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Abstract

We prove that the function d : R3 × R3 → [0,∞) given
by

d
(
(x, y, z), (t, u, v)

)
=
([(

(t− x)2 + (u− y)2
)2

+(v − z + 2xu− 2yt)2
] 1

2
+ (t− x)2 + (u− y)2

) 1
2

.

is a metric on R3 such that (R3,
√
d) is isometric to a subset

of Hilbert space, yet (R3, d) does not admit a bi-Lipschitz
embedding into L1. This yields a new simple counter ex-
ample to the Goemans-Linial conjecture on the integral-
ity gap of the semidefinite relaxation of the Sparsest Cut
problem. The metric above is doubling, and hence has a
padded stochastic decomposition at every scale. We also
study the Lp version of this problem, and obtain a counter
example to a natural generalization of a classical theorem
of Bretagnolle, Dacunha-Castelle and Krivine (of which the
Goemans-Linial conjecture is a particular case). Our meth-
ods involve Fourier analytic techniques, and a recent break-
through of Cheeger and Kleiner, together with classical re-
sults of Pansu on the differentiability of Lipschitz functions
on the Heisenberg group.

1 Introduction

Let G = (V,E) be a graph, with a capacity C(e) ≥
0 associated to every edge e ∈ E. Assume that we are
given k pairs of vertices (s1, t1), ..., (sk, tk) ∈ V × V and
D1, . . . , Dk ≥ 1. We think of the si as sources, the ti as
targets, and the valueDi as the demand of the terminal pair
(si, ti) for some commodity κi. The problem is said to have
uniform demands if every pair u, v ∈ V occurs as some
(si, ti) pair withDi = 1. Given a non-empty subset S � V ,
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we write

Φ(S) =
∑

uv∈E C(uv) · |1S(u) − 1S(v)|∑k
i=1Di · |1S(si) − 1S(ti)|

,

where 1S is the characteristic function of S. The value
Φ∗ = min∅�=S�V Φ(S) is the minimum over all cuts (parti-
tions) of V , of the ratio between the total capacity crossing
the cut and the total demand crossing the cut. In the case
of uniform demands Φ∗ is simply the edge expansion of the
graph G.

Computing Φ∗ is NP-hard [34]. Moreover, finding a
cut for which Φ∗ is (approximately) attained is a basic
step in approximation algorithms for several NP-hard prob-
lems [28, 1, 41]. The problem of approximating Φ∗ in poly-
nomial time is known as the Sparsest Cut problem with gen-
eral demands, and is a famous open problem in the field of
approximation algorithms. The best known algorithm for
this problem is based on the following classical semidefinite
relaxation (see [15, 2] for the motivation for this relaxation).

SDP relaxtion for Sparsest Cut

min
∑

uv∈E C(uv) ‖xu − xv‖2
2

s.t. xu ∈ Rn ∀u ∈ V∑
u,v∈V D(u, v) ‖xu − xv‖2

2 = 1
‖xu − xv‖2

2 ≤ ‖xu − xw‖2
2 + ‖xw − xv‖2

2

∀u, v, w ∈ V

Goemans and Linial (see [15, 30]) observed that this
SDP produces a metric space (X, d) such that (X,

√
d) is

isometric to a subset of Hilbert space. Such metrics are
known in the literature as negative type metrics or squared
L2 metrics. Moreover, following the approach of London,
Linial and Rabinovich [33] (see also the work of Aumann
and Rabani [5]), they noted that the cut-cone characteriza-
tion of subsets of L1 (see [13]) implies that the integrality



gap of this SDP can be bounded by the least distortion with
which (X, d) embeds into L1, i.e. the smallest L > 0 for
which there is an embedding f : X → L1 satisfying for
all x, y ∈ X , d(x, y) ≤ ‖f(x) − f(y)‖1 ≤ Ld(x, y). We
will denote the smallest such L by c1(X) in what follows.
In fact it is known that the worst-case integrality gap of the
SDP over all instances of graphs with n nodes is precisely
the largest value of c1(X) asX ranges over all n-point met-
ric spaces of negative type. Goemans and Linial therefore
made the following conjecture (see [15, 32]), which would
imply that there exists a polynomial time algorithm which
approximates Φ∗ to within a constant factor.

The Goemans-Linial conjecture: Every metric space of
negative type embeds with O(1) distortion into L1.

In a recent remarkable paper [21] Khot and Vishnoi
proved that this conjecture does not hold true. In other
words, there exist arbitrarily large n-point metric spaces of
negative type Xn such that limn→∞ c1(Xn) = ∞. Their
construction is motivated by considerations from complex-
ity theory, as it is based on a hardness result that will be dis-
cussed later. In particular, the Khot-Vishnoi spaces are quite
complicated to describe. The purpose of the present paper is
to give a different simple counter-example to the Goemans-
Linial conjecture which is based on a classical and well-
understood metric space— the Heisenberg group. More-
over, our example has several additional properties which
lead to a solution of related problems. We will describe the
Heisenberg group geometry later, but for concreteness we
first state explicitly our counter-example.

Theorem 1.1. Define d : R3 × R3 → [0,∞) by

d
(
(x, y, z), (t, u, v)

)
=
([(

(t− x)2 + (u− y)2
)2

+(v − z + 2xu− 2yt)2
] 1

2
+ (t− x)2 + (u− y)2

) 1
2

.

Then d is a metric on R3 and (R3,
√
d) is isometric to a

subset of Hilbert space (i.e. (R3, d) is a metric space of
negative type). But, (R3, d) does not embed bi-Lipschitzly
into L1. Thus

lim
n→∞ c1

({0, . . . , n}3, d
)

= ∞. (1)

Our approach can be used to answer additional questions
to which the Khot-Vishnoi method does not apply. In or-
der to motivate them we recall some background which ex-
plains why the Goemans-Linial conjecture is a natural ques-
tion. A classical theorem of Schoenberg [39] (see also [44])
states that a metric space (X, d) is isometric to a subset
of L2 if and only if d2 is a negative definite kernel on X ,
i.e. for every x1, . . . , xn ∈ X and every c1, . . . , cn ∈ C

with
∑n

j=1 cj = 0 we have
∑n

j,k=1 d(xj , xk)2cjck ≤ 0.
Thus (X, d) is of negative type if and only if d is negative
definite on X . More generally Schoenberg proved that for
1 ≤ p ≤ 2 the function ‖x − y‖p

p is negative definite on
Lp. It follows that L1 is of negative type (this corollary of
Schoenberg’s theorem is easy to prove directly). It also fol-
lows that for 1 ≤ p ≤ 2 the space Lp equipped with the

metric ‖x − y‖p/2
p is isometric to a subset of L2. Bretag-

nolle, Dacunha-Castelle and Krivine [7] proved the follow-
ing beautiful converse to this result of Schoenberg in the
case of normed spaces: If (X, ‖ · ‖) is a normed space and
‖x − y‖p is negative definite then X is linearly isometric
to a subset of Lp. Stated differently, X equipped with the
metric ‖x− y‖p/2 is isometric to a subset of L2 if and only
if (X, ‖ · ‖) is isometric to a subset of Lp.

Specializing the above discussion to the case p = 1 we
see that the Goemans-Linial conjecture is true for normed
spaces. It is thus natural to ask if this phenomenon holds
for arbitrary metric spaces. Moreover, from a computational
viewpoint, since optimization problems over L1 metrics are
so important for the analysis of the cut structure of graphs,
but are intractable computationally (see [13]), one might
hope that the negative type property of L1 metrics charac-
terizes L1 embeddability. This would reduce optimization
problems over cuts to the Euclidean case, where we have
efficient techniques, such as semidefinite programming, at
our disposal. As we have seen, this hope fails. But as a
motivation for the Goemans-Linial conjecture, the theorem
of Bretagnolle, Dacunha-Castelle and Krivine is true for all
1 < p < 2, and it is thus just as natural to ask if it holds for
general metrics. In other words, if (X, d) is a metric space
such that (X, dp/2) is isometric to a subset of L2, does X
embed into Lp? The following theorem shows that the an-
swer to this question is negative.

Theorem 1.2. Fix 1 ≤ p < 2 and define d : R3 × R3 →
[0,∞) by

d
(
(x, y, z), (t, u, v)

)
= 4

√
((t− x)2 + (u− y)2)2 + (v − z + 2xu− 2yt)2

·
{

cos
[p
2

arccos
((

(t− x)2 + (u− y)2
))

·
[(

(t− x)2 + (u− y)2
)2

+ (v − z + 2xu− 2yt)2
]− 1

2
)]}1/p

.

Then d is a metric on R3 and (R3, dp/2) is isometric to a
subset of Hilbert space. But, (R3, d) does not embed bi-
Lipschitzly into Lp.

Note that when p = 1 the metric in Theorem 2.2 is pro-
portional to the metric in Theorem 1.1. Moreover, for all



1 ≤ p < 2 the metric in Theorem 1.2 is easily seen to be bi-
Lipschitz equivalent to the metric in Theorem 2.2 (we will
prove this later). Thus the fact that it does not embed intoLp

follows from Theorem 1.1, since Lp is isometric to a sub-
set of L1. Nevertheless, the proof of the non-embeddability
result in the case 1 < p < 2 is significantly easier, and is
based on more classical results.

An additional novel aspect of Theorem 1.1 is that the
metric constructed there is decomposable. Recall that the
modulus of padded decomposability of X is the smallest
α > 0 such that for every ∆ > 0 there exists a distribution
over partitions of X into sets of diameter at most ∆, such
that for every x ∈ X with probability at least 1

2 the entire
ball of radius ∆/α centered at x is contained in the element
of the partition to which x belongs (we refer to [27, 23] for
a general discussion of this notion). We will see that the
spaces (R3, d) in Theorem 1.1 and Theorem 1.2 are dou-
bling (see [19] for more information on the doubling condi-
tion), so that by the results of [17] they have a finite modulus
of padded decomposability. It is a folklore problem, stated
explicitly in [43], whether decomposable spaces embed into
L1. Theorem 1.1 shows that the answer to this question is
negative. On the other hand the Khot-Vishnoi spaces are
easily seen not to have a uniformly bounded modulus of
padded decomposability.

Padded decomposability is a central tool in metric em-
beddings which is used in numerous contexts. In particular,
a theorem of Klein, Plotkin and Rao [22] states that pla-
nar graphs, or more generally graphs which exclude a fixed
minor, are decomposable. It is a famous conjecture (stated
in [31, 18]) that such metrics embed into L1. Our results
show that if true, the proof of this conjecture will have to use
more information than just the fact that such graph families
are decomposable. This contrasts the fact that all known bi-
Lipschitz embedding theorems for these spaces only use the
fact that they are decomposable.

In the next subsections of this introduction we describe
in greater detail the Heisenberg groups, and the ingredients
of the proof of Theorem 1.1 and Theorem 1.2.

1.1 Heisenberg groups and the Koranyi
norm

LetG be a group with identity element e. A functionN :
G→ [0,∞) is called a group semi-norm onG ifN(e) = 0,
every g ∈ G satisfies N(g−1) = N(g), and every g, h ∈ G
satisfy N(gh) ≤ N(g) + N(h). If, in addition, N(g) = 0
implies that g = e, then N is called a group norm on G.
Observe that every group norm N on G induces a right-
invariant metric ρN on G given by ρN (g, h) = N(gh−1).

Fix an integer n ≥ 1. For z = (z1, . . . , zn) ∈ Cn denote
|z| =

√|z1|2 + . . .+ |zn|2. Additionally, we will use the

standard symplectic form on Cn, defined for z, w ∈ Cn as:

[z, w] =
n∑

j=1

	(zjwj),

where here and in what follows, 	(ζ) and 
(ζ) denote the
imaginary part and real part of the complex number ζ, re-
spectively.

The 2n+ 1 dimensional Heisenberg group H2n+1 is de-
fined via the following (non-commutative) group operation
on Cn × R:

(z, s) · (w, t) = (z + w, t+ s+ 2[z, w]).

The Koranyi norm N0 on H2n+1 is defined as

N0(z, t) =
(|z|4 + t2

)1/4
.

It is a classical fact (see [11, 42]) that N0 is indeed a group
norm on H2n+1.

Carnot-Carathéodory spaces. The Heisenberg groups are
examples of the more general class of Carnot groups, which
are themselves particular cases of a class of path metrics
known as sub-Riemannian geometries. In particular, there
is an important intrinsic geodesic metric on H2n+1, which
is known as the Carnot-Carathéodory metric. We will not
need to define this metric here, and it suffices to say that
it is bi-Lipschitz equivalent the the metric induced by the
Koranyi norm. However, understanding the proofs of the
results that we will use requires familiarity with the Carnot-
Carathéodory structure on H2n+1. Moreover, some of the
results stated here carry over to general Carnot groups. We
refer the interested reader to [16, 35] for more information
about the fascinating world of sub-Riemannian geometries
and Carnot groups.

Now, define N : H2n+1 → [0,∞) by

N(z, t) =
√√

|z|4 + t2 + |z|2 =
√

[N0(z, t)]2 + |z|2.
(2)

Since for any two group semi-norms N1, N2 on a group
G,
√
N2

1 +N2
2 is also a group semi-norm on G, it fol-

lows that N is a group norm on H2n+1. Note that the
metric d in Theorem 1.1 is precisely the metric induced
on H3 by the group norm N . This proves that d is in-
deed a metric. The heart of Theorem 1.1 is the proof that
(H2n+1,

√
ρN ) is isometric to a subset of Hilbert space, and

the non-embeddability of H2n+1 into L1. We remark that it
is easy to check that (H2n+1, ρN0) is not of negative type.
Our proof that (H2n+1, ρN ) is of negative type is naturally
based on Schoenberg’s theorem [39] quoted previously, and
is contained in Section 2. The fact that H2n+1 does not
embed into L1 follows from a recent result of Cheeger and
Kleiner— this is explained in Section 1.3 below.



In order to prove Theorem 1.2 fix p ∈ [1, 2) and define
M : H2n+1 → [0,∞) by

M(z, t)

=
(|z|4 + t2

)1/4

{
cos

[
p

2
arccos

(
|z|2√|z|4 + t2

)]}1/p

.

(3)

The following lemma implies that the metric d in Theo-
rem 1.2 is indeed a metric, since it is precisely the metric
on H3 induced by the group norm M .

Lemma 1.3. M is a group norm on H2n+1 which satisfies
for all g ∈ H2n+1,√

1 − p

2
·N0(g) ≤

[
cos
(πp

4

)]1/p

·N0(g)

≤M(g) ≤ N0(g). (4)

Lemma 1.3 is proved in Section 3, as well as the fact
that (H2n+1,Mp/2) is isometric to a subset of L2 (the proof
of which uses Schoenberg’s theorem once more). The non-
embeddability of H2n+1 into Lp when p > 1 follows from a
simple extension of a differentiability theorem of Pansu [36]
to the case of functions with values in Banach spaces with
the Radon-Nikodým property, and an elegant observation of
Semmes [40]. This is described in Section 1.2 below.

Relation to Assouad’s embedding. It is well known and
easy to see that that (H2n+1, N0) is doubling with con-
stant O(1)n. By a theorem of Assouad [4, 19] we know
that for every ε ∈ (0, 1) the metric space (H2n+1, N1−ε

0 )
is bi-Lipschitz equivalent to a subset of L2 (with distor-
tion depending on n and ε). Thus the main issue in The-
orem 1.2 is to pass to an equivalent metric on H2n+1 for
which the embedding is isometric. As a by product we see
from the bounds in (3) that (H2n+1, N1−ε

0 ) embeds into
Hilbert space with distortion independent of n. This dis-

tortion is O
(

1√
ε

)
, which coincides with the general bound

for doubling spaces proved in [26].

1.2 Pansu differentiability and the Radon-
Nikodým property

For every θ ∈ R define the dilation operator δθ :
H2n+1 → H2n+1 by δθ(z, t) = (θz, θ2t). Observe
that for every g, h ∈ H2n+1, δθ(gh) = (δθg)(δθh) and
ρN0(δθ(g), δθ(h)) = |θ|ρN0(g, h). Let X be a Banach
space and F : H2n+1 → X be a Lipschitz mapping. We
shall say that F has a Pansu derivative at g ∈ H2n+1 if for
every h ∈ H2n+1 the limit

Dg
F (h) ≡ lim

θ→0

F (δθ(h)g) − F (g)
θ

exists, and Dg
F is a homomorphism, i.e. for all h1, h2 ∈

H2n+1, Dg
F (h1h

−1
2 ) = Dg

F (h1) −Dg
F (h2).

Pansu [36] proved that if X is finite dimensional then
every Lipschitz mapping F : H2n+1 → X is Pansu-
differentiable (Lebesgue) almost everywhere. We remark
that Pansu’s proof of this theorem extends almost verbatim
to the case when X has the Radon-Nikodým property. A
Banach space X is said to have the Radon-Nikodým prop-
erty (RNP) if every Lipschitz function f : R → X is dif-
ferentiable almost everywhere. This is not the original def-
inition of the Radon-Nikodým property, but it is equivalent
to it and is most convenient for our purposes. We refer to
Chapter 3 in [6] for more details. Examples of spaces with-
out the RNP are L1, c0 and C(0, 1). On the other hand,
separable conjugate Banach spaces and reflexive Banach
spaces are known to have the RNP [6]. For example, since
	1 = c∗0 and 	1 is separable, it has the RNP.

Since Pansu’s proof of his differentiability theorem into
finite dimensional spaces uses only the differentiability of
Lipschitz functions along geodesics, it extends to the case
whenX has the RNP (the modification of Pansu’s argument
is straightforward, and will not be included here). In fact, a
very simple proof which is particularly convenient to extend
to the Heisenberg case is the Preiss-Zajı́ček theorem [37]
on the differentiability outside a σ-porous set of Lipschitz
functions on Rn with values in RNP spaces (see also the
second proof of Proposition 6.41 in [6]).

As noted by Semmes in [40], these observations imply
that H2n+1 does not embed bi-Lipschitzly into any Banach
space with the RNP. Indeed, if F : H2n+1 → X were
such an embedding then let g ∈ H2n+1 be a point of Pansu
differentiability of F . For every h, k ∈ H2n+1 we have
Dg

F (hk) = Dg
F (h) +Dg

F (k) = Dg
F (kh). Thus

0 = lim
θ→0

∥∥∥∥F (δθ(hk)g) − F (g)
θ

− F (δθ(kh)g) − F (g)
θ

∥∥∥∥
X

≥ 1
‖F−1‖Lip

· lim inf
θ→0

ρN0(δθ(hk)g, δθ(kh)g)
θ

≥ ρN0(hk, kh)
‖F−1‖Lip

,

and this is a contradiction since H2n+1 is not commutative.
Since for p > 1, Lp has the RNP, it follows that H2n+1

does not embed bi-Lipschitzly in Lp, proving the last part
of Theorem 1.2.

Finite subsets and compactness. Since 	1 has the RNP,
it follows from the above discussion that H2n+1 does not
embed into 	1. But this does not suffice to deduce the dis-
cretization statement in (1), since it is not true that if a met-
ric space does not embed into 	1 then its finite subsets can-
not embed into 	1 with uniformly bounded distortion. In-
deed, 	2 does not embed into 	1 (see [29]), but all its finite



subsets embed isometrically into 	1. Another such exam-
ple is L1 itself. For the Goemans-Linial conjecture (and
hence also for the integrality gap of the Sparsest Cut SDP),
which originally deals with finite metrics, it is crucial, and
sufficient, to prove non-embeddability into L1, since L1 has
the property that if all the finite subsets of a separable met-
ric space embed into it with uniformly bounded distortion,
then so does the entire space (see [20]).

1.3 The Cheeger-Kleiner theorem on col-
lapse towards the center

The crucial non-embeddability result in Theorem 1.1
does not follow from a differentiation statement, since L1

does not have the RNP, and thus even Lipschitz mappings
from the real line into L1 might not have a point of differ-
entiability (consider for example the mapping t �→ 1[0,t]).
Moreover, differentiability theorems cannot hold for map-
pings into general Banach spaces since H2n+1 is isometric
to a subset ofL∞, and this isometry cannot have a derivative
in any reasonable sense. This problem is a long standing
major obstacle to proving L1 non-embeddability. In a beau-
tiful paper [9], Cheeger and Kleiner proved that in a certain
sense there is a weak notion of differentiability for map-
pings from H2n+1 into L1. This notion is strong enough to
prove that H2n+1 does not embed into L1. We will not state
here the exact (somewhat complicated) formulation of the
Cheeger-Kleiner L1 differentiation result— instead we will
state its main corollary. They show that if U ⊆ H2n+1 is an
open subset, and F : U → L1 is a Lipschitz function, then
for almost every (z, t) ∈ U we have

lim
ε→0+

‖F (z, t+ ε) − F (z, t)‖1√
ε

= 0. (5)

This implies that F is not bi-Lipschitz. Indeed, otherwise
we would have for every (z, t) ∈ U and ε > 0,

‖F (z, t+ ε) − F (z, t)‖1

≥ 1
‖F−1‖Lip

· ρN0((z, t+ ε), (z, t))

=
1

‖F−1‖Lip
· √ε.

The statement in (5) says that Lipschitz maps on H2n+1

“collapse” in the direction of the center of H2n+1 at almost
every point, and thus they cannot be bi-Lipschitz. This in it-
self can be viewed as a weak differentiation result. Cheeger
and Kleiner start by using the cut decomposition on the im-
age of F to induce a family of cuts on H2n+1. They ob-
serve that in a certain sense most of these cuts are given
by subsets of H2n+1 with finite perimeter. They then ap-
ply recent results in geometric measure theory on the fine
structure of subsets of H2n+1 with finite perimeter, and use

this structural information to prove (5). This geometric in-
vestigation of the local structure of cuts that can appear in
the cut decomposition of certain spaces is a novel approach
to L1 non-embeddability and L1 differentiation, and we ex-
pect that it will have additional applications in the future.

Quantitative bounds. A natural question that occurs is
what is the rate with which the distortion tends to in-
finity in (1). It is not difficult to see that explicit rates
would follow from a version of (5) with an explicit rate
of convergence to 0. We discuss this below. This rate
at which (5) tends to 0 is the topic of a work in progress
of Cheeger, Kleiner and the second author [10]. Heuris-
tic considerations suggest that the rate in (1) could be
c1
({0, . . . , n}3, d

) ≥ (log n)Ω(1). This should follow from
a technical (albeit tedious) “quantification” of the argu-
ments in [9]. It is clearly of interest to find a simpler and
shorter argument— this is intended to be the main focus
of [10]. We do not report a specific exponent here since the
quantitative version of (5) is quite long and involved, and
it is not clear at this point what are the precise rates that
are obtained. One of the reasons for this complication is
that a quantitative version of (5) involves proving effective
versions of the results from geometric measure theory that
were used in [9].

We remark that the Khot-Vishnoi example in [21] gives
an n-point metric space Xn of negative type such that
c1(Xn) ≥ (log log n)

1
6−o(1). This was improved recently

by Krauthgamer and Rabani [24] to a lower bound of
Ω(log log n). The best known upper bounds for the Euclid-
ean distortion (and, hence, L1 distortion) of n-point neg-
ative type metrics are due to Arora, Lee, and Naor [2],
who proved that such metrics embed into L2 with distortion
O
(√

log n · log log n
)
. A recent paper of the first author

yields a small improvement to O
(√

log n log log n
)

[25].
The result of Khot and Vishnoi is based on the analysis of
a hardness result which they proved (in the same paper) for
the Sparsest Cut problem with general demands, assuming
the unique games conjecture (such a hardness result was
also obtained in [8]). Improving this (conditional) hardness
lower bound to (log n)Ω(1) remains an important challenge.

The best known integrality gap for the Goemans-Linial
semidefinite relaxation of Sparsest Cut with uniform de-
mands, due to Arora, Rao and Vazirani [3], is O

(√
log n

)
.

Very recently Devanur, Khot, Saket and Vishnoi [12]
showed that this integrality gap also tends to infinity with
the number of vertices of the graph. We remark that dou-
bling metrics, and more generally decomposable metrics,
cannot yield an integrality gap for the SDP relaxation of uni-
form Sparsest Cut (see, e.g. the results of Rabinovich [38]
combined with the decomposition of [17]).

Convergence rates vs. finite subsets. We now show the re-
lationship between the rate of convergence in (5) and quan-



titative lower bounds on c1(X) for finite subsets X ⊆ H3.
Let B(0, r) denote the open ball of radius r centered at 0 in
(H3, ρN0). Fix δ ∈ (0, 1

2 ) and let X ⊆ B(0, 1) be a δ-net
in B(0, 1). It is easily checked that |X| ≤ (4/δ)4.

Assume that for some non-decreasing function R :
(0, 1

4 ) → [0, 1] with 1 ≥ R(ε) ≥ √
ε for every ε ∈ (0, 1

4 ),
the following assertion holds true: For every 1-Lipschitz
map F : B(0, 1) → L1 there exists a point (z, t) ∈ B(0, 1

2 )
such that

‖F (z, t+ ε) − F (z, t)‖1 ≤ R(ε)
√
ε. (6)

We claim that by choosing δ = 1
4

√
ε ·R(ε) one has

c1(X) ≥ c

R
(
16 |X|−1/4

) , (7)

where c > 0 is a universal constant.
Indeed, let f : X → L1 be a bi-Lipschitz map with

‖f‖Lip ≤ 1. Since H3 is doubling, by [27, Th. 1.6] there
exists a universal constant K ≥ 1 (independent of f ) and a
map f̃ : H3 → L1 for which ‖f̃‖Lip ≤ K and f̃ |X = f .
Let F = 1

K f̃ , so that ‖F‖Lip ≤ 1. Let (z, t) ∈ B(0, 1
2 )

be the point which results from applying (6) to F , and let
(z1, t1), (z2, t2) ∈ X be such that ρN0((z1, t1), (z, t)) ≤ δ
and ρN0((z2, t2), (z, t+ ε)) ≤ δ. Then

R(ε)
√
ε ≥ ‖F (z, t+ ε) − F (z, t)‖1

≥ ‖F (z1, t1) − F (z2, t2)‖1 − 2δ

≥ ρN0((z1, t1), (z2, t2))
K · ‖f−1‖Lip

− 2δ

≥
√
ε− 2δ

K · ‖f−1‖Lip
− 2δ.

Equivalently,

‖f−1‖Lip ≥ 1
K

·
√
ε− 2δ

R(ε)
√
ε+ 2δ

≥ 1
3K ·R(ε)

.

Since |X| ≤ (4/δ)4 ≤ (16/ε)4, we conclude that (7)
holds. Thus one obtains a bound of the form c1(X) ≥
(log |X|)Ω(1) as long as R(ε)−1 ≥ (log(1

ε ))Ω(1) holds in
(6).

2 A metric of negative type on the Heisenberg
group

Let G be a group with identity element e. A a complex
valued function K : G × G → C is called a Hermitian
kernel on G if every g, h ∈ G satisfy K(g, h) = K(h, g).
A Hermitian kernel K on G is said to be positive definite if

n∑
�,m=1

K(g�, gm)c�cm ≥ 0

for all g1, . . . , gn ∈ G and for all complex scalars
c1, . . . , cn ∈ C. A Hermitian kernel K on G is called neg-
ative definite if

n∑
�,m=1

K(g�, gm)c�cm ≤ 0

for all g1, . . . , gn ∈ G and for all complex scalars
c1, . . . , cn ∈ C satisfying

∑n
j=1 cj = 0.

Let F : G→ C be a function such that every g ∈ G sat-
isfies F (g−1) = F (g). The Hermitian kernel on G induced
by F , denoted KF , is defined by KF (g, h) = F (gh−1). F
is said to be positive definite (resp. negative definite) if KF

is positive definite (resp. negative definite).
We will use the following classical fact, due to Scoen-

berg [39] (see also the book [44] and Proposition 8.5 in [6]).

Proposition 2.1. Let K : G × G → R be a real-valued
kernel on G satisfying K(g, g) = 0 for every g ∈ G. Then
K is negative definite if and only if there exists a Hilbert
space H and a function T : G→ H such that for all g, h ∈
G,

K(g, h) = ‖T (g) − T (h)‖2.

The main result of this section is:

Theorem 2.2. Let N be as in (2). Then (H2n+1, ρN ) is a
metric space of negative type, i.e. (H2n+1, ρN ) is a metric
space and (H2n+1,

√
ρN ) embeds isometrically in Hilbert

space.

By Proposition 2.1 all that remains is to show that N is
a negative definite function on H2n+1, and the remainder of
this section is devoted to the proof of this fact. We remark
that it is easy to verify that the Koranyi norm itself in not
negative definite on H2n+1.

Lemma 2.3. For every λ ∈ C define Φλ : H2n+1 → R by

Φλ(z, t) = e−|λ|·|z|2+iλt.

Then Φλ is a positive definite function on H2n+1.

Proof. We have

KΦλ
((z, s), (w, t)) = Φλ((z, s) · (−w,−t))

= exp

−|λ|
n∑

j=1

|zj − wj |2

+iλ(s− t− 2
n∑

j−1

	(zjwj))


=

 n∏
j=1

e−|λ|(|zj |2+|wj |2)


·eiλ(s−t) ·

 n∏
j=1

e2|λ|(�(zjwj)−i·sign(λ)	(zjwj))

 .



Since the point-wise product of positive definite kernels
is positive definite (see [6], Proposition 8.2), it suffices
to show that each term in the above product is a pos-
itive definite kernel on H2n+1. The fact that eiλ(s−t)

and e−|λ|(|zj |2+|wj |2) are positive definite follows the fact
that for all complex scalars c1, . . . , ck ∈ C, the matrix
(c�cm)�,m is positive semidefinite. It remains to check that
e2|λ|(�(zjwj)−i·sign(λ)	(zjwj)) is positive definite. Since, for
any positive definite kernelK, the kernel eK is also positive
definite (see [6], Proposition 8.2), it is enough to show that


(zjwj) − i · sign(λ)	(zjwj)

is positive definite. This equals zjwj if λ < 0 and zjwj =
zjwj if λ ≥ 0. In both cases, the kernel is positive definite.

Proof of Theorem 2.2. Our goal is to show that N is a
negative definite function on H2n+1. In what follows,
we use some notions from Fourier analysis. For a func-
tion f : R → R, we denote its Fourier transform by
f̂(t) =

∫
R e

itxf(x)dx. The convolution of two functions
f, g : R → R is defined as (f ∗ g)(t) =

∫
R f(t−x)g(x)dx,

so that f̂ ∗ g = f̂ · ĝ.
Fix ε > 0. The existence of symmetric 1

2 -stable dis-
tributions (see [14]) implies that there exits a non-negative
integrable function ϕε : R → [0,∞) such that, for all

t ∈ R, ϕ̂ε(t) = e−ε
√

|t|. Lemma 2.3 shows that the func-
tion Fε : H2n+1 → C given by

Fε(z, t) =
∫

R
e−|λ|·|z|2+iλtϕε(λ) dλ

is positive definite on H2n+1. For every a > 0, denote

ha(x) =
a

π
· 1
a2 + x2

.

Then
∫

R ĥa(x)dx = 1 and ĥa(t) = e−a|t| for all t ∈ R (see,

e.g. [14]). Denoting fε(t) = e−ε
√

|t|, the inversion formula
for the Fourier transform implies that ϕε = 1

2π f̂ε. Another
application of the inversion formula gives

Fε(z, t) =
1
2π

∫
R
eiλtĥ|z|2(λ)f̂ε(λ)dλ

=
1
2π

∫
R
eiλt ̂(h|z|2 ∗ fε)(λ)dλ

= (h|z|2 ∗ fε)(t).

Since Fε is positive definite on H2n+1, the function 1−Fε

ε is

negative definite on H2n+1, and

lim
ε→0

1 − Fε(z, t)
ε

= lim
ε→0

[
h|z|2 ∗

(
1 − fε

ε

)]
(t)

= lim
ε→0

∫
R

1 − e−ε
√

|x|

ε
h|z|2(t− x) dx

=
|z|2
π

∫
R

√|x|
|z|4 + (t− x)2

dx.

The next lemma shows that the latter expression is equal to
N(z, t), completing the proof.

Lemma 2.4. For every r, t ∈ R

r2

π

∫
R

√|x|
r4 + (t− x)2

dx =
√√

r4 + t2 + r2.

Proof. Making the change of variable x = r2v and s =
t/r2, our goal is to prove that∫ ∞

0

(
1

1 + (s− v)2
+

1
1 + (s+ v)2

)√
v dv

= π

√√
1 + s2 + 1. (8)

By continuity, we may assume that s �= 0. Consider
the function ψ : {ζ : 	(ζ) > 0} → C given by

ψ(ζ) =
(

1
1+(s−ζ)2 + 1

1+(s+ζ)2

)√
ζ. We take here the

principle branch of the square root, i.e. if ζ = ρeiθ where
ρ > 0 and θ ∈ (0, π) then

√
ζ =

√
ρeiθ/2. The poles

of ψ are at i ± s, so that, by the residue theorem, the left-
hand side of (8) equals 
 [2πiResi+s(ψ) + 2πiResi−s(ψ)].
Since the poles of ψ are simple, a direct computation gives
that the required integral equals



[
2πi
(√

i+ s

2i
+

√
i− s

2i

)]

= π

√√
s2 + 1 + s

2
+

√√
s2 + 1 − s

2


= π

√√
1 + s2 + 1,

which is the required identity.

3 The Lp case

We now generalize the argument of Section 2.2 to prove
Theorem 1.2. The idea of the proof is the same, and we
will therefore use the same notation and be sketchy at some
places. Some proofs are deferred to the full version. In what
follows we fix 1 ≤ p < 2.



Fix ε > 0 and let ϕε : R → [0,∞) satisfy for all t ∈ R,
ϕ̂ε(t) = e−ε|t|p/2

. The existence of ϕε follows from the
existence of a symmetric p

2 -stable distribution [14]. Define
Fε : H2n+1 → C by

Fε(z, t) =
∫

R
e−|λ|·|z|2+iλtϕε(λ) dλ,

which is a positive definite function on H2n+1 by
Lemma 2.3. As before, we write ha(x) = a

π · 1
a2+x2 and

fε(t) = e−ε|t|p/2
. Arguing as in the proof of Theorem 2.2

we obtain the identity

lim
ε→0

1 − Fε(z, t)
ε

=
|z|2
π

∫
R

|x|p/2

|z|4 + (t− x)2
dx.

Thus the mapping

(z, t) �→ |z|2
π

∫
R

|x|p/2

|z|4 + (t− x)2
dx (9)

is negative definite on H2n+1. This integral is calculated in
the following lemma.

Lemma 3.1. For every r, t ∈ R

r2

π

∫
R

|x|p/2

r4 + (t− x)2
dx

= 2 cos
(pπ

4

)
· (r4 + t2)p/4

· cos
[
p

2
arccos

(
r2√
r4 + t2

)]
.

We have thus shown that if M is as in (3) then
(H2n+1,Mp/2) is isometric to a subset of Lp (since the in-
tegral in (9) equals Mp). In order to prove Theorem 1.2 it
remains to prove Lemma 1.3. We begin with the following
standard lemma, whose simple proof is omitted from this
abstract.

Lemma 3.2. DenoteC = {(a, b) ∈ R2\{0} : a ≥ b ≥ 0}.
Assume that 1 < β and γ : [1, β] → [0,∞] is continuously
differentiable, concave, γ(1) = 1, γ(β) = 0, and γ′(1) <
0. Then for every (a, b) ∈ C there is a unique µ = µ(a, b) ∈
[a/β, a] such that b

µ = γ
(

a
µ

)
. Moreover, µ : C → [0,∞)

satisfies for every x, y ∈ C, µ(x + y) ≤ µ(x) + µ(y), and
if x ≤ y coordinate-wise then µ(x) ≤ µ(y).

The following lemma is the crucial step in proving that
M is indeed a group norm on H2n+1.

Lemma 3.3. Define γ :
[
1,
[
cos
(

πp
4

)]−1/p
]
→ [0,∞) by

γ(a) = a

√
cos
(

2
p

arccos
(

1
ap

))
.

Then γ satisfies the conditions of Lemma 3.2.

Before proving Lemma 3.3 we use it to prove
Lemma 1.3.

Proof of Lemma 1.3. Let µ : C → [0,∞) be the function
from Lemma 3.2 which corresponds to the function γ in
Lemma 3.3. Then for (a, b) ∈ C we have

b

µ(a, b)
= γ

(
a

µ(a, b)

)

=
a

µ(a, b)

√
cos
(

2
p

arccos
(
µ(a, b)p

ap

))
.

Solving this equation we see that

µ(a, b) = |a|
{

cos
[
p

2
arccos

(
b2

a2

)]}1/p

.

Thus M(z, t) = µ(N0(z, t), |z|). It follows that for every
(z, t), (ζ, τ) ∈ H2n+1 we have

M ((z, t) · (ζ, τ)) = µ (N0 ((z, t) · (ζ, τ)) , |z + ζ|)
≤ µ (N0 (z, t) +N0(ζ, τ), |z| + |ζ|)
≤ µ(N0(z, t), |z|) + µ(N0(ζ, τ), |ζ|)
= M(z, t) +M(ζ, τ).

The right-hand inequality in (4) follows from the fact that

arccos
(

|z|2√
|z|4+t2

)
∈ [0, π/2], and the left-hand inequality

in (4) is an easy elementary numerical inequality which we
do not prove here (actually we just care about the asymp-
totic behavior as p tend to 2, which is obvious).

Before passing to the proof of Lemma 3.3 we state some
elementary numerical inequalities that will be used in the
ensuing argument.

Lemma 3.4 (Auxiliary numerical inequalities that will be
used later). The following numerical inequalities hold true
in the specified ranges

1. tan(λt) ≥ λ tan t for λ ∈ [1,∞) and t ∈ [0, π
2λ

)
.

2. 4x
π ≤ max

{
1, 3 sin2 x

}
for x ∈ [0, 1].

3. 2 sinu− u cosu− u ≥ 0 for u ∈ [0, π].

4. sin(4x) − 4x+ 12x sin2 x ≥ 0 for

0 ≤ x ≤ arcsin
(

1√
3

)
.

Proof of Lemma 3.3. If g = γ2 satisfies the conditions of
Lemma 3.3 then so does γ. One checks that g′(1) = 2 −



4
p < 0, so that it is enough to show that g′′ ≤ 0. Direct
differentiation yields

g′′(a) =
2(a2p − 3)
a2p − 1

cos
(

2
p

arccos
(

1
ap

))
+

2[a2p(p− 3) + 3]
(a2p − 1)3/2

sin
(

2
p

arccos
(

1
ap

))
.

Note that in the range 1 ≤ a ≤ [
cos
(

πp
4

)]−1/p
we have

cos
(

2
p arccos

(
1
ap

)) ≥ 0. Thus the inequality g′′(a) ≤ 0 is

equivalent to

[
a2p(3 − p) − 3

]
tan
(

2
p

arccos
(

1
ap

))
≥ (a2p − 3)

√
a2p − 1. (10)

We distinguish between two cases. If a2p(3 − p) − 3 > 0
then we must show that

tan
(

2
p

arccos
(

1
ap

))
≥ (a2p − 3)

√
a2p − 1

a2p(3 − p) − 3
. (11)

Observe that we are assuming that 2
p arccos

(
1
ap

) ≤ π
2 .

Hence by the first inequality in Lemma 3.4 (with λ = 2
p ≥

1) we see that

tan
(

2
p

arccos
(

1
ap

))
≥ 2

p
tan
(

arccos
(

1
ap

))
=

2
p
·
√

1 − a−2p

a−p

=
2
p
·
√
a2p − 1.

Thus (11) is equivalent to a2p ≥ 1, as required.
It remains to deal with the case a2p(3 − p) − 3 < 0,

which is equivalent to a2p < 3
3−p . In this case we need to

show that

tan
(

2
p

arccos
(

1
ap

))
≤ (3 − a2p)

√
a2p − 1

3 − a2p(3 − p)
. (12)

Write x = arccos
(

1
ap

)
, so that by our assumption x ≤ πp

4 .
Then the required inequality becomes

tan
(

2x
p

)
≤ 2 − 3 sin2 x

p− 3 sin2 x
· tanx, (13)

where the condition a2p < 3
3−p translates to p > 3 sin2 x.

For fixed x the range of p for which (13) should hold is 2 ≥
p ≥ max

{
1, 4x

π , 3 sin2 x
}

. If this range is non-empty then

3 sin2 x ≤ 2, i.e. x ≤ arcsin
(√

2/3
)
< 1. We will there-

fore assume from now on that this upper bound on x is satis-
fied, in which case the second inequality in Lemma 3.4 im-
plies that (13) should hold for 2 ≥ p ≥ max

{
1, 3 sin2 x

}
.

Denote A(p) = (p − 3 sin2 x) tan
(

2x
p

)
. We want to

show that A(p) ≤ A(2). Now,

A′(p) = tan
(

2x
p

)
− 2x(p− 3 sin2 x)

p2 cos2
(

2x
p

) .

It is enough to show that A′(p) ≥ 0. Clearing the denomi-
nator and simplifying we see that it is enough to prove that

B(p) =
p2

2
sin
(

4x
p

)
− 2x(p− 3 sin2 x) ≥ 0. (14)

Now,

B′(p) = p sin
(

4x
p

)
− 2x cos

(
4x
p

)
− 2x.

We claim that B′(p) ≥ 0. Denoting u = 4x
p ≤ π we

see that this reduces to the third inequality in Lemma 3.4.
So B′(p) ≥ 0 and hence B(p) ≥ B (p0), where p0 =
max{1, 3 sin2 x} and we are assured that 2 ≥ p0 ≥ 4x

π .

If p0 = 3 sin2 x then B(p0) = p2
0
2 sin

(
4x
p0

)
≥ 0, since

4x
p0

≤ π. We therefore assume that p0 = 1, in which case

we know that 0 ≤ x ≤ arcsin
(

1√
3

)
. ButB(p0) = B(1) =

1
2 sin(4x) − 2x + 6x sin2 x ≥ 0, by the fourth inequality
in Lemma 3.4. This concludes the proof of (14), and com-
pletes the proof of Lemma 3.3.
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