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Abstract. Let (X, d, µ) be a metric measure space. For ∅ 6= R ⊆ (0,∞) consider the
Hardy-Littlewood maximal operator

MRf(x)
def
= sup

r∈R

1

µ(B(x, r))

∫
B(x,r)

|f | dµ.

We show that if there is an n > 1 such that one has the “microdoubling condition”
µ
(
B
(
x,
(
1 + 1

n

)
r
))
. µ (B(x, r)) for all x ∈ X and r > 0, then the weak (1, 1) norm

of MR has the following localization property:

‖MR‖L1(X)→L1,∞(X) � sup
r>0

∥∥MR∩[r,nr]

∥∥
L1(X)→L1,∞(X)

.

An immediate consequence is that if (X, d, µ) is Ahlfors-David n-regular then the weak (1, 1)
norm of MR is . n log n, generalizing a result of Stein and Strömberg [47]. We show that
this bound is sharp, by constructing a metric measure space (X, d, µ) that is Ahlfors-David
n-regular, for which the weak (1, 1) norm of M(0,∞) is & n log n. The localization property
of MR is proved by assigning to each f ∈ L1(X) a distribution over random martingales for
which the associated (random) Doob maximal inequality controls the weak (1, 1) inequality
for MR.
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1. Introduction

A metric measure space (X, d, µ) is a separable metric space (X, d), equipped with a Radon
measure µ. We assume throughout the non-degeneracy property 0 < µ(B(x, r)) <∞ for all

r > 0, where B(x, r)
def
= {y ∈ X : d(x, y) 6 r}. For any locally integrable f : X → C, we can

then define the Hardy-Littlewood maximal function

Mf(x)
def
= sup

r>0

1

µ(B(x, r))

∫
B(x,r)

|f | dµ,

which is easily verified to be measurable.
We shall study the weak (1, 1) operator norm of M , defined as usual to be the least

quantity 0 6 ‖M‖L1(X)→L1,∞(X) 6∞ for which one has the distributional inequality

‖Mf‖L1,∞(X) 6 ‖M‖L1(X)→L1,∞(X) · ‖f‖L1(X) (1)

for all f ∈ L1(X). Here Lp(X) (p > 1) denotes the usual Lebesgue space corresponding to
the measure µ, and Lp,∞(X) is the weak Lp norm,

‖f‖Lp,∞(X)
def
= sup

λ>0
λ · µ(|f | > λ)1/p.

Analogously to (1), the strong (p, p) operator norm of M is defined as usual to be the least
quantity 0 6 ‖M‖Lp(X)→Lp(X) 6∞ for which

‖Mf‖Lp(X) 6 ‖M‖Lp(X)→Lp(X) · ‖f‖Lp(X) (2)

for all f ∈ Lp(X).
In most cases of interest it is probably impossible to compute ‖M‖L1(X)→L1,∞(X) exactly;

notable exceptions to this statement are ultrametric spaces, where the weak (1, 1) norm of
M equals 1 (we will return to the class of ultrametric spaces presently), and the real line R,
equipped with the usual metric and Lebesgue measure, where it was shown by Melas [34]

that the weak (1, 1) norm of M equals 11+
√

61
12

(the case of the strong (p, p) norm of M , p > 1,
when X = R, remains open, but we refer to [20, 25] for some partial results).

In view of these difficulties, it seems more reasonable to ask for estimates on the asymptotic
behavior of the various operator norms of maximal functions. Quite remarkably, despite the
wide applicability of maximal inequalities, and significant effort by many researchers, even
in the simple case when X is the n-dimensional Hilbert space `n2 and µ is Lebesgue measure,
it is unknown whether or not the weak (1, 1) norm of M is bounded independently of the
dimension n.

A classical application of the Vitali covering theorem (see for example [17, 46, 21, 27])
shows that for any n-dimensional normed space X, the weak (1, 1) and strong (p, p) norms of
M grow at most exponentially in n. This was greatly improved by Stein and Strömberg [47]
to ‖M‖L1(X)→L1,∞(X) = O(n log n) for a general n-dimensional normed space, and to the
slightly better bound ‖M‖L1(`n2 )→L1,∞(`n2 ) = O(n) for n-dimensional Hilbert space. Until
recently, there was no known example of a sequence of n-dimensional normed spaces Xn for
which ‖M‖L1(Xn)→L1,∞(Xn) tends to ∞ with n. A recent breakthrough of Aldaz [1] showed
that when Xn = `n∞, i.e., Rn equipped with the `∞ norm (whose unit ball is an axis parallel
cube), ‖M‖L1(Xn)→L1,∞(Xn) must tend to ∞ with n; the best known lower bound [3] on

‖M‖L1(`n∞)→L1,∞(`n∞) is (log n)1−o(1). The best known upper estimate for ‖M‖L1(X)→L1,∞(X)

when X = `n∞ remains the Stein-Strömberg O(n log n) bound.
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As partial evidence that when X is the n-dimensional Euclidean space `n2 , the weak
(1, 1) norm ‖M‖L1(X)→L1,∞(X) might be bounded, we can take Stein’s theorem [45] (see
also the appendix of [47]) which asserts that in the Euclidean case, for p > 1 we have
‖M‖Lp(X)→Lp(X) 6 C(p), where C(p) < ∞ depends on p but not on n. For general n-
dimensional normed spaces, Stein and Strömberg [47] obtained the bound ‖M‖Lp(X)→Lp(X) 6
c(p)n, while Bourgain [8, 9] and Carbery [13] proved that for any n-dimensional normed
space, ‖M‖Lp(X)→Lp(X) 6 C(p) < ∞ provided p > 3

2
. It is unknown whether or not

there is some 1 < p < 3
2

for which there exist n-dimensional normed spaces Xn such
that ‖M‖Lp(Xn)→Lp(Xn) is unbounded. This is unknown even for the case of cube aver-
ages Xn = `n∞. It was shown by Bourgain [10] that ‖M‖Lp(X)→Lp(X) 6 C(p, q) for all p > 1
when X = `nq and q is an even integer, and this was extended by Müller to X = `nq for all
1 6 q <∞.

A dimension independent bound on ‖M‖L1(`n2 )→L1,∞(`n2 ) would mean that the classical Eu-
clidean Hardy-Littlewood maximal inequality is in essence an infinite dimensional phenom-
enon. This statement is not quite true, since there is no “Lebesgue measure” on infinite
dimensional Hilbert space, but nevertheless, even Stein’s dimension independent bound on
‖M‖Lp(`n2 )→Lp(`n2 ), p > 1, has interesting infinite dimensional consequences—see for examples
Tǐser’s work [53] on differentiation of integrals with respect to certain Gaussian measures
on Hilbert space (provided that the integrand is in Lp for some p > 1). Moreover, im-
proved bounds on ‖M‖L1(X)→L1,∞(X) are clearly of interest since they would yield improved
quantitative estimates in the many known applications of the Hardy-Littlewood maximal in-
equality. As an example, such bounds are relevant for quantitative variants of Rademacher’s
differentiation theorem for Lipschitz functions, which are used in results on the bi-Lipschitz
distortion of discrete nets (see [11, 15]).

Bounds on ‖M‖L1(X)→L1,∞(X) and ‖M‖Lp(X)→Lp(X) have been also intensively investigated
for metric measure spaces other than finite dimensional normed spaces. Strong (p, p) bounds
for free groups (with counting measure) have been established by Nevo and Stein in [40].
In Section 5 we prove the corresponding weak (1, 1) inequality, which is nevertheless not
sufficient for the purpose of ergodic theoretical applications as in [40]; see Conjecture 1
below for more information1. In the case of the Heisenberg group H2n+1, equipped with
either the Carnot-Carathéodory metric or the Koranyi norm (and the underlying measure
being the Haar measure), dimension independent strong (p, p) bounds have been obtained
by Zienkiewicz [56], and a weak (1, 1) bound of O(n) was obtained by Li [30]. It is unclear
if these bounds generalize to other nilpotent Lie groups (though perhaps similar methods
could apply to certain two step nilpotent Lie groups, by replacing the use of [41] in [56] with
the results of [38, 23]).

The main result of the present paper implies a general bound for the weak (1, 1) norm of
the Hardy-Littlewood maximal function on Ahlfors-David n-regular spaces; a class of metric
measure spaces that contains the examples described above as special cases (except for the
case of the free group, which is dealt with separately in Section 5). Specifically, assume that

1After presenting our work we learned from Michael Cowling that the weak (1, 1) inequality for the free
group can be also deduced from the work of Rochberg and Taibleson [42]. Our combinatorial proof in
Section 5 is different from the proof in [42], though it is similar to the proof in an unpublished manuscript
of Cowling, Meda and Setti, which adapts arguments of Strömberg [48] in the case of the hyperbolic space.
We thank Michael Cowling and Lewis Bowen for showing us the Cowling-Meda-Setti manuscript.
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the metric measure space (X, d, µ) satisfies the growth bounds

∀x ∈ X ∀r > 0, rn 6 µ (B(x, r)) 6 Crn, (3)

where n > 2, and C is independent of x, r. Under this assumption, we show that

‖M‖L1(X)→L1,∞(X) = O(n log n), (4)

where the implied constant depends only on C. At the same time, we construct for all n > 2
an Abelian group Gn, equipped with a translation invariant metric dn and a translation
invariant measure µn, that satisfies (3) with C = 81 2, yet

‖M‖L1(Gn)→L1,∞(Gn) & n log n. (5)

We can also ensure that for all p > 1 we have

‖M‖Lp(Gn)→Lp(Gn) .p 1. (6)

Here, and in what follows, we use X . Y , Y & X to denote the estimate X 6 CY for some
absolute constant C; if we need C to depend on parameters, we indicate this by subscripts,
thus X .p Y means that X 6 CpY for some Cp depending only on p. We shall also use the
notation X � Y for X . Y ∧ Y . X.

Note that the bound (4) contains the Stein-Strömberg result for n-dimensional normed
spaces. It also applies to, say, any translation invariant length metric on nilpotent Lie
groups3. However, it falls shy (by a logarithmic factor) of the two O(n) results quoted
above: for the Euclidean space `n2 , and the Heisenberg group H2n+1. Our lower bound (5)
suggests that in order to improve upon the O(n log n) bound of Stein and Strömberg, one
must genuinely use the underlying geometry of the normed vector space and not just the
metric properties, or the Lp theory. For instance, to obtain the bound of O(n) in the case of
the Euclidean metric in [47], it was necessary to exploit the relationship between averaging on
balls and the heat semigroup, in order that the Hopf-Dunford-Schwartz maximal inequality
can be used. A similar strategy was used for the Heisenberg group in [30]. This type of
relationship does not appear to be available for general norms on Rn.

The results presented above are simple corollaries of a general localization phenomenon for
maximal inequalities, which we shall now describe. In fact, for the bound (4) to hold true,
we need to assume a condition which is less restrictive than the Ahlfors-David regularity
condition (3); in particular it need not hold for all radii r, and it thus also applies to discrete
groups of polynomial growth, equipped with the word metric and the counting measure. All
of these issues are explained in the following subsection.

1.1. Microdoubling and the localization theorem. Let (X, d, µ) be a metric measure
space. For R ⊆ (0,∞) we consider the maximal operator corresponding to radii in R, which
is defined by

MRf(x)
def
= sup

r∈R

1

µ(B(x, r))

∫
B(x,r)

|f | dµ. (7)

Thus, using our previous notation, M = M(0,∞).

2One can modify the argument to make C arbitrarily close to 1, but we will not do so here as it requires
more artificial constructions.

3It seems likely however that the original Stein-Strömberg argument can be extended to this setting.
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We shall say that (X, d, µ) is n-microdoubling with constant K if for all x ∈ X and all
r > 0 we have

µ

(
B

(
x,

(
1 +

1

n

)
r

))
6 KB(x, r). (8)

The case n = 1 in (8) is the classical K-doubling condition

∀x ∈ X ∀r > 0, µ (B (x, 2r)) 6 KB(x, r). (9)

Note that (8) follows from the Ahlfors-David n-regularity condition (3), with K = eC.
The microdoubling property appeared in various guises in the literature; for example, it
follows from a lemma of Colding and Minicozzi [18] (see also Proposition 6.12 in [14]) that
if (X, d, µ) is a K-doubling length space, then it is also n-microdoubling with constant O(1),

where n = eK
O(1)

. We note in passing that this exponential dependence on K is necessary,
as exhibited by the interval X = [1, N ], with the metric inherited from R, and the measure
whose density is ϕ(x) = 1

x
; the doubling constant for this length space is of order logN , but

it can only be n-microdoubling with n a power of N .
Our main result is the following localization theorem for maximal inequalities on mi-

crodoubling spaces. It deals, for any 1 6 p < ∞, with the weak (p, p) norm of MR, defined
as the optimal number ‖MR‖Lp(X)→Lp,∞(X) for which the distributional inequality

µ (MRf > λ) 6
‖MR‖pLp(X)→Lp,∞(X)

λp
‖f‖pLp(X)

holds for all f ∈ Lp(X) and λ > 0.

Theorem 1.1 (Localisation). Fix n > 1 and K > 5. Let (X, d, µ) be a metric measure space
satisfying the microdoubling condition (8). Fix ∅ 6= R ⊆ (0,∞) and p > 1. Then we have

‖MR‖Lp(X)→Lp,∞(X) . K +

(
1 +

log logK

1 + log n

)1/p

sup
r>0

∥∥MR∩[r,nr]

∥∥
Lp(X)→Lp,∞(X)

. (10)

Remark 1.1. In the converse direction, one trivially has

‖MR‖Lp(X)→Lp,∞(X) > sup
r>0

∥∥MR∩[r,nr]

∥∥
Lp(X)→Lp,∞(X)

.

Note that the term log logK
1+logn

in (10) is always at most log logK. Thus when K is independent

of n, up to constants, in order to establish a weak (p, p) maximal inequality for spaces
obeying (8), it suffices to do so for scales localized to an interval [r, nr]. In many cases (e.g.
finite-dimensional normed vector spaces) we can also rescale to r = 1.

1.2. Weak (1, 1) norm bounds. To deduce some corollaries of Theorem 1.1, fix an integer
m ∈ N, and note that for all f ∈ Lp(X) and r, λ > 0 we have,

µ
(
MR∩[r,nr]f > λ

)
= µ

(
max

06j6m−1
MR∩[rnj/m,rn(j+1)/m]f > λ

)
6

m−1∑
j=0

µ
(
MR∩[rnj/m,rn(j+1)/m]f > λ

)
6 m max

06j6m−1
µ
(
MR∩[rnj/m,rn(j+1)/m]f > λ

)
.

Thus, under the assumptions of Theorem 1.1 (and specializing to p = 1), we have for every
m ∈ N,
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‖MR‖L1(X)→L1,∞(X) . K +m

(
1 +

log logK

1 + log n

)
sup
r>0

∥∥∥MR∩[r,n1/mr]

∥∥∥
L1(X)→L1,∞(X)

. (11)

Note that for m > 2n log n we have n1/m 6 1 + 1
n
, and hence for all r > 0,

MR∩[r,n1/mr]f 6
1

µ(B (x, r))

∫
B(x,(1+ 1

n)r)
|f |dµ

(8)

6 KA1+ 1
n
f, (12)

where Ar is the averaging operator:

Arf(x)
def
=

1

µ(B(x, r))

∫
B(x,r)

|f | dµ. (13)

Under some mild uniformity assumption on µ, the strong (1, 1) norm of Ar is bounded for
all r > 0. For example, if µ(B(x, r)) does not depend on x (as is the case for invariant
metrics and measures on groups), then a simple application of Fubini’s theorem shows that
‖Ar‖L1(X)→L1(X) 6 1. In fact, if we knew that µ(B(x, r)) 6 Kµ(B(y, r)) for all x ∈ X and
y ∈ B(x, r) (which is a trivial consequence of the Ahlfors-David regularity condition (3)),
then we would have by the same reasoning ‖Ar‖L1(X)→L1(X) 6 K. An elegant way to combine
this uniformity condition with the microdoubling condition (8), is to impose the following
condition, which we call strong n-microdoubling with constant K:

∀x ∈ X ∀r > 0 ∀y ∈ B(x, r), µ

(
B

(
y,

(
1 +

1

n

)
r

))
6 KB(x, r). (14)

Thus, by a combination of (11) and (12), we see that if (X, d, µ) satisfies (14), then
‖M‖L1(X)→L1,∞(X) .K n log n. Similarly, if R ∩

[
r, n1/mr

]
contains at most one point for all

r > 0, then ‖MR‖L1(X)→L1,∞(X) .K m. This happens in particular if

R = 2Z =
{

2k : k ∈ Z
}
,

and m � log n, proving the following corollary:

Corollary 1.2. Fix n > 1 and K > 5. Let (X, d, µ) be a metric measure space satisfying
the strong n-microdoubling condition (14). Then

‖M‖L1(X)→L1,∞(X) .K n log n, (15)

‖M2Z‖L1(X)→L1,∞(X) .K log n. (16)

The lacunary maximal function M2Z was previously studied for n-dimensional normed
spaces by Bourgain in [9], where he proved that its strong (p, p) norm is bounded by a
dimension independent constant Cp <∞ (recall that for the non-lacunary maximal function
this is only known for p > 3

2
). The logarithmic upper bound (16) on the weak (1, 1) norm

of the lacunary maximal function when X is an n-dimensional normed space was proved by
Menárguez and Soria in [35].

In section 4 we present a different approach to the proof of Corollary 1.2, following an
argument of E. Lindenstrauss [31]. While it gives slightly weaker results, and does not yield
the localization theorem, this approach is of independent interest. Moreover, Lindenstrauss’
approach is based on a beautiful randomization of the Vitali covering argument, and as
such complements our approach to Theorem 1.1, which is based on a random partitioning
method that originated in theoretical computer science and combinatorics (an overview of
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our technique is contained in Section 1.3). The maximal functions considered in [31] arose
when taking averages over Følner sequences of an amenable group action on a measure space,
and were thus not directly connected to the metric questions that are studied in the present
paper. Nevertheless we consider the arguments in Section 4 to be essentially the same as
those in [31]. We thank Raanan Schul for pointing out how the maximal inequality of E.
Lindenstrauss implies the Hardy-Littlewood maximal inequality under strong microdoubling.

1.3. Ultrametric approximations: deterministic and random. Doob’s classical max-
imal inequality for martingales (see Section 2) is perhaps the simplest and most versatile
maximal inequality for which the weak (1, 1) norm is known exactly (and is equal to 1). Our
proof of Theorem 1.1 relates the weak (1, 1) inequality for M to the maximal inequality for
martingales, by allowing the martingale itself to be a random object. We show that while the
weak (1, 1) inequality is not itself a martingale inequality, it is possible to associate to each
f ∈ L1(X) a distribution over random martingales. These random martingales stochastically
approximate Mf , in the sense that we can write down a variant of Doob’s inequality for each
of them, which, under the microdoubling assumption, in expectation yields theorem 1.1. The
details are presented in Section 3.

An alternative interpretation of Doob’s maximal inequality is that if (X, d, µ) is a metric
measure space, and if in addition d is an ultrametric, i.e., d(x, y) 6 max{d(x, z), d(z, y)} for
all x, y, z ∈ X, then ‖M‖L1(X)→L1,∞(X) 6 1. Indeed, restrict for simplicity to the case of a
finite ultrametric, in which case we obtain an induced hierarchical family of partitions of X
into balls, where each ball at a given “level” is the union of balls of smaller radii at the next
“level”. This picture immediately shows that by considering the averages of f on smaller
and smaller balls, in the ultrametric case we can reduce the weak (1, 1) inequality for Mf
to Doob’s maximal inequality.

Of course, not every metric is an ultrametric, or even close to an ultrametric. Nevertheless,
over the previous two decades, researchers in combinatorics and computer science developed
methods to associate to a general metric space (X, d) a distribution over random ultrametrics
ρ on X, which dominate d and sufficiently approximate it in various senses (depending on the
application at hand). Such methods are often also called “random partitioning methods”,
in reference to the hierarchical (tree) structure of ultrametrics. This approach originated
in the pioneering works of Linial and Saks [32] and Alon, Karp, Peleg and West [2], and
has been substantially developed and refined by Bartal [4, 5]. Important contributions of
Calinescu, Karloff and Rabani [12] and Fakcharoenphol, Rao and Talwar [22] resulted in a
sharp form of “Bartal’s random tree method”, and our work builds on these ideas. In [36, 37]
such random ultrametrics were used in order to prove maximal-type inequalities of a very
different nature (motivated by embedding problems, as ultrametrics are isometric to subsets
of Hilbert space [29]); these results also served as some inspiration for our work.

One should mention here that the idea of relating metrics to ultrametric models is, of
course, standard. Hierarchical partitioning schemes are ubiquitous in analysis and geome-
try (see the discussion of Calderón-Zygmund decompositions in [45], or, say, Christ’s cube
construction in [16]). Proving maximal inequalities by considering certain Hierarchical parti-
tions is extremely natural; a striking example of this type is Talagrand’s majorizing measure
theorem [49], which deals with sharp maximal inequalities for Gaussian processes via a con-
struction of special ultrametrics (the ultrametric approach is explicit in [49], and has an
alternative later description [50] via the so called “generic chaining”; see also [26]). Explicit
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uses of random coverings and partitions in the context of purely analytic problems occurred
in E. Lindenstrauss’ aforementioned randomization of the Vitali covering argument for the
purpose of pointwise theorems for amenable groups [31], and in the work of Nazarov, Treil
and Volberg [39] on T (b) theorems on non-homogeneous spaces. See also [28] for applications
to extensions of Lipschitz functions.

1.4. Lower bounds. A standard application of the Vitali covering argument (see e.g. [46]
or [52]) yields the inequality ∥∥∥M̃f

∥∥∥
L1,∞(X)

6 ‖f‖L1(X), (17)

where M̃f is the modified Hardy-Littlewood maximal operator

Mf(x)
def
= sup

r>0

1

µ(B(x, r, r))

∫
B(x,r)

|f | dµ,

and B(x, r) ⊆ B(x, r, r) ⊆ B(x, 2r) is the enlarged ball

B(x, r, r)
def
=

⋃
y∈B(x,r)

B(y, r) = {z ∈ X : d(x, y), d(y, z) 6 r for some y ∈ X}.

In particular, if we have the doubling condition (9), then

‖M‖L1(X)→L1,∞(X) 6 K. (18)

The factor 2 in (9) cannot be replaced by any smaller number while still retaining linear
behavior in terms of K of the weak (1, 1) operator norm; see [43].

In the absence of any further assumptions on the metric measure space, the bound (18) is
close to sharp:

Proposition 1.5 (The star counterexample). Fix K > 1. Then there exists a metric measure
space obeying (9) with

‖M‖L1(X)→L1,∞(X) > bKc − 1.

Proof. Without loss of generality we may take K to be an integer. Let X be the “star” graph
formed by connecting one “hub” vertex v0 to (K−1)2 other “spoke” vertices v1, . . . , v(K−1)2 ,
with the usual graph metric (thus d(v0, vi) = 1 and d(vi, vj) = 2 for all distinct i, j ∈
{1, . . . , (K − 1)2}). Let µ be the measure which assigns the mass K − 1 to v0 and mass 1
to all other vertices; one easily verifies that (9) holds. Let f ∈ L1(X) be the function which
equals 1 on v0 and vanishes elsewhere. Then one easily verifies that ‖f‖L1(X) = K − 1, that

µ(X) = K(K − 1), and that Mf(x) > K−1
K

for all x ∈ X, and the claim follows. �

Remark 1.2. One can achieve a similar effect in a high-dimensional Euclidean space Rn. If
we let X = {0, e1, . . . , en} be the origin and standard basis with the usual Euclidean metric

and counting measure, then (9) holds with K
def
= n + 1, while if we let f be the indicator

function of 0, then Mf(x) > 1
2

for all x ∈ X, and so ‖M‖L1(X)→L1,∞(X) > n+1
2

= K
2

. A more
sophisticated version of this example was observed in [44]: if we take X to be the origin
0, together with a maximal 1.01-separated (say) subset of the sphere Sd−1, then (9) holds
for K = |X| > Cn for some absolute constant C > 1, but ‖M‖L1(X)→L1,∞(X) > K

2
by the

same argument as before. In particular this shows that the Hardy-Littlewood weak (1, 1)
operator norm (as well as the Lp operator norm for any fixed 1 < p < ∞) for measures
in Rn can grow exponentially in the dimension n. In the converse direction, a well-known
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application of the Besicovitch covering lemma [6, 7] shows that ‖M‖L1(X)→L1,∞(X) 6 Cn for
some absolute constant C whenever X is a subset of Rn with the Euclidean metric, and µ is
an arbitrary Radon measure. In particular, as observed in [44], this shows that the constants
in the Besicovitch covering lemma must grow exponentially in the dimension (see also [24]).

1.5.1. Adding more hypotheses. Despite the example in Proposition 1.5, we know due to
Corollary 1.2 that in many cases the bound (18) can be significantly improved. In partic-
ular, a more meaningful variant of Proposition 1.5 would be if we also impose the natural
uniformity condition that µ(B(x, r)) is independent of x ∈ X. As discussed in Section 1.2,
this immediately implies that the averaging operators Ar given in (13) are now contractions
on L1(X). Thus in order for the weak (1, 1) operator norm to be large, one needs to have
contributions to the set {Mf > λ} from several scales r, rather than just a single scale as
in Proposition 1.5.

Another hypothesis that one can add, in order to make a potential counter-example more
meaningful, is that the maximal operator M is already of strong-type (p, p) for all 1 < p 6∞,
as we know to be the case for X = `n2 , due to Stein’s theorem [45]. Finally, we can make the
task of bounding the maximal operator easier by replacing M with the lacunary maximal
operator M2Z .

Our first main construction shows that even with all of these additional hypotheses and
simplifications, we still cannot improve significantly upon (18).

Theorem 1.3 (Doubling example). Let K > 1. Then there exists a metric measure space
(X, d, µ) with X an Abelian group and d, µ translation-invariant, such that the doubling
condition (9) holds, and ‖M‖Lp(X)→Lp(X) .p 1 holds for all 1 < p 6 ∞ (with the implied
constant independent of K), but such that

‖M2Z‖L1(X)→L1,∞(X) >
K

48
. (19)

We prove this theorem in Section 6.3. The basic idea is to first build a maximal operator
not arising from a metric measure space which is of strong type (p, p) but not of weak type
(1, 1), and then take an appropriate “tensor product” of this operator with a martingale
type operator to obtain a new operator which is essentially a lacunary maximal operator
associated to a metric measure space. The constant 48 in (19) can of course be improved,
but we will not seek to optimize it here.

As stated earlier, we also construct an example of a metric measure space that shows that
Corollary 1.2 is sharp even under the stronger Ahlfors-David regularity condition (3).

Theorem 1.4 (Ahlfors-David regular example). Assume that n > 2. Then there exists an
Abelian group G, with invariant measure µ and an invariant metric d, obeying the Ahlfors-
David n-regularity condition (3) with K = 81, such that

‖M‖L1(G)→L1,∞(G) & n log n, (20)

and
‖M2Z‖L1(G)→L1,∞(G) & log n. (21)

Furthermore we have
‖M‖Lp(G)→Lp(G) .p 1 (22)

for all 1 < p 6∞.
9



1.6. The example of the infinite tree. The above examples seem to indicate that the
weak (1, 1) behavior of the Hardy-Littlewood maximal function can deteriorate substantially
when the doubling constant is large, even when assuming good Lp bounds, as well as unifor-
mity assumptions on the measure of balls. Nevertheless, there are some interesting examples
of metric measure spaces with very poor (or non-existent) doubling properties, for which one
still has a weak (1, 1) bound. We give just one example of this phenomenon, namely the
infinite regular tree.

Theorem 1.5 (Hardy-Littlewood inequality for the infinite tree). Fix an integer k > 2, and
let T be the infinite rooted k-ary tree, with the usual graph metric d and counting measure
µ. Then we have

‖M‖L1(T )→L1,∞(T ) . 1

(Thus the implied constant is independent of the degree k.)

We prove this theorem in Section 5. We remark that the Lp boundedness of this maximal
function for p > 1 was essentially established by Nevo and Stein in [40]. The argument
here proceeds very differently from the usual covering type arguments, which are totally
unavailable here due to the utter lack of doubling for this tree. Instead, we use a more
combinatorial argument taking advantage of the “expander” or “non-amenability” properties
of this tree, which roughly asserts that any given finite subset of the tree must have large
boundaries at every distance scale.

When k is odd, T is almost4 identifiable with the free group on k+1
2

generators. The above
theorem then suggests that a maximal ergodic theorem in L1 should be available for ergodic
actions of free groups on measure-preserving systems (the analogous Lp maximal theorems for
p > 1 being established in [40]). However, the non-amenability of the free group prevents one
from applying standard arguments to transfer Theorem 1.5 to this setting (indeed, our proof
of Theorem 1.5 will rely heavily on this non-amenability). Thus the following conjecture
remains open:

Conjecture 1. Let F be a finitely generated free group, and let w 7→ Tw be an ergodic action
of F on a probability space (X,B, µ). Then∥∥∥∥∥∥sup

n>1

1

|B(id, n)|
∑

w∈B(id,n)

|Twf |

∥∥∥∥∥∥
L1,∞(X)

. ‖f‖L1(X)

for all f ∈ L1(X), where B(id, n) is the collection of words in F of length less than n.

We remark that by applying the pointwise convergence theorems in [40] and a standard
density argument, Conjecture 1 would imply the pointwise convergence result

lim
n→∞

1

|B(id, n)|
∑

w∈B(id,n)

Twf(x) =

∫
X

f dµ

for all f ∈ L1(X) and almost every x ∈ X. This result is currently known for f ∈ Lp(X) for
p > 1, due to [40].

4More precisely, one needs to enlarge the tree at the root to have k+ 1 descendants instead of k. But one
can easily check that this change only affects the weak (1, 1) norm of the maximal function by a constant at
worst.
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2. Doob-type maximal inequalities

Let (X, d, µ) be a metric measure space with µ(X) < ∞ (more generally, the arguments
below extend to the σ-finite case). If F is a σ-algebra of measurable sets in X, we let Lp(F )
denote the space of Lp(X) functions which are F -measurable. The orthogonal projection
from L2(X) to the closed subspace L2(F ) will be denoted f 7→ E(f |F ), and as is well known
it extends to a contraction on Lp(X) for all 1 6 p 6∞. The following important inequality
of Doob is classical (see [19, 21]).

Proposition 2.1 (Doob’s maximal inequality). Let F0 ⊆ F1 ⊆ F2 ⊆ · · · be an increasing
sequence of σ-algebras. Then we have

f ∈ L1(X) =⇒
∥∥∥∥sup
k>0

∣∣E(f |Fk)
∣∣∥∥∥∥
L1,∞(X)

6 ‖f‖L1(X),

and for 1 < p 6∞,

f ∈ Lp(X) =⇒
∥∥∥∥sup
k>0

∣∣E(f |Fk)
∣∣∥∥∥∥
Lp(X)

6
p

p− 1
‖f‖Lp(X).

We now establish a variant of this inequality, in which the expectations E(f |Fk) are
replaced by more general sublinear operators.

Theorem 2.1 (Modified Doob’s inequality). Let F0 ⊆ F1 ⊆ F2 ⊆ · · · be an increasing
sequence of σ-algebras and fix 1 6 p < ∞. For each k ∈ N let Mk be a sublinear operator5

defined on Lp(X) + L∞(X) such that we have the bounds

f ∈ Lp(X) =⇒ ‖Mkf‖Lp,∞(X) 6 A‖f‖Lp(X), (23)

and
f ∈ L∞(X) =⇒ ‖Mkf‖L∞(X) 6 B

∥∥E (|f |∣∣Fk

)∥∥
L∞(X)

. (24)

Suppose also that we have the localization property

f ∈ Lp(X) + L∞(X) ∧ Ek ∈ Fk =⇒ 1EkMk+1f = Mk+1 (1Ekf) . (25)

Then we have ∥∥∥∥sup
k>0
|Mkf |

∥∥∥∥
Lp,∞(X)

6 ((2A)p + (2B)p)1/p ‖f‖Lp(X)

for all f ∈ Lp(X).

Remark 2.1. Observe that the properties (24), (25) (with B = 1) are satisfied by the

projection operator Mk+1f
def
= E(f |F ) whenever Fk ⊆ F ⊆ Fk+1. Thus (24), (25) can be

viewed together as a kind of assertion that Mk+1 lies “between” Fk and Fk+1 in some sense.

5By this we mean that |Mk(f + g)| 6 |Mk(f)|+ |Mk(g)| and |Mk(cf)| = |c| · |Mkf | for all functions f, g
in the domain of Mk and all constants c ∈ R.
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Proof. By monotone convergence we may restrict the supremum over k > 0 to a finite range,
say 0 6 k 6 K for some finite K ∈ N. We can then assume without loss of generality that
Fk is the trivial algebra {∅, X} for all k < 0. By homogeneity it suffices to show that

f ∈ Lp(X) =⇒ µ

(
sup

06k6K
|Mkf | > 1

)
6 ((2A)p + (2B)p)

∫
X

|f |p dµ. (26)

Fix f ∈ Lp(X) and note that Doob’s maximal inequality implies that

µ

(
sup

06k6K
E
(
|f |
∣∣Fk

)
>

1

2B

)
6 µ

(
sup

06k6K
E
(
|f |p
∣∣Fk

)
>

1

(2B)p

)
6 (2B)p

∫
X

|f |p dµ.

Thus in order to prove (26) it will suffice to show that

µ

({
sup

06k6K
|Mkf | > 1

}
\
{

sup
06k6K

E
(
|f |
∣∣Fk

)
>

1

2B

})
6 (2A)p

∫
X

|f |p dµ. (27)

Consider the inclusion{
sup

06k6K
|Mkf | > 1

}
\
{

sup
06k6K

E
(
|f |
∣∣Fk

)
>

1

2B

}
⊆

K⋃
k=0

{
|Mkf | > 1 ∧ sup

06j<k
E
(
|f |
∣∣Fj

)
<

1

2B

}
. (28)

Therefore, if we introduce the sets

Ak
def
= X \

⋃
06j<k

{
E
(
|f |
∣∣Fj

)
>

1

2B

}
,

and

Ωk
def
=

{
E
(
|f |
∣∣Fk

)
>

1

2B

}
∩ Ak.

Then Ak ∈ Fk−1, the sets Ωk are disjoint, and using (25) we see that (28) implies the
inclusion{

sup
06k6K

|Mkf | > 1

}
\
{

sup
06k6K

E
(
|f |
∣∣Fk

)
>

1

2B

}
⊆

K⋃
k=0

{|1AkMkf | > 1}

=
K⋃
k=0

{|Mk(1Akf)| > 1} . (29)

On the other hand, from (24) we have∥∥Mk(f1Ak\Ωk)
∥∥
L∞(X)

6 B
∥∥E (|f |1Ak\Ωk∣∣Fk

)∥∥
L∞(X)

= B
∥∥E (|f |∣∣Fk

)
1Ak\Ωk

∥∥
L∞(X)

6 B · 1

2B
=

1

2
.

Hence by the sublinearity of Mk we have the following inclusion (up to sets of measure zero):

{|Mk(f1Ak)| > 1} ⊆
{
|Mk(f1Ωk)| >

1

2

}
. (30)
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Combining (29) with (30) and the assumption (23), we obtain

µ

({
sup

06k6K
|Mkf | > 1

}
\
{

sup
06k6K

E
(
|f |
∣∣Fk

)
>

1

2B

})
6

K∑
k=0

µ

(
|Mk(f1Ωk)| >

1

2

)

6
K∑
k=0

(2A)p
∫

Ωk

|f |p dµ = (2A)p
∫
⋃K
k=0 Ωk

|f |pdµ 6 (2A)p
∫
X

|f |p dµ.

This is precisely the estimate (27), as desired. �

3. Localization of maximal inequalities

Let (X, d, µ) be a bounded metric measure space. Given a partition P of X and x ∈ X,
we denote by P(x) the unique element of P containing X. We shall say that a sequence
{Pk}∞k=0 of partitions of X is a partition tree if the following conditions hold true:

• P0 is the trivial partition {X}.
• For every x ∈ X and k ∈ {0} ∪ N we have

diam(Pk(x)) 6
diam(X)

2k
. (31)

• For every k ∈ {0} ∪ N the partition Pk+1 is a refinement of the partition Pk, i.e.,
for every x ∈ X we have Pk+1(x) ⊆Pk(x).

For β > 0, a probability distribution Pr over partition trees {Pk}∞k=0 is said to be β-padded
if for every x ∈ X and every k ∈ N,

Pr

[
B

(
x,
β diam(X)

2k

)
⊆Pk(x)

]
>

1

2
. (32)

Note that (32) has the following simple consequence, which we will use later: for every
measurable set Ω ⊆ X denote

Ω
pad(k)
β

def
=

{
x ∈ Ω : B

(
x,
β diam(X)

2k

)
⊆Pk(x)

}
. (33)

Thus Ω
pad(k)
β is a random subset of Ω. By Fubini’s theorem we have:

E
[
µ
(

Ω
pad(k)
β

)]
=

∫
Ω

Pr

[
B

(
x,
β diam(X)

2k

)
⊆Pk(x)

]
dµ(x)

(32)

>
µ(Ω)

2
. (34)

Remark 3.1. In the definitions above we implicitly made the assumptions that certain
events are measurable in the appropriate measure spaces. Namely, for (32) we need the

event
{
B
(
x, β diam(X)

2k

)
⊆Pk(x)

}
to be Pr-measurable for every x ∈ X and k ∈ {0} ∪ N,

and for (34) we need the event
{

(x, {Pk}∞k=0) : x ∈ Ω ∧ B
(
x, β diam(X)

2k

)
⊆Pk(x)

}
to be

measurable with respect to µ × Pr for all k ∈ {0} ∪ N. These assumptions will be trivially
satisfied in the concrete constructions below.

Remark 3.2. In the above definitions we made some arbitrary choices: the factor 1
2k

in (31)

can be taken to be some other factor rk > 0, and the 1
2

lower bound on the probability
in (32) can be taken to be some other probability pk. Since we will not use these additional
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degrees of freedom here, we chose not to mention them for the sake of simplifying notation.
But, the arguments below can be easily carried out in greater generality, which might be
useful for future applications of these notions.

The following lemma deals with the existence of padded random partition trees on mi-
crodoubling metric measure spaces. The argument is similar to the proof of Theorem 3.17
in [28], which is based on ideas from the theoretical computer science literature [12, 22]. The
last part of the argument is in the spirit of the proof of the main padding inequality in [37].

Lemma 3.1. Fix n > 1 and K > 5. Let (X, d, µ) be a separable bounded metric measure
space which satisfies (8). Then X admits a 1

16n logK
-padded probability distribution over

partition trees.

Remark 3.3. Let (X, d) is a separable complete and bounded metric space which is doubling
with constant λ, i.e., every ball in X can be covered by at most λ balls of half the radius.
It is a classical fact, due to Vol′berg and Konyagin [54] in the case of compact spaces, and
Luukkainen and Saksman [33] in the case of general complete spaces (see also [55] and chapter
13 in [27]), that X admits a non-degenerate measure µ which is doubling with constant λ2

(the power 2 can be replaced here by any power bigger than 1). Thus the conclusion of
Lemma 3.1 holds in this case with n = 1 and K = λ2.

Proof of Lemma 3.1. By rescaling the metric we may assume without loss of generality that
diam(X) = 1. Since X is bounded, µ(X) < ∞, and we may therefore normalize µ to be
a probability measure. Let x1, x2, x3, . . . be points chosen uniformly and independently at
random from X according to the measure µ, i.e., (x1, x2, . . .) is distributed according to
the probability measure µ⊗ℵ0 . For each k let rk be a random variable that is distributed
uniformly on the interval

[
2−k−2, 2−k−1

]
. We assume that r1, r2, . . . are independent. Let Pr

denote the joint distribution of (x1, x2, . . .), (r1, r2, . . .).
For every k ∈ N define a random variable jk : X → N ∪ {∞} by

jk(x)
def
= inf {j ∈ N ∪ {∞} : d(x, xj) 6 rk} .

Note that jk(x) is almost surely finite for every x ∈ X, since each xj has positive probability
of falling into B(x, rk) ⊇ B

(
x, 2−k−2

)
(see the argument in [28] for more details). Since X

is separable, it follows that the event
⋃
x∈X

⋃∞
k=1{jk(x) < ∞} has probability 1. From now

on we will condition on this event.
For every k ∈ N and `1, . . . , `k ∈ N define

P (`1, . . . , `k)
def
= {x ∈ X : j1(x) = `1, . . . , jk(x) = `k} .

Then Pk
def
= {P (`1, . . . , `k) : `1, . . . , `k ∈ N} is a partition of X. By definition

P (`1, . . . , `k) ⊆ B(x`k , rk) ⊆ B
(
x`k , 2

−k−1
)
,

and for all k ∈ N,

P (`1, . . . , `k, `k+1) ⊆ P (`1, . . . , `k).

Therefore Pk+1 is a refinement of Pk and diam(Pk(x)) 6 2−k for all x ∈ X.
Denote

β =
1

16n logK
. (35)
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Since K > 5, we have β < 1
25

. Fix k ∈ N and x ∈ X and observe that

Pr

[
B

(
x,
β

2k

)
⊆Pk(x)

]
= Pr

[
k⋂
`=1

{
∀y ∈ B

(
x,
β

2k

)
, j`(x) = j`(y)

}]

> 1−
k∑
`=1

Pr

[
∃y ∈ B

(
x,
β

2k

)
, j`(x) 6= j`(y)

]
. (36)

Fix ` ∈ {1, . . . , k}. Observe the following inclusion:{
∃y ∈ B

(
x,
β

2k

)
, j`(x) 6= j`(y)

}
⊆
∞⋃
i=1

i−1⋂
j=1

{
r` −

β

2k
< d(xi, x) 6 r` +

β

2k
∧ d(xj, x) > r` +

β

2k

}
. (37)

To prove (37), assume that the event on the left hand side of (37) occurs, i.e., that there
is some y ∈ B

(
x, β

2k

)
for which j`(x) 6= j`(y). Let i ∈ N be the first index such that

d(xi, x) 6 r` + β
2k

. In order to prove that the event in the right hand side of (37) occurs,

it suffices to show that the event
⋂i−1
j=1

{
r` − β

2k
< d(xi, x) 6 r` + β

2k
∧ d(xj, x) > r` + β

2k

}
occurs, which, by the minimality of i, is equivalent to showing that d(xi, x) > r` − β

2k
. So,

assume for the sake of contradiction that d(xi, x) 6 r` − β
2k

. This implies in particular that

j`(x) = i, and moreover, since y ∈ B
(
x, β

2k

)
, we have d(xi, y) 6 r`, implying that j`(y) 6 i.

But, d
(
x, xj`(y)

)
6 d

(
y, xj`(y)

)
+ d(x, y) 6 r` + β

2k
, and the minimality of i implies that

j`(y) > i. Thus j`(y) = i = j`(x), contradicting our assumption on y.
Now, (37) implies that

Pr

[
∃y ∈ B

(
x,
β

2k

)
, j`(x) 6= j`(y)

]
6 2`+2

∫ e−`−1

2−`−2

(
µ

(
B

(
x, r +

β

2k

))
− µ

(
B

(
x, r − β

2k

)))
·

(
∞∑
i=1

(
1− µ

(
B

(
x, r +

β

2k

)))i−1
)
dr

= 1− 2`+2

∫ 1
2
e−`b

1
4
e−`b

µ
(
B
(
x, r − β

2k

))
µ
(
B
(
x, r + β

2k

))dr. (38)

Denote h(t)
def
= log µ (B(x, s)). Then by Jensen’s inequality we see that

2`+2

∫ 2−`−1

2−`−2

µ
(
B
(
x, r − β

2k

))
µ
(
B
(
x, r − β

2k

))dr = 2`+2

∫ 2−`−1

2−`−2

eh(r−
β

2k
)−h(r+ β

2k
)dr

> exp

(
2`+2

∫ 2−`−1

2−`−2

[
h

(
r − β

2k

)
− h

(
r +

β

2k

)]
dr

)
. (39)
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The expression in the exponent in (39) can be estimated as follows:∫ 2−`−1

2−`−2

[
h

(
r − β

2k

)
− h

(
r +

β

2k

)]
dr =

∫ 2−`−2+β2−k

2−`−2−β2−k
h (s) ds−

∫ 2−`−1+β2−k

2−`−1−β2−k
h (s) ds

> β2−k+1
[
h
(
2−`−2 − βe−k

)
− h

(
2−`−1 + β2−k

)]
. (40)

By recalling the definition of h, a combination of (38), (39), (40) yields the bound,

Pr

[
∃y ∈ B

(
x,
β

2k

)
, j`(x) 6= j`(y)

]
> 1−

(
µ
(
B
(
x, 2−`−2 − β2−k

))
µ (B (x, 2−`−1 + β2−k))

)β2−(k−`)+3

. (41)

Note that since ` 6 k and β 6 1
25

we know that 2−`−1 + β2−k 6
(
1 + 1

n

)n+1 (
2−`−2 − β2−k

)
.

Hence, combining the assumption (8) with (41), we see that

Pr

[
∃y ∈ B

(
x,
β

2k

)
, j`(x) 6= j`(y)

]
6 1−K−(n+1)β2−(k−`)+3

6 (n+ 1)β2−(k−`)+3 logK
(35)

6 2−(k−`). (42)

Plugging (42) into (36) we see that

Pr

[
B

(
x,

1

16n logK
· 2−k

)
⊆Pk(x)

]
= Pr

[
B

(
x,
β

2k

)
⊆Pk(x)

]
> 1−

k∑
`=1

2−(k−`) >
1

2
.

This is precisely the statement that the partition tree {Pk}∞k=0 is 1
16n logK

-padded. �

The connection between the existence of padded random partition trees and the Hardy-
Littlewood maximal inequality is established in the proof of Theorem 1.1.

Proof of Theorem 1.1. By a standard monotone convergence argument we may assume that
R is bounded, say R ⊆ [0, D] for some D > 1. Fix f ∈ Lp(X). By homogeneity it suffices to
show that

µ (MRf > 1) . Cp

((
1 +

log logK

1 + log n

)
Qp +Kp

)∫
X

|f |pdµ,

where C > 0 is a universal constant and

Q
def
= sup

r>0

∥∥MR∩[r,nr]

∥∥
Lp(X)→Lp,∞(X)

. (43)

By monotone convergence we may assume that f (and hence alsoMRf) has bounded support.
We would like to apply Theorem 2.1, but unfortunately there are no obvious candidates for
Fk with which we have either (24) or (25). Nevertheless, we shall be able to proceed by
replacing MR with a slightly modified variant.

Let E be the support of f and denote

E ′
def
= {x ∈ X : d(x,E) 6 D},

and

E ′′
def
= {x ∈ X : d(x,E) 6 2D}.
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Then E ⊆ E ′ ⊆ E ′′ and diam(E ′′) 6 4D + diam(E) <∞. Moreover the support of MRf is
contained in E ′. It will therefore suffice to prove that

‖MR‖Lp(E′)→Lp,∞(E′′) .

(
1 +

log logK

1 + log n

)
Q+K.

By rescaling the metric we may assume that diam(E ′′) = 1. Once this is achieved we may
also assume that R ⊆ (0, 1], since the operator MR∩(1,∞), viewed as an operator on Lp(E

′),
is pointwise bounded by the averaging operator on E ′.

Using Lemma 3.1, let {Pk}∞k=0 be a random partition tree on E ′′ which is β-padded, where

β =
1

16n logK
.

Let m be the largest integer such that 2−m 6 β. Denote for k > 0 and i ∈ {1, 2, 3},

Ri
k

def
= R ∩

[
2−(3k+i)m, 2−(3k−1+i)m

]
and Ri def

=
⋃

k∈N∪{0}

Ri
k.

Thus R = R1 ∪R2 ∪R3, which implies that

µ (MRf > 1) = µ (max {MR1f,MR2f,MR3f} > 1)

6 µ (MR1f > 1) + µ (MR2f > 1) + µ (MR3f > 1) . (44)

Fix i ∈ {1, 2, 3} and k ∈ N ∪ {0}, and define

Ei
k

def
=
{
x ∈ E ′ : MRik

f(x) > 1
}
\
k−1⋃
j=0

{
x ∈ E ′ : MRij

f(x) > 1
}
.

Then the sets Ei
k are disjoint and

µ (MRif > 1) = µ

(
sup

k∈N∪{0}
MRik

f > 1

)
=
∞∑
k=0

µ
(
Ei
k

)
. (45)

Recalling (33), we denote

Ẽi
k

def
= (Ei

k)
pad((3(k−1)+i+1)m)
β =

{
x ∈ Ei

k : B

(
x,

β

2(3(k−1)+i+1)m

)
⊆P(3(k−1)+i+1)m(x)

}
.

Then by (34) we know that

E
[
µ
(
Ẽi
k

)]
>
µ (Ei

k)

2
. (46)

Plugging (46) into (45) we see that

µ (MRif > 1) 6 2E

[
∞∑
k=0

µ
(
Ẽi
k

)]
= 2E

[
µ

(
sup

k∈N∪{0}
M̃Rik

f > 1

)]
, (47)

where M̃Rik
is the sublinear operator

M̃Rik
g

def
= 1Ẽik

MRik
g.

17



Write r = 2−(3k+i)m and let v � 1 + log logK
1+logn

be an integer such that 2m/v 6 n. By the

definition of Q, for every g ∈ Lp(E ′) and t > 0 we have

µ
(
M̃Rik

g > t
)
6 µ

(
MRik

g > t
)

= µ
(
MR∩[r,2mr]g > t

)
6

v−1∑
u=0

µ
(
M

R∩[r2
um
v ,nr2

um
v ]g > t

)
6 vQp

‖g‖pLp(E′)

tp
.

Thus,

g ∈ Lp(E ′) =⇒
∥∥∥M̃Rik

g
∥∥∥
Lp,∞(E′)

6 v1/pQ‖g‖Lp(E′). (48)

For every k ∈ N ∪ {0} we let Fk
def
= σ(Pk) be the σ-algebra generated by the partition

Pk. Then F0 ⊆ F1 ⊆ F2 ⊆ · · · . We claim that for every k ∈ N ∪ {0}, if F ∈ F(3k+i+1)m

then

1FM̃Rik+1
(g) = M̃Rik+1

(1Fg). (49)

By the definition of M̃Rik
, in order to prove (49) we have to show that for almost every x ∈ E ′

we have

1F (x) · 1Ẽik+1
(x) ·MRik+1

(g)(x) = 1Ẽik+1
(x) ·MRik+1

(1Fg)(x). (50)

It is non-trivial to check (50) only when x ∈ Ẽi
k+1, in which case we are guaranteed that

B
(
x, β2−(3k+i+1)m

)
⊆P(3k+i+1)m(x). But since F ∈ F(3k+i+1)m, we know that P(3k+i+1)m(x)

is either disjoint from F or contained in F . If P(3k+i+1)m(x) ⊆ F , then for every r ∈ Ri
k+1,

B(x, r) ⊆ B
(
x, 2−(3k+i+2)m

)
⊆ B

(
x, β2−(3k+i+1)m

)
⊆P(3k+i+1)m(x) ⊆ F, (51)

where we used the fact that r 6 2−(3(k+1)−1+i)m and 2−m 6 β. The inclusion (51) implies that
both sides of the equation (50) are equal to MRik+1

(g)(x). On the other hand, if P(3k+i+1)m(x)

is disjoint from F , then B(x, r) is disjoint from F for all r ∈ Ri
k+1, implying that both sides

of the equation (50) vanish. This concludes the proof of (49).
Fix g ∈ L∞(E ′), and extend g to a function on X whose value is 0 outside E ′. Assume

that ∥∥E (|g|∣∣F(3k+i+1)m

)∥∥
L∞(E′)

= 1.

This implies that for all F ∈ F(3k+i+1)m we have∫
F

|g|dµ =

∫
F∩E′

|g|dµ 6 µ (F ∩ E ′) 6 µ(F ). (52)

Fix r ∈ Ri
k and x ∈ E ′. Denote

F
def
=
⋃{

C ∈P(3k+i+1)m : C ∩B(x, r) 6= ∅
}
∈ F(3k+i+1)m.

Note that B(x, r) ⊆ E ′′, which implies that

F ⊇ B(x, r). (53)
18



Moreover,

F ⊆ B

(
x, r + sup

C∈P(3k+i+1)m

diam(C)

)
⊆ B

(
x, r + 2−(3k+i+1)m

)
⊆ B

(
x,
(
1 + 2−m

)
r
)
, (54)

where in the last inclusion in (54) we used the fact that r ∈ Ri
k implies that r > 2−(3k+i)m.

Hence,

1

µ(B(x, r))

∫
B(x,r)

|g|dµ
(53)

6
1

µ(B(x, r))

∫
F

|g|dµ
(52)

6
µ(F )

µ(B(x, r))

(54)

6
µ (B (x, (1 + 2−m) r))

µ(B(x, r))
6
µ
(
B
(
x,
(
1 + 1

n

)
r
))

µ(B(x, r))

(8)

6 K, (55)

We are now in position to apply Theorem 2.1 to the increasing sequence of σ-algebras{
F(3k+i+1)m

}∞
k=0

and the sublinear operators
{
MRik

}∞
k=0

, with A = v1/pQ, due to (48), and

B = K, due to (55):

µ

(
sup

k∈N∪{0}
M̃Rik

f > 1

)
6 (2pvQp + 2pKp)

∫
X

|f |pdµ

.

(
2p
(

1 +
log logK

1 + log n

)
Qp + 2pKp

)∫
X

|f |pdµ.

Using (47) and (44), we therefore deduce that

[µ (MRf > 1)]1/p .

((
1 +

log logK

1 + log n

)1/p

Q+K

)
‖f‖Lp(X),

as required. �

4. An argument of E. Lindenstrauss

We now present an alternative approach to Corollary 1.2, following an argument of E.
Lindenstrauss [31]. Let us first make some definitions. We fix a metric measure space
(X, d, µ). Given any two radii r, r′ > 0 and a center x ∈ X, we define the enlarged ball
B(x, r, r′) by

B(x, r, r′)
def
=

⋃
y∈B(x,r)

B(y, r′) = {z ∈ X : d(x, y) 6 r ∧ d(y, z) 6 r′ for some y ∈ X}.

Thus, for instance,

B(x, r) ⊆ B(x, r, r′) ⊆ B(x, r + r′). (56)

In analogy to [31], we say that a finite sequence of radii 0 < r1 < r2 < · · · < rk is tempered
with constant K > 1 if we have the bound

∀ j ∈ {1, . . . , k} ∀x ∈ X ∀y ∈ B(x, rj),

µ

(
B(x, rj)

⋃(
j−1⋃
i=1

B (x, rj, ri)

))
6 Kµ (B (y, rj)) . (57)
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Theorem 4.1 (Lindenstrauss maximal inequality). Let (X, d, µ) be a metric measure space,
and let 0 < r1 < r2 < . . . < rk be a sequence of radii which is tempered with constant K.
Then we have the weak (1, 1) maximal inequality

µ

(
x ∈ X : max

16j6k

1

B(x, rj)

∫
B(x,rj)

|f | dµ > λ

)
6

2e

e− 1

K

λ
‖f‖L1(X)

for all f ∈ L1(X) and λ > 0.

Proof of Corollary 1.2 assuming Theorem 4.1. Assume that (X, d, µ) obeys the strong mi-
crodoubling condition (14). It is immediate to check that any sequence 0 < r1 < r2 < . . . < rk
obeying the lacunarity condition rj > nrj−1 will be tempered with constant K, and hence
by Theorem 4.1,

µ

(
x ∈ X : max

16j6k

1

B(x, rj)

∫
B(x,rj)

|f | dµ > λ

)
6

2e

e− 1

K

λ
‖f‖L1(X).

If instead we have the lacunarity condition rj > 2rj−1, then we can sparsify this sequence into
O(log n) subsequences obeying the prior lacunarity condition, and hence, by subadditivity,

µ

(
x ∈ X : max

16j6k

1

B(x, rj)

∫
B(x,rj)

|f | dµ > λ

)
.
K log n

λ
‖f‖L1(X).

From monotone convergence we then conclude (16). Similarly, any sequence obeying the
lacunarity condition rj > (1 + 1

n
)rj−1 can be sparsified into O(n log n) sequences which have

a lacunarity ratio of n. By monotone convergence this implies that

µ

(
x ∈ X : sup

r∈(1+ 1
n

)Z

1

B(x, r)

∫
B(x,r)

|f | dµ > λ

)
.
Kn log n

λ
‖f‖L1(X),

where (1 + 1
n
)Z denotes the integer powers of 1 + 1

n
. Now note from (14) that every ball is

contained in a ball whose radius is an integer power of 1 + 1
n
, and whose measure is at most

K times larger. Thus

Mf(x) 6 K sup
r∈(1+ 1

n
)Z

1

B(x, r)

∫
B(x,r)

|f | dµ,

and (15) follows. �

Proof of Theorem 4.1. As in [31], this is achieved by a randomized variant of the Vitali
covering argument. We may take f to be non-negative, and normalize λ = 1. For each
j ∈ {1, . . . , k}, let Ej be a compact subset of X on which we have

x ∈ Ej =⇒ 1

B(x, rj)

∫
B(x,rj)

f dµ > 1. (58)

By inner regularity it will suffice to show that

µ

(
k⋃
j=1

Ej

)
6

2e

e− 1
K

∫
X

f dµ. (59)
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We establish (59) by induction on k. The case k = 0 is vacuously true, so suppose k > 1
and the claim has already been proven for k−1 (i.e, that (59) holds true for all non-negative
f ∈ L1(X) and all sets {Ej}k−1

j=1 satisfying (58)).
By compactness, we see that there exists an ε > 0 such that

x ∈ Ek =⇒ µ(B(x, rk)) > ε.

We then define the extended ball

B∗(x)
def
= B(x, rk)

⋃(
k−1⋃
j=1

B(x, rk, rj)

)
.

Thus, since the sequence of radii {rj}kj=1 is tempered, for all y ∈ B(x, rk),

ε < µ (B∗(y)) 6 Kµ(B(x, rk)). (60)

If we then define the intensity function

p(x)
def
= inf

y∈B(x,rk)

1

µ(B∗(y))
,

then p is a measurable function on Ek which is bounded both above and below:

1

Kµ ((B(x, rk))
6 p(x) <

1

ε
. (61)

We now introduce a Poisson process Σ on Ek with intensity p(x). Thus Σ is a random
subset6 of Ek which will be almost surely finite, and more precisely, for any non-negative
measurable weight w : Ek → R+, the quantity

∑
x∈Σ w(x) is a Poisson random variable with

expectation

αw
def
= E

[∑
x∈Σ

w(x)

]
=

∫
Ek

wp dµ, (62)

i.e., for any integer k > 0

Pr

(∑
x∈Σ

w(x) = k

)
=
e−αwαkw
k!

. (63)

Now we define the random sets

E ′
def
=
⋃
x∈Σ

B∗(x) and F
def
=
⋃
x∈Σ

B(x, rk).

Then,

µ

(
k⋃
j=1

Ej

)
6 µ(Ek) + µ(E ′) + µ

(
k−1⋃
j=1

Ej \ E ′
)
. (64)

6If Ek contains atoms, then Σ may contain multiplicity, thus it is really a multiset rather than a set in

this case. One way to create Σ is to let N be a Poisson random variable with expectation P
def
=
∫
Ek
pdµ and

then let Σ = {x1, . . . , xN} where x1, . . . , xN are iid elements of E chosen using the probability distribution
pdµ/P .
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Let us investigate the third term in (64). Fix j ∈ {1, . . . , k − 1}. If x ∈ Ej \ E ′, then

1

B(x, rj)

∫
B(x,rj)

f dµ > 1.

But, since x /∈ E ′ it follows from our definitions that B(x, rj) is disjoint from F . Thus we
have

1

B(x, rj)

∫
B(x,rj)

f1X\F dµ > 1.

We can therefore apply the induction hypothesis to the sets {Ej \ E ′}k−1
j=1 and the function

f1X\F , and conclude that

µ

(
k−1⋃
j=1

Ej \ E ′
)
6

2e

e− 1
K

∫
X\F

f dµ.

It follows from (64) that it suffices to show that

µ(Ek) + E [µ(E ′)] 6 E [µ(Ek) + µ(E ′)] 6
2e

e− 1
KE

[∫
F

f dµ

]
. (65)

Now, applying (62) and (63) with w
def
= 1/p, we have

µ(Ek) = E

[∑
x∈Σ

1

p(x)

]
,

while from definition of E ′ we have

µ(E ′) 6
∑
x∈Σ

µ (B∗(x)) =
∑
x∈Σ

1

p(x)
.

Thus, in order to prove (65) it suffices to show that

E

[∑
x∈Σ

1

p(x)

]
6

e

e− 1
KE

[∫
F

f dµ

]
. (66)

From (58) we know that for all x ∈ Σ,

1

p(x)
<

1

p(x)µ(B(x, rk))

∫
X

1B(x,rk)f dµ,

and hence

E

[∑
x∈Σ

1

p(x)

]
6
∫
X

(
E

[∑
x∈Σ

1

p(x)µ(B(x, rk))
1B(x,rk)

])
f dµ. (67)

Fix y ∈ X. From (62) with w(x) =
1B(x,rk)

(y)

p(x)µ(B(x,rk))
, we see that

E

[∑
x∈Σ

1

p(x)µ(B(x, rk))
1B(x,rk)(y)

]
=

∫
Ek∩B(y,rk)

1

µ(B(x, rk))
dµ(x). (68)
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By substituting (68) into (67), we see that in order to prove (66) it will suffice to prove the
pointwise estimate ∫

Ek∩B(y,rk)

1

µ(B(x, rk))
dµ(x) 6

eK

e− 1
E [1F (y)] , (69)

for all y ∈ X.
Now observe that the definition of F implies that 1F (y) = 1 if and only if |Σ∩B(y, rk)| > 1.

But, recall from (62) (using w(x) = 1B(y,rk)(x)) that |Σ ∩ B(y, rk)| is a Poisson random
variable with expectation

α(y)
def
=

∫
Ek

1B(y,rk)p dµ =

∫
Ek∩B(y,rk)

p(x) dµ(x), (70)

and thus
E [1F (y)] = 1− e−α(y). (71)

A combination of (61) and (70) yields the bound∫
Ek∩B(y,rk)

1

µ(B(x, rk))
dµ(x) 6 Kα(y). (72)

The definition of p(x) implies that if y ∈ B(x, rk) then p(x) 6 1
µ(B∗(y))

6 1
µ(B(y,rk))

, since

B∗(y) ⊇ B(x, rk). In combination with (70), we deduce that α(y) 6 1. But, the function

α 7→ 1−e−α
α

is decreasing on [0,∞), and therefore 1 − e−α(y) > (1 − e−1)α(y). This, in
combination with (71) and (72), implies (69), and completes the proof of Theorem 4.1. �

As observed in [31], the above argument allows us to extract a good maximal inequality
for sufficiently sparse subsequences of radii if the situation is sufficiently “amenable”. In our
current context, the analogue for amenability is in fact subexponential growth:

Corollary 4.2. Let (X, d, µ) be a metric measure space such that µ(B(x, r)) is independent
of x ∈ X for all r > 0. Suppose also that we have the sub-exponential growth condition

lim
r→∞

log µ(B(x, r))

r
= 0 (73)

for any x ∈ X (note that our assumption implies that the choice of x is in fact irrelevant).
Then there exists a sequence of radii 0 < r1 < r2 < . . . tending to infinity such that we have
the maximal inequality

f ∈ L1(X) =⇒
∥∥∥∥sup
k>1

Ark |f |
∥∥∥∥
L1,∞(X)

6 4‖f‖L1(X),

where the averaging operators Ar are given by Arg
def
= 1

B(x,r)

∫
B(x,r)

|g| dµ.

Proof. We construct the radii recursively as follows. We set r1
def
= 1. If r1, . . . , rk have already

been chosen, we choose rk+1 > max {rk, k} so that

log µ (B (x, rk+1 + rk)) 6 µ (B (x, rk+1)) + 0.001

for any x ∈ X. Such a radius must exist, since otherwise one would easily contradict (73).
The sequence of radii is tempered with constant K = e0.001, and the claim follows since

2K
1−e−1 < 4. �
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5. The infinite tree

Fix k > 2 and let T be the infinite rooted k-ary tree with the usual graph metric and the
counting measure µ. In this section we prove Theorem 1.5. The first (standard) step is to
replace the Hardy-Littlewood maximal function with the spherical maximal function

M◦f(x)
def
= sup

r>0

1

|S(x, r)|
∑

y∈S(x,r)

|f(y)|,

where S(x, r) is the sphere

S(x, r)
def
= {y ∈ T : d(x, y) = r}.

Since every ball can be written as the disjoint union of spheres, we have the pointwise
estimate

Mf(x) 6M◦f(x),

and so it suffices to show that

µ (x ∈ T : M◦f(x) > λ) .
1

λ
‖f‖L1(T ), (74)

for all f ∈ L1(T ) and λ > 0.
Our arguments rely on the following expander-type estimate. We use |E| = µ(E) to denote

the cardinality of a finite set E ⊆ T .

Lemma 5.1. Let E,F be finite subsets of T and let r > 0 be an integer. Then

|{(x, y) ∈ E × F : d(x, y) = r}| 6 2|E|1/2|F |1/2kr/2.

This bound should be compared against the “trivial” bounds of |E|kr and |F |kr. It is
superior when |E|/|F | lies between kr and k−r. By setting E and F equal to concentric
spheres one can verify that the bound is essentially sharp in this case.

Proof. Let us subdivide T =
⋃∞
j=0 Tj, where Tj is the generation of the tree at depth j (thus

for instance |Tj| = kj). We then define Ej
def
= E ∩ Tj and Fj

def
= F ∩ Tj. Observe that in

order for an element in Ej and an element in Fi to have distance exactly r, we must have
i = j + r − 2m for some m ∈ {0, . . . , r}. Thus we can write

|{(x, y) ∈ E × F : d(x, y) = r}| =
r∑

m=0

∑
i,j∈N∪{0}
i=j+r−2m

|{(x, y) ∈ Ej × Fi : d(x, y) = r}| . (75)

Fix m ∈ {0, . . . , r} and i, j ∈ N ∪ {0} such that i = j + r − 2m. Observe that if x ∈ Tj
and y ∈ Ti are at distance r in T , then the mth parent of x equals the (r−m)th parent of y.
From this we conclude that for each x ∈ Tj there are at most kr−m elements of y ∈ Ti with
d(x, y) = r, and conversely for each y ∈ Ti there are at most km elements of x ∈ Tj with
d(x, y) = r. Thus

|{(x, y) ∈ Ej × Fi : d(x, y) = r}| 6 min
{
kr−m|Ej|, km|Fi|

}
. (76)
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A combination of (75) and (76) implies that our task is therefore to show that
r∑

m=0

∑
i,j∈N∪{0}
i=j+r−2m

min
{
kr−m|Ej|, km|Fi|

}
6 2|E|1/2|F |1/2kr/2. (77)

If we write cj
def
=
|Ej |
kj

and dj
def
=
|Fj |
kj

for j > 0 and cj
def
= dj

def
= 0 for j < 0 then we have

∞∑
j=0

kjcj = |E| and
∞∑
j=0

kjdj = |F |, (78)

and we have

r∑
m=0

∑
i,j∈N∪{0}
i=j+r−2m

min
{
kr−m|Ej|, km|Fi|

}
=

r∑
m=0

∑
i,j∈N∪{0}
i=j+r−2m

k(i+j+r)/2 min {cj, di}

6 kr/2
∞∑

i,j=0

k(i+j)/2 min {cj, di} . (79)

A combination of (78) and (79) shows that in order to prove (77) it will suffice to show that

∞∑
i,j=0

k(i+j)/2 min {cj, di} 6 2

(∑
j>0

kjcj

)1/2(∑
i>0

kidi

)1/2

.

To prove this inequality, let α be a real parameter to be chosen later, and estimate
∞∑

i,j=0

k(i+j)/2 min {cj, di} 6
∑

i,j∈N∪{0}
i<j+α

k(i+j)/2cj +
∑

i,j∈N∪{0}
i>j+α

k(i+j)/2di 6
∞∑
j=0

kj+
α
2 cj +

∞∑
i=0

ki−
α
2 di.

Optimising in α we obtain the required result. �

For each r > 0, let A◦r denote the spherical averaging operator

A◦rf(x)
def
=

1

µ(S(x, r))

∑
y∈S(x,r)

|f(y)|.

Thus M◦f(x) = supr>0A
◦
rf(x). We can use Lemma 5.1 to obtain a distributional estimate

on A◦r.

Lemma 5.2. Let f ∈ L1(T ), r > 0 and λ > 0. Then

µ (A◦rf > λ) .
∑

n∈N∪{0}
162n62kr

√
2n

kr
· 2nµ

(
|f | > 2n−1λ

)
.

Proof. We may take f to be non-negative. By dividing f by λ we may normalize λ = 1. We
bound

f 6
1

2
+

∑
n∈N∪{0}
162n6kr

2n1En + f1{f> 1
2
kr}, (80)
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where En is the sublevel set

En
def
=
{

2n−1 6 f < 2n
}
. (81)

Hence

A◦rf 6
1

2
+

∑
n∈N∪{0}
162n6kr

2nA◦r (1En) + A◦r

(
f1{f> 1

2
kr}

)
. (82)

Since µ(S(x, r)) 6 kr we see that

µ
(
A◦r

(
f1{f> 1

2
kr}

)
6= 0
)
6 krµ

(
f >

1

2
kr
)
. (83)

Thus we have

µ (A◦rf > 1)
(82)∧(83)

6 µ

 ∑
n∈N∪{0}
162n6kr

2nA◦r (1En) >
1

2

+ krµ

(
f >

1

2
kr
)
.

Note that if ∑
n∈N∪{0}
162n6kr

2nA◦r (1En) >
1

2

then we necessarily have for some n ∈ N such that 1 6 2n 6 kr,

A◦r (1En) >
1

2n+4

(
2n

kr

)1/4

.

Indeed, otherwise we have

1

2
6

∑
n∈N∪{0}
162n6kr

2nA◦r (1En) 6
1

16

∑
n∈N∪{0}
162n6kr

(
2n

kr

)1/4

6
21/4kr/4 − 1

16kr/4 (21/4 − 1)
<

1

2
,

which is a contraction. Thus

µ (A◦rf > 1) 6
∑

n∈N∪{0}
162n6kr

µ(Fn) + krµ

(
f >

1

2
kr
)
, (84)

where

Fn
def
=

{
A◦r (1En) >

1

2n+4

(
2n

kr

)1/4
}
.

Note that Fn is finite and observe that

1

kr
|{(x, y) ∈ En × Fn : d(x, y) = r}| =

∑
y∈Fn

A◦r (1En) (y) >
µ(Fn)

2n+4

(
2n

kr

)1/4

.

Applying Lemma 5.1 we conclude that

µ(Fn)

2n+4

(
2n

kr

)1/4

6 2

√
µ(En)µ(Fn)

kr
.
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Hence

µ(Fn) 6 210

√
2n

kr
· 2nµ(En).

Plugging this estimate into (84), we obtain the required result. �

Proof of Theorem 1.5. Now we prove (74). Since M◦f = supr>0A
◦
rf , Lemma 5.2 implies

that

µ (M◦f > λ) 6
∞∑
r=0

µ (A◦rf > λ) .
∞∑
r=0

∑
n∈N∪{0}
162n62kr

√
2n

kr
· 2nµ

(
|f | > 2n−1λ

)

=
∑
x∈T

∞∑
n=0

 ∑
r∈N∪{0}
kr>2n−1

1

kr/2

 23n/21{|f(x)|>2n−1λ} .
∑
x∈T

∞∑
n=0

2n1{|f(x)|>2n−1λ} .
∑
x∈T

1

λ
|f(x)|,

which is (74), as desired. The proof of Theorem 1.5 is complete. �

6. Sharpness

The purpose of this section is to prove Theorem 1.3 and Theorem 1.4.

6.1. A preliminary construction. Before we exhibit the full examples, we first need a
preliminary example of a maximal operator associated to a finite Abelian group (but not to
a metric) which has bad weak (1, 1) behavior.

Proposition 6.2 (Preliminary example). Let q be a power of an odd prime, and let Fq
be the finite field with q elements. If q is sufficiently large then there exists a vector space
Xq over Fq with counting measure µ and dimension m = dim(Xq) 6

√
q, and disjoint sets

{Ez ⊆ Xq}z∈Fq which are symmetric around the origin (i.e. x ∈ Ez if and only if −x ∈ Ez)
with measure

z ∈ Fq =⇒ 1

2q
µ(Xq) < µ(Ez) <

2

q
µ(Xq), (85)

and such that the maximal function

Mqf(x)
def
= max

z∈Fq

1

µ(Ez)

∫
Ez

|f(x+ y)|dµ(y)

obeys the bounds

‖Mqf‖Lp(Xq) .

(
p

p− 1

)2

‖f‖Lp(Xq) (86)

for all 1 < p 6∞, but such that

‖Mq‖L1(Xq)→L1,∞(Xq) >
q

2
. (87)

Furthermore, there exists a one-dimensional subspace W−m+1 in Xq with the property that
for all z ∈ Fq

µ(W−m+1 + Ez) >
1

4
µ(Xq), (88)

where W−m+1 + Ez is the Minkowski sum of W−m+1 and Ez.
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Remark 6.1. The dimension bound dim(Xq) 6
√
q is not necessary for Theorem 1.3, but

will be useful for proving Theorem 1.4. Conversely, the property (88) is used for Theorem
1.3 but not for Theorem 1.4. Even though our choice of notation for W−m+1 seems somewhat
cumbersome at this juncture, it will become convenient when we apply Proposition 6.2 in
Section 6.3.

Proof of Proposition 6.2. Let m be the largest integer less than
√
q. We set Xq

def
= Fmq to be

the m-dimensional vector space over Fq, with counting measure µ. On this space we consider
the non-degenerate quadratic form7 Q : Xq → Fq by

Q(x1, . . . , xm)
def
= x2

1 + . . .+ x2
m.

Define for z ∈ Fq

Ez
def
= {x ∈ Fmq : Q(x) = z} = Q−1(z).

Clearly Ez is symmetric around the origin.
Let F∗q denote the dual of the additive group of Fq. Fix a non-trivial character χ ∈ F∗q \{1}.

Then a standard Gauss sum argument (see Lemma 4.14 in [51]) shows that since q is odd,∣∣∣∣∣∣
∑
x∈Fq

χ
(
yx2
)∣∣∣∣∣∣ =

√
q (89)

for every y ∈ Fq \ {0}.
For every x = (x1, . . . , xm), x′ = (x′1, . . . , x

′
m) ∈ Xq write 〈x, x′〉 def

=
∑m

j=1 xjx
′
j ∈ Fq. Then

for every η ∈ Xq and y ∈ Fq \ {0} we have (using the fact that q is odd),∣∣∣∣∣
∫
Xq

χ (yQ(x) + 〈η, x〉) dµ(x)

∣∣∣∣∣ =
m∏
j=1

∣∣∣∣∣∣
∑
xj∈Fq

χ
(
yx2

j + ηjxj
)∣∣∣∣∣∣

=
m∏
j=1

∣∣∣∣∣∣
∑
xj∈Fq

χ

(
y

(
xj +

ηj
2y

)2
)∣∣∣∣∣∣ (89)

= qm/2 =
µ(Xq)

qm/2
. (90)

Consider the elementary identity

1Ez(x) =
1

q

∑
y∈Fq

χ(−yz)χ (yQ(x)) . (91)

For every η ∈ Xq and z ∈ Fq write

1̂Ez(η)
def
=

1

µ(Xq)

∫
Xq

1Ez(x)χ (〈η, x〉) dµ(x).

7One could also use here a random symmetric function from Fm
q to Fq if desired; the key features of Q

that we shall need are that it is even, and its Fourier coefficients are all small.
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Then∣∣∣∣µ (Ez)

µ(Xq)
− 1

q

∣∣∣∣ =

∣∣∣∣1̂Ez(0)− 1

q

∣∣∣∣ (91)

6
1

qµ(Xq)

∑
y∈Fq\{0}

∣∣∣∣∣
∫
Xq

χ (yQ(x) + 〈η, x〉 − yz) dµ(x)

∣∣∣∣∣
(90)

6
1

qm/2
6
√
q

q
1
2

√
q
6

1

2q
, (92)

provided that q is large enough. This proves (85). Moreover, for every η ∈ Xq \ {0},∣∣∣1̂Ez(η)
∣∣∣ (91)

6
1

qµ(Xq)

∑
y∈Fq\{0}

∣∣∣∣∣
∫
Xq

χ (yQ(x) + 〈η, x〉) dµ(x)

∣∣∣∣∣ (90)

6
1

qm/2
6
√
q

q
1
2

√
q
. (93)

Consider the averaging operator

Azf(x)
def
=

1

µ(Ez)

∫
Ez

f(x+ y)dµ(y).

Inequalities (92) and (93), combined with Parseval’s identity, imply the L2 bound

‖f − Azf‖L2(Xq)
6
µ(Xq)

µ(Ez)
· max
η∈Xq\{0}

∣∣∣1̂Ez(η)
∣∣∣ · ‖f‖L2(Xq) 6

2‖f‖L2(Xq)

q
m
2
−1

. (94)

On the other hand, since Az is a contraction in L1, we have

‖f − Azf‖L1(Xq)
6 2‖f‖L1(Xq). (95)

Interpolating between (94) and (95) (see [57]) we get that for every 1 6 p 6 2,

‖f − Azf‖Lp(Xq)
6 2

2
p
−1 ·

(
2

q
m
2
−1

)2− 2
p

‖f‖Lp(Xq) = 2
(
q1−m

2

)2− 2
p ‖f‖Lp(Xq). (96)

Hence∥∥∥∥max
z∈Fq

∣∣|f | − Az (|f |)
∣∣∥∥∥∥
Lp(Xq)

6

∑
z∈Fq

∥∥∥∣∣|f | − Az (|f |)
∣∣∥∥∥p
Lp(Xq)

1/p

(96)

6 2q1/p
(
q1−m

2

)2− 2
p ‖f‖Lp(Xq).

Thus

‖Mqf‖Lp(Xq) 6
(

1 + 2q1/p
(
q1−m

2

)2− 2
p

)
‖f‖Lp(Xq)

6

(
1 + 2q1/p

(
q

3
2
−
√
q

2

)2− 2
p

)
‖f‖Lp(Xq) .

‖f‖Lp(Xq)

(p− 1)2
. (97)

The last step in (97) can be proved as follows: for q > 36, the term 1 + 2q1/p
(
q

3
2
−
√
q

2

)2− 2
p

is . 1 + q1−ε− ε
√
q

2 , where we write 1
p

= 1 − ε. Now consider the cases ε > 2√
q

and ε < 2√
q

separately. The bound (97) proves (86) when 1 6 p 6 2. The case p > 2 follows from a
similar interpolation argument, using trivial bound ‖Mqf‖L∞(Xq) 6 ‖f‖L∞(Xq).
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To prove (87), let f
def
= 1{0} be the indicator function of the origin 0. Then ‖f‖L1(X) = 1.

Since the sets {Ez}z∈Fq cover Xq, we see from (85) that Mqf(x) > q
2µ(Xq)

for all x ∈ Xq,

and (87) follows (setting λ slightly larger than q
2µ(Xq)

).

Finally, let W−m+1 be the span of the first basis vector e1 ∈ Xq = Fmq . Let S denote

the set of squares in Fq, i.e. S
def
= {x2 : x ∈ Fq}. Since q is odd, |S| = q+1

2
. Observe that

(x1, . . . , xm) lies in Ez +W−m+1 if and only if x2
2 + . . .+ x2

m is in z − S. Arguing as in (92)
we deduce that

µ (Ez +W−m+1) =
∑
s∈S

µ
(
(x1, x2, . . . , xm) ∈ Fmq : x2

2 + · · ·+ x2
m = z − s

)
=

∑
s∈S

q
∣∣{(x2, . . . , xm) ∈ Fm−1

q : x2
2 + · · ·+ x2

m = z − s}
∣∣

>
∑
s∈S

q

( |Fm−1
q |
q
−
|Fm−1
q |

q(m−1)/2

)
= µ(Xq)

(
q + 1

2q
− q + 1

2q(m−1)/2

)
.

This establishes the bound (88) for q sufficiently large. �

Remark 6.2. This example once again demonstrates the (well-known) fact that L2-type
smoothing estimates, such as those arising from smallness of Fourier coefficients, can imply
Lp maximal bounds by standard interpolation arguments, but do not necessarily imply weak-
type (1, 1) bounds.

6.3. The doubling example. We now prove Theorem 1.3. The claim is trivial for K 6 48,
so we will assume K > 48. By Bertrand’s postulate we may find an odd prime q between K/4
and K/2, which we now fix. We then let Fq, Xq and {Ez}z∈Fq be as in Proposition 6.2. Fix
an arbitrary enumeration of the points in Fq, say Fq = {z1, . . . , zq} and write Ezj = Ej (this
will not create any ambiguity in what follows). It will also be convenient to set E0 = {0}.
The maximal function Mq in Proposition 6.2 is not associated to a metric, let alone one with
the doubling property (9), since the sets Ej are not nested. However, this can be remedied
by extending the space Xq in the following fashion.

We let X
def
= Xq × Fqq be the Cartesian product of Xq with the vector space Fqq, with

counting measure µ. We also let

{0} = V0 ⊆ V1 ⊆ . . . ⊆ Vq = Fqq
be the standard flag in Fqq, thus Vj is the span of {e1, . . . , ej} for j ∈ {0, . . . , q}, where
e1, . . . , eq is the standard basis of Fqq. In particular

j ∈ {0, . . . , q} =⇒ µ(Vj) = qj. (98)

Recall that Xq is itself a vector space Fmq over Fq, thus we have another flag

{0} = W−m ⊆ W−m+1 ⊆ . . . ⊆ W0 = Xq,

where

j ∈ {0, . . . ,m} =⇒ µ(W−j) =
µ(Xq)

qj
. (99)
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We can ensure that W−m+1 is the one-dimensional subspace mentioned in Proposition 6.2.
For v ∈ Fq let j(v) denote the minimal j ∈ {0, . . . , q} such that v ∈ Vj. For u ∈ Xq and

j ∈ {0, . . . , q}, let `j(u) be the maximal ` ∈ {0, . . . ,m} such that u ∈ Ej + W−`. Now, for
(u, v), (u′, v′) ∈ X define

d((u, v), (u′, v′))
def
= 4j(v−v

′)1{v 6=v′} + 2−`j(v−v′)(u−u
′)1{u6=u′}. (100)

We claim that d is a translation invariant metric on X. The translation invariance and
non-degeneracy of d are immediate from the definition. The symmetry of d follows from
the fact that the Ej ⊆ Xq are symmetric around the origin. It therefore remains to verify
that for all x, y ∈ X we have d(x + y, 0) 6 d(x, 0) + d(y, 0). Write x = (u, v), y = (u′, v′),
j = j(v), j′ = j(v′), ` = `j(u), `′ = `j′(u

′). Without loss of generality j > j′. Then v ∈ Vj
and v′ ∈ Vj′ ⊆ Vj. So, v + v′ ∈ Vj, i.e., j(v + v′) 6 j. Denoting `′′ = `j(v+v′)(u + u′), we see
that it suffices to prove the inequality

4j1{v+v′ 6=0} + 2−`
′′
1{u+u′ 6=0} 6 4j1{v 6=0} + 2−`1{u6=0} + 4j

′
1{v′ 6=0} + 2−`

′
1{u′ 6=0} (101)

If j′ > 1 then v, v′ 6= 0, and (101) holds since 4j
′
> 4 > 2−`

′′
. On the other hand, if j′ = 0

(equivalently v′ = 0) then by definition u′ ∈ W−`′ . Since u ∈ Ej + W−`, it follows that
u + u′ ∈ Ej + W−` + W−`′ = Ej(v+v′) + W−min{`,`′}. Thus `′′ > min{`, `′}, and (101) follows

from the trivial inequality 2−min{`,`′}1{u+u′ 6=0} 6 2−`1{u6=0} + 2−`
′
1{u′ 6=0}.

The balls in the metric d take the following form:

r > 4q + 1 =⇒ B(0, r) = X, (102)

∃j ∈ {1, . . . , q − 1}, 4j + 1 6 r < 4j+1 =⇒ B(0, r) = Xq × Vj, (103)

∃j ∈ {1, . . . , q − 1}, 4j 6 r < 4j + 2−m+1 =⇒ B(0, r) = (Ej × Vj) ∪ (Xq × Vj−1) , (104)

∃(j, `) ∈ {1, . . . , q − 1} × {1, . . . ,m− 1}, 4j + 2−` 6 r < 4j + 2−`+1

=⇒ B(0, r) = ((Ej +W−`)× Vj) ∪ (Xq × Vj−1) , (105)

1 6 r < 4 =⇒ B(0, r) = Xq × {0}, (106)

∃` ∈ {1, . . . ,m}, 2−` 6 r < 2−`+1 =⇒ B(0, r) = W−j × {0}. (107)

We shall first of all prove that (X, d, µ) is doubling with constant 2q 6 K. For r > 4
take j ∈ {1, 2, . . .} such that 4j 6 r < 4j+1. If, in addition, 4j + 1 6 r < 4j+1 then since
2r < 4j+2, it follows from (103), (104), (105) that B(x, 2r) ⊆ Xq × Vj+1, implying that

µ (B(0, 2r)) 6 µ (Xq × Vj+1) = qj+1µ (Xq) 6 q · µ (Xq × Vj)
(103)
= q · µ (B(0, r)) . (108)

On the other hand, if 4j 6 r < 4j + 1 then 4j + 1 6 2r < 4j+1. Note that (104), (105) imply
that

Ej × Vj ⊆ B (0, r) , (109)

and therefore

µ (B(0, 2r))
(103)
= µ (Xq × Vj) = qjµ(Xq)

(85)

6 2qj+1µ (Ej) = 2qµ (Ej × Vj)
(109)

6 2qµ (B (x, r)) .

Similarly, using (106), (107), also for 0 < r < 4 we have µ (B(0, 2r)) 6 qµ (B(0, r)). Thus
(X, d, µ) is doubling with constant 2q, as claimed.
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Now, from (87) we can find fq : Xq → R+ with norm ‖fq‖L1(Xq) = 1 and λ > 0 such that

µ(Mqfq > λ) >
q

2λ
. (110)

We extend this function fq to a function f : X → R+ defined by f(x, y)
def
= fq(x) for x ∈ Xq

and y ∈ Fqq. Thus
‖f‖L1(X) = |Fqq| · ‖fq‖L1(Xq) = qq. (111)

We shall next compute M2Zf(x, y) for (x, y) ∈ Xq × Fqq = X. Actually, for very minor
technical reasons we need to consider the slight variant

M ε
2Zf(x, y) = sup

r∈2Z

1

µ(B((x, y), (1 + ε)r))

∫
B((x,y),(1+ε)r)

|f(x, y)| dµ(x, y) (112)

for some small ε > 0, but this clearly will not make a difference since we can rescale the
metric by 1 + ε.

Observe that for any 1 6 j 6 q we have

M ε
2Zf(x, y) >

1

µ (B(0, (1 + ε)4j))

∑
(x′,y′)∈B(0,(1+ε)4j)

fq(x+ x′).

Note that if 0 < ε < 4−q · 2−m+1 then it follows from (104) that

µ
(
B(0, (1 + ε)4j)

)
6 µ(Ej × Vj) + µ(Xq × Vj−1)

(85)

6
2

q
µ(Xq)q

j + µ(Xq)q
j−1 = 3qj−1µ(Xq).

Using the inclusion B(0, (1+ε)4j) ⊇ Ej×Vj, which trivially follows from (104), we conclude
that

M ε
2Zf(x, y) >

1

3qj−1µ(Xq)

∑
x′∈Ej

∑
y′∈Vj

fq(x+ x′).

Hence, in combination with (98) and (85), we get the bound

M ε
2Zf(x, y) >

1

6µ(Ej)

∑
x′∈Ej

fq(x+ x′).

Taking the supremum over all j we conclude the pointwise estimate

M ε
2Zf(x, y) >

1

6
Mqfq(x).

In particular we have

µ

(
M ε

2Zf >
1

6
λ

)
> |Fqq|µ (Mqfq > λ) > qq · q

2λ
.

Recalling (111) we thus see that

‖M ε
2Z‖L1(X)→L1,∞(X) >

1

12
q >

K

48
,

yielding (19).
The only remaining task is to establish the Lp bounds ‖M‖Lp(X)→Lp(X) .p 1, for p > 1. To

do this let’s examine what equations (102)–(107) say about the measures of the balls B(0, r)
appearing in the definition of the maximal function M . For r < 4, the balls all take the form
W−j × {0} for some −m 6 −j 6 0. For 4j 6 r < 4j + 2−m+1 for some 1 6 j 6 q, the ball
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B(0, r) is equal to the union of the two sets Ej × Vj and Xq × Vj−1, which have the same
measure up to a universal factor thanks to (85), (98). For 4j + 2−m+1 6 r < 4j+1, we see
that the ball B(0, r) lies between (Ej +W−m+1)×Vj and Xq×Vj, and so thanks to (88) has
measure comparable to Xq × Vq. Putting all this together, we obtain the pointwise bound

Mg(x, y) . max
−m6−j60

1

µ(W−j)

∑
x′∈x+W−j

|g(x′, y)|+ max
06j6q

1

µ(Xq)µ(Vj)

∑
x′∈Xq

∑
y′∈y+Vj

|g(x′, y′)|

+ max
06j6q

1

µ(Ej)µ(Vj)

∑
x′∈x+Ej

∑
y′∈y+Vj

|g(x′, y′)| (113)

for all functions g : X → R.
If we let B−j, for −m 6 −j 6 0, be the σ-algebra on X generated by the cosets of

W−j × {0}, we have

max
−m6−j60

1

µ(W−j)

∑
x′∈x+W−j

|g(x′, y)| = max
−m6−j60

E
[
|g|
∣∣B−j] (x, y), (114)

where E
[
|g|
∣∣B−j] denotes the conditional expectation of |g| with respect to the σ-algebra

B−j. Applying Doob’s maximal inequality (Proposition 2.1), we thus see that this expression
is bounded on Lp, i.e.,∫

X

∣∣∣∣∣∣ sup
−m6−j60

1

µ(W−j)

∑
x′∈x+W−j

|g(x′, y)|

∣∣∣∣∣∣
p

dµ(x, y)

1/p

6
p

p− 1
‖g‖Lp(X). (115)

A similar argument disposes of the second term in (113), i.e.,∫
X

∣∣∣∣∣∣max
06j6q

1

µ(Xq)µ(Vj)

∑
x′∈Xq

∑
y′∈y+Vj

|g(x′, y′)|

∣∣∣∣∣∣
p

dµ(x, y)

1/p

6
p

p− 1
‖g‖Lp(X). (116)

By combining (115) and (116) with (113), we see that it suffices to establish the bound∫
X

∣∣∣∣∣∣max
06j6q

1

µ(Ej)µ(Vj)

∑
x′∈x+Ej

∑
y′∈y+Vj

|g(x′, y′)|

∣∣∣∣∣∣
p

dµ(x, y)

1/p

.

(
p

p− 1

)3

‖g‖Lp(X). (117)

We can bound the left-hand side of (117) by∫
X

∣∣∣∣∣∣max
06j6q

1

µ(Vj)

∑
y′∈y+Vj

G(x, y′)

∣∣∣∣∣∣
p

dµ(x, y)

1/p

,

where

G(x, y′)
def
= max

06j6q

1

µ(Ej)

∑
x′∈x+Ej

|g(x′, y′)|.

Applying Doob’s maximal inequality again, we thus reduce to showing that

‖G‖Lp(X) .

(
p

p− 1

)2

‖g‖Lp(X).
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But this follows from (86) (and Fubini’s theorem). The proof of Theorem 1.3 is complete. �

6.4. The Ahlfors-David regular example. Now we prove Theorem 1.4. Once again we
may take n to be large, as the claim is easy for bounded n (e.g., one could take the usual
Hardy-Littlewood maximal function on Rn).

The heart of our construction is the following lemma:

Lemma 6.1. There exists a finite Abelian group X, equipped with counting measure µ and
an invariant metric dX , with the following properties:

(1) The are integers a < b such that for all x, y ∈ X we have dX(x, y) ∈ {0} ∪ {3j/n}bj=a.
(2) For all r ∈ [3a/n, 3b/n] and all x ∈ X we have

3−arn 6 µ(B(x, r)) 6 3−a+3rn. (118)

(3) ‖M‖L1(X)→L1,∞(X) & n log n.
(4) ‖M2Z‖L1(X)→L1,∞(X) & log n.

(5) For all 1 < p 6∞ we have ‖M‖Lp(X)→Lp(X) .p 1.

Proof of Theorem 1.4 assuming Lemma 6.1. In what follows F3 denotes the field of size 3.
Let Y be the subspace of Fℵ03 consisting of all finitely supported vectors, equipped with the
counting measure ν. For (y1, y2, . . .) ∈ Y let j(y) denote the largest j ∈ N such that yj 6= 0.
If y = 0 we set j(y) = −∞. For y, y′ ∈ Y define

ρY (y, y′)
def
= 3b/n · 3j(y−y′)/n.

Then ρY is an invariant ultrametric on Y , satisfying ρY (y, y′) ∈ {0} ∪ {3(b+j)/n}∞j=1 for all
y, y′ ∈ Y . Let Yj ⊆ Y denote the set of vectors whose support is contained in the first j
coordinates. Thus Yj is a subspace of Y and Yj = BρY

(
0, 3(b+j)/n

)
. Since ν(Yj) = 3j, it

follows that for all r > 3b/n and y ∈ Y we have

3−b−1rn 6 ν (BρY (y, r)) 6 3−brn. (119)

Next, we let Z denote the set Fℵ03 , and let τ denote the countable product of the normalized
counting measure on F3. Thus τ is an invariant probability measure on Z. For k ∈ N let
Zk be the subspace of Z consisting of (z1, z2, . . .) ∈ Z with z1 = z2 = . . . = zk = 0 (we shall
also use the convention Z0 = Z). Thus τ(Zk) = 3−k. For z ∈ Z let k(z) denote the largest
integer k > 0 such that z ∈ Zk (with the convention k(0) =∞). For z, z′ ∈ Z define

ρZ(z, z′)
def
= 3(a−1)/n · 3−k(z−z′)/n.

Then ρZ is an invariant ultrametric on Z, satisfying ρZ(z, z′) ∈ {0} ∪ {3(a−j)/n}∞j=1 for all

z, z′ ∈ Y . It follows from the definitions that for all k > 0 we have BρZ

(
0, 3(a−k−1)/n

)
= Zk.

Let σ be the invariant measure on Z given by σ = 3a−1τ . Thus for all r 6 3a/n we have,

1

3
rn 6 σ (BρZ (y, r)) 6 3rn. (120)

We shall now let G be the Abelian group Z×X×Y , equipped with the `∞ product metric
dG ((z, x, y), (z′, x′, y′)) = max {ρZ(z, z′), d(x, x′), ρY (y, y′)} . We shall also equip G with the
product measure µG = σ × µ× ν.

The balls in G are given by BdG(0, r) = BρZ (0, r) × BdX (0, r) × BρY (0, r). If r > 3b/n

then BdX (0, r) = X, and thus by (118) we have µ (BdX (0, r)) ∈
[
3b−a, 3b−a+3

]
. Similarly,
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for r > 3b/n we have BρZ (0, r) = Z, and thus σ (BρZ (0, r)) = 3a−1. It therefore follows
from (119) that

r > 3b/n =⇒ µG (BdG(0, r)) ∈
[

1

9
rn, 9rn

]
. (121)

If 3a/n 6 r < 3b/n, then BρY (0, r) = {0}, and hence ν (BρY (0, r)) = 1. As before, we also
have in this case σ (BρZ (0, r)) = 3a−1, and by (118), µ (BdX (0, r)) ∈ [3−arn, 3−a+3rn]. Thus,

3a/n 6 r < 3b/n =⇒ µG (BdG(0, r)) ∈
[

1

3
rn, 9rn

]
. (122)

Finally, for r < 3a/n we have BρY (0, r) = {0} and BdX (0, r) = {0} and so ν (BρY (0, r)) =
µ (BdX (0, r)) = 1. In combination with (120), we see that

r < 3a/n =⇒ µG (BdG(0, r)) ∈
[

1

3
rn, 3rn

]
. (123)

Inequalities (121), (122), (123) show that the metric measure space (G, dG, µG) is Ahlfors-
David n-regular.

It remains to prove the estimates (20), (21), (22). By assertion (3) of Lemma 6.1 we can
find f : X → R+ with ‖f‖L1(X) = 1, and λ > 0, such that

µ (Mf > λ) &
n log n

λ
. (124)

Define a function g : G → R+ by g(z, x, y) = f(x)1{y=0}. Then ‖g‖L1(G) = σ(Z) = 3a−1.
Moreover, we have the pointwise estimate

Mg(x, y, z) > sup
3a/n6r63b/n

∫
BρZ (0,r)×BdX (0,r)×BρY (0,r)

f(x+ x′)1{z+z′=0}dµG(z′, x′, y′)

µG (BρZ (0, r)×BdX (0, r)×BρY (0, r))

= (Mf(x)) 1{z=0},

where we used the fact that BρY (0, r) = {0} for r 6 3b/n. Thus by Fubini’s theorem,

µG (Mg > λ) > σ(Z)µ (Mf > λ)
(124)

& 3a−1n log n

λ
=
n log n

λ
‖g‖L1(G).

This proves (20); the proof of (21) is identical. To prove (22) take an non-negative h ∈ Lp(G),
and observe the pointwise bound

Mh(z, x, y) 6 sup
r<3a/n

∫
BρZ (0,r)

h(z + z′, x, y)dσ(z′)

σ (BρZ (0, r))
(125)

+ sup
3a/n6r63b/n

∫
Z×BdX (0,r)

h(z′, x+ x′, y)dσ(z′)dµ(x′)

2a−1µ (BdX (0, r))
(126)

+ sup
r>3b/n

∫
Z×X×BρY (0,r)

h(z′, x′, y + y′)dσ(z′)dµ(x′)dν(y′)

2a−1 · 3b−aν (BρY (0, r))
, (127)

where in the denominator of (127) we used the fact that µ(x) > 3b−a.
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Since ρZ is an ultrametric, Doob’s maximal inequality implies that for all x ∈ X and
y ∈ Y we have,∫

Z

(
sup
r<3a/n

∫
BρZ (0,r)

h(z + z′, x, y)dσ(z′)

σ (BρZ (0, r))

)p

dσ(z) .p

∫
Z

h(z, x, y)pdσ(z).

Thus, by Fubini’s theorem, the Lp(G) norm of the term in (125) is .p ‖h‖Lp(G). A similar
argument shows that the Lp(G) norm of the term in (127) is .p ‖h‖Lp(G). Finally, using
assertion (5) of Lemma 6.1, we get the same bound for the term in (126), proving (22). �

Proof of Lemma 6.1. Let q = 3k be a power of three between 1
3
n log n and 1

9
n log n. We

invoke Proposition 6.2 to create a vector space Xq = Fmq over a finite field Fq with counting
measure µ, together with sets E1, . . . , Eq obeying the properties stated in Proposition 6.2;
in particular

m .
√
n log n. (128)

Note that Fq can itself be viewed as a vector space over the field F3 of three elements, and
thus Xq is a vector space over F3 of dimension

M
def
= mk = m log3 q . n1/2(log n)3/2. (129)

As in Section 6.3, the idea is to take a Cartesian product of Xq with another vector space,
and try to create balls which resemble the product of a set Ej with a subspace. Some care
is however required in order to make the construction compatible with both the constraint
(8) and the triangle inequality.

Analogously to the arguments in Section 6.3, we shall need a flag

{0} = W−M ⊆ W−M+1 ⊆ . . . ⊆ W0 = Xq

of vector spaces over F3 in Xq, so that µ(W−j) = 3−jµ(Xq) for all −M 6 −j 6 0. (We will
not use (88) or the space W−m+1 in Proposition 6.2, so there is no collision of notation here.)

Our space shall be X
def
= Xq × Fq3, with counting measure µ. We shall need a flag

{0} = V0 ⊆ V1 ⊆ . . . ⊆ Vq = Fq3
in Fq3, with µ(Vj) = 3j.

For every integer −M 6 j 6 q, we define the set Bj ⊆ X = Xq × Fq3 as follows:

• If −M 6 j 6 0, we set Bj
def
= Wj × {0}.

• If 1 6 j 6 q, we set

Bj
def
= (Xq × Vj)

⋃min{j+k,q}⋃
`=1

(E` × V`)

 . (130)

The Bj are symmetric and nested, with

{0} = B−M ⊆ B−M+1 ⊆ . . . ⊆ Bq = X. (131)

We define a function d : X ×X → R+ by setting d(x, x) = 0 for all x ∈ X, and

d(x, y)
def
= min

{
3j/n : x− y ∈ Bj

}
, (132)

for all distinct x, y ∈ X. Thus d takes values in {0} ∪
{

3j/n : −M + 1 6 j 6 q
}

. The first
assertion of Lemma 6.1 therefore holds with a = −M + 1 and b = q.
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Claim 6.2. d is a translation-invariant metric on X.

Proof. The translation-invariance, non-degeneracy, and symmetry properties of d are obvious
(symmetry follows from the symmetry of Ej). The only non-trivial task is to verify the
triangle inequality. By construction, it will suffice to show that x + x′ ∈ Bj′′−1 whenever
x ∈ Bj, x

′ ∈ Bj′ , and −M < j, j′, j′′ 6 q are such that

3j
′′/n > 3j/n + 3j

′/n. (133)

By symmetry we may assume that j 6 j′. It follows from (133) that provided n is large
enough,

3j
′′/n > 3j

′/n
(
1 + 3−(M+q−1)/n

)
> 3j

′/n
(

1 + 3−
1
2

logn
)
> 3(j′+k)/n, (134)

where we used the fact that q 6 1
3
n log n, while M . n1/2(log n)3/2 and k = log3 q . log n.

It follows from (134) that
j′′ > j′ + k. (135)

If j′ 6 0, then we have Bj +Bj′ = Bj′ , so x+x′ ∈ Bj′ ⊆ Bj′′−k ⊆ Bj′′−1, as required. Assume
therefore that j′ > 1. Then Bj ⊆ Bj′ ⊆ Xq×Vmin{j′+k,q}, and hence x+x′ ∈ Xq×Vmin{j′+k,q}.
On the other hand, we will have Xq × Vmin{j′+k,q} ⊆ Bj′′−1 as soon as min{j′ + k, q} < j′′.
Since j′′ 6 q, it follows from (135) that j′ + k < q. Hence, using (135) once more, we see
that min{j′ + k, q} = j′ + k < j′′, as required. �

Claim 6.3. For all r ∈
[
3−(M−1)/n, 3q/n

]
and all x ∈ X, we have

1

3
rn 6

µ(B(x, r))

µ(Xq)
6 4rn.

Proof. By translation invariance we may assume that x = 0. Let j be the integer such that
3j/n 6 r < 3(j+1)/n. Then B(0, r) = Bj. If j 6 0 then Bj = Wj × {0}, and hence

µ(B(x, r))

µ(Xq)
=
µ(Bj)

µ(Xq)
= 3j ∈

[
1

3
rn, rn

]
. (136)

If j > 1 the it follows from (130) that Bj ⊇ Xq × Vj, and hence

µ(B(0, r))

µ(Xq)
=
µ(Bj)

µ(Xq)
> µ(Vj) = 3j >

1

3
rn. (137)

At the same time, it follows from (130) that

µ(B(0, r))

µ(Xq)
=
µ(Bj)

µ(Xq)
6 3j +

min{j+k,q}∑
`=1

µ(E`)

µ(Xq)
µ(V`)

(85)

6 3j +
2

q

min{j+k,q}∑
`=1

3j

6 3j +
3

q
· 3min{j+k,q} = 3j +

3

3k
· 3min{j+k,q} = 4 · 3j 6 4rn, (138)

as required. �

Claim 6.3 implies the second assertion of Lemma 6.1, since µ(Xq) = 3M = 3−a+1.
We shall now prove the third assertion of Lemma 6.1. Since the balls B(x, r) in X take

the form x+Bj for some j, we have

Mf(x) = max
−M6j6q

1

µ(Bj)

∑
y∈Bj

|f(x+ y)|.
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¿From (87) we can find fq : Xq → R+ with ‖fq‖L1(Xq) = 1, and λ > 0, such that

µ (Mqfq > λ) >
q

2λ
. (139)

We extend this function fq to a function f : X → R+ defined by f(x, y)
def
= fq(x) for x ∈ Xq

and y ∈ Fq3. Thus,

‖f‖L1(X) = 3q. (140)

Observe that for 1 6 j 6 q − k we have,

µ(Bj)
(138)

6 4µ(Xq)3
j

(85)

6 8qµ(Ej+k)µ(Vj) = 8µ(Ej+k)µ(Vj+k).

Hence, for all (x, x′) ∈ X we have,

Mf(x, x′) > max
16j6q−k

1

8µ(Vj+k)µ(Ej+k)

∑
(y,y′)∈Bj

|fq(x+ y)|.

Since Bj contains Ej+k × Vj+k for 1 6 j 6 q − k, we conclude that

Mf(x, x′) > max
k+16`6q

1

8µ(E`)

∑
y∈E`

|fq(x+ y)|

>
1

8

max
16j6q

1

µ(Ej)

∑
y∈Ej

|fq(x+ y)| −
k∑
j=1

1

µ(Ej)

∑
y∈Ej

|fq(x+ y)|

 . (141)

Denote g : X → R by g(x, x′) =
∑k

j=1
1

µ(Ej)

∑
y∈Ej |fq(x+ y)|. Then

‖g‖L1(X) 6 k3q‖fq‖L1(Xq)
(140)
= ‖f‖L1(X) log3 q. (142)

It follows from (141) that we have the pointwise bound Mqfq(x) 6 8Mf(x, x′) + g(x, x′).
Thus,

q‖f‖L1(X)

2λ

(139)∧(140)

6 µ ((x, x′) ∈ X : Mqfq(x) > λ)

6 µ (8Mf + g > λ)

6 µ

(
Mf >

λ

16

)
+ µ

(
g >

λ

2

)
6 µ

(
Mf >

λ

16

)
+

2‖g‖L1(X)

λ
(142)

6 µ

(
Mf >

λ

16

)
+

2 log3 q‖f‖L1(X)

λ
.

Hence,

‖M‖L1(X)→L1,∞(X) & q & n log n, (143)

which gives the third assertion of Lemma 6.1.
A similar argument (requiring a closer inspection of the details of Proposition 6.2) can

be used to give the fourth assertion of Lemma 6.1; alternatively, one can use (143) and the
pigeonhole principle to show that a dilated version Mr·2Z of the lacunary maximal function
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has weak (1, 1) norm & log n for some r > 0, and then rescale the metric. We omit the
details.

It remains to verify the Lp bound in assertion (5) of Lemma 6.1, i.e., to show for all
f ∈ Lp(X) we have ∥∥∥∥∥∥ max

−M6j6q

1

µ(Bj)

∑
y∈Bj

|f(x+ y)|

∥∥∥∥∥∥
Lp(X)

.p ‖f‖Lp(X).

The contribution of the case −M 6 j 6 0 can be handled by Doob’s maximal inequality as
in Section 6.3, so we need only consider the case 1 6 j 6 q. Using (138) and the definition
of Bj, we soon verify the pointwise estimate

max
16j6q

1

µ(Bj)

∑
y∈Bj

|f(x+ y)| . max
16i6q

1

µ(Xq × Vi)
∑

y∈Xq×Vi

|f(x+ y)|

+ max
16i6q

1

µ(Ei × Vi)
∑

y∈Ei×Vi

|f(x+ y)|. (144)

Indeed, denote

h(x) = max
16i6q

1

µ(Xq × Vi)
∑

y∈Xq×Vi

|f(x+ y)|+ max
16i6q

1

µ(Ei × Vi)
∑

y∈Ei×Vi

|f(x+ y)|.

Then for all 1 6 j 6 q,

1

µ(Bj)

∑
y∈Bj

|f(x+ y)|
(130)

.

∑
y∈Xq×Vj |f(x+ y)|+

∑min{j+k,q}
`=1

∑
y∈E`×V` |f(x+ y)|

µ(Bj)

(137)

6
h(x)µ (Xq × Vj) +

∑min{j+k,q}
`=1 h(x)µ (E` × V`)

3jµ(Xq)

(138)

6 4h(x),

proving (144).
The fact that the first term in the right-hand side of (144) is bounded in Lp(X) again

follows from Doob’s maximal inequality, while the Lp(X) boundedness of the second term
in the right-hand side of (144) follows from (86), Doob’s maximal inequality and a Fubini
argument, as in Section 6.3. The proof of Theorem 1.4 is now complete. �
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[48] J.-O. Strömberg. Weak type L1 estimates for maximal functions on noncompact symmetric spaces. Ann.
of Math. (2), 114(1):115–126, 1981.

[49] M. Talagrand. Regularity of Gaussian processes. Acta Math., 159(1-2):99–149, 1987.
[50] M. Talagrand. The generic chaining. Springer Monographs in Mathematics. Springer-Verlag, Berlin,

2005. Upper and lower bounds of stochastic processes.
[51] T. Tao and V. Vu. Additive combinatorics, volume 105 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge, 2006.
[52] Y. Terasawa. Outer measures and weak type (1, 1) estimates of Hardy-Littlewood maximal operators.

J. Inequal. Appl., pages Art. ID 15063, 13, 2006.
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