p, λ) is decreasing in λ and λα(p, λ)p is increasing in λ. Since p < 2 then
limx→0 ψ(x) = +∞ and limx→∞ ψ(x) < 0. The proof of the last case is almost identical.

Proposition 18. Let E be a k-dimensional subspace of Rn and set λ > 0. For p > 0, let

F (p) =
E exp

[
−

λ‖G‖p
E∩Bn

p

2p/2Γ( p+1
2 )

]

E exp

[
−

λ‖G‖p

Bk
p

2p/2Γ( p+1
2 )

] .

Then F is non-decreasing on (0, 2]. Moreover for p ≥ 2 one has F (p) ≥ F (2) = 1.

Proof. Let r < 2, fix some λ > 0, let p > r, and define

λ1 =
λ

Γ
(

r+1
2

) and λ2 =
λ

Γ
(

p+1
2

) .

By Lemma 15 and cases b and c of Proposition 17, µr,λ1 ≺ µp,λ2 . Tensorizing and applying
Proposition 12, it follows that µ⊗n

r,λ1
≺ µ⊗n

p,λ2
. In particular, for every ε > 0,

µ⊗n
r,λ1

(E(ε)) ≤ µ⊗n
p,λ2

(E(ε)).

By Lemma 14

E exp
[
− λ‖G‖r

E∩Bn
r

2r/2Γ( r+1
2 )

]

E exp
[
−

λ‖G‖r

Bk
r

2r/2Γ( r+1
2 )

] ≤
E exp

[
−

λ‖G‖p
E∩Bn

p

2p/2Γ( p+1
2 )

]

E exp

[
−

λ‖G‖p

Bk
p

2p/2Γ( p+1
2 )

] , (6)

hence F (r) ≤ F (p) holds when r < 2 and r < p.

Theorem 8. Let E be a k-dimensional subspace of Rn. Then the function

p 7→
E‖G‖p

E∩Bn
p

E‖G‖p
Bk

p

is non-increasing in p > 0.

Proof. Assume that p < q ≤ 2. Both sides of (6) equal 1 for λ = 0, so the same inequality
must hold between the derivatives at 0 of both sides, that is

−
E‖G‖p

E∩Bn
p

2p/2Γ
(

p+1
2

) +
E‖G‖p

Bk
p

2p/2Γ
(

p+1
2

) ≤ −
E‖G‖p

E∩Bn
q

2q/2Γ
(

q+1
2

) +
E‖G‖q

Bk
q

2q/2Γ
(

q+1
2

) .
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Note that

E‖G‖p
Bk

p
= E

k∑

i=1

|gi|p =
2k√
2π

∫ ∞

0
xpe−

x2

2 dx =
2

p
2
+1

√
π

kΓ
(

p + 1
2

)
.

Hence, the above inequality translates to

− 2k√
π
·
E‖G‖p

E∩Bn
p

E‖G‖p
Bk

p

+
2k√
π
≤ − 2k√

π
·
E‖G‖q

E∩Bn
q

E‖G‖q
Bk

q

+
2k√
π

,

so that
E‖G‖p

E∩Bn
p

E‖G‖p
Bk

p

≥
E‖G‖q

E∩Bn
q

E‖G‖q
Bk

q

.

It remains to deal with the case 2 ≤ p < q, which is slightly more complicated because
the last proposition does not give much in this case for a fixed value of the parameter λ.
However, something remains true when λ tends to zero, and thus one can pass to the limit.

Indeed, fix two numbers cp, cq > 0 such that

cp <
1

Γ
(

p+1
2

) and cq >
1

Γ
(

q+1
2

) ,

and for every λ > 0 define

f(λ) = α(p, cpλ)− α(q, cqλ) = 2
∫ ∞

0
e−cpλtp−t2dt− 2

∫ ∞

0
e−cqλtq−t2dt.

Then

f ′(0) = −2cp

∫ ∞

0
tpe−t2dt + 2cq

∫ ∞

0
tqe−t2dt = 2 ·

[
cqΓ

(
q + 1

2

)
− cpΓ

(
p + 1

2

)]
> 0.

Since f(0) = 0, it follows that there is some δ = δp,q > 0 such that for every 0 < λ < δ,
f(λ) > 0, i.e. α(p, cpλ) > α(q, cqλ). Part a) of Proposition 17 now implies that µp,cpλ ≺
µq,cqλ. As before, tensorization and an application of Lemma 14 give that for every λ < δ,

E exp
(
−

λcp‖G‖p
E∩Bn

p

2p/2

)

E exp

(
−

λcp‖G‖p

Bk
p

2p/2

) ≤
E exp

(
−

λcq‖G‖q
E∩Bn

q

2q/2

)

E exp

(
−

λcq‖G‖q

Bk
q

2q/2

) ,

and the required inequality follows by taking derivatives at 0 and letting cp and cq tend to

1/Γ
(

p+1
2

)
and 1/Γ

(
q+1
2

)
, respectively.

Remark: Assume that 0 < p < 2. By Proposition 17, for every λ > 0, µp,λ ≤ µ2,λ = γ̄,
where γ̄ has density e−πx2

on R. Hence, by rotation invariance of this Gaussian density,
one has that for every λ > 0

Ee
−λ‖G‖p

E∩Bn
p ≤ Ee

−λ‖G‖p

Bk
p .
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Thus, for any (reasonable) measure τ on [0,∞),

E
∫ ∞

0
e
−λ‖G‖p

E∩Bn
p dτ(λ) ≤ E

∫ ∞

0
e
−λ‖G‖p

Bk
p dτ(λ),

which by Bernstein’s Theorem (see, e.g., the book [32]) implies that for every f : [0,∞) → R
which is completely monotonic,

Ef(‖G‖p
E∩Bn

p
) ≤ Ef(‖G‖p

Bk
p
),

provided these expectations are finite.
Two particular cases which should be singled out are f(t) = e−λtθ for 0 < θ ≤ 1 and

λ > 0, and f(t) = t−η for η > 0. The first case implies that for every λ > 0,

Ee
−λ‖G‖θp

E∩Bn
p ≤ Ee

−λ‖G‖θp

Bk
p ,

which, by differentiation at 0 yields

E‖G‖θp
E∩Bn

p
≥ E‖G‖θp

Bk
p
.

From the second case it is evident that for 0 < α < k,

E‖G‖−α
E∩Bn

p
≤ E‖G‖−α

Bk
p
.

The condition α < k is imposed to ensure that these expectations would be finite.
When 2 < p < ∞, γ̄ ≺ µp,λ, and all the above inequalities are reversed. Summarizing,

we obtain

Corollary 19. Let E be a k dimensional subspace of Rn. Then for 0 < p < 2 and every
0 < α < k and 0 < β ≤ p,

E‖G‖−α
E∩Bn

p
≤ E‖G‖−α

Bk
p

and E‖G‖β
E∩Bn

p
≥ E‖G‖β

Bk
p
.

If 2 < p < ∞ then for every 0 < α < k and 0 < β ≤ p,

E‖G‖−α
E∩Bn

p
≥ E‖G‖−α

Bk
p

and E‖G‖β
E∩Bn

p
≤ E‖G‖β

Bk
p
.

The following proposition is a corollary of parts d) and e) in Proposition 17.

Proposition 20. Let E be a k-dimensional subspace of Rn. Then the function

λ ≥ 0 7→ rp(λ) :=
Ee

−λ‖G‖p
E∩Bn

p

Ee
−λ‖G‖p

Bk
p

is non-increasing when p ≤ 2 and non-decreasing when p ≥ 2.

Remark: Since rp(0) = 1 we have an alternative proof to Corollary 19. Additionally the
limit of rp(λ) when λ tends to infinity is

∫
E e

−‖x‖p
E∩Bn

p dx
∫
Rk e

−‖x‖p

Bk
p dx

=
volk(E ∩Bn

p )
volk(Bk

p )
.

The above equality can be proved by polar integration. The comparison between rp(0) and
rp(+∞) yields an alternative proof of the Meyer-Pajor Theorem [19] which uses a different
interpolation between exp(−t2) and exp(−|t|p).
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3.2 Bounds via convolution inequalities

In this section we derive upper bounds on the Laplace transform of ‖G‖p
E∩Bn

p
for p > 2. The

main tool is Ball’s version of the Brascamp-Lieb inequality [9, 2]. We follow the method of
[2] where the main focus was on the volume of sections.

Let E be a k-dimensional subspace of Rn and let P be the orthogonal projection onto E.
The canonical basis of Rn provides a decomposition of the identity map as

∑n
i=1 ei⊗ei = Idn,

where (v ⊗ v)(x) = 〈x, v〉v. Projecting this relation onto E yields a decomposition of the
identity on E

n∑

i=1

Pei ⊗ Pei = IdE .

Setting ci = |Pei|2 and ui = Pei/|Pei| (or any unit vector if the norm of Pei is 0), this
rewrites as

∑n
i=1 ciui⊗ui = IdE . Let λ > 0, and note that for any x ∈ E the i-th coordinate

in the canonical basis is xi = 〈x, ei〉 = 〈Px, ei〉 = 〈x, Pei〉 =
√

ci〈x, ui〉. Hence,

∫

E
e−λ‖x‖p

p−‖x‖22/2dx =
∫

E

n∏

i=1

e−λ|xi|p−|xi|2/2dx

=
∫

E

n∏

i=1

e−λ|√ci〈x,ui〉|p−ci〈x,ui〉2/2dx

=
∫

E

n∏

i=1

(
e−λc

p/2−1
i |〈x,ui〉|p−〈x,ui〉2/2

)ci

dx

≤
n∏

i=1

(∫

R
e−λc

p/2−1
i |t|p−t2/2dt

)ci

= exp

[
n∑

i=1

ci log ψ

(
1√
ci

)]
,

where we have set ψ(s) = 2
∫∞
0 e−λs2−ptp−t2/2dt. First, observe that for p > 2 the function

defined on (0,∞) × [0,∞) by (s, t) → −λs2−ptp − t2/2 is concave (indeed, on this set the
function (s, t) → s2−ptp is convex, as follows from a direct calculation of its Hessian matrix).
Therefore, by a well known result of Borell, Prékopa and Rinott (see e.g. [26]), log ψ(s) is a
concave function of s > 0 (because it is the integral in t of a log-concave function of (s, t)).
Lemma 22 below ensures that the map

s > 0 7→ s log ψ
( 1√

s

)

is concave. This property can be combined with the relation
∑n

i=1 ci = k (which follows by
taking traces in the decomposition of the identity). It yields that for p ≥ 2

∫

E
e−λ‖x‖p

p−‖x‖22/2dx ≤
(∫

R
e
−λ
�√

k/n
�p−2|t|p−t2/2

dt

)k

.

Returning to our previous setting, it implies that for every λ > 0

Ee
−λ‖G‖p

E∩Bn
p ≤ Ee

−λ
�√

k/n
�p−2‖G‖p

Bk
p .
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Integrating this inequality against positive measures on [0,∞) and applying Bernstein’s
Theorem [32], it follows that for every completely monotonic function f : [0,∞) → [0,∞)

Ef
(
λ‖G‖p

E∩Bn
p

)
≤ Ef

(
λ

(√
k/n

)p−2
‖G‖p

Bk
p

)
.

In particular, the following corollary is evident.

Corollary 21. For any p ≥ 2, every 0 ≤ θ ≤ 1 and every λ ≥ 0:

Ee
−λ‖G‖θp

E∩Bn
p ≤ Ee

−λ
�√

k/n
�θ(p−2)‖G‖θp

Bk
p .

In particular, by differentiation at 0 it follows that for every 0 ≤ β ≤ p,

E‖G‖β
E∩Bn

p
≥

(
k

n

)β
�

1
2
− 1

p

�
E‖G‖β

Bk
p
.

Also, for every 0 ≤ α < k

E‖G‖−α
E∩Bn

p
≤

(n

k

)α
�

1
2
− 1

p

�
E‖G‖−α

Bk
p
.

Remark. Assume that k divides n, and write n = mk. Consider the subspace F ⊂ Rn

which is the “main diagonal” with respect to the decomposition Rn = Rk × · · · × Rk, (i.e.
F = {(x1, . . . , xm); xi ∈ Rk, x1 = . . . = xm}). Then

E‖G‖p
F∩Bn

p
= m

(
1√
m

)p

E‖G‖p
Bk

p
=

(
k

n

) p
2
−1

E‖G‖p
Bk

p

which shows that when k divides n, the case β = p in Corollary 21, is optimal.

Lemma 22. Let c : [0,∞) → [0,∞) be a non-decreasing concave function. Then the
function f(t) := t c

(
1√
t

)
, defined for t > 0 is concave.

Proof. We may assume that c is twice continuously differentiable. Clearly

f ′(t) = c

(
1√
t

)
− 1

2
√

t
c′

(
1√
t

)
,

which is non-increasing provided the function g(u) = c(u) − u
2 c′(u) is non-decreasing on

[0,∞). Now, g′(u) = c′(u)
2 − u

2 c′′(u) is non-negative by our assumptions on c.

3.3 Gaussian measures of sections of the cube

In view of the previous results, one is tempted to conjecture that the following distributional
inequality holds for Gaussian measures of sections of dilates of the `n

p -ball, that is, for every
k-dimensional subspace E and every r > 0, γk(rBk

p ) ≤ γE(E∩rBn
p ) if p ≥ 2 and the reverse

inequality for p ≤ 2. If such a statement were true, some of the previous results would follow
by integration. Unfortunately, it seems that the known techniques are insufficient for this
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purpose. The product structure of the cube will, however, allow us to prove this conjecture
for p = ∞.

By Lemma 13, for every k-dimensional subspace E ⊂ Rn and r > 0

γE(E ∩ rBn
∞) = lim

ε→0

( π

2ε2

)n−k
2 1

(2π)n/2

∫

E(ε)

n∏

i=1

e−
x2

i
2 1[−r,r](xi)dmn(x).

Let θ(r) = θ be such that ∫ r/θ

−r/θ
e−

θ2t2

2 dt = 1,

i.e.,

θ(r) =
∫ r

−r
e−

t2

2 dt.

We require the following observation:

Lemma 23. The function r 7→ θ(r) is increasing and the function r 7→ θ(r)
r is decreasing.

Proof. The first assertion is obvious. The second statement follows by differentiating. In-
deed,

d

dr

1
r

∫ r

0
e−

t2

2 dt =
1
r

(
e−

r2

2 − 1
r

∫ r

0
e−

t2

2 dt

)
=

1
r2

∫ r

0

(
e−

r2

2 − e−
t2

2

)
dt ≤ 0.

Denote by ρr the probability measure on R defined by

dρr(t) = e−
θ(r)2t2

2 1[−r/θ(r),r/θ(r)](t)dt.

Thus,

γE(E ∩ rBn
∞) = lim

ε→0

( π

2ε2

)n−k
2 θ(r)n

(2π)n/2

∫

E
�

ε
θ(r)

� n∏

i=1

e−
θ(r)2y2

i
2 1[−r,r](θ(r)yi)dmn(y)

= lim
ε→0

(
2
π

)k/2

· θ(r)k

2nεn−k
· ρ⊗n

r (E(ε)).

Observe that

γk(rBk
∞) =

1
(2π)k/2

(∫ r

−r
e−

t2

2 dt

)k

=
θ(r)k

(2π)k/2
,

hence
γE(E ∩ rBn∞)

γk(rBk∞)
= lim

ε→0

1
(2ε)n−k

· ρ⊗n
r (E(ε)). (7)

Lemma 24. For every r > s > 0, ρr ≺ ρs.

Proof. As usual, define h : [0,∞) → R by

h(a) =
∫ a

0

[
e−

θ(r)2t2

2 1[−r/θ(r),r/θ(r)](t)− e−
θ(s)2t2

2 1[−s/θ(s),s/θ(s)](t)
]

dt,
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and our goal is to show that h(a) ≤ 0 for all a ≥ 0. By Lemma 23, r
θ(r) ≥ s

θ(s) , so that
h(a) = 0 for a ≥ r

θ(r) . Moreover, for s
θ(s) ≤ a ≤ r

θ(r) , h(a) = ρr([0, a])− 1 ≤ 0. Finally, for
0 ≤ a ≤ s

θ(s) ,

h(a) =
∫ a

0

[
e−

θ(r)2t2

2 − e−
θ(s)2t2

2

]
dt ≤ 0,

since θ(r) ≥ θ(s).

By (7), tensorizing the above lemma yields

Theorem 9. For every k-dimensional subspace E ⊂ Rn the function:

r 7→ γE(E ∩ rBn∞)
γk(rBk∞)

r > 0,

is non-increasing. In particular, by passing to the limit r → ∞ it follows that for every
r > 0,

γE(E ∩ rBn
∞) ≥ γk(rBk

∞).

By arguments analogous to those in Section 3.2 one can also obtain the following upper
bound on the Gaussian measure of sections of dilates of the cube, which is a Gaussian
analog of Ball’s slicing theorem in [2]. As noted in Section 3.2, these bounds are optimal
when k divides n.

Theorem 10. For every k-dimensional subspace E ⊂ Rn and every r > 0

γE(E ∩ rBn
∞) ≤ γk

(
r

√
n

k
Bk
∞

)
.

3.4 An application: a remark on the Komlós conjecture

In this section we apply the results of the previous section to prove the following proposition,
which was stated in the introduction:

Proposition 25. There is an absolute constant C > 0 such that for every integer m > 0
and every x1, . . . , xm ∈ `∞, if we denote by d the dimension of the linear span of x1, . . . , xm

then there are signs ε1, . . . , εm ∈ {−1, 1} such that
∥∥∥∥∥

m∑

i=1

εixi

∥∥∥∥∥
∞
≤ C

√
log d · max

1≤1≤m
‖xi‖2 ≤ C

√
log m · max

1≤1≤m
‖xi‖2.

Proof. We may assume that x1, . . . , xm ∈ `2, in which case, we may write xi = yi + zi,
where yi ∈ `N∞ for some (large) N , and ‖zi‖∞ ≤ 1/m. Denote E = span{y1, . . . , ym} and
let d′ be the dimension of E. There is a constant c > 0 such that for r = c

√
log d′ ≤ c

√
log d,

γd′(rBd′∞) ≥ 1
2 . By Theorem 9, if we set K = E ∩ rBN∞ then γE(K) ≥ 1

2 . By Banaszczyk’s
theorem [4], there are signs ε1, . . . , εm ∈ {−1, 1} such that

∑m
i=1 εiyi ∈ cK, where c is an

absolute constant. Hence
∥∥∥∥∥

m∑

i=1

εixi

∥∥∥∥∥
∞
≤

∥∥∥∥∥
m∑

i=1

εiyi

∥∥∥∥∥
∞

+
m∑

i=1

‖zi‖∞ ≤ (c + 1)
√

log d.
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It is equally simple to deduce the following `p version of this result for p > 2:

Proposition 26. There is an absolute constant C > 0 such that for every 2 ≤ p < ∞,
every integer m > 0 and every x1, . . . , xm ∈ `p, if we denote by d the dimension of the
linear span of x1, . . . , xm then there are signs ε1, . . . , εm ∈ {−1, 1} such that

∥∥∥∥∥
m∑

i=1

εixi

∥∥∥∥∥
p

≤ C
√

p · d1/p · max
1≤1≤m

‖xi‖2 ≤ C
√

p ·m1/p · max
1≤1≤m

‖xi‖2.

Proof. As before, we may assume that x1, . . . , xm ∈ `N∞ for some large N . By Corollary 19,
if we set E = span{x1, . . . , xm} then

E‖G‖p
E∩BN

p
≤ E‖G‖p

Bd
p

= dE|g1|p = O
(
dpp/2

)
.

Hence, for every r > 0,

γE(E ∩ rBN
p ) = 1− P

(
‖G‖p

E∩BN
p
≥ rp

)
≥ 1−

E‖G‖p
E∩BN

p

rp
≥ 1−O

(
dpp/2

rp

)
.

Setting K = E ∩ rBN
p , then for some r = O

(√
p · d1/p

)
, γE(K) ≥ 1

2 , which concludes the
proof by Banaszczyk’s theorem [4].

Remark: The above estimate can actually be improved to give tail estimates as follows.
Let E be an m-dimensional subspace of Rn. Since for p > 2 the function x 7→ ‖x‖p is
Lipschitz with constant 1 on Rn and the Gaussian isoperimetric inequality shows that for
every ε > 0,

γE

(
E ∩ (E‖G‖E∩Bn

p
+ ε)Bn

p

)
≥ 1− e−

ε2

2 .

Since E‖G‖E∩Bn
p
≤ E‖G‖Bk

p
≤ c

√
p ·m1/p for some absolute constant c, then

γE

(
E ∩ (c

√
p ·m1/p + ε)Bn

p

)
≥ 1− e−

ε2

2 .

3.5 An application: covering numbers of convex hulls of points in `2 by
Bp balls

In this section, which is similar in spirit to the previous one, we use our results to give an
infinite dimensional extension of a classical inequality which bounds the minimal number of
cubes εBd∞ required to cover a convex hull of a finite number of points in `d

2 (this classical
result depends on the maximum of d and the number of points). Here, we are interested
in finding upper bounds of the minimal number of cubes εB∞ required to cover a convex
hull of a finite number of points in `2 depending only on ε and the number of taken points.
Since the structure of `∞ depends deeply of the chosen basis in `2, a simple approximation
argument is not enough to obtain our result.

The main result of this section, as described in the introduction, is re-stated below:

Proposition 27. There exists an absolute constant C > 0 such that for every integer m,
ε > 0 and 2 ≤ p ≤ ∞, for all x1, . . . , xm in the unit ball of `2,

log N(absconv{x1, . . . , xm}, εBp) ≤ C
log m

εp/(p−1)
.
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Proof. We first prove the Proposition in the case when p = ∞. Since all xi’s are in B2 we
can find an integer d so that we can write xi = yi + zi with yi ∈ Bd

2 and ‖zi‖∞ < ε for all
i = 1, . . . , m. If the absolute convex hull of y1, . . . , ym can be covered by N translates of
εBd∞ then the absolute convex hull of x1, . . . , xm can be covered by N translates of 2εB∞.
So, it is enough to prove the result for the yi’s.

Let T : `m
1 → `d

2 defined by Tei = yi for all i = 1, . . . , m, E = span{y1, . . . , ym} and G
is a Gaussian vector in E. Since ‖xi‖2 ≤ 1, then by Sudakov’s inequality [31],

sup
ε>0

ε
√

log N(T (Bm
1 ), ε(Bd

2 ∩ E)) ≤ E sup
i=1,...,m

|〈G, yi〉| ≤ C
√

log m.

Moreover, by the dual Sudakov inequality due to Pajor and Tomczak-Jaegermann [22],

sup
ε>0

ε
√

log N(Bd
2 ∩ E, εBd∞) ≤ E‖G‖`d∞∩E ,

and by Corollary 19, E‖G‖`d∞∩E ≤ E‖G‖`dimE∞ ≤ C
√

log m. Therefore,

sup
ε>0

ε
√

log N(Bd
2 ∩ E, εBd∞) ≤ C

√
log m.

Since the covering numbers are sub-additive,

log N(T (Bm
1 ), εBd

∞) ≤ log N(T (Bm
1 ),

√
ε(Bd

2 ∩E)) + log N(
√

ε(Bd
2 ∩E), εBd

∞) ≤ C · log m

ε
.

For a general p ≥ 2, the proof follows by interpolation. Recall that for Banach spaces X, Y
and a compact operator u : X → Y , the entropy numbers of u are defined for every integer
k by

ek(u : X → Y ) = inf{ε; N(u(BX), εBY ) ≤ 2k}.
Let T be defined as before on `m

1 by Tei = xi for all i = 1, . . . ,m. It is well known (see
lemma 12.1.11 in [24]) that for every integer k,

e2k−1(T : `m
1 → `p) ≤ ek(T : `m

1 → `2)2/pek(T : `m
1 → `∞)1−2/p.

The above result for p = ∞, stated in terms of entropy numbers, is

ek(T : `m
1 → `∞) ≤ C · log m

k
,

and Sudakov’s inequality [31] is just

ek(T : `m
1 → `2) ≤ C ·

√
log m

k
.

Therefore,

e2k−1(T : `m
1 → `p) ≤ C ·

(
log m

k

)1−1/p

,

as claimed.
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