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Abstract

We study the metric properties of finite subsets of L1. The analysis of such metrics
is central to a number of important algorithmic problems involving the cut structure of
weighted graphs, including the Sparsest Cut Problem, one of the most compelling open
problems in the field of approximation. We present some new observations concerning the
relation of L1 to dimension, topology, and Euclidean distortion. In particular, we offer
new insights into the four main open problems surrounding the metric structure of L1.
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1 Introduction

This paper is devoted to the analysis of metric properties of finite subsets of L1. Such metrics
occur in many important algorithmic contexts, and their analysis is key to progress on some
fundamental problems. For instance, an O(log n)-approximate max-flow/min-cut theorem
proved elusive for many years until, in [15, 2], it was shown to follow from a theorem of
Bourgain stating that every metric on n points embeds into L1 with distortion O(log n).

The importance of L1 metrics has given rise to many problems and conjectures that have
attracted a lot of attention in recent years. Four basic problems of this type are as follows.

I. Is there an L1 analog of the Johnson-Lindenstrauss dimension reduction lemma [9]?

II. Are all n-point subsets of L1 O
(√

log n
)
-embeddable into Hilbert space?

III. Are all squared-`2 metrics O(1)-embeddable into L1?

IV. Are all planar graphs O(1)-embeddable into L1?

Each of these questions has been asked many times before; we refer to [18, 19, 14, 8], in
particular. Despite an immense amount of interest and effort, the metric properties of L1 have
proved quite elusive; hence the name “The mysterious L1” appearing in a survey of Linial at
the ICM in 2002 [14]. In this paper, we offer new insights into each of the above problems and
touch on some relationships between them.

1.1 Results and techniques

Dimension reduction. In [3], and soon after in [13], it was shown that if the Newman-
Rabinovich diamond graph on n vertices α-embeds into `d

1 then d ≥ nΩ(1/α2). The proof in [3]
is based on a linear programming argument, while the proof in [13] uses a geometric argument
which reduces the problem to bounding from below the distortion required to embed the
diamond graph in `p, 1 < p < 2. These results settle the long standing open problem whether
there is an L1 analog of the Johnson-Lindenstrauss dimension reduction lemma [9]. (In other
words, they show that the answer to problem (I) above is No.). In Section 2, we show that
the method of proof in [13] can be used to provide an even more striking counter example to
this problem.

A metric space X is called doubling with constant C if every ball in X can be covered
by C balls of half the radius. Doubling metrics with bounded doubling constants are widely
viewed as low dimensional (see [6, 10] for some practical and theoretical applications of this
viewpoint). In fact, they have bounded Assouad dimension (see [7] for the definition). On the
other hand, the doubling constant of the diamond graphs is Ω(

√
n) (where n is the number of

points). Based on a fractal construction due to Laakso [11] and the method developed in [13],
we prove the following theorem, which shows a strong lower bound on the dimension required
to represent uniformly doubling subsets of L1.

Theorem 1.1. There are arbitrarily large n-point subsets X ⊆ L1 which are doubling with
constant 6 but such that every α-embedding of X into `d

1 requires d ≥ nΩ(1/α2).

In [12, 6] it was asked whether any subset of `2 which is doubling well-embeds into `d
2 (with

bounds on the distortion and the dimension that depend only on the doubling constant). In
[6], it was shown that a similar property cannot hold for `1. Our lower bound exponentially
strengthens this result.
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Planar metrics. The next result addresses problems (III) and (IV). Our motivation was an
attempt to generalize the argument in [13] to prove that dimension reduction is impossible
in Lp for any 1 < p < 2. A natural approach to this problem is to consider the point set
used in [3, 13] (namely, a natural realization of the diamond graph, G, in L1) with the metric
induced by the Lp norm instead of the L1 norm. This is easily seen to amount to proving lower
bounds on the dimension required to embed the metric space (G, d

1/p
G ) in `d

p. Unfortunately,
this approach cannot work since we show that, for any planar metric (X, d) and any 0 < ε < 1,
the metric space (X, d1−ε) embeds in Hilbert space with distortion O (1/

√
ε). The proof of this

interesting fact is a straightforward application of Assouad’s classical embedding theorem [1]
and Rao’s embedding method [23]. The O (1/

√
ε) upper bound is shown to be tight for

every value 0 < ε < 1. The case ε = 1/2 has been previously observed by A. Gupta in
his (unpublished) thesis. It follows that any planar metric embeds into squared-`2 with O(1)
distortion so that a positive solution to problem (III) above implies a positive solution to
problem (IV).

Euclidean distortion. Our final result addresses problem (II) stated above (and for more
subtle reasons, problem (III)). We show that the answer to this question is positive on average,
in the following sense.

Theorem 1.2. For every f1, . . . , fn ∈ L1 there is a linear operator T : L1 → L2 such that

1
(8 log n)1/3

≤ min
1≤i<j≤n

(‖T (fi)− T (fj)‖2

‖fi − fj‖1

)2/3

≤ 1(
n
2

)
∑

1≤i<j≤n

(‖T (fi)− T (fj)‖2

‖fi − fj‖1

)2/3

≤ 10.

In other words, for any n-point subset in L1, there exists a map into L2 such that distances
are contracted by at most O(

√
log n) and the average expansion is O(1). We remark that a

different notion of average embedding was recently studied by Rabinovich [22]. In [22] one
tries to embed (planar) metrics into the line such that the average distance does not change
too much.

The exponent 2/3 above has no significance, and we can actually obtain the same result
for any power 1− ε, ε > 0 (we refer to Section 4 for details). The proof of Theorem 1.2 follows
from the following probabilistic lemma, which is implicit in [16]. We believe that this result is
of independent interest.

Lemma 1.3. There exists a distribution over linear mappings T : L1 → L2 such that for every
x ∈ L1 \ {0} the random variable ‖T (x)‖2

‖x‖1 has density e−1/(4x2)

x2
√

π
.

In contrast to Theorem 1.2, we show that problem (II) cannot be resolved positively using
linear mappings. Specifically, we show that there are arbitrarily large n-point subsets of L1

such that any linear embedding of them into L2 incurs distortion Ω(
√

n). As a corollary we
settle the problem left open by Charikar and Sahai in [4], whether linear dimension reduction is
possible in Lp, p /∈ {1, 2}. The case p = 1 was proved in [4] via linear programming techniques,
and it seems impossible to generalize their lower bound to arbitrary Lp. We show that there are
arbitrarily large n-point subsets X ⊆ Lp (namely, the same point set used in [4] to handle the
case p = 1), such that any linear embedding of X into `d

p incurs distortion Ω
[
(n/d)|1/p−1/2|],

thus linear dimension reduction is impossible in any Lp, p 6= 2. Additionally, we show that
there are arbitrarily large n-point subsets X ⊆ L1 such any linear embedding of X into any
d-dimensional normed space incurs distortion Ω

(√
n/d

)
. This generalizes the Charikar-Sahai

result to arbitrary low dimensional norms.

3



2 An inherently high-dimensional doubling metric in L1

This section is devoted to the proof of Theorem 1.1. The case p = 2 of the proof below reduces
to the argument in [11, 12, 21].

Proof of Theorem 1.1. Consider the Laakso graphs, {Gi}∞i=0, which are defined as follows. G0

is the graph on two vertices with one edge. To construct Gi, take six copies of Gi−1 and scale
their metric by a factor of 1

4 . We glue four of them cyclicly by identifying pairs of endpoints,
and attach at two opposite gluing points the remaining two copies. See Figure 1 below.

G1

G0

G2

G3

Figure 1: The Laakso graphs.

As shown in [11], the graphs {Gi}∞i=0 are uniformly doubling (see also [12], for a simple
argument showing they are doubling with constant 6). Moreover, since the Gi’s are series
parallel graphs, they embed uniformly in L1 (see [5]).

We will show below that any embedding of Gi in Lp, 1 < p ≤ 2 incurs distortion at least√
1 + p−1

4 i. We then conclude as in [13] by observing that `d
1 is 3-isomorphic to `d

p when

p = 1 + 1
log d , so that if Gi embeds with distortion α in `d

1 then α ≥
√

i
40 log d . This implies the

required result since i ≈ log |Gi|.
The proof of the lower bound for the distortion required to embed Gi into Lp is by induction

on i. We shall prove by induction that whenever f : Gi → Lp is non-contracting then there

exist two adjacent vertices u, v ∈ Gi such that ‖f(u)− f(v)‖p ≥ dGi(u, v)
√

1 + p−1
4 i (observe

that for u, v ∈ Gi−1, dGi−1(u, v) = dGi(u, v)). For i = 0 there is nothing to prove. For i ≥ 1,
since Gi contains an isometric copy of Gi−1, there are u, v ∈ Gi corresponding to two adjacent

vertices in Gi−1 such that ‖f(u) − f(v)‖p ≥ dGi(u, v)
√

1 + p−1
4 (i− 1). Let a, b be the two
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midpoints between u and v in Gi. By Lemma 2.1 in [13],

‖f(u)− f(v)‖2
p + (p− 1)‖f(a)− f(b)‖2

p

≤ ‖f(u)− f(a)‖2
p + ‖f(a)− f(v)‖2

p + ‖f(v)− f(b)‖2
p + ‖f(b)− f(u)‖2

p.

Hence:

max{‖f(u)− f(a)‖2
p, ‖f(a)− f(v)‖2

p, ‖f(v)− f(b)‖2
p, ‖f(b)− f(u)‖2

p}
≥ 1

4
‖f(u)− f(v)‖2

p +
1
4
(p− 1)‖f(a)− f(b)‖2

p

≥ 1
4

(
1 +

p− 1
4

(i− 1)
)

dGi(u, v)2 +
p− 1

4
dGi(a, b)2

=
1
4

(
1 +

p− 1
4

i

)
dGi(u, v)2

=
(

1 +
p− 1

4
i

)
max{dGi(u, a)2, dGi(a, v)2, dGi(v, b)2, dGi(b, u)2}.

We end this section by observing that the above approach also gives a lower bound on the
dimension required to embed expanders in `∞.

Proposition 2.1. Let G be an n-point constant degree expander which embeds in `d∞ with
distortion at most α. Then d ≥ nΩ(1/α).

Proof. By Matoušek’s lower bound for the distortion required to embed expanders in `p [17],

any embedding of G into `p incurs distortion Ω
(

log n
p

)
. Since `d∞ is O(1)-equivalent to `d

log d,

we deduce that α ≥ Ω
(

log n
log d

)
.

We can also obtain a lower bound on the dimension required to embed the Hamming cube
{0, 1}k into `∞. Our proof uses a simple concentration argument. An analogous concentration
argument yields an alternative proof of Proposition 2.1.

Proposition 2.2. Assume that {0, 1}k embeds into `d∞ with distortion α. Then d ≥ 2kΩ(1/α2).

Proof. Let f = (f1, . . . , fd) : {0, 1}k → `d∞ be a contraction such that for every u, v ∈ {0, 1}d,
‖f(u) − f(v)‖∞ ≥ 1

αd(u, v) (where d(·, ·) denotes the Hamming metric). Denote by P the
uniform probability measure on {0, 1}k. Since for every 1 ≤ i ≤ k, fi is 1-Lipschitz, the
standard isoperimetric inequality on the hypercube implies that P (|fi(u)− Efi| ≥ k/(4α)) ≤
e−Ω(k/α2). On the other hand, if u, v ∈ {0, 1}k are such that d(u, v) = k then there exist 1 ≤
i ≤ d for which |fi(u)−fi(v)| ≥ k/α, implying that max{|fi(u)−Efi|, |fi(v)−Efi|} > k/(4α).
By the union bound it follows that de−Ω(k/α2) ≥ 1, as required.

3 Snowflake versions of planar metrics

The problem of whether there is an analog of the Johnson-Lindenstrauss dimension reduction
lemma in Lp, 1 < p < 2, is an interesting one which remains open. In view of the above proof
and the proof in [13], a natural point set which is a candidate to demonstrate the impossibility
of dimension reduction in Lp is the realization of the diamond graph in `1 which appears
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in [3], equipped with the `p metric. Since this point set consists of 0, 1 vectors, this amounts
to considering the diamond graph with its metric raised to the power 1

p . Unfortunately, this
approach cannot work; we show below that any planar graph whose metric is raised to the
power 1− ε has Euclidean distortion O (1/

√
ε).

Given a metric space (X, d) and ε > 0, the metric space (X, d1−ε) is known in geometric
analysis (see e.g. [7]) as the 1− ε snowflake version of (X, d). Assouad’s classical theorem [1]
states that any snowflake version of a doubling metric space is bi-Lipschitz equivalent to a
subset of some finite dimensional Euclidean space. A quantitative version of this result (with
bounds on the distortion and the dimension) was obtained in [6]. The following theorem is
proved by combining embedding techniques of Rao [23] and Assouad [1]. A similar analysis is
also used in [6]. In what follows we call a metric Kr-excluded if it is the metric on a subset
of a weighted graph which does not admit a Kr minor. In particular, planar metrics are all
K5-excluded.

Theorem 3.1. For any r ∈ N there exists a constant C(r) such that for every 0 < ε < 1,
a 1 − ε snowflake version of a Kr-excluded metric embeds into `2 with distortion at most
C(r)/

√
ε.

Our argument is based on the following lemma, the proof of which is contained in [23].

Lemma 3.2. For every r ∈ N there is a constant δ = δ(r) such that for every ρ > 0 and
every Kr-excluded metric (X, d) there exists a finitely supported probability distribution µ on
partitions of X with the following properties:

1. For every P ∈ supp(µ), and for every C ∈ P , diam(C) ≤ ρ.

2. For every x ∈ X, Eµ
∑

C∈P d(x,X \ C) ≥ δρ.

Observe that the sum under the expectation in (2) above actually consists of only one
summand.

Proof of Theorem 3.1. Let X be a Kr-excluded metric. For each n ∈ Z, we define a map φn

as follows. Let µn be the probability distribution on partitions of X from Lemma 3.2 with
ρ = 2n/(1−ε). Fix a partition P ∈ supp(µn). For any σ ∈ {−1, +1}|P |, consider σ to be indexed
by C ∈ P so that σC has the obvious meaning. Following Rao [23], define

φP (x) =
⊕

σ∈{−1,+1}|P |

√
1

2|P |
∑

C∈P

σC · d(x, X \ C),

and write φn =
⊕

P∈supp(µn)

√
µn(P ) φP (here the symbol ⊕ refers to the concatenation oper-

ator).
Now, following Assouad [1], let {ei}i∈Z be an orthonormal basis of `2, and set

Φ(x) =
∑

n∈Z
2−nε/(1−ε)φn(x)⊗ en

Claim 3.3. For every n ∈ Z, and x, y ∈ X, we have ||φn(x)−φn(y)||2 ≤ 2·min
{
d(x, y), 2n/(1−ε)

}
.

Additionally, if d(x, y) > 2n/(1−ε), then ||φn(x)− φn(y)||2 ≥ δ 2n/(1−ε).
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Proof. For any partition P ∈ supp(µn), let Cx, Cy be the clusters of P containing x and y,
respectively. Note that since for every C ∈ P , diam(C) ≤ 2n/(1−ε), when d(x, y) > 2n/(1−ε),
we have Cx 6= Cy. In this case,

||φP (x)− φP (y)||22 = Eσ∈{−1,+1}|P | |σCxd(x,X \ Cx)− σCyd(y, X \ Cy)|2

≥ d(x,X \ Cx)2 + d(y, X \ Cy)2

2
.

It follows that

||φn(x)− φn(y)||22 = Eµn ||φP (x)− φP (y)||22
≥ Eµnd(x,X \ Cx)2 + Eµnd(y, X \ Cy)2

2
≥

(
δ 2n/(1−ε)

)2
.

On the other hand, for every x, y ∈ X, since d(x,X \ Cx), d(y,X \ Cy) ≤ 2n/(1−ε),
we have that ||φP (x) − φP (y)||2 ≤ 2 · min

{
d(x, y), 2n/(1−ε)

}
, hence ||φn(x) − φn(y)||2 ≤

2 ·min
{
d(x, y), 2n/(1−ε)

}
.

To finish the analysis, let us fix x, y ∈ X and let m be such that d(x, y)1−ε ∈ (
2m, 2m+1

]
.

In this case,

||Φ(x)− Φ(y)||22 =
∑

n∈Z
2−2nε/(1−ε) ‖φn(x)− φn(y)‖2

2

≤ 4
∑
n<m

22n + 4d(x, y)2
∑

n≥m

2−2nε/(1−ε)

= 22m+1 + 4d(x, y)2
2−2mε/(1−ε)

1− 2−2ε/(1−ε)

= O (1/ε) · d(x, y)2(1−ε)

On the other hand,

‖Φ(x)− Φ(y)||2 ≥ 2−mε/(1−ε)‖φm(x)− φm(y)‖2 ≥ δ2m ≥ δ

2
d(x, y)1−ε.

The proof is complete.

Remark 3.4. The O (1/
√

ε) upper bound in Theorem 3.1 is tight. In fact, for i ≈ 1/ε,
the 1 − ε snowflake version of the Laakso graph Gi (presented in Section 2) has Euclidean
distortion Ω (1/

√
ε). To see this, let f : Gi → `2 be any non-contracting embedding of

(Gi, d
1−ε
Gi

) into `2. For j ≤ i denote by Kj the Lipschitz constant of the restriction of f to
(Gj , d

1−ε
Gi

) (as before, we think of Gj as a subset of Gi). Clearly K0 = 1, and the same

reasoning as in the proof of Theorem 1.1 shows that for j ≥ 1, K2
j ≥

K2
j−1

4ε + 1
4 . This implies

that K2
i ≥ 1

4 + 1
4ε + . . . + 1

4iε = Ω(1/ε), as required.
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4 Average distortion Euclidean embedding of subsets of L1

The heart of our argument is the following lemma which is implicit in [16], and which seems
to be of independent interest.

Lemma 4.1. For every 0 < p ≤ 2 there is a probability space (Ω, P ) such that for every ω ∈ Ω
there is a linear operator Tω : Lp → L2 such that for every x ∈ Lp \ {0} the random variable
X = ‖Tω(x)‖2

‖x‖p
satisfies for every a ∈ R, Ee−aX2

= e−ap/2
. In particular, for p = 1 the density

of X is e−1/(4x2)

x2
√

π
.

Proof. Consider the following three sequences of random variables, {Yj}j≥1, {θj}j≥1, {gj}j≥1,
such that each variable is independent of the others. For each j ≥ 1, Yj is uniformly distributed
on [0, 1], gj is a standard Gaussian and θj is an exponential random variable, i.e. for λ ≥ 0,
P (θj > λ) = e−λ. Set Γj = θ1 + · · · + θj . By Proposition 1.5. in [16], there is a constant
C = C(p) such that if we define for f ∈ Lp

V (f) = C
∑

j≥1

gj

Γ1/p
j

f(Yj),

then EeiV (f) = e−‖f‖
p
p .

Assume that the random variables {Yj}j≥1 and {Γj}j≥1 are defined on a probability space
(Ω, P ) and that {gj}j≥1 are defined on a probability space (Ω′, P ′), in which case we use the
notation V (f) = V (f ;ω, ω′). Define for ω ∈ Ω a linear operator Tω : Lp → L2(Ω′, P ′) by
Tω(f) = V (f ; ω, ·). Since for every fixed ω ∈ Ω the random variable V (f ;ω, ·) is Gaussian
with variance ‖Tω(f)‖2

2, for every a ∈ R, EP ′e
iaV (s;ω,·) = e−a2‖Tω(f)‖22 . Taking expectation with

respect to P we find that, EP e−a2‖Tω(f)‖22 = e−ap‖f‖p
p . This implies the required identity. The

explicit distribution in the case p = 1 follows from the fact that the inverse Laplace transform
of x 7→ e−

√
x is y 7→ e−1/(4y)

2
√

πy3
(see for example [24]).

Theorem 4.2. For every f1, . . . , fn ∈ L1 there is a linear operator T : L1 → L2 such that:

1
(8 log n)1/3

≤ min
1≤i<j≤n

(‖T (fi)− T (fj)‖2

‖fi − fj‖1

)2/3

≤ 1(
n
2

)
∑

1≤i<j≤n

(‖T (fi)− T (fj)‖2

‖fi − fj‖1

)2/3

≤ 10.

Proof. Using the notation of lemma 4.1 (in the case p = 1) we find that for every a > 0,
Ee−aX2

= e−
√

a. Hence, for every a, ε > 0 and every 1 < i < j ≤ n,

P

(‖Tω(fi)− Tω(fj)‖2

‖fi − fj‖1
≤ ε

)
= P

(
e−aX2 ≥ e−aε2

)
≤ eaε2−√a.

Choosing a = 1
4ε4 the above upper bound becomes e−1/(4ε2). Consider the set

A =
⋂

1≤i<j≤n

{‖Tω(fi)− Tω(fj)‖2

‖fi − fj‖1
≥ 1√

8 log n

}
⊆ Ω.

By the union bound, P (A) > 1
2 , so that

1
P (A)

E


 1(

n
2

)
∑

1≤i<j≤n

(‖Tω(fi)− Tω(fj)‖2

‖fi − fj‖1

)2/3

 ≤ 2EX2/3 =

2√
π

∫ ∞

0
x2/3 · e−1/(4x2)

x2
dx < 10.

It follows that there exists ω ∈ A for which the operator T = Tω has the desired properties.

8



Remark 4.3. There is nothing special about the choice of the the power 2/3 in Corollary 4.2.
When p = 1, EX = ∞ but EX1−ε < ∞ for every 0 < ε < 1, so we may write the above average
with the power 1−ε replacing the exponent 2/3. Obvious generalizations of Corollary 4.2 hold
true for every 1 < p < 2, in which case the average distortion is of order C(p)(log n)1/p−1/2

(and the power can be taken to be 1).

5 The impossibility of linear dimension reduction in Lp, p 6= 2

The above method cannot yield a O
(√

log n
)

bound on the Euclidean distortion of n-point
subsets of L1. In fact, there are arbitrarily large n-point subsets of L1 on which any linear

embedding into L2 incurs distortion at least
√

n−1
2 . This follows from the following simple

lemma:

Lemma 5.1. For every 1 ≤ p ≤ ∞ there are arbitrarily large n-point subsets of Lp on which
any linear embedding into L2 incurs distortion at least

(
n−1

2

)|1/p−1/2|.

Proof. Let w1, . . . , w2k be the rows of the 2k×2k Walsh matrix. Write wi =
∑2k

j=1 wijej where

e1, . . . , e2k are the standard unit vectors in R2k
. Consider the set A = {0}∪{wi}2k

i=1∪{ei}2k

i=1 ⊂
`p. Let T : `p → L2 be any linear operator which is non contracting and L-Lipschitz on A.
Assume first of all that 1 ≤ p < 2. Then:

2k(1+2/p) =
2k∑

i=1

‖wi‖2
p ≤

2k∑

i=1

‖Twi‖2
2 =

2k∑

i=1

∥∥∥∥∥∥

2k∑

j=1

wijT (ej)

∥∥∥∥∥∥

2

2

=
2k∑

i=1

2k∑

j=1

〈wi, wj〉 〈T (ei), T (ej)〉 = 2k
2k∑

j=1

‖T (ej)‖2
2 ≤ 4k · L2,

which implies that L ≥ 2k(1/p−1/2) =
( |A|−1

2

)1/p−1/2
. When p > 2 apply the same reasoning,

with the inequalities reversed.

We remark that the above point set was also used by Charikar and Sahai [4] to give a lower
bound on linear dimension reduction in L1. Their proof used a linear programming argument,
which doesn’t seem to be generalizable to the the case of Lp, p > 1. Lemma 5.1 formally
implies their result (with a significantly simpler proof), and in fact proves the impossibility
of linear dimension reduction in any Lp, p 6= 2. Indeed, if there were a linear operator which
embeds A into `d

p with distortion D then it would also be a D · d|1/p−1/2| embedding into

`d
2. It follows that D ≥

( |A|−1
2d

)|1/p−1/2|
. Similarly, since by John’s theorem (see e.g. [20])

any d-dimensional normed space is
√

d equivalent to Hilbert space, we deduce that there are
arbitrarily large n-point subsets of L1, any embedding of which into any d-dimensional normed

space incurs distortion at least
√

n−1
2d .
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