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1. INTRODUCTION

In what follows all matrices are assumed to have real entries, and square matrices

are always assumed to be symmetric unless stated otherwise. The support of a k × n
matrix A = (aij) will be denoted below by

supp(A) =
{

(i, j) ∈ {1, . . . , k} × {1, . . . , n} : aij 6= 0
}
.

If A is an n× n matrix, we denote the decreasing rearrangement of its eigenvalues by

λ1(A) > λ2(A) > · · · > λn(A).

Rn will always be assumed to be equipped with the standard scalar product 〈·, ·〉. Given

a vector v ∈ Rn and i ∈ {1, . . . , n}, we denote by vi the ith coordinate of v. Thus for

u, v ∈ Rn we have 〈u, v〉 =
∑n

i=1 uivi.

Our goal here is to describe the following theorem of Batson, Spielman and Sri-

vastava [BSS], and to explain some of its recently discovered geometric applications.

We expect that there exist many more applications of this fundamental fact in matrix

theory.

Theorem 1.1. — For every ε ∈ (0, 1) there exists c(ε) = O(1/ε2) with the following

properties. Let G = (gij) be an n × n matrix with nonnegative entries. Then there

exists an n × n matrix H = (hij) with nonnegative entries that satisfies the following

conditions:

1. supp(H) ⊆ supp(G).

2. The cardinality of the support of H satisfies |supp(H)| 6 c(ε)n.

3. For every x ∈ Rn we have
n∑
i=1

n∑
j=1

gij(xi − xj)2 6
n∑
i=1

n∑
j=1

hij(xi − xj)2 6 (1 + ε)
n∑
i=1

n∑
j=1

gij(xi − xj)2. (1)
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The second assertion of Theorem 1.1 is that the matrix H is sparse, yet due to the

third assertion of Theorem 1.1 the quadratic form
∑n

i=1

∑n
j=1 hij(xi−xj)2 is nevertheless

a good approximation of the quadratic form
∑n

i=1

∑n
j=1 gij(xi − xj)2. For this reason

Theorem 1.1 is called in the literature a sparsification theorem.

The bound on |supp(H)| obtained in [BSS] is

|supp(H)| 6 2

⌈
(
√

1 + ε+ 1)4

ε2
n

⌉
. (2)

Thus c(ε) 6 32/ε2 +O(1/ε). There is no reason to expect that (2) is best possible, but

a simple argument [BSS, Section 4] shows that necessarily c(ε) > 8/ε2.

1.1. Historical discussion

The sparsification problem that is solved (up to constant factors) by Theorem 1.1

has been studied for some time in the theoretical computer science literature. The

motivations for these investigations were algorithmic, and therefore there was emphasis

on constructing the matrix H quickly. We will focus here on geometric applications

of Theorem 1.1 for which the existential statement suffices, but we do wish to state

that [BSS] shows that H can be constructed in time O(n3|supp(G)|/ε2) = O(n5/ε2).

For certain algorithmic applications this running time is too slow, and the literature

contains works that yield weaker asymptotic bounds on |supp(H)| but have a faster

construction time. While such tradeoffs are important variants of Theorem 1.1, they

are not directly relevant to our discussion and we will not explain them here. For the

applications described below, even a weaker bound of, say, |supp(H)| 6 c(ε)n log n is

insufficient.

Benczúr and Karger [BK] were the first to study the sparsification problem. They

proved the existence of a matrix H with |supp(H)| 6 c(ε)n log n, that satisfies the

conclusion (1) only for Boolean vectors x ∈ {0, 1}n. In their series of works on fast

solvers for certain linear systems [ST1, ST2, ST3, ST4], Spielman and Teng studied the

sparsification problem as stated in Theorem 1.1, i.e., with the conclusion (1) holding

for every x ∈ Rn. Specifically, in [ST4], Spielman and Teng proved Theorem 1.1 with

the weaker estimate |supp(H)| = O (n(log n)7/ε2). Spielman and Srivastava [SS1] im-

proved this estimate on the size of the support of H to |supp(H)| = O(n(log n)/ε2).

As we stated above, Theorem 1.1, which answers positively a conjecture of Spielman-

Srivastava [SS1], is due to Batson-Spielman-Srivastava [BSS], who proved this sharp

result via a new deterministic iterative technique (unlike the previous probabilistic ar-

guments) that we will describe below. This beautiful new approach does not only yield

an asymptotically sharp bound on |supp(H)|: it gives for the first time a deterministic

algorithm for constructing H (unlike the previous randomized algorithms), and it also

gives additional results that will be described later. We refer to Srivastava’s disserta-

tion [Sr2] for a very nice and more complete exposition of these ideas. See also the work

of Kolla-Makarychev-Saberi-Teng [KMST] for additional results along these lines.
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1.2. Combinatorial interpretation

Suppose that G is the adjacency matrix of the complete graph, i.e., the diago-

nal entries of G vanish and gij = 1 if i 6= j. Assume also that the matrix H of

Theorem 1.1 happens to be a multiple of the adjacency matrix of a d-regular graph

Γ = ({1, . . . , n}, E), i.e., for some γ > 0 and all i, j ∈ {1, . . . , n} we have hij = γ if

{i, j} ∈ E and hij = 0 otherwise. Thus |supp(H)| = dn. By expanding the squares

in (1) and some straightforward linear algebra, we see that (1) is equivalent to the bound

(λ1(H)−λn(H))/(λ1(H)−λ2(H)) 6 1+ε. Thus if ε is small then the graph Γ is a good

expander (see [HLW] for background on this topic). The Alon-Boppana bound [Ni] im-

plies that H satisfies (λ1(H)−λn(H))/(λ1(H)−λ2(H)) > 1+4(1−o(1))
√
d as n, d→∞.

This lower bound can be asymptotically attained since if Γ is a Ramanujan graph

of Lubotzky-Phillips-Sarnak [LPS] then λ1(H)/γ, λn(H)/γ ∈
[
−2
√
d− 1, 2

√
d− 1

]
.

Writing 1 + ε =
(
d+ 2

√
d− 1

)
/
(
d− 2

√
d− 1

)
= 1 + 4(1 + o(1))/

√
d, we see that the

existence of Ramanujan graphs means that (in this special case of the complete graph)

there exists a matrix H satisfying (1) with |supp(H)| = dn = 16n(1 + o(1))/ε2. The

bound on |supp(H)| in (2) shows that Thereom 1.1 achieves the optimal Ramanujan

bound up to a factor of 2. For this reason Batson-Spielman-Srivastava call the matrices

produced by Theorem 1.1 “twice-Ramanujan sparsifiers”. Of course, this analogy is in-

complete since while the matrix H is sparse, it need not be a multiple of the adjacency

matrix of a graph, but rather an adjacency matrix of a weighted graph. Moreover,

this graph has bounded average degree, rather than being a regular graph of bounded

degree. Such weighted sparse (though non-regular) graphs still have useful pseudoran-

dom properties (see [BSS, Lemma 4.1]). Theorem 1.1 can be therefore viewed as a new

deterministic construction of “expander-like” weighted graphs, with very good spectral

gap. Moreover, it extends the notion of expander graphs since one can start with an

arbitrary matrix G before applying the sparsification procedure, with the quality of the

resulting expander (measured in terms of absolute spectral gap) being essentially the

same as the quality of G as an expander.

1.3. Structure of this paper.

In Section 2 we state a stronger theorem (Theorem 2.1) of Batson-Spielman-

Srivastava [BSS], and prove that it implies Theorem 1.1. Section 3 contains the

Batson-Spielman-Srivastava proof of this theorem, which is based on a highly orig-

inal iterative argument. Section 4 contains an application of Theorem 2.1, due to

Srivastava [Sr1], to approximate John decompositions. In section 5 we describe two ap-

plications of Theorem 2.1, due to Newman-Rabinovich [NR] and Schechtman [Sche3],

to dimensionality reduction problems. Section 6 describes the work of Spielman-

Srivastava [SS2] that shows how their proof technique for Theorem 2.1 can be used

to prove a sharper version of the Bourgain-Tzafriri restricted invertibility principle.

Section 7 contains concluding comments and some open problems.
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2. A STRONGER THEOREM

Batson-Spielman-Srivastava actually proved a stronger theorem that implies Theo-

rem 1.1. The statement below is not identical to the statement in [BSS], though it

easily follows from it. This formulation is stated explicitly as Theorem 1.6 in Srivas-

tava’s dissertation [Sr2].

Theorem 2.1. — Fix ε ∈ (0, 1) and m,n ∈ N. For every x1, . . . , xm ∈ Rn there exist

s1, . . . , sm ∈ [0,∞) such that∣∣{i ∈ {1, . . . ,m} : si 6= 0
}∣∣ 6 ⌈ n

ε2

⌉
, (3)

and for all y ∈ Rn we have

(1− ε)2
m∑
i=1

〈xi, y〉2 6
m∑
i=1

si〈xi, y〉2 6 (1 + ε)2
m∑
i=1

〈xi, y〉2. (4)

2.1. Deduction of Theorem 1.1 from Theorem 2.1

Let G = (gij) be an n × n matrix with nonnegative entries. Note that the diagonal

entries of G play no role in the conclusion of Theorem 1.1, so we may assume in what

follows that gii = 0 for all i ∈ {1, . . . , n}.
The degree matrix associated to G is defined as usual by

DG =



∑n
j=1 g1j 0 . . . . . . 0

0
∑n

j=1 g2j
. . . . . .

...
...

. . .
∑n

j=1 g3j
. . .

...
...

. . . . . . . . . 0

0 . . . . . . 0
∑n

j=1 gnj


, (5)

and the Laplacian associated to G is defined by

∆G = DG −G =
1

2

n∑
i=1

n∑
j=1

gij(ei − ej)⊗ (ei − ej), (6)

where e1, . . . , en ∈ Rn is the standard basis of Rn. In the last equation in (6), and

in what follows, we use standard tensor notation: for x, y ∈ Rn the linear operator

x⊗ y : Rn → Rn is given by (x⊗ y)(z) = 〈x, z〉y.

Theorem 2.1, applied to the vectors {√gij (ei − ej) : i, j ∈ {1, . . . , n} ∧ i < j} ⊆ Rn,

implies that there exist {sij : i, j ∈ {1, . . . , n} ∧ i < j} ⊆ [0,∞), at most dn/ε2e of

which are nonzero, such that for every y ∈ Rn we have

〈∆Gy, y〉 6
n−1∑
i=1

n∑
j=i+1

sijgij 〈ei − ej, y〉2 6
(

1 + ε

1− ε

)2

〈∆Gy, y〉 . (7)

Extend (sij)i<j to a symmetric matrix by setting sii = 0 and sji = sij if i > j, and

define H = (hij) by hij = sijgij. Then supp(H) ⊆ supp(G) and |supp(H)| 6 2 dn/ε2e.
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A straightforward computation shows that 〈∆Gy, y〉 = 1
2

∑n
i=1

∑n
j=1 gij(yi − yj)

2 and∑n−1
i=1

∑n
j=i+1 sijgij 〈ei − ej, y〉

2 = 1
2

∑n
i=1

∑n
j=1 hij(yi − yj)

2. Thus, due to (7) Theo-

rem 1.1 follows, with the bound on |supp(H)| as in (2).

3. PROOF OF THEOREM 2.1

Write A =
∑m

i=1 xi ⊗ xi. Note that it suffices to prove Theorem 2.1 when A is the

n× n identity matrix I. Indeed, by applying an arbitrarily small perturbation we may

assume that A is invertible. If we then set yi = A−1/2xi then
∑m

i=1 yi ⊗ yi = I, and

the conclusion of Theorem 2.1 for the vectors {y1, . . . , ym} implies the corresponding

conclusion for the original vectors {x1, . . . , xm}.
The situation is therefore as follows. We are given x1, . . . , xn ∈ Rn satisfying

m∑
i=1

xi ⊗ xi = I. (8)

Our goal is to find {si}mi=1 ⊆ [0,∞) such that at most dn/ε2e of them are nonzero, and

λ1 (
∑n

i=1 sixi ⊗ xi)
λn (

∑n
i=1 sixi ⊗ xi)

6

(
1 + ε

1− ε

)2

. (9)

For the ensuing argument it will be convenient to introduce the following notation:

θ =
1 + ε

1− ε
. (10)

The proof constructs by induction {tk}∞k=1 ⊆ [0,∞) and {yk}∞k=1 ⊆ {x1, . . . , xm} with

the following properties. Setting A0 = 0 and Ai =
∑i

j=1 tjyj⊗yj for i ∈ N, the following

inequalities hold true:

− n

ε
+ i < λn(Ai) 6 λ1(Ai) < θ

(n
ε

+ i
)
, (11)

and for every i ∈ N we have
n∑
j=1

1

θ
(
n
ε

+ i
)
− λj(Ai)

=
n∑
j=1

1

θ
(
n
ε

+ i− 1
)
− λj(Ai−1)

, (12)

and
n∑
j=1

1

λj(Ai)−
(
−n

ε
+ i
) 6

n∑
j=1

1

λj(Ai−1)−
(
−n

ε
+ i− 1

) . (13)

(The sums in (12) and (13) represent the traces of certain matrices constructed from

the Ai, and we will soon see that this is the source of their relevance.)

If we continue this construction for k = dn/ε2e steps, then by virtue of (11) we would

have
λ1(Ak)

λn(Ak)
6
θ
(
n
ε

+ n
ε2

)
n
ε2
− n

ε

=

(
1 + ε

1− ε

)2

.
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By construction Ak =
∑m

i=1 sixi ⊗ xi with s1, . . . , sm ∈ [0,∞) and at most k of them

nonzero. Thus, this process would prove the desired inequality (9).

Note that while for our purposes we just need the spectral bounds in (11), we will

need the additional conditions on the resolvent appearing in (12) and (13) in order

for us to be able to perform the induction step. Note also that due to (11) all the

summands in (12) and (13) are positive.

Suppose that i > 1 and we have already constructed the scalars t1, . . . , ti−1 ∈ [0,∞)

and vectors y1, . . . , yi−1 ∈ {x1, . . . , xm}, and let Ai−1 be the corresponding positive

semidefinite matrix. The proof of Theorem 2.1 will be complete once we show that we

can find ti > 0 and yi ∈ {x1, . . . , xm} so that the matrix Ai = Ai−1 + tiyi ⊗ yi satisfies

the conditions (11), (12), (13).

It follows from the inductive hypotheses (11) and (13) that

0 <
1

λn(Ai−1)−
(
−n

ε
+ i− 1

) 6
n∑
j=1

1

λj(Ai−1)−
(
−n

ε
+ i− 1

)
6

n∑
j=1

1

λj(A0)−
(
−n

ε

) = ε < 1. (14)

Hence, since Ai − Ai−1 is positive semidefinite, λn(Ai) > λn(Ai−1) > −n
ε

+ i, implying

the leftmost inequality in (11).

It will be convenient to introduce the following notation:

a =
n∑
j=1

1

θ
(
n
ε

+ i− 1
)
− λj(Ai−1)

−
n∑
j=1

1

θ
(
n
ε

+ i
)
− λj(Ai−1)

> 0, (15)

and

b =
n∑
j=1

1

λj(Ai−1)−
(
−n

ε
+ i
) − n∑

j=1

1

λj(Ai−1)−
(
−n

ε
+ i− 1

) > 0. (16)

Note that (16) makes sense since, as we have just seen, (14) implies that we have

λn(Ai−1) > −n
ε
+i. This, combined with (11), shows that the matrices θ

(
n
ε

+ i
)
I−Ai−1

and Ai−1 −
(
−n

ε
+ i
)
I are positive definite, and hence also invertible. Therefore, for

every j ∈ {1, . . . ,m} we can consider the following quantities:

αj =

〈(
θ
(n
ε

+ i
)
I − Ai−1

)−1
xj, xj

〉
+

1

a

〈(
θ
(n
ε

+ i
)
I − Ai−1

)−2
xj, xj

〉
, (17)

and

βj =
1

b

〈(
Ai−1 −

(
−n
ε

+ i
)
I
)−2

xj, xj

〉
−
〈(

Ai−1 −
(
−n
ε

+ i
)
I
)−1

xj, xj

〉
. (18)

The following lemma contains a crucial inequality between these quantities.

Lemma 3.1. — We have
∑m

j=1 βj >
∑m

j=1 αj.
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Assuming Lemma 3.1 for the moment, we will show now how to complete the induc-

tive construction. By Lemma 3.1 there exists j ∈ {1, . . . ,m} for which βj > αj. We

will fix this j from now on. Denote

ti =
1

αj
and yi = xj. (19)

The following formula is straightforward to verify—it is known as the Sherman-

Morrison formula (see [GV, Section 2.1.3]): for every invertible n × n matrix A and

every z ∈ Rn we have

(A+ z ⊗ z)−1 = A−1 − 1

1 + 〈A−1z, z〉
A−1(z ⊗ z)A−1. (20)

Note that tr (A−1(z ⊗ z)A−1) = 〈A−2z, z〉. Hence, by taking the trace of the iden-

tity (20) we have

tr
(
(A+ z ⊗ z)−1

)
= tr

(
A−1

)
− 〈A−2z, z〉

1 + 〈A−1z, z〉
. (21)

Now, for every t ∈ (0, 1/αj] we have

n∑
j=1

1

θ
(
n
ε

+ i
)
− λj(Ai−1 + txj ⊗ xj)

= tr

((
θ
(n
ε

+ i
)
I − Ai−1 − txj ⊗ xj

)−1)

(21)
=

n∑
j=1

1

θ
(
n
ε

+ i
)
− λj(Ai−1)

+

〈(
θ
(
n
ε

+ i
)
I − Ai−1

)−2
xj, xj

〉
1
t
−
〈(
θ
(
n
ε

+ i
)
I − Ai−1

)−1
xj, xj

〉
6

n∑
j=1

1

θ
(
n
ε

+ i
)
− λj(Ai−1)

+

〈(
θ
(
n
ε

+ i
)
I − Ai−1

)−2
xj, xj

〉
αj −

〈(
θ
(
n
ε

+ i
)
I − Ai−1

)−1
xj, xj

〉 (22)

(17)
=

n∑
j=1

1

θ
(
n
ε

+ i
)
− λj(Ai−1)

+ a

(15)
=

n∑
j=1

1

θ
(
n
ε

+ i− 1
)
− λj(Ai−1)

. (23)

In (22) we used the fact that t 6 1/αj and αj >
〈(
θ
(
n
ε

+ i
)
I − Ai−1

)−1
xj, xj

〉
. In

particular, there is equality in (22) if t = 1/αj. As Ai = Ai−1 + 1
αj
xj ⊗ xj, this

proves (12). Inequality (23) also implies the rightmost inequality in (11). Indeed,

assume for contradiction that λ1

(
Ai−1 + 1

αj
xj ⊗ xj

)
> θ

(
n
ε

+ i
)
. Since by the inductive

hypothesis λ1(Ai−1) < θ
(
n
ε

+ i− 1
)
< θ

(
n
ε

+ i
)
, it follows by continuity that there

exists t ∈ (0, 1/αj] for which λ1 (Ai−1 + txj ⊗ xj) = θ
(
n
ε

+ i
)
. This value of t would

make
∑n

j=1 1/
(
θ
(
n
ε

+ i
)
− λj(Ai−1 + txj ⊗ xj)

)
be infinite, contradicting (23) since by

the inductive hypothesis all the summands in the right-hand side of (23) are positive

and finite.
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It remains to prove (13)—this is the only place where the condition βj > αj will be

used. We proceed as follows.

n∑
j=1

1

λj(Ai)−
(
−n

ε
+ i
) (19)

= tr

((
Ai−1 −

(
−n
ε

+ i
)
I +

1

αj
xj ⊗ xj

)−1)

(21)
=

n∑
j=1

1

λj(Ai−1)−
(
−n

ε
+ i
) −

〈(
Ai−1 −

(
−n

ε
+ i
)
I
)−2

xj, xj

〉
αj +

〈(
Ai−1 −

(
−n

ε
+ i
)
I
)−1

xj, xj

〉
(βj>αj)

6
n∑
j=1

1

λj(Ai−1)−
(
−n

ε
+ i
) −

〈(
Ai−1 −

(
−n

ε
+ i
)
I
)−2

xj, xj

〉
βj +

〈(
Ai−1 −

(
−n

ε
+ i
)
I
)−1

xj, xj

〉
(18)
=

n∑
j=1

1

λj(Ai−1)−
(
−n

ε
+ i
) − b

(16)
=

n∑
j=1

1

λj(Ai−1)−
(
−n

ε
+ i− 1

) .
This concludes the inductive construction, and hence also the proof of Theorem 2.1,

provided of course that we prove the crucial inequality contained in Lemma 3.1.

Proof of Lemma 3.1. — It is straightforward to check that the identity (8) implies that

for every n× n matrix A we have

m∑
j=1

〈Axj, xj〉 = tr(A). (24)

Hence,

m∑
j=1

αj
(17)∧(24)

= tr

((
θ
(n
ε

+ i
)
I − Ai−1

)−1)
+

tr
((
θ
(
n
ε

+ i
)
I − Ai−1

)−2)
a

, (25)

and,

m∑
j=1

βj
(18)∧(24)

=
tr
((
Ai−1 −

(
−n

ε
+ i
)
I
)−2)

b
− tr

((
Ai−1 −

(
−n
ε

+ i
)
I
)−1)

. (26)

Now,

tr

((
θ
(n
ε

+ i
)
I − Ai−1

)−1)
=

n∑
j=1

1

θ
(
n
ε

+ i
)
− λj(Ai−1)

6
n∑
j=1

1

θ
(
n
ε

+ i− 1
)
− λj(Ai−1)

(12)
=

n∑
j=1

1
θn
ε
− λj(A0)

=
ε

θ
, (27)
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and

1

a
· tr
((

θ
(n
ε

+ i
)
I − Ai−1

)−2)
(15)
=

∑n
j=1

(
θ
(
n
ε

+ i
)
− λj(Ai−1)

)−2
θ
∑n

j=1

(
θ
(
n
ε

+ i
)
− λj(Ai−1)

)−1 (
θ
(
n
ε

+ i− 1
)
− λj(Ai−1)

)−1 6
1

θ
. (28)

Hence,
n∑
j=1

αj
(25)∧(27)∧(28)

6
1 + ε

θ

(10)
= 1− ε. (29)

In order to use (26), we first bound b as follows.

b
(16)
=

n∑
j=1

1(
λj−1(Ai−1)−

(
−n

ε
+ i
)) (

λj−1(Ai−1)−
(
−n

ε
+ i− 1

))
6

(
n∑
j=1

1

λj(Ai−1)−
(
−n

ε
+ i− 1

))1/2

·

(
n∑
j=1

1(
λj−1(Ai−1)−

(
−n

ε
+ i
))2 (

λj−1(Ai−1)−
(
−n

ε
+ i− 1

)))1/2

(14)

6
√
ε

(
n∑
j=1

1(
λj−1(Ai−1)−

(
−n

ε
+ i
))2 − b

)1/2

6

(
n∑
j=1

1(
λj−1(Ai−1)−

(
−n

ε
+ i
))2 − b

)1/2

,

which simplifies to give the bound

1

b

n∑
j=1

1(
λj−1(Ai−1)−

(
−n

ε
+ i
))2 =

tr
((
Ai−1 −

(
−n

ε
+ i
)
I
)−2)

b
> b+ 1. (30)

Hence,

m∑
j=1

βj
(26)∧(30)

> b+ 1−
n∑
j=1

1

λj(Ai−1)−
(
−n

ε
+ i
)

(16)
= 1−

n∑
j=1

1

λj(Ai−1)−
(
−n

ε
+ i− 1

) (14)

> 1− ε. (31)

Lemma 3.1 now follows from (29) and (31).

Remark 3.2. — In the inductive construction, instead of ensuring equality in (12), we

could have ensured equality in (13) and replaced the equality sign in (12) with the

inequality sign 6. This would be achieved by choosing ti = 1/βj in (19). Alternatively
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we could have chosen ti to be any value in the interval [1/βj, 1/αj], in which case both

inductive conditions (12) and (13) would be with the inequality sign 6.

4. APPROXIMATE JOHN DECOMPOSITIONS

Let Bn
2 ⊆ Rn be the unit ball with respect to the standard Euclidean metric. Recall

that an ellipsoid E = TBn
2 ⊆ Rn is an image of Bn

2 under an invertible linear transfor-

mation T : Rn → Rn. Let K ⊆ Rn be a centrally symmetric (i.e., K = −K) convex

body. John’s theorem [Jo] states that among the ellipsoids that contain K, there exists

a unique ellipsoid of minimal volume. This ellipsoid is called the John ellipsoid of K.

If the John ellipsoid of K happens to be Bn
2 , the body K is said to be in John position.

For any K there is a linear invertible transformation T : Rn → Rn such that TK is in

John position. The Banach-Mazur distance between two centrally symmetric convex

bodies K,L ⊆ Rn, denoted dBM(K,L), is the infimum over those s > 0 for which there

exists a linear operator T : Rn → Rn satisfying K ⊆ TL ⊆ sK.

John [Jo] proved that if K is in John position then there exist contact points

x1, . . . , xm ∈ (∂K) ∩ (∂Bn
2 ) and positive weights c1, . . . , cm > 0 such that

m∑
i=1

cixi = 0, (32)

and
m∑
i=1

cixi ⊗ xi = I. (33)

When conditions (32) and (33) are satisfied we say that {xi, ci}mi=1 form a John decom-

position of the identity. It is hard to overstate the importance of John decompositions

in analysis and geometry, and we will not attempt to discuss their applications here.

Interested readers are referred to [Bal2] for a taste of this rich field.

John proved that one can always take m 6 n(n + 1)/2. This bound cannot be

improved in general (see [PT] for an even stronger result of this type). However, if

one allows an arbitrarily small perturbation of the body K, it is possible to reduce the

number of contact points with the John ellipsoid to grow linearly in n. This sharp result

is a consequence of the Batson-Spielman-Srivastava sparsification theorem 2.1, and it

was proved by Srivastava in [Sr1]. The precise formulation of Srivastava’s theorem is

as follows.

Theorem 4.1. — If K ⊆ Rn is a centrally symmetric convex body and ε ∈ (0, 1) then

there exists a convex body L ⊆ Rn with dBM(K,L) 6 1 + ε such that L has at most

m = O(n/ε2) contact points with its John ellipsoid.

The problem of perturbing a convex body so as to reduce the size of its John decom-

position was studied by Rudelson in [Ru1], where the bound m 6 C(ε)n(log n)3 was

obtained via a randomized construction. In [Ru2] Rudelson announced an improved
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bound of m 6 C(ε)n log n(log log n)2 using a different probabilistic argument based on

majorizing measures, and in [Ru3] Rudelson obtained the bound m = O(ε−2n log n),

which was the best known bound prior to Srivastava’s work.

The key step in all of these proofs is to extract from (33) an approximate

John decomposition. This amounts to finding weights s1, . . . , sm ∈ [0,∞), such

that not many of them are nonzero, and such that we have the operator norm

bound ‖I −
∑m

i=1 sixi ⊗ xi‖ 6 ε. This is exactly what Theorem 2.1 achieves, with

|{i ∈ {1, . . . ,m} : si 6= 0}| 6 c(ε)n. Prior to the deterministic construction of Batson-

Spielman-Strivastava [BSS], such approximate John decompositions were constructed

by Rudelson via a random selection argument, and a corresponding operator-valued

concentration inequality. In particular, Rudelson’s bound [Ru3] m = O(ε−2n log n)

uses an influential argument of Pisier. Such methods are important to a variety of

applications (see [RV, Tr2]), and in particular this is how Spielman-Srivastava [SS1]

proved their earlier O(ε−2n log n) sparsification theorem. While yielding suboptimal

results, this method is important since it has almost linear (randomized) running time.

We refer to the recent work of Adamczak, Litvak, Pajor and Tomczak-Jaegermann for

deeper investigations of randomized approximations of certain decompositions of the

identity (under additional assumptions).

Proof of Theorem 4.1. — Suppose that K is in John position, and let {xi, ci}ni=1 be

the corresponding John-decomposition. Since
∑m

i=1(
√
cixi)⊗ (

√
cixi) = I, we may use

Theorem 2.1 to find s1, . . . , sm > 0, with at most O(n/ε2) of them nonzero, such that

if we set A =
∑m

i=1 sicixi⊗ xi, then the matrices A− I and (1 + ε/4)I −A are positive

semidefinite. Thus ‖A− I‖ 6 ε/4.

The rest of the proof follows the argument in [Ru1, Ru2]. Write E = A1/2Bn
2 . Then

since ‖A− I|| 6 ε/4 we have(
1− ε

4

)
E ⊆ Bn

2 ⊆
(

1 +
ε

4

)
E .

Denote yi = xi/‖A−1/2xi‖2 ∈ ∂E and define

H = conv

(
{±yi}i∈J

⋃(
1

1 + ε
K

))
,

where J = {i ∈ {1, . . . ,m} : si 6= 0}. Then H is a centrally symmetric convex body, and

by a straightforward argument one checks (see [Ru1, Ru2]) that 1
1+ε

K ⊆ H ⊆ (1+2ε)K.

Set L = A−1/2H. Since K ⊆ Bn
2 we have (∂H) ∩ (∂E) = {±yi}i∈J , and therefore

(∂L) ∩ (∂Bn
2 ) = {±zi}i∈J , where zi = A−1/2yi. Writing ai = cisi

2
‖A1/2xi‖2, we have

∑
i∈J

aizi ⊗ zi +
∑
i∈J

ai(−zi)⊗ (−zi) =
m∑
i=1

sici(A
−1/2xi)⊗ (A−1/2xi)

= A−1/2

(
m∑
i=1

sicixi ⊗ xi

)
A−1/2 = A−1/2AA−1/2 = I.
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Hence {±zi, ai}i∈J form a John decomposition of the identity consisting of contact

points of L and Bn
2 ⊇ L. By John’s uniqueness theorem [Jo] it follows that Bn

2 is the

John ellipsoid of L.

Remark 4.2. — Rudelson [Ru2, Ru3] also studied approximate John decompositions

for non-centrally symmetric convex bodies. He proved that Theorem 4.1 holds if K is

not necessarily centrally symmetric, with m = O(ε−2n log n). Note that in the non-

symmetric setting one needs to define the Banach-Mazur appropriately: dBM(K,L)

is the infimum over those s > 0 for which there exists v ∈ Rn and a linear operator

T : Rn → Rn satisfying K+v ⊆ TL ⊆ s(K+v). Srivastava [Sr1], based on a refinement

of the proof technique of Theorem 2.1, proved that if K ⊆ Rn is a convex body and

ε ∈ (0, 1), then there exists a convex body L ⊆ Rn with dBM(K,L) 6
√

5 + ε such

that L has at most m = O(n/ε3) contact points with its John ellipsoid. Thus, it is

possible to get bounded perturbations with linearly many contact points with the John

ellipsoid, but it remains open whether this is possible with 1 + ε perturbations. The

problem is how to ensure condition (32) for an approximate John decomposition using

the Batson-Spielman-Srivastava technique—for symmetric bodies this is not a problem

since we can take the reflections of the points in the approximate John decomposition.

5. DIMENSIONALITY REDUCTION IN Lp SPACES

Fix p > 1. In what follows Lp denotes the space of p-integrable functions on [0, 1]

(equipped with Lebesgue measure), and `np denotes the space Rn, equipped with the `p

norm ‖x‖p = (
∑n

i=1 |xi|p)
1/p

. Since any n-dimensional subspace of L2 is isometric to `n2 ,

for any x1, . . . , xn ∈ L2 there exist y1, . . . , yn ∈ `n2 satisfying ‖xi − xj‖2 = ‖yi − yj‖2 for

all i, j ∈ {1, . . . , n}. But, more is true if we allow errors: the Johnson-Lindenstrauss

lemma [JL] says that for every x1, . . . , xn ∈ L2, ε ∈ (0, 1) there exists k = O(ε−2 log n)

and y1, . . . , yn ∈ `k2 such that ‖xi − xj‖2 6 ‖yi − yj‖2 6 (1 + ε)‖xi − xj‖2 for all

i, j ∈ {1, . . . , n}. This bound on k is known to be sharp up to a O(log(1/ε)) factor [Al].

In Lp for p 6= 2 the situation is much more mysterious. Any n-points in Lp embed

isometrically into `kp for k = n(n− 1)/2, and this bound on k is almost optimal [Bal1].

If one is interested, as in the Johnson-Lindenstrauss lemma, in embeddings of n-point

subsets of Lp into `kp with a 1 + ε multiplicative error in the pairwise distances, then

the best known bound on k, due to Schechtman [Sche2], was

k 6

{
C(ε)n log n p ∈ [1, 2),

C(p, ε)np/2 log n p ∈ (2,∞).
(34)

We will see now how Theorem 2.1 implies improvements to the bounds in (34) when

p = 1 and when p is an even integer. The bounds in (34) for p /∈ {1} ∪ 2N remain the

best currently known. We will start with the improvement when p = 1, which is due to

Newman and Rabinovich [NR]. In the case p ∈ 2N, which is due to Schechtman [Sche3],
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more is true: the claimed bound on k holds for embeddings of any n-dimensional linear

subspace of Lp into `kp, and when stated this way (rather than for n-point subsets of

Lp) it is sharp [BDGJN].

5.1. Finite subsets of L1

It is known that a Johnson-Lindenstrauss type result cannot hold in L1: Brinkman

and Charikar [BC] proved that for any D > 1 there exists arbitrarily large n-point

subsets {x1, . . . , xn} ⊆ L1 with the property that if they embed with distortion D into

`k1 then necessarily k > nc/D
2
, where c > 0 is a universal constant. Here, and in what

follows, a metric space (X, d) is said to embed with distortion D into a normed space Y

if there exists f : X → Y satisfying d(x, y) 6 ‖f(x)−f(y)‖ 6 Dd(x, y) for all x, y ∈ X.

No nontrivial restrictions on bi-Lipschitz dimensionality reduction are known for finite

subsets of Lp, p ∈ (1,∞) r {2}. On the positive side, as stated in (34), Schechtman

proved [Sche2] that any n-point subset of L1 embeds with distortion 1 + ε into `k1, for

some k 6 C(ε)n log n. The following theorem of Newman and Rabinovich [NR] gets

the first asymptotic improvement over Schechtman’s 1987 bound, and is based on the

Batson-Spielman-Srivastava theorem.

Theorem 5.1. — For any ε ∈ (0, 1), any n-point subset of L1 embeds with distortion

1 + ε into `k1 for some k = O(n/ε2).

Proof. — Let f1, . . . , fn ∈ L1 be distinct. By the cut-cone representation of L1 metrics,

there exists nonnegative weights {wE}E⊆{1,...,n} such that for all i, j ∈ {1, . . . , n} we

have

‖fi − fj‖1 =
∑

E⊆{1,...,n}

wE|1E(i)− 1E(j)|. (35)

See [DL] for a proof of (35) (see also [Na, Section 3] for a quick proof).

For every E ⊆ {1, . . . , n} define xE =
√
wE
∑

i∈E ei ∈ Rn (e1, . . . , en is the standard

basis of Rn). By Theorem 2.1 there exists a subset σ ⊆ 2{1,...,n} with |σ| = O(n/ε2),

and nonnegative weights {sE}E∈σ, such that for every y ∈ Rn we have∑
E⊆{1,...,n}

wE

(∑
i∈E

yi

)2

6
∑
E∈σ

sEwE

(∑
i∈E

yi

)2

6 (1 + ε)
∑

E⊆{1,...,n}

wE

(∑
i∈E

yi

)2

. (36)

Define z1, . . . , zn ∈ Rσ by zi = (sEwE1E(i))E∈σ. For i, j ∈ {1, . . . , n} apply (36) to

the vector y = ei − ej, noting that for all E ⊆ {1, . . . , n}, for this vector y we have(∑
i∈E yi

)2
= |1E(i)− 1E(j)|.

‖fi − fj‖1
(35)
=

∑
E⊆{1,...,n}

wE|1E(i)− 1E(j)|
(36)

6
∑
E∈σ

sEwE|1E(i)− 1E(j)|

= ‖zi − zj‖1
(36)

6 (1 + ε)
∑

E⊆{1,...,n}

wE|1E(i)− 1E(j)| (35)= (1 + ε)‖fi − fj‖1.
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Remark 5.2. — Talagrand [Ta1] proved that any n-dimensional linear subspace of L1

embeds with distortion 1 + ε into `k1, with k 6 C(ε)n log n. This strengthens Schecht-

man’s bound in (34) for n-point subsets of L1, since it achieves a low dimensional

embedding of their span. It would be very interesting to remove the log n term in

Talagrand’s theorem, as this would clearly be best possible. Note that n-point subsets

of L1 can conceivably be embedded into `k1, with k � n. Embedding into at least n

dimensions (with any finite distortion) is a barrier whenever the embedding proceeds

by actually embedding the span of the given n points. The Newman-Rabinovich argu-

ment based on sparsification proceeds differently, and one might hope that it could be

used to break the n dimensions barrier for n-point subsets of L1. This turns out to be

possible: the forthcoming paper [ANN] shows that for any D > 1, any n-point subset

of L1 embeds with distortion D into `k1, with k = O(n/D).

5.2. Finite dimensional subspaces of Lp for even p

Given an n ∈ N and ε ∈ (0, 1), what is the smallest k ∈ N such that any n-dimensional

subspace of Lp linearly embeds with distortion 1 + ε into `kp? This problem has been

studied extensively [Sche1, Sche2, BLM, Ta1, Ta2, JS1, SZ, Zv, JS2], the best known

bound on k being as follows.

k 6


C(p, ε)n log n(log log n)2 p ∈ (0, 1) [Zv],

C(ε)n log n p = 1 [Ta1],

C(ε)n log n(log log n)2 p ∈ (1, 2) [Ta2],

C(p, ε)np/2 log n p ∈ (2,∞) [BLM].

In particular, Bourgain, Lindenstrauss and Milman [BLM] proved that if p ∈ (2,∞)

then one can take k 6 C(p, ε)np/2 log n. It was long known [BDGJN], by considering

subspaces of Lp that are almost isometric to `n2 , that necessarily k > c(p, ε)np/2. We

will now show an elegant argument of Schechtman, based on Theorem 2.1, that removes

the log n factor when p is an even integer, thus obtaining the first known sharp results

for some values of p 6= 2.

Theorem 5.3. — Assume that p > 2 is an even integer, n ∈ N and ε ∈ (0, 1). Then

any n-dimensional subspace X of Lp embeds with distortion 1 + ε into `kp for some

k 6 (cn/p)p/2/ε2, where c is a universal constant.

Proof. — By a standard argument (approximating a net in the sphere of X by simple

functions), we may assume that X ⊆ `mp for some finite (huge) m ∈ N. In what

follows, when we use multiplicative notation for vectors in Rm, we mean coordinate-

wise products, i.e., for x, y ∈ Rm, write xy = (x1y1, . . . , xmym) and for r ∈ N write

xr = (xr1, . . . , x
r
m).

Let u1, . . . , un be a basis of X. Consider the following subspace of Rm:

Y = span
({
up1j1u

p2
j2
· · ·up`j` : ` ∈ N, j1, . . . , j` ∈ {1, . . . , n}, p1 + · · ·+ p` =

p

2

})
.
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Then

d = dim(Y ) 6

(
n+ p/2− 1

p/2

)
6

(
10n

p

)p/2
.

Thinking of Y as a d-dimensional subspace of `m2 , let v1, . . . , vd be an orthonormal

basis of Y . Define x1, . . . , xm ∈ Y by xi =
∑d

j=1〈vj, ei〉vj, where as usual e1, . . . , em
is the standard coordinate basis of Rm. Note that by definition (since v1, . . . , vd is

an orthonormal basis of Y ), for every y ∈ Y and for every i ∈ {1, . . . ,m} we have

〈xi, y〉 = 〈y, ei〉 = yi. By Theorem 2.1, there exists a subset σ ⊆ {1, . . . ,m} with

|σ| = O(d/(pε)2) 6 (cn/p)p/2/ε2, and {si}i∈σ ⊆ (0,∞), such that for all y ∈ Y we have
m∑
i=1

y2i 6
∑
i∈σ

siy
2
i 6

(
1 +

εp

4

) m∑
i=1

y2i . (37)

In particular, since by the definition of Y for every x ∈ X we have xp/2 ∈ Y ,

‖x‖p =

(
m∑
i=1

xpi

)1/p
(37)

6

(∑
i∈σ

six
p
i

)1/p
(37)

6
(

1 +
εp

4

)1/p( m∑
i=1

xpi

)1/p

6 (1 + ε)‖x‖p.

Thus x 7→ (s
1/p
i xi)i∈σ maps X into `σp ⊆ `

(cn/p)p/2/ε2

p and has distortion 1 + ε.

Remark 5.4. — The bound on k in Theorem 5.3 is sharp also in terms of the dependence

on p. See [Sche3] for more information on this topic.

6. THE RESTRICTED INVERTIBILITY PRINCIPLE

In this section square matrices are no longer assumed to be symmetric. The ensuing

discussion does not deal with a direct application of the statement of Theorem 2.1,

but rather with an application of the method that was introduced by Batson-Spielman-

Srivastava to prove Theorem 2.1.

Bourgain and Tzafriri studied in [BT1, BT2, BT3] conditions on matrices which

ensure that they have large “well invertible” sub-matrices, where well invertibility refers

to control of the operator norm of the inverse. Other than addressing a fundamental

question, such phenomena are very important to a variety of interesting applications

that we will not survey here.

To state the main results of Bourgain-Tzafriri, we need the following notation. For

σ ⊆ {1, . . . , n} let Rσ : Rn → Rσ be given by restricting the coordinates to σ, i.e.,

Rσ(
∑n

i=1 aiei) =
∑

i∈σ aiei (as usual, {ei}ni=1 is the standard coordinate basis of Rn).

In matrix notation, given an operator T : Rn → Rn, the operator RσTR
∗
σ : Rσ → Rσ

corresponds to the σ × σ sub-matrix (〈Tei, ej〉)i,j∈σ. The operator norm of T (as an

operator from `n2 to `n2 ) will be denoted below by ‖T‖, and the Hilbert-Schmidt norm

of T will be denoted ‖T‖HS =
√∑n

i=1

∑n
j=1〈Tei, ej〉2.

The following theorem from [BT1, BT3] is known as the Bourgain-Tzafriri restricted

invertibility principle.
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Theorem 6.1. — There exist universal constants c,K > 0 such that for every n ∈ N
and every linear operator T : Rn → Rn the following assertions hold true:

1. If ‖Tei‖2 = 1 for all i ∈ {1, . . . , n} then there exists a subset σ ⊆ {1, . . . , n}
satisfying

|σ| > cn

‖T‖2
, (38)

such that RσT
∗TR∗σ is invertible and∥∥(RσT

∗TR∗σ)−1
∥∥ 6 K. (39)

2. If 〈Tei, ei〉 = 1 for all i ∈ {1, . . . , n} then for all ε ∈ (0, 1) there exists a subset

σ ⊆ {1, . . . , n} satisfying

|σ| > cε2n

‖T‖2
, (40)

such that RσT
∗TR∗σ is invertible and∥∥(RσT

∗TR∗σ)−1
∥∥ 6 1 + ε. (41)

The quadratic dependence on ε in (40) cannot be improved [BHKW]. Observe

that (39) is equivalent to the following assertion:∥∥∥∥∥∑
i∈σ

aiTei

∥∥∥∥∥
2

2

>
1

K

∑
i∈σ

a2i ∀{ai}i∈σ ⊆ R. (42)

We note that if T satisfies the assumption of the first assertion of Theorem 6.1 then

T ∗T satisfies the assumption of the second assertion of Theorem 6.1. Hence, the second

assertion of Theorem 6.1 implies the first assertion of Theorem 6.1 with (39) replaced

by
∥∥(RσT

∗TR∗σ)−1
∥∥ 6 (1 +ε)‖T‖2 and (38) replaced by the condition |σ| > cε2n/‖T‖4.

In [SS2] Spielman and Srivastava proved the following theorem:

Theorem 6.2. — Suppose that x1, . . . , xm ∈ Rn r {0} satisfy

m∑
i=1

xi ⊗ xi = I. (43)

Then for every linear T : Rn → Rn and ε ∈ (0, 1) there exists σ ⊆ {1, . . . ,m} with

|σ| >
⌊
ε2‖T‖2HS

‖T‖2

⌋
, (44)

and such that for all {ai}i∈σ ⊆ R we have∥∥∥∥∥∑
i∈σ

aiTxi

∥∥∥∥∥
2

2

>
(1− ε)2‖T‖2HS

m

∑
i∈σ

a2i . (45)
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Theorem 6.2 implies the Bourgain-Tzafriri restricted invertibility principle. Indeed,

take xi = ei and note that if either ‖Tei‖2 = 1 for all i ∈ {1, . . . , n} or 〈Tei, ei〉 = 1 for all

i ∈ {1, . . . , n} then ‖T‖2HS > n. The idea to improve the Bourgain-Tzafriri theorem in

terms of Hilbert-Schmidt estimates is due to Vershynin, who proved in [Ve] a statement

similar to Theorem 6.2 (with asymptotically worse dependence on ε). Among the tools

used in Vershynin’s argument is the Bourgain-Tzafriri restricted invertibility theorem

itself, but we will see how the iterative approach of Section 3 yields a self-contained and

quite simple proof of Theorem 6.2. This new approach of Spielman-Srivastava has other

advantages. Over the years, there was interest [BT1, BT3, Tr1, CT] in improving the

quantitative estimates in Theorem 6.1 (i.e., the bounds on c,K, and the dependence

|σ| on ε and ‖T‖), and Theorem 6.2 yields the best known bounds. Moreover, it is

not obvious that the subset σ of Theorem 6.1 can be found in polynomial time. A

randomized algorithm achieving this was recently found by Tropp [Tr1], and the work

of Spielman-Srivastava yields a determinstic algorithm which finds in polynomial time

a subset σ satisfying the assertions of Theorem 6.2.

Before proceeding to an exposition of the proof of Theorem 6.2 in [SS2], we wish

to note that another important result of Bourgain-Tzafriri [BT1, BT2] is the following

theorem, which is easily seen to imply the second assertion of Theorem 6.1 with the

conclusion (41) replaced by
∥∥(RσTR

∗
σ)−1

∥∥ 6 1 + ε. This theorem is important for

certain applications, and it would be interesting if it could be proved using the Spielman-

Srivastava method as well.

Theorem 6.3. — There is a universal constant c > 0 such that for every ε > 0 and

n ∈ N if an operator T : Rn → Rn satisfies 〈Tei, ei〉 = 0 for all i ∈ {1, . . . , n} then

there exists a subset σ ⊆ {1, . . . , n} satisfying |σ| > cε2n and ‖RσTR
∗
σ‖ 6 ε‖T‖.

6.1. Proof of Theorem 6.2

The conclusion (45) of Theorem 6.2 is equivalent to the requirement that the matrix

A =
∑
i∈σ

(Txi)⊗ (Txi) (46)

has |σ| eigenvalues at least (1− ε)2‖T‖2HS/m. Indeed, if B is the |σ| × n matrix whose

rows are {Txi}i∈σ, then A = B∗B. The eigenvalues of A are therefore the same as the

eigenvalues of the |σ| × |σ| Gram matrix BB∗ = (〈Txi, Txj〉)i,j∈σ. The assertion that

all the eigenvalues of BB∗ are at least (1− ε)2‖T‖2HS/m is identical to (45).

Define

k =

⌊
ε2‖T‖2HS

‖T‖2

⌋
. (47)

We will construct inductively y0, y1, . . . , yk ∈ Rn with the following properties. We set

y0 = 0 and require that y1, . . . , yk ∈ {x1, . . . , xm}. Moreover, if for i ∈ {0, . . . , k} we

write

bi =
(1− ε)
m

(
‖T‖2HS −

i

ε
‖T‖2

)
, (48)
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then the matrix

Ai =
i∑

j=0

(Tyj)⊗ (Tyj) (49)

has k eigenvalues bigger than bi and all its other eigenvalues equal 0 (this holds vacuously

for i = 0). Note that this requirement implies in particular that y1, . . . , yk are distinct.

Finally, we require that for every i ∈ {1, . . . , k} we have

m∑
j=1

〈
(Ai − biI)−1 Txj, Txj

〉
<

m∑
j=1

〈
(Ai−1 − bi−1I)−1 Txj, Txj

〉
. (50)

The matrix Ak will then have the form (46) with |σ| = k, and have k eigenvalues greater

than (1− ε)2‖T‖2HS/m, as required. It remains therefore to show that for i ∈ {1, . . . , k}
there exists a vector yi satisfying the desired properties, assuming that y0, y1, . . . , yi−1
have already been selected.

Lemma 6.4. — Denote

µ =
m∑
j=1

〈
(Ai−1 − bi−1I)−1 Txj, Txj

〉
−

m∑
j=1

〈
(Ai−1 − biI)−1 Txj, Txj

〉
. (51)

(Since bi ∈ (0, bi−1), the matrix (Ai−1 − biI)−1 makes sense in (51).) Then

m∑
j=1

〈
(Ai−1 − biI)−1 TT ∗ (Ai−1 − biI)−1 Txj, Txj

〉
< −µ

m∑
j=1

(
1 +

〈
(Ai−1 − biI)−1 Txj, Txj

〉)
. (52)

Assuming the validity of Lemma 6.4 for the moment, we will show how to complete

the inductive construction. By (52) there exists j ∈ {1, . . . ,m} satisfying〈
(Ai−1 − biI)−1 TT ∗ (Ai−1 − biI)−1 Txj, Txj

〉
< −µ

(
1 +

〈
(Ai−1 − biI)−1 Txj, Txj

〉)
. (53)

Our inductive choice will be yi = xj.

The matrix (Ai−1 − bi−1I)−1− (Ai−1 − biI)−1 is positive definite, since by the induc-

tive hypothesis its eigenvalues are all of the form (λ− bi−1)−1 − (λ− bi)−1 for some

λ ∈ R that satisfies λ > bi−1 > bi or λ = 0 (and since for i 6 k we have bi > 0). Hence

µ > 0. Since the left hand side of (53) is nonnegative, it follows that

1 +
〈
(Ai−1 − biI)−1 Txj, Txj

〉
< 0. (54)

Since Ai = Ai−1 + (Txj)⊗ (Txj), it follows from (21) that

tr
(
(Ai − biI)−1

)
− tr

(
(Ai−1 − biI)−1

)
= −

〈
(Ai−1 − biI)−2 Txj, Txj

〉
1 +

〈
(Ai−1 − biI)−1 Txj, Txj

〉 (54)
> 0, (55)
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where in the last inequality of (55) we used the fact that (Ai−1 − biI)−2 is positive

definite. At the same time, by the inductive hypothesis λ1(Ai−1), . . . , λi−1(Ai−1) > bi−1,

and λi(Ai−1) = · · · = λn(Ai−1) = 0. Since Ai −Ai−1 is a rank one positive semidefinite

matrix, the eigenvalues of Ai and Ai−1 interlace (see [Bah, Section III.2]; this result

goes back to [Wey]), and therefore

λ1(Ai) > λ1(Ai−1) > λ2(Ai) > λ2(Ai−1) > · · · > λi−1(Ai−1) > λi(Ai), (56)

and

λi(Ai−1) = · · · = λn(Ai−1) = λi+1(Ai) = · · · = λn(Ai) = 0. (57)

Hence,

0
(55)
< tr

(
(Ai − biI)−1

)
− tr

(
(Ai−1 − biI)−1

)
(57)
=

1

λi(Ai)− bi
+

1

bi
+

i−1∑
j=1

(
1

λj(Ai)− bi
− 1

λj(Ai−1)− bi

)
(56)

6
λi(Ai)

bi(λi(Ai)− bi)
,

implying that λi(Ai) > bi.

Therefore, in order to establish the inductive step, it remains to prove (50). To this

end, note that due to (43) and (24) for every n× n matrix A we have

m∑
j=1

〈ATxj, Txj〉 = tr (T ∗AT ) . (58)

Hence (50) is equivalent to the inequality

tr
(
T ∗ (Ai−1 − bi−1I)−1 T

)
> tr

(
T ∗ (Ai − biI)−1 T

)
. (59)

Now,

tr
(
T ∗ (Ai − biI)−1 T

)
− tr

(
T ∗ (Ai−1 − biI)−1 T

)
(20)
= −

tr
(
T ∗ (Ai−1 − biI)−1 ((Txj)⊗ (Txj)) (Ai−1 − biI)−1 T

)
1 +

〈
(Ai−1 − biI)−1 Txj, Txj

〉
= −

〈
(Ai−1 − biI)−1 TT ∗ (Ai−1 − biI)−1 Txj, Txj

〉
1 +

〈
(Ai−1 − biI)−1 Txj, Txj

〉
(54)∧(53)
< µ

(51)∧(58)
= tr

(
T ∗ (Ai−1 − bi−1I)−1 T

)
− tr

(
T ∗ (Ai−1 − biI)−1 T

)
.

This proves (59), so all that remains in order to prove Theorem 6.2 is to prove

Lemma 6.4.

Proof of Lemma 6.4. — Using (58) we see that our goal (52) is equivalent to the fol-

lowing inequality

tr
(
T ∗ (Ai−1 − biI)−1 TT ∗ (Ai−1 − biI)−1 T

)
< −µ

(
m+ tr

(
T ∗ (Ai−1 − biI)−1 T

))
. (60)
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Note that

tr
(
T ∗ (Ai−1 − biI)−1 TT ∗ (Ai−1 − biI)−1 T

)
6 ‖T‖2tr

(
(Ai−1 − biI)−1 TT ∗ (Ai−1 − biI)−1

)
= ‖T‖2tr

(
T ∗ (Ai−1 − biI)−2 T

)
. (61)

The inductive hypothesis (50), or its equivalent form (59), implies that

tr
(
T ∗ (Ai−1 − bi−1I)−1 T

)
< tr

(
T ∗ (A0 − b0I)−1 T

)
= − 1

b0
tr(T ∗T ) =

‖T‖2HS

b0

(48)
= − m

1− ε
. (62)

Hence,

tr
(
T ∗ (Ai−1 − biI)−1 T

) (51)∧(58)∧(62)
< − m

1− ε
− µ. (63)

From (61) and (63) we see that in order to prove (60) it suffices to establish the following

inequality:

‖T‖2tr
(
T ∗ (Ai−1 − biI)−2 T

)
6

εm

1− ε
µ+ µ2. (64)

To prove (64) we first make some preparatory remarks. For r ∈ {0, . . . , i− 1} let Pr
be the orthogonal projection on the image of Ar and let Qr = I −Pr be the orthogonal

projection on the kernel of Ar. Since A0 = 0 we have Q0 = I. Moreover, because

Ar = Ar−1 + (Tyr) ⊗ (Tyr) and Ar−1, (Tyr) ⊗ (Tyr) are both positive semidefinite, it

follows that Ker(Ar) = Ker(Ar−1) ∩ (Txr)
⊥. Therefore

tr(Qr−1 −Qr) = dim(Ker(Ar−1))− dim(Ker(Ar)) 6 1. (65)

Hence,

‖QrT‖2HS = tr (T ∗QrT ) = ‖Qr−1T‖2HS − tr (T ∗(Qr−1 −Qr)T )

> ‖Qr−1T‖2HS − ‖T‖2tr(Qr−1 −Qr)
(65)

> ‖Qr−1T‖2HS − ‖T‖2. (66)

Since Q0 = I, (66) yields by induction the following useful bound:

‖Qi−1T‖2HS > ‖T‖2HS − (i− 1)‖T‖2. (67)

Next, since the nonzero eigenvalues of Ai−1 are greater than bi−1, the matrix

T ∗Pi−1
(
(Ai−1 − bi−1I) (Ai−1 − biI)−2

)
Pi−1T is positive semidefinite. In particular, its

trace is nonnegative, yielding the following estimate:

0 6 tr
(
T ∗Pi−1

(
(Ai−1 − bi−1I) (Ai−1 − biI)−2

)
Pi−1T

)
= tr

(
T ∗Pi−1

(
(Ai−1 − bi−1I)−1 − (Ai − biI)−1

(bi−1 − bi)2
− (Ai−1 − biI)−2

bi−1 − bi

)
Pi−1T

)
,

which rearranges to the following inequality:

(bi−1 − bi)tr
(
T ∗Pi−1 (Ai−1 − biI)−2 Pi−1T

)
6 tr

(
T ∗Pi−1 (Ai−1 − bi−1I)−1 Pi−1T

)
− tr

(
T ∗Pi−1 (Ai−1 − biI)−1 Pi−1T

)
. (68)
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Since Qi−1(Ai−1 − bi−1I)−1Qi−1 = − 1
bi−1

Qi−1 and Qi−1(Ai−1 − biI)−1Qi−1 = − 1
bi
Qi−1,

µ = tr
(
T ∗(Pi−1 +Qi−1) (Ai−1 − bi−1I)−1 (Pi−1 +Qi−1)T

)
−tr

(
T ∗(Pi−1 +Qi−1) (Ai−1 − biI)−1 (Pi−1 +Qi−1)T

)
= tr

(
T ∗Pi−1 (Ai−1 − bi−1I)−1 Pi−1T

)
− tr

(
T ∗Pi−1 (Ai−1 − biI)−1 Pi−1T

)
+

(
1

bi
− 1

bi−1

)
tr (T ∗Qi−1T )

(68)

> (bi−1 − bi)tr
(
T ∗Pi−1 (Ai−1 − biI)−2 Pi−1T

)
+
bi−1 − bi
bi−1bi

‖Qi−1T‖2HS. (69)

Also Qi−1(Ai−1 − biI)−2Qi−1 = 1
b2i
Qi−1, and therefore

tr
(
T ∗ (Ai−1 − biI)−2 T

)
= tr

(
T ∗Pi−1 (Ai−1 − biI)−2 Pi−1T

)
+

tr(T ∗Qi−1T )

b2i

= tr
(
T ∗Pi−1 (Ai−1 − biI)−2 Pi−1T

)
+

1

b2i
‖Qi−1T‖2HS

(69)

6
µ

bi−1 − bi
+
‖Qi−1T‖2HS

bi

(
1

bi
− 1

bi−1

)
(48)
=

εmµ

(1− ε)‖T‖2
+
‖Qi−1T‖2HS

bi

(
1

bi
− 1

bi−1

)
.

It follows that in order to prove the desired inequality (64), it suffices to show that the

following inequality holds true:

‖T‖2‖Qi−1T‖2HS

bi

(
1

bi
− 1

bi−1

)
6 µ2. (70)

Since bi−1 > bi and T ∗Pi−1 (Ai−1 − biI)−2 Pi−1T is positive semidefinite, a consequence

of (69) is that µ > ‖Qi−1T‖2HS

(
1
bi
− 1

bi−1

)
. Hence, in order to prove (70) it suffices to

show that

‖T‖2‖Qi−1T‖2HS

bi

(
1

bi
− 1

bi−1

)
6 ‖Qi−1T‖4HS

(
1

bi
− 1

bi−1

)2

,

or equivalently,

‖Qi−1T‖2HS > ‖T‖2 bi−1
bi−1 − bi

(48)
= ε‖T‖2HS − (i− 1)‖T‖2,

which is a consequence of inequality (67), that we proved earlier.

7. NONLINEAR NOTIONS OF SPARSIFICATION

Quadratic forms such as
∑n

i=1

∑n
j=1 gij(xi−xj)2 are expressed in terms of the mutual

distances between the points {x1, . . . , xn} ⊆ R. This feature makes them very useful for

a variety of applications in metric geometry, where the Euclidean distance is replaced



1033–22

by other geometries. We refer to [MN, NS] for a (partial) discussion of such issues. It

would be useful to study the sparsification problem of Theorem 1.1 in the non-Euclidean

setting as well, although the spectral arguments used by Batson-Spielman-Srivastava

seem inadequate for addressing such nonlinear questions.

In greatest generality one might consider an abstract set X, and a symmetric function

(kernel) K : X ×X → [0,∞). Given an n× n matrix G = (gij), the goal would be to

find a sparse n× n matrix H = (hij) satisfying

n∑
i=1

n∑
j=1

gijK(xi, xj) 6
n∑
i=1

n∑
j=1

hijK(xi, xj) 6 C

n∑
i=1

n∑
j=1

gijK(xi, xj), (71)

for some constant C > 0 and all x1, . . . , xn ∈ X.

Cases of geometric interest in (71) are when K(x, y) = d(x, y)p, where d(·, ·) is a

metric on X and p > 0. When p 6= 2 even the case of the real line with the standard

metric is unclear. Say that an n × n matrix H = (hij) is a p-sparsifier with quality C

of an n × n matrix G = (gij) if supp(H) ⊆ supp(G) and there exists a scaling factor

λ > 0 such that for every x1, . . . , xn ∈ R we have

λ
n∑
i=1

n∑
j=1

gij|xi − xj|p 6
n∑
i=1

n∑
j=1

hij|xi − xj|p 6 Cλ
n∑
i=1

n∑
j=1

gij|xi − xj|p. (72)

By integrating (72) we see that it is equivalent to the requirement that for every

f1, . . . , fn ∈ Lp we have

λ
n∑
i=1

n∑
j=1

gij‖fi − fj‖pp 6
n∑
i=1

n∑
j=1

hij‖fi − fj‖pp 6 Cλ
n∑
i=1

n∑
j=1

gij‖fi − fj‖pp. (73)

By a classical theorem of Schoenberg [Scho] (see also [WW]), if q 6 p then the metric

space (R, |x− y|q/p) admits an isometric embedding into L2, which in turn is isometric

to a subspace of Lp. It therefore follows from (73) that if H is a p-sparsifier of G with

quality C then it is also a q-sparsifier of G with quality C for every q 6 p. In particular,

when p ∈ (0, 2), Theorem 1.1 implies that for every G a p-sparsifier H of quality 1 + ε

always exists with |supp(H)| = O(n/ε2).

When p > 2 it is open whether every matrix G has a good p-sparsifier H. By “good”

we mean that the quality of the sparsifier H is small, and that |supp(H)| is small. In

particular, we ask whether every matrix G admits a p-sparisfiers H with quality Op(1)

(maybe even 1 + ε) and |supp(H)| growing linearly with n.

It was shown to us by Bo’az Klartag that if G = (gigj) is a product matrix with non-

negative entries then Matoušek’s extrapolation argument for Poincaré inequalities [Ma]

(see also [NS, Lemma 4.4]) can be used to show that if q > p and H is a p-sparsifier of

G with quality C, then H is also a q-sparsifier of G with quality C ′(C, p, q). However,

we shall now present a simple example showing that a p-sparsifier of G need not be

a q-sparsifier of G with quality independent of n for any q > p, for some matrix G

(which is, of course, not a product matrix). This raises the question whether or not the
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method of Batson-Spielman-Srivastava, i.e., Theorem 1.1, produces a matrix H which

is a O(1)-quality p-sparsifier of G for some p > 2.

Fix q > p, ε > 0 and n ∈ N. Let G = (gij) be the n × n adjacency matrix of the

weighted n-cycle, where one edge has weight 1, and all remaining edges have weight

(n− 1)p−1/ε, i.e., g1n = gn1 = 1,

g12 = g21 = g23 = g32 = · · · = gn−1,n = gn,n−1 =
(n− 1)p−1

ε
,

and all the other entries of G vanish. Let H = (hij) be the adjacency matrix of the

same weighted graph, with the edge {1, n} deleted, i.e., h1n = hn1 = 0 and all the other

entries of H coincide with the entries of G. It is immediate from the definition that∑n
i=1

∑n
j=1 gij|xi − xj|p >

∑n
i=1

∑n
j=1 hij|xi − xj|p for all x1, . . . , xn ∈ R. The reverse

inequality is proved as follows:

n∑
i=1

n∑
j=1

gij|xi − xj|p = 2|x1 − xn|p +
2(n− 1)p−1

ε

n−1∑
i=1

|xi − xi+1|p

6 2

(
n−1∑
i=1

|xi − xi+1|

)p

+
2(n− 1)p−1

ε

n−1∑
i=1

|xi − xi+1|p

6 (1 + ε)
2(n− 1)p−1

ε

n−1∑
i=1

|xi − xi+1|p

= (1 + ε)
n∑
i=1

n∑
j=1

hij|xi − xj|p.

Hence H is a p-sparsifier of G with quality 1 + ε.

For the points xi = i we have
∑n

i=1

∑n
j=1 gij|xi − xj|q = 2(n− 1)q + 2(n− 1)p/ε, and∑n

i=1

∑n
j=1 hij|xi − xj|q = 2(n − 1)p/ε. At the same time, if y2 = 1 and yi = 0 for all

i ∈ {1, . . . , n} r {2}, we have
∑n

i=1

∑n
j=1 gij|yi − yj|q =

∑n
i=1

∑n
j=1 hij|yi − yj|q > 0.

Thus, the quality of H as a q-sparsifier of G is at least ε(n− 1)q−p, which tends to ∞
with n, since q > p.
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