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Abstract—We study bi-Hölder homeomorphisms between
the unit spheres of finite-dimensional normed spaces and use
them to obtain better data structures for high-dimensional
Approximate Near Neighbor search (ANN) in general normed
spaces.

Our main structural result is a finite-dimensional quan-
titative version of the following theorem of Daher (1993)
and Kalton (unpublished). Every d-dimensional normed space
X admits a small perturbation Y such that there is a bi-
Hölder homeomorphism with good parameters between the
unit spheres of Y and Z, where Z is a space that is close to �d2 .
Furthermore, the bulk of this article is devoted to obtaining
an algorithm to compute the above homeomorphism in time
polynomial in d. Along the way, we show how to compute
efficiently the norm of a given vector in a space obtained by
the complex interpolation between two normed spaces.

We demonstrate that, despite being much weaker than bi-
Lipschitz embeddings, such homeomorphisms can be efficiently
utilized for the ANN problem. Specifically, we give two new
data structures for ANN over a general d-dimensional normed
space, which for the first time achieve approximation do(1),
thus improving upon the previous general bound O(

√
d) that

is directly implied by John’s theorem.

Keywords-near neighbor search; complex interpolation;
John’s theorem

I. INTRODUCTION

Fix d ∈ �. Below, the unit ball and unit sphere of a

(complex1) normed space X = (Cd, ‖ · ‖X) are denoted

BX = {x ∈ C
d : ‖x‖X � 1} and SX = {x ∈ C

d :
‖x‖X = 1}, respectively. The main geometric contribution

of the present work is the following statement, as well as

a (quite intricate) derivation of its algorithmic counterpart.

Beyond its intrinsic interest, we will demonstrate the utility

of this result by showing how it leads to major progress on

the Approximate Nearest Neighbor Search problem (ANN).

1It is convenient and most natural to carry out the ensuing geometric and
analytic considerations for normed spaces over the complex scalars C, but
all of their applications that we obtain here hold also for normed spaces
over the real scalars R through a standard complexification procedure which
is recalled in the full version.

Theorem 1 (Existence of a Hölder homeomorphism between

spheres of perturbed spaces). Let X = (Cd, ‖ · ‖X) be a
normed space and fix α,β,γ ∈ (0, 1

2 ]. Suppose that the
inradius and outradius of BX are r > 0 and R > 0,
respectively, i.e., rB�d2

⊆ BX ⊆ RB�d2
. Then there are

normed spaces Y = (Cd, ‖ · ‖Y ) and Z = (Cd, ‖ · ‖Z),
and a bijection ϕ : SY → SZ , with the following properties.

1) r2α+β(1−2α)BY ⊆ BX ⊆ R2α+β(1−2α)BY .
2) rγ(1−2α)B�d2

⊆ BZ ⊆ Rγ(1−2α)B�d2
.

3) ‖ϕ(y1)−ϕ(y2)‖Z � 1√
βγ
‖y1− y2‖αY for all y1, y2 ∈

SY .
4) ‖ϕ−1(z1) − ϕ−1(z2)‖Y � 1√

βγ
‖z1 − z2‖αZ for all

z1, z2 ∈ SZ .

In the applications of Theorem 1 obtained in this paper,

the parameters α,β,γ are chosen to be small, in which

case the first two assertions of Theorem 1 mean that Y
and Z are relatively small perturbations of X and �d2,

respectively. The last two assertions of Theorem 1 state

that the mapping ϕ is a homeomorphism between the unit

spheres of these perturbed spaces with quite good continuity

properties. There is tension between the smallness of α,β,γ
(thus, the extent to which the initial geometries of X and �d2
were deformed) and the quality of the continuity of ϕ and

ϕ−1; the parameters will eventually be set to appropriately

balance these competing features.

Theorem 1 is a finite-dimensional quantitative refinement

in the spirit of [1] of the work of Daher [2] which is

itself an extension of a landmark contribution of Odell

and Schlumprecht [3] (in unpublished work, Kalton inde-

pendently obtained the result of [2]; see [4, page 216] or

the MathSciNet review of [2]). Our proof of Theorem 1 is

an adaptation of the proof of the corresponding qualitative

infinite-dimensional result that appears in [4, Chapter 9],

i.e., our contribution towards Theorem 1 is mainly the idea

that such a formulation should hold true via an application

of known insights (and that it is useful, as we shall soon

see). However, this is only the conceptual starting point

of the present investigation, because Theorem 1 is merely
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an existential statement which is insufficient for the ensu-

ing algorithmic application. Making Theorem 1 algorithmic

raises a number of challenges whose resolution is interesting

in its own right; this constitutes the bulk of the present

work and an overview of what it entails appears later in

Subsection I-B.

The mapping ϕ of Theorem 1 has several drawbacks

in comparison to more traditional bi-Lipschitz embeddings

that are used ubiquitously for algorithmic purposes. These

drawbacks include the fact that one first deforms the initial

space X of interest to obtain a new space Y , that ϕ is

defined only on the sphere of Y rather than on all of Y ,

and that ϕ : SY → SZ and ϕ−1 : SZ → SY are Hölder

continuous rather than Lipschitz. In addition, ϕ takes values

in a normed space Z which is a perturbation of �d2, so

the image of the embedding does not have the “vanilla”

Euclidean structure. We will later see how to overcome

all of these drawbacks, and demonstrate that to a certain

extent the “curse of dimensionality” is not present for the

Approximate Nearest Neighbor Search problem in arbitrary

normed spaces.

A. Approximate near neighbors

Given c > 1 and r > 0, the c-Approximate Near
Neighbor Search (c-ANN) problem is defined as follows.

Given an n-point dataset P ⊆ X lying in a metric space

(X, dX), we want to preprocess P to answer approximate
near neighbor queries quickly. Namely, given a query point

q ∈ X such that there is a data point p ∈ P with

dX(q, p) � r, the algorithm should return a data point p̃ ∈ X
with dX(q, p̃) � cr. We refer to c as the approximation
and r as the distance scale; both parameters are known

during the preprocessing. The main quantities to optimize

are: the time it takes to build the data structure for a

given set of points (preprocessing time); the space the data

structure occupies, and the time it takes to answer a query

(query time). In addition to being an indispensable tool

for data analysis, ANN data structures have spawned two

decades of influential theoretical developments (see, e.g., the

surveys [5], [6] and the thesis [7] for an overview).

The best-studied metrics in the context of ANN are the

�d1 (Hamming/Manhattan) and the �d2 (Euclidean) distances

on R
d. Both �d1 and �d2 are very common in applications and

admit efficient algorithms based on randomized space parti-
tions; in particular, Locality-Sensitive Hashing (LSH) [8],

[9] and its data-dependent counterparts [10], [11], [12].

Hashing-based algorithms for ANN over �d1 and �d2 have

now been the subject of a long line of work, leading to a

comprehensive understanding of the respective time–space

trade-offs.

Beyond �d1 and �d2, our understanding of the ANN problem

is much more limited. For example, if a metric of interest is

given by a norm on R
d or Cd, then the best known general

approximation bound for the ANN problem is c �
√
d if we

require space to be polynomial in n and d and query time

to be sublinear in n and polynomial in d. This follows from

John’s theorem [13], which states that any d-dimensional

norm can be approximated (after a linear transformation)

by �d2 within a factor of
√
d, combined with any ANN data

structure for �d2 which has constant approximation.

The recent work of the authors [14] made the first progress

on ANN for arbitrary normed spaces beyond the use of

John’s theorem. The approximation has been improved from√
d to log d, however the data structure is only imple-

mentable in the cell-probe model of computation [15], [16].

Recall that in the cell-probe model, data structures are only

charged for the number of cells used (space), and the number

of cells probed during a query procedure; however, the time
of the query procedure may be unbounded. We now state

the main result of [14] formally:

Theorem 2 ([14]). Let 0 < ε < 1 and X = (Cd, ‖ · ‖X)
be a d-dimensional normed space. There exists a random-
ized data structure for c-ANN over X with the following
guarantees:
• The approximation is c � log d

ε2 ;
• The query procedure probes nε·dO(1) words in memory,

where each word has O(log n) bits2;
• The space used by the data structure is n1+ε · dO(1).

The work [14] was able to make the data structure of

Theorem 2 time-efficient for two special cases, �p and

Schatten-p spaces3, however the pressing question of getting

a time-efficient ANN data structure for a general normed

space with approximation o(
√
d) was left open. In this paper,

we answer this question by showing two new ANN data

structures, which rely heavily on (an algorithmic counterpart

of) Theorem 1. The two data structures (to be presented

below as Theorem 3 and Theorem 4) use the Hölder home-

omorphism in two different ways: Theorem 3 proceeds by

the “embedding” approach, and Theorem 4 proceeds by the

“spectral” approach of [14].

Theorem 3. Suppose that X = (Cd, ‖ · ‖X) is a d-
dimensional normed space. Then there exists a randomized
data structure for c-ANN over X with the following guar-
antees:
• The approximation is

c � exp

(
O
(
(log d)

2
3 (log log d)

1
3

))
;

• The query procedure takes dO(1) · (log n)O(1) time;
• The space used by the data structure is nO(1) · dO(1);
• The preprocessing time is nO(1) · dO(1).
The norm is specified by an oracle, which, given a vector

x ∈ C
d, computes ‖x‖X .

2We assume that all the coordinates of the dataset and query points as
well as r can be stored in O(logn) bits.

3For the case of Schatten-p spaces, the space and time of the data
structure of [14] had dependence dO(p), which is undesirable for p � 1.
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Theorem 3 is the first ANN data structure with approxi-

mation do(1) that works for an arbitrary norm, but its virtue

is not only its great generality: there are concrete norms

of interest, such as the operator norm on d-by-d matrices,

or more generally Schatten-p spaces when p � 1, for

which it yields the first data structure of this type. The

proof of Theorem 3 is achieved by substituting our (yet

to be stated) algorithmic version of Theorem 1 into an

appropriate adaptation of the ANN framework of [17], [18]

(see Section I-C).

If one is allowed to drop the requirement that the pre-

processing time is polynomial, then we have the following

result that yields both improved approximation, and space

that is near-linear in n. This is achieved by substituting

our algorithmic version of Theorem 1 into the framework

of [14], which relies on nonlinear spectral gaps. We will

sketch later in the introduction (Section I-D) why this

requires us to sacrifice the polynomial preprocessing time.

Theorem 4. Let 0 < ε < 1 and X = (Cd, ‖ · ‖X) be a
d-dimensional normed space. Then there exists a random-
ized data structure for c-ANN over X with the following
guarantees:

• The approximation is

c � exp

(
O
(√

log d ·max
{√

log log d, log(1/ε)√
log log d

}))
;

• The query procedure takes nε · dO(1) time;
• The space used by the data structure is n1+ε · dO(1);
• The preprocessing time is nO(1) · dO(d).

The norm is specified by an oracle, which, given a vector
x ∈ C

d, computes ‖x‖X .

The new bounds on the approximation c cannot pos-

sibly be obtained by designing a (linear) low-distortion

bi-Lipschitz embedding of X into �1, �2, or any fixed

(universal) dO(1)-dimensional normed space, even if the

embedding is randomized; see [19] for a formalization and

proof of this statement.

B. Algorithmic version of Theorem 1

For algorithmic applications, we would like to compute

the mapping ϕ from Theorem 1 efficiently at any given

input point in C
d. The main ingredient in the construction

of F is the notion of complex interpolation between normed

spaces, which was introduced in [20]. For two d-dimensional

normed spaces U and V , complex interpolation provides

a one-parameter family of d-dimensional normed spaces

[U, V ]θ indexed by θ ∈ [0, 1], such that [U, V ]0 = U ,

[U, V ]1 = V and [U, V ]θ depends, in a certain sense,

smoothly on θ. In particular, we need to compute the norm

of a vector in [U, V ]θ given suitable oracles for the norm

computation in U and V . This is a non-trivial task since

the norm in [U, V ]θ is defined as the minimum of a certain

functional on an infinite-dimensional space of holomorphic

functions. We show how to properly “discretize” this opti-

mization problem using harmonic and complex analysis, and

ultimately solve it using convex programming (more specif-

ically, the “robust” ellipsoid method [21]). We expect that

the resulting algorithmic version of complex interpolation

will have further applications.

More specifically, for x ∈ C
d the interpolated norm

‖x‖[U,V ]θ is defined as follows. First, we consider the space

F of functions F : S → C
d, where S = {z ∈ C | 0 �

Re z � 1} is a strip in the complex plane, such that:

• F is bounded and continuous;

• F is holomorphic on the interior of S.

The norm ‖F‖F in the space F is defined as follows:

‖F‖F = max

{
sup

Re z=0
‖F (z)‖U , sup

Re z=1
‖F (z)‖V

}
.

Finally, for x ∈ C
d, we define:

‖x‖[U,V ]θ = inf
F∈F:

F (θ)=x

‖F‖F. (1)

A priori, it is not clear how to solve (1), since the space F

is infinite-dimensional. However, we are able to show that

one can search for an approximately optimal F ∈ F of the

following form:

F (z) = eεz
2 ·

∑
|k|�M

vke
kz
L ,

where ε > 0, M and L are fixed parameters, and the vectors

vk ∈ C
d are the variables. This turns (1) into a finite-

dimensional convex program, which we might hope to solve.

However, in order for the optimization procedure to be effi-

cient, we need upper bounds on M and the magnitudes of vk.

These can be established by taking an approximately optimal

(in terms of (1)) function F , smoothing it by convolving

with an appropriate Gaussian, and finally considering its

Fourier expansion, whose convergence we can control using

the classical Fejér’s theorem [22]. To bound the magnitudes

of vk, we need a statement similar to the Paley–Wiener

theorem [22]. Finally, to address the issue that the norm in F

is defined as a supremum over an infinite set (the boundary

of the strip S), we show how to discretize and truncate the

boundary so that the maximum over the discretization is not

too far from the true supremum. This is again possible due

to the bounds on the magnitudes of ε, vk and M we are

able to show.

C. The embedding approach: proof of Theorem 3

The first application of Theorem 1 to ANN for general

normed spaces (Theorem 3) follows the “embedding” ap-

proach. Suppose we want to design an efficient data structure

for ANN over a metric space (W0, dW0), and we have an

efficient data structure for ANN over another metric space

(W1, dW1
). Then, if we have an embedding W0 →W1 at our

disposal, a data structure for (W0, dW0
) could be obtained
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by applying the embedding and employing the known data

structure for (W1, dW1
). The approximation guarantee one

obtains depends on how well the embedding preserves the

geometry of W0.

The key to Theorem 3 is to use Theorem 1 as an

embedding of Y into Z. Recall that Y = (Cd, ‖ · ‖Y )
and Z = (Cd, ‖ · ‖Z) are small perturbations of the spaces

X = (Cd, ‖ · ‖X) and �d2, respectively. At a high level, an

ANN data structure for �d2 gives a data structure for Z, a

data structure for Z gives a data structure for Y via the

embedding, and a data structure for Y gives a data structure

for X . The initial step in this chain (giving efficient ANN

data structures for �d2) is accomplished by any of the efficient

data structures known for �d2, specifically, we use the data

structure of [8], [23].

One caveat to the plan set forth above is that Theorem 1

gives an embedding only for the unit sphere of Y . It can be

extended to the whole space, but the resulting map distorts

large distances prohibitively. This challenge already comes

up in [17], [18] in the context of designing ANN data

structures for �p spaces, where instead of Theorem 1, the

Mazur map [24] was used. We resolve the issue of large

distances in the same way as [17], [18]: in particular, [18]

gives a clean reduction from the general ANN problem to

a special case, when all the points lie in a small ball. Our

final approximation guarantee in Theorem 3 is the result of

balancing the parameters α,β and γ in Theorem 1.

D. The spectral approach: proof of Theorem 4

We now sketch the proof of Theorem 4. For this we use

the framework based on nonlinear spectral gaps developed

in [14]. In a sentence, the outline of the proof is in the

spirit of what has been done in [14] for the Schatten-p
norm, while using Theorem 1 instead of the estimates on

the noncommutative Mazur map from [25].

The proof of Theorem 4 consists of a few steps. The

data structure for a normed space X relies on a randomized

space partition of X , which by duality is equivalent to the

existence of sparse cuts in graphs embedded into X . The

latter follows from a nonlinear Rayleigh quotient inequality,

which refines the nonlinear spectral gap inequality used to

prove Theorem 2. Finally, we show how to obtain the desired

nonlinear Rayleigh quotient inequality using the map from

Theorem 1.

Let us now explain why in Theorem 4 we do not obtain

efficient preprocessing. The main obstacle that in order to

construct a randomized space partition of X , we need to

find sparse cuts in graphs embedded in X that have size

exponential in the dimension d. Another issue is that the

argument for the existence of sparse cuts uses a fixed-point

argument similar to the Brouwer’s fixed point theorem, and

it is unclear how to make it algorithmically efficient.

Now let us describe the proof of Theorem 4 in greater

detail.

1) Sparse cuts in embedded graphs: We first recall the

outline of the proof of Theorem 2. The starting point

is a space partitioning statement, which readily follows

from [1]. Recall that for a k-regular graph G = (V,E) the

conductance of a cut (S, S) is defined as:

E(S, S)

k ·min{|S|, |S|} .

Lemma 1 ([1]). Let 0 < ε < 1, and suppose that
X = (Cd, ‖ · ‖X) is a d-dimensional normed space. Let
G = (V,E) be a regular undirected graph with n vertices.
Suppose that f : V → X is an arbitrary map such that for
every edge {u, v} ∈ E one has ‖f(u)− f(v)‖X � 1. Then,
• Either there exists a ball4 of radius R � log d

ε2 , which
contains Ω(n) images of the vertices V under f ;

• Or there exists a cut in G with conductance at most ε.

Equipped with Lemma 1, the proof of Theorem 2 proceeds

in two steps:

• First, we use a version of the minimax theorem to con-

vert Lemma 1 to the following randomized partitioning

procedure, which can be seen as a version of data-

dependent hashing (in spirit of [10], [11], [12]).

Lemma 2 ([14]). Let 0 < ε < 1. Suppose that X =
(Cd, ‖ ·‖X) is a d-dimensional normed space. Let P ⊆
X be a dataset of n points. Then:

– Either there exists a ball of radius R � log d
ε2 , which

contains Ω(n) points from P ;
– Or there exists a distribution D over “reasonable”

sets (see below for a clarification of what “reason-
able” means here) A ⊆ X such that:

∗ PrA∼D

[
Ω(n) � |A∩P | � (1−Ω(1)) ·n

]
= 1;

∗ For every x1, x2 ∈ X with 0 < ‖x1−x2‖X � 1,
one has:

PrA∼D

[∣∣A ∩ {x1, x2}
∣∣ = 1

]
< ε.

• Then, we apply Lemma 2 recursively to build the

desired O
(

log d
ε2

)
-ANN data structure, which concludes

the proof of Theorem 2. This step is by now standard

and is similar to what was done in [26], [11], [12].

Let us now explain why Theorem 2 requires the cell-probe

model. In the resulting data structure, a query point is tested

against a sequence of cuts guaranteed by Lemma 1. Thus,

it is crucial to be able to check efficiently, which side of

the cut a given vertex of the graph G belongs to. However,

the main issue is that Lemma 1 gives us no control on the

promised sparse cut in G. In particular, a cut does not have

to be induced by a geometrically nice subset of the ambient

space C
d. This is a serious problem, since in the proof of

Lemma 2 we invoke Lemma 1 for graphs of size exponential
in d, so we cannot afford to store the resulting sparse cuts

4In the metric induced by the norm ‖ · ‖X .
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explicitly. Nevertheless, there is a way to store cuts from

the support of D in space poly(d) (this is exactly what we

mean by “reasonable” in the statement of Lemma 2), but

the argument for this is quite delicate: we need to perform

the minimax argument in a careful way using the (nested)

Multiplicative Weights Update algorithm [27]. This yields

Theorem 2, but the query procedure is grossly inefficient in

terms of time, since in order to test a point against a cut,

one has to spend time exponential in d to re-compute the

cut from its succinct description.

Thus, in order to prove Theorem 4, we need a version of

Lemma 1 which gives a sparse cut that we are able to not

only store efficiently, but also to test against in time poly(d).
We accomplish this by showing the following lemma.

Lemma 3. Suppose that X = (Cd, ‖·‖X) is a d-dimensional
normed space. There exists a map Φ: Cd → C

d, which one
can compute efficiently for a given input point, such that the
following holds. Suppose that 0 < ε < 1 and let G = (V,E)
be a regular undirected graph with n vertices. Suppose that
f : V → X is an arbitrary map such that for every edge
{u, v} ∈ E one has ‖f(u)− f(v)‖X � 1. Then,

• either there exists a ball of radius R =

exp
(
Õε

(√
log d

))
, which contains Ω(n) images

of the vertices V under f ;
• Or there exists a vector w = w(G, f) ∈ C

d, an index
i = i(G, f) ∈ [d], and a threshold τ = τ(G, f) ∈ R

such that at least one of the cuts {v ∈ V | ReΦ(f(v)−
w)i � τ} or {v ∈ V | ImΦ(f(v)−w)i � τ} in G has
conductance at most ε.

Now we can store a cut by simply storing w, i, τ and

whether we test real or imaginary part, and, moreover, one

can test, on which side of the cut a given point lies, since

the map Φ is efficiently computable (and depends only on

the norm). To prove Lemma 3, we use Theorem 1 crucially.

Namely, the map Φ in Lemma 3 is a radial extension of

the map ϕ from Theorem 1. More details of the proof of

Lemma 3 are given in the following section.

Let us remark that for R �
√
d/ε, the analog of Lemma 3

holds with cuts induced by the sets {v ∈ V | Re(Tf(v))i �
τ} and {v ∈ V | Im(Tf(v))i � τ}, where T : Cd → C

d is

a fixed linear map. This is an easy corollary of Cheeger’s

inequality and John’s theorem. The cuts guaranteed by

Lemma 3 are more complicated (yet we can work with them

efficiently), but this complication allows us to get a much

better bound of R = exp
(
Õε

(√
log d

))
.

2) Nonlinear Rayleigh quotient inequalities and
Lemma 3: Let A = (aij) be a non-negative

symmetric n × n matrix with
∑n

i,j=1 aij = 1. Denote

ρA(i) =
∑n

j=1 aij . For a metric space (X, dX), q > 0
and x = (x1, x2, . . . , xn) ∈ Xn, where not all xi’s

are the same, we define the nonlinear Rayleigh quotient

R(x, A, dqX) as follows:

R(x, A, dqX) =

∑n
i,j=1 aij · dX(xi, xj)

q∑n
i,j=1 ρ(i)ρ(j) · dX(xi, xj)q

.

Let G be a regular undirected graph with n vertices, and

denote by A its normalized adjacency matrix. On the one

hand, Cheeger’s inequality [28] states that if for some x ∈
(Cd)n, one has

R(x, A, ‖ · ‖2�d2 ) �
ε2

10
, (2)

then there exists a cut in G with conductance at most ε.

Moreover, up to the exact dependence on ε, the condition (2)

for some x is necessary to have a sparse cut. One the other

hand, suppose that X = (Cd, ‖ · ‖) is a normed space, and

f : V → X is a map such that for every edge (u, v) ∈ E
one has ‖f(u) − f(v)‖X � 1. If there is no ball of radius

D, which contains Ω(n) images of the vertices V under f ,

then the definition of nonlinear Rayleigh quotient directly

implies that:

R(x, A, ‖ · ‖2X) � 1

D2
,

where xv = f(v). Thus, in order to prove Lemma 1 or

Lemma 3, we need statements that relate nonlinear Rayleigh

quotients with respect to the Euclidean geometry and the

geometry given by X , a normed space of interest.

In light of the above discussion, Lemma 1 readily follows

from the following inequality proved in [1]:

Theorem 5 ([1], reformulation).

inf
y∈(Cd)n

R(y, A, ‖ · ‖2�d2 ) � (log d) · inf
x∈(Cd)n

R(x, A, ‖ · ‖2X)
1
2 .

(3)

The standard proof of Cheeger’s inequality shows that if

R(y, A, ‖·‖2
�d2
) is small, then there exists a sparse cut induced

by a coordinate cut of y. More formally, there exist i ∈ [d]
and τ ∈ C such that one of the cuts {v ∈ V | Re(yv)i � τ}
or {v ∈ V | Im(yv)i � τ} is sparse. However, Theorem 5

gives no control over how y is related to x. This is the reason

why in Lemma 1 we cannot guarantee that the desired sparse

cut is induced by a geometrically nice subset of Cd.

In this work, we prove a refinement of Theorem 5, which

implies Lemma 3 similarly to the above argument.

Theorem 6. For every x = (x1, x2, . . . , xn) ∈ (Cd)n such
that not all xi’s are equal, there exists w = w(x, A) ∈ C

d

such that:

R(Φw(x), A, ‖ · ‖2�d2 ) � log2 d · R(x, A, ‖ · ‖2X)
Ω
(√

log log d
log d

)
,

where:
Φw(x1, x2, . . . , xn) =

= (Φ(x1 − w),Φ(x2 − w), . . . ,Φ(xn − w)),

and Φ is a radial extension of the map ϕ from Theorem 1.
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The proof of Theorem 6 is a combination of two ingredi-

ents. The first is an argument used by Matoušek in [29]

to prove a nonlinear Rayleigh quotient inequality for �p
norms. We show that this argument is in fact much more

versatile, and in particular, coupled with Theorem 1, it

implies Theorem 6. The vector w = w(x, A) ∈ C
d in

Theorem 6 is such that:∑
i

ρ(i)Φ(xi − w) = 0. (4)

And here comes the second ingredient. In the argument

from [29], the counterpart of (4) easily follows from the

intermediate value theorem, since ‖ · ‖p�p is additive over

the coordinates. However, finding w such that (4) holds is

more delicate. For this we use tools from algebraic topology

(related to the Brouwer’s fixed point theorem).

E. Related work

Most efficient ANN data structures in high-dimensional

spaces beyond �1 and �2 have proceeded via the embedding

approach. The typical target spaces are �1 and �2, since

these admit very efficient ANN algorithms [8], [23], [9],

[10], [11], [12]. Another common target space is �d∞ which

can be handled with O(log log d)-approximation using the

algorithm in [26]. A growing body of work has added to

the list of “tractable” spaces by designing low-distortion

embeddings. These include the �p-direct sums [30], [31],

[32], [33], the Ulam metric [32], the Earth-Mover’s distance

(EMD) [34], [35], the edit distance [36], the Frechét distance

[30], and symmetric normed spaces [19].

Another class of metric spaces studied assume low intrin-

sic dimension, and efficient ANN algorithms in this setting

are known for any metric space [37], [38], [39], [40]. The di-

mensionality of these spaces is assumed to be d = o(log n),
so efficient algorithms may depend exponentially on d. In

this paper, we deal with the high-dimensional regime (when

ω(log n) � d � no(1)), hence the dependence on d must be

polynomial.

F. Organization of the paper

We present the necessary background to our results in

Section II. We formulate the Hölder homeomorphism from

Theorem 1 in Section III. We show the algorithmic version

of Theorem 1 and its applications to the ANN problem in

the full version.
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II. PRELIMINARIES

Given two quantities a, b > 0, the notation a � b and

b � a means a � Cb for some universal constant C > 0. In

this work we use some tools from complex analysis. Denote

S = {z ∈ C | 0 < Re z < 1} ⊆ C the unit open strip on

the complex plane, let ∂S = {z ∈ C | Re z ∈ {0, 1}} be its

boundary, and, finally, let S = S∪∂S be the corresponding

closed strip. Given a normed space X defined over a (real

or complex) vector space V , the subset BX ⊆ V is the unit

ball of X , i.e., BX = {x ∈ V : ‖x‖X � 1}. For a measure

space (Ω,μ) and a Banach space X we denote Lp(Ω,μ, X)
the Banach space of measurable functions f : Ω→ X such

that ∫
Ω

‖f‖pX dμ < +∞;

we define the norm to be:

‖f‖pLp(Ω,μ,X) =

∫
Ω

‖f‖pX dμ.

Function that agree almost everywhere are identified. Some-

times, we omit Ω in the notation if it is clear from the context

(or unimportant).

A. The Poisson kernel for the strip S

For w ∈ S and z ∈ ∂S, the Poisson kernel P (w, z) for

S is defined as follows:

P (w, z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2 · sinπu

coshπ(τ−v)−cosπu ,

for w = u+ iv and z = iτ,
1
2 · sinπu

coshπ(τ−v)+cosπu ,

for w = u+ iv and z = 1 + iτ.

(5)

For every w ∈ S, and every z ∈ ∂S, one has P (w, z) � 0.

In addition, for every w ∈ S,∫
∂S

P (w, z) dz = 1,

which allows us to denote μw the measure on ∂S with

the density P (w, ·). We refer the reader to [41] for further

properties of the kernel P (·, ·).
For θ1, θ2 ∈ (0, 1), we let

Λ(θ1, θ2)
def
=

√(
1

θ1
+

1

1− θ1

)(
1

θ2
+

1

1− θ2

)
, (6)

The following claim is proved in the full version.
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Claim 4. For any z ∈ ∂S and θ1, θ2 ∈ (0, 1),

P (θ1, z)

P (θ2, z)
� Λ(θ1, θ2)

2.

B. Harmonic and holomorphic functions on S

Lemma 5 ([41]). Let f : S → R be a continuous function
which is harmonic (as a function of two real variables) in
S. Moreover, suppose that the integral∫

∂S

|f(z)| dμw(z)

is finite for some w ∈ S. Then for every w ∈ S, one has:

f(w) =

∫
∂S

f(z) dμw(z).

Corollary 6. Let f : S → C
d be a continuous function

which is holomorphic in S. Moreover, suppose that∫
∂S

∥∥f(z)∥∥ dμw(z) <∞

for some w ∈ S. Then for every w ∈ S, one has:

f(w) =

∫
∂S

f(z) dμw(z).

Proof: This follows from Lemma 5 and the fact that

the real and the imaginary part of a holomorphic function

are harmonic.

C. Complex interpolation between normed spaces

Let W0 = (Cd, ‖ · ‖W0
) and W1 = (Cd, ‖ · ‖W1

) be two

d-dimensional complex normed spaces. We will now define

a family of spaces [W0,W1]θ = (Cd, ‖ · ‖[W0,W1]θ) for 0 �
θ � 1 that, in a sense we will make precise later, interpolate

between W0 and W1. This definition appeared for the first

time in [20]; see also the book [42]. Let us first define an

auxiliary (infinite-dimensional) normed space F as the space

of bounded continuous functions f : S → C
d, which are

holomorphic in S. The norm on F is defined as follows:

‖f‖F = max

{
sup

Re(z)=0

‖f(z)‖W0
, sup
Re(z)=1

‖f(z)‖W1

}
.

Now we can define the interpolation norm ‖ · ‖[W0,W1]θ on

C
d as follows:

‖x‖[W0,W1]θ = inf
f∈F:

f(θ)=x

‖f‖F. (7)

The fact that ‖x‖[W0,W1]θ is a norm is straightforward to

check modulo the property “‖x‖[W0,W1]θ = 0 implies x =
0”. The latter is a consequence of the Hadamard three-lines

theorem [43]. The following facts can be found in [42].

Fact 7. For every θ ∈ [0, 1], [W0,W1]θ = [W1,W0]1−θ.

Fact 8 (Reiteration theorem). For every 0 � θ1 � θ2 � 1
and 0 � θ3 � 1, one has:[

[W0,W1]θ1
, [W0,W1]θ2

]
θ3

= [W0,W1](1−θ3)θ1+θ3θ2
.

Below is arguably the most useful statement about com-

plex interpolation. We recall that for a linear map T : Cd →
C

d′ and normed spaces X = (Cd, ‖ · ‖X) and Y =
(Cd, ‖ · ‖Y ), ‖T‖X→Y denotes the operator norm, equal to

supx∈Cd
‖Tx‖Y
‖x‖X .

Fact 9. Let W0 = (Cd, ‖ · ‖W0
) and W1 = (Cd, ‖ · ‖W1

)
be d-dimensional complex normed spaces, and let U0 =
(Cd′ , ‖ · ‖U0

) and U1 = (Cd′ , ‖ · ‖U1
) be a couple of d′-

dimensional ones. Suppose that T : Cd → C
d′ is a linear

map. Then, for every 0 � θ � 1, one has:

‖T‖[W0,W1]θ→[U0,U1]θ � ‖T‖1−θ
W0→U0

· ‖T‖θW1→U1
.

Corollary 10. Let W0 = (Cd, ‖ · ‖W0) and W1 = (Cd, ‖ ·
‖W1) be complex normed spaces such that for some d1, d2 �
1 and every x ∈ C

d, the following holds:

1

d1
· ‖x‖W1

� ‖x‖W0
� d2 · ‖x‖W1

. (8)

Then, for every 0 � θ � 1 and every x ∈ C
d, one has:

1

dθ1
· ‖x‖[W0,W1]θ � ‖x‖W0

� dθ2 · ‖x‖[W0,W1]θ

and
1

d1−θ
1

· ‖x‖W1
� ‖x‖[W0,W1]θ � d1−θ

2 · ‖x‖W1
.

Proof: This follows from Fact 9 applied to the identity

map.

Fact 11. Let W0 = (Cd, ‖ · ‖W0) and W1 = (Cd, ‖ · ‖W1)
be complex normed spaces, and let W0

∗ = (Cd, ‖ · ‖W0
∗)

and W1
∗ = (Cd, ‖ · ‖W1

∗) be the dual spaces, respectively.
For any θ ∈ [0, 1], the dual space to [W0,W1]θ, given by
[W0,W1]

∗
θ = (Cd, ‖ · ‖[W0,W1]∗θ) is isometric to the space

[W0
∗,W1

∗]θ.

D. Uniform convexity

Let W = (Cd, ‖ · ‖W ) be a complex normed space. We

give necessary definitions related to the notion of uniform

convexity. For a thorough overview, see [44].

Definition 12. For 2 � p � ∞, the space W has modulus
of convexity of power type p iff there exists K � 1 such that
for every x, y ∈W :(

‖x‖pW +
1

Kp
‖y‖pW

)1/p

�

�
(‖x+ y‖pW + ‖x− y‖pW

2

)1/p

.
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The infimum of such K is called the p-convexity constant of
W and is denoted by Kp(W ).

Claim 13. One always has K∞(W ) = 1, and for a Hilbert
space, one has: K2(�

d
2) = 1.

Given two normed spaces W0 = (Cd, ‖ · ‖W0
) and W1 =

(Cd′ , ‖ · ‖W1
), and 1 � p <∞, we use the notation W0 ⊕p

W1 for the direct sum of W0 and W1 endowed with the

norm ‖(x0, x1)‖W0⊕pW1 = (‖x0‖pW0
+ ‖x1‖pW1

)1/p.

Claim 14. One has Kp(W0 ⊕2 W1) �
max{Kp(W ),Kp(W1)} for every p � 2.

Proof: The claim follows from W0 ⊕2 W1 being iso-

morphic to W0 ⊕p W1 and the fact that Kp(W0 ⊕p W1) �
max{Kp(W ),Kp(W1)}.
Lemma 15 ([45]). One has Kp(L2(μ,W )) � Kp(W ) for
every p � 2.

The following lemma shows how the p-convexity constant

interacts with complex interpolation.

Lemma 16 ([1]). For every 2 � p1, p2 � ∞ and every
0 � θ � 1, one has:

K p1p2
θp1+(1−θ)p2

(
[W0,W1]θ

)
� Kp1

(W0)
1−θKp2

(W1)
θ.

E. The space F2(θ)

Now we define another space related to F. This definition

appears in [20], see also [4]. First, for 0 < θ < 1, let us

consider the normed space G(θ) of continuous functions

f : S→ C
d, which are holomorphic in S, and∫

∂S

∥∥f(z)∥∥2
dμθ(z) <∞.

The norm ‖f‖G(θ) is defined as follows:

‖f‖2G(θ) =

∫
Re(z)=0

∥∥f(z)∥∥2

W0
dμθ(z)

+

∫
Re(z)=1

∥∥f(z)∥∥2

W1
dμθ(z). (9)

Clearly, F ⊆ G(θ). One may naturally view G(θ) as a

(not closed) subspace of L2({z | Re(z) = 0},μθ,W0) ⊕2

L2({z | Re(z) = 1},μθ,W1). Now we can define the space

F2(θ) as the closure of G(θ) (in particular, G(θ) is dense

in F2(θ)). An element of F2(θ) can be identified with a

function f : S→ C
d defined almost everywhere on ∂S and

defined everywhere on S such that:

• f restricted on {z | Re(z) = 0} belongs to L2({z |
Re(z) = 0},μθ,W0);

• f restricted on {z | Re(z) = 1} belongs to L2({z |
Re(z) = 1},μθ,W1);

• f is holomorphic in S;

In this representation, the norm is defined similarly to (9):

‖f‖2F(θ) =

∫
Re(z)=0

∥∥f(z)∥∥2

W0
dμθ(z)

+

∫
Re(z)=1

∥∥f(z)∥∥2

W1
dμθ(z).

Claim 17. For every f ∈ F2(θ) and w ∈ S, one has:

f(w) =

∫
∂S

f(z) dμw(z).

Proof: This identity is true for G(θ) by Corollary 6.

Hence it holds for F2(θ), since every element of F2(θ) is a

limit of a sequence of elements of G(θ), which converges

in L2 in ∂S and pointwise in S.

The following gives an alternative definition of an inter-

polated norm, which should be compared with the original

definition (7).

Fact 18 ([4]). For every x ∈ C
d, one has:

‖x‖[W0,W1]θ = inf
f∈F2(θ):
f(θ)=x

‖f‖F2(θ). (10)

Claim 19. For every p � 2, one has:

Kp(F2(θ)) � max{Kp(W0),Kp(W1)}.
Proof: One has:

Kp(F2(θ)) � Kp

(
L2({z | Re(z) = 0},μθ,W0)⊕2

L2({z | Re(z) = 1},μθ,W1)
)

� max
{
Kp

(
L2({z | Re(z) = 0},μθ,W0)

)
,

Kp

(
L2({z | Re(z) = 1},μθ,W1)

)}
� max{Kp(W0),Kp(W1)},

where the first step is due to F2(θ) being a subspace

of L2({z | Re(z) = 0},μθ,W0) ⊕2 L2({z | Re(z) =
1},μθ,W1), the second step is due to Claim 14, and the

third step is due to Lemma 15.

Lemma 20. For 0 < θ1, θ2 < 1, the spaces F2(θ1)
and F2(θ2) are isomorphic via the identity map. More
specifically, for every f ∈ F2(θ1) one has:

‖f‖F2(θ2) � Λ(θ1, θ2) · ‖f‖F2(θ1);

and, similarly, for every f ∈ F2(θ2), one has:

‖f‖F2(θ1) � Λ(θ1, θ2) · ‖f‖F2(θ2).

Proof: This easily follows from the definition of F2(θ)
and Claim 4.
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III. HÖLDER HOMEOMORPHISMS: AN EXISTENTIAL

ARGUMENT

In this section we show the proof of Theorem 1 making

the exposition of the result from [2] in [4] quantitative. We

make the construction of the map algorithmic in the full ver-

sion. Let X = (Cd, ‖·‖X) be a normed space of interest. For

a real normed space, one can consider its complexification,

which contains the real version isometrically.

Let us first assume that Kp(X) < ∞ for some 2 � p <
∞. We start with taking a closer look at Fact 18. Suppose

that we interpolate between X and �d2 and moreover for some

0 < r < R one has:

rB�d2
⊆ BX ⊆ RB�d2

.

Let F2(θ) be defined with respect to X and �d2.

Fact 21 ([4]). For every x ∈ C
d, in the optimization problem

inf
F∈F2(θ):
F (θ)=x

‖F‖F2(θ)

the minimum is attained on an element of F2(θ). Moreover,
the minimizer is unique, and we denote it by F ∗θx ∈ F2(θ).

The fact below shows that the minimizers F ∗θx have very

special structure.

Fact 22 ([4]). Fix x ∈ C
d and 0 < θ < 1 and consider

F ∗θx ∈ F2(θ). Then,
• For z ∈ C such that Re z = 0, ‖F ∗θx(z)‖X =
‖x‖[X,�d2 ]θ

almost everywhere;
• For z ∈ C such that Re z = 1, ‖F ∗θx(z)‖�d2 =
‖x‖[X,�d2 ]θ

almost everywhere;
• For every 0 < θ̃ < 1, ‖F ∗θx(θ̃)‖[X,�d2 ]θ̃

= ‖x‖[X,�d2 ]θ
.

The lemma below is the core of the overall argument.

Lemma 23 (a quantitative version of a statement from [4]).
For every 0 < θ < 1 and every x1, x2 ∈ S[X,�d2 ]θ

, one has:∥∥∥F ∗θx1
− F ∗θx2

∥∥∥
F2(θ)

� Kp(X) · ‖x1 − x2‖1/p[X,�d2 ]θ
.

Proof: By Claim 19, one has:

Kp(F2(θ)) � max{Kp(X),Kp(�
d
2)} � Kp(X),

where the second step follows from Kp(�
d
2) � 1. Second,

suppose that for x1, x2 ∈ S[X,�d2 ]θ
, one has

‖x1 − x2‖[X,�d2 ]θ
= ε > 0.

Then,∥∥∥F ∗θx1
+ F ∗θx2

∥∥∥
F2(θ)

� ‖x1 + x2‖[X,�d2 ]θ
� 2− ε, (11)

where the first step follows from Fact 18, and the second step

follows from x1 and x2 being unit and the triangle inequality.

Now by the definition of Kp(F2(θ)) (Definition 12) and the

fact that the minimizers are unit, we have:

∥∥∥F ∗θx1
+ F ∗θx2

∥∥∥p

F2(θ)
+

∥∥∥F ∗θx1
− F ∗θx2

∥∥∥p

F2(θ)

Kp(F2(θ))p

�
‖2F ∗θx1

‖p
F2(θ)

+ ‖2F ∗θx2
‖p
F2(θ)

2
= 2p. (12)

Combining (11) and (12), we get:∥∥∥F ∗θx1
− F ∗θx2

∥∥∥p

F2(θ)
� Kp(F2(θ))

p · (2p − (2− ε)p)

� p2p−1 ·Kp(F2(θ))
p · ε.

Finally, we get:∥∥∥F ∗θx1
− F ∗θx2

∥∥∥
F2(θ)

� Kp(F2(θ)) · ε1/p

� Kp(X) · ε1/p = Kp(X) · ‖x1 − x2‖1/p[X,�d2 ]θ

as desired.

Fix 0 < θ1, θ2 < 1. Define the map Uθ1θ2
: S[X,�d2 ]θ1

→
S[X,�d2 ]θ2

as follows:

x → F ∗θ1x(θ2).

The map is well-defined, since by Fact 22 for every x with

‖x‖[X,�d2 ]θ1
, one has ‖F ∗θ1,x

(θ2)‖[X,�d2 ]θ2
= 1. One also has:

U−1
θ1,θ2

= Uθ2,θ1 , since, by Fact 22 and the uniqueness of

the minimizer (Fact 21), for every x ∈ C
d, one has:

F ∗θ2F∗θ1x(θ2)
= F ∗θ1x.

In particular, Uθ1,θ2
is a bijection between the unit spheres

of [X, �d2]θ1
and [X, �d2]θ2

.

Lemma 24 (a quantitative version of the statement from [4]).
For x1, x2 ∈ S[X,�d2 ]θ1

, one has:

‖Uθ1θ2(x1)− Uθ1θ2(x2)‖[X,�d2 ]θ2

� Λ(θ1, θ2) ·Kp(X) · ‖x1 − x2‖1/p[X,�d2 ]θ1

.

Proof: One has:

‖Uθ1θ2
(x1)− Uθ1θ2

(x2)‖[X,�d2 ]θ2

= ‖F ∗θ1x1
(θ2)− F ∗θ1x2

(θ2)‖[X,�d2 ]θ2

� ‖F ∗θ1x1
− F ∗θ1x2

‖F2(θ2)

� Λ(θ1, θ2) · ‖F ∗θ1x1
− F ∗θ1x2

‖F2(θ1)

� Λ(θ1, θ2) ·Kp(X) · ‖x1 − x2‖1/p[X,�d2 ]θ1

,

where the first step is by the definition of Uθ1θ2
, the second

step is due to Fact 18, the third step is due to Lemma 20,

and the last step is due to Lemma 23.

The theorem below summarizes the above discussion.

Theorem 7. Let X = (Cd, ‖ · ‖X) be a complex normed
space such that Kp(X) <∞ for some 2 � p <∞ and for
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some 0 < r < R, one has: rB�d2
⊆ BX ⊆ RB�d2

. Fix 0 <

β,γ � 1/2. Then there exist two spaces Y = (Cd, ‖ · ‖Y )
and Z = (Cd, ‖ · ‖Z) and a bijection ϕ : SY → SZ such
that:
• rβBY ⊆ BX ⊆ RβBY ;
• rγB�d2

⊆ BZ ⊆ RγB�d2
;

• for every y1, y2 ∈ SY ,

‖ϕ(y1)− ϕ(y2)‖Z � Kp(X)√
βγ

· ‖y1 − y2‖1/pY ;

• for every z1, z2 ∈ SZ ,

‖ϕ−1(z1)− ϕ−1(z2)‖Y � Kp(X)√
βγ

· ‖z1 − z2‖1/pZ .

Proof: We set Y and Z to be [X, �d2]β and [X, �d2]1−γ,

respectively. Finally, set ϕ to be Uβ,1−γ. Then, the first two

inequalities follow from Corollary 10. The third inequal-

ity follows from Lemma 24 combined with the estimate

Λ(β,γ) � 1√
βγ

. The fourth inequality is shown similarly to

the third taking into account that ϕ−1 = U1−γ,β.

Now let us turn to the case when X is not necessarily

p-convex.

Theorem 8 (Theorem 1, restated). Let X = (Cd, ‖ · ‖X)
be a complex normed space such that for some 0 < r < R,
one has: rB�d2

⊆ BX ⊆ RB�d2
. Fix 0 < α,β,γ � 1/2. Then

there exist two spaces Y = (Cd, ‖·‖Y ) and Z = (Cd, ‖·‖Z)
and a bijection ϕ : SY → SZ such that:
• r2α+β(1−2α)BY ⊆ BX ⊆ R2α+β(1−2α)BY ;
• rγ(1−2α)B�d2

⊆ BZ ⊆ Rγ(1−2α)B�d2
;

• for every y1, y2 ∈ SY ,

‖ϕ(y1)− ϕ(y2)‖Z � 1√
βγ

· ‖y1 − y2‖αY ;
• for every z1, z2 ∈ SZ ,

‖ϕ−1(z1)− ϕ−1(z2)‖Y � 1√
βγ

· ‖z1 − z2‖αZ .

Proof: Denote A = [X, �d2]2α. By Lemma 16, one

has K1/α(A) � 1. Let us now apply Theorem 7 to A,

which yields two spaces Y = [A, �d2]β and Z = [A, �d2]γ.

By Fact 8, one has: Y = [X, �d2]2α+β(1−2α) and Z =
[X, �d2]2α+(1−γ)(1−2α), which together with Corollary 10

yields the first two items. The third and fourth items follow

from Theorem 7 applied to A.

REFERENCES

[1] A. Naor, “A Spectral Gap Precludes Low-Dimensional Em-
beddings,” in Proceedings of the 33rd International Sympo-
sium on Computational Geometry (SoCG ’2017), 2017, pp.
50:1–50:16, available as arXiv:1611.08861.
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