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Abstract

We introduce the notion afotype of a metric spacand prove that for Banach spaces it coincides
with the classical notion of Rademacher cotype. This yields a concrete version of Ribe’s theorem,
settling a long standing open problem in the non-linear theory of Banach spaces. We apply our results to
several problems in metric geometry. Namely, we use metric cotype in the study of uniform and coarse
embeddings, settling in particular the problem of classifying wihgooarsely or uniformly embeds into
Lq. We also prove a non-linear analog of the Maurey-Pisier theorem, and use it to answer a question
posed by Arora, Lo&sz, Newman, Rabani, Rabinovich and Vempala, and to obtain quantitative bounds
in a metric Ramsey theorem due to Matel.

1 Introduction

In 1976 Ribe 6]] (see also62, 27, 19, 6]) proved that ifX andY are uniformly homeomorphic Banach

spaces theiX is finitely representable iiY, and vice versaX is said to be finitely representable if

there exists a constaHkt > 0 such that any finite dimensional subspac&a$ K-isomorphic to a subspace

of Y). This theorem suggests that “local properties” of Banach spaces, i.e. properties whose definition

involves statements about finitely many vectors, have a purely metric characterization. Finding explicit

manifestations of this phenomenon for specific local properties of Banach spaces (such as type, cotype

and superreflexivity), has long been a major driving force in the bi-Lipschitz theory of metric spaces (see

Bourgain’s paper§] for a discussion of this research program). Indeed, as will become clear below, the

search for concrete versions of Ribe’s theorem has fueled some of the field’s most important achievements.
The notions of type and cotype of Banach spaces are the basis of a deep and rich theory which encom-

passes diverse aspects of the local theory of Banach spaces. We réR:i5& b7, 67,59, 36, 15,70, 45|

and the references therein for background on these topics. A Banach$fsasaid to have (Rademacher)

type p > 0 if there exists a constaiiit < co such that for every and everyxs, ..., X, € X,
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where the expectatidB, is with respect to a uniform choice of sigas ..., e, € {—1, 1}". X is said to have
(Rademacher) cotypg> 0 if there exists a constafit < co such that for every and everyx, ..., X, € X,
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These notions are clearlinear notions, since their definition involves addition and multiplication by
scalars. Ribe’s theorem implies that these notions are preserved under uniform homeomorphisms of Banach



spaces, and therefore it would be desirable to reformulate them using only distances between points in the
given Banach space. Once this is achieved, one could define the notion of type and cotype of a metric space,
and then hopefully transfer some of the deep theory of type and cotype to the context of arbitrary metric
spaces. The need for such a theory has recently received renewed impetus due to the discovery of striking
applications of metric geometry to theoretical computer science4g288,'41] and the references therein
for part of the recent developments in this direction).

Enflo’s pioneering work18, 19, 20, 21] resulted in the formulation of a non-linear notion of type, known
today asEnflo type The basic idea is that given a Banach spd@ndxy, ..., Xy € X, one can consider the
linear function f : {-1,1}" — X given by f(e) = Z?:l €jXj. Then (1) becomes

n
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One can thus say that a metric spas4, f1,() has Enflo typep if there exists a constaiitsuch that for every
n e N andeveryf : {-1,1}" - M,

Ee dp (f(e), f(-£))P
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There are two natural concerns about this definition. First of all, while in the category of Banach @)aces (
is clearly a strengthening cB) (as we are not restricting only to linear functiofjsit isn't clear whether4)

follows from (3). Indeed, this problem was posed by Enflo21][ and in full generality it remains open.
Secondly, we do not know i#] is a useful notion, in the sense that it yields metric variants of certain theo-
rems from the linear theory of type (it should be remarked here that Enflo found striking applications of his
notion of type to Hilbert’s fifth problem in infinite dimensionks, 20, 21], and to the uniform classification

of L spaces/18]). As we will presently see, in a certain sense both of these issues turned out not to be
problematic. Variants of Enflo type were studied by Gronid] pnd Bourgain, Milman and Wolfsoi.L].
Following Bourgain-Milman and Wolfsorilfl] we shall say that a metric spacsi(d) has BMW type

p > 0 if there exists a constaht < oo such that for every € N and everyf : {-1,1}" - M,

E. dp(f(e), f(-¢))?

n
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< K?nb ZEng(f(é‘l,...,Sj_l,gj,8j+1,...,8n),f({;‘l,...,Sj_l,—Sj,8j+1,...,8n)). (5)
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Bourgain, Milman and Wolfson proved ii]] that if a Banach space has BMW type> 0 then it also
has Rademacher tyg# for all 0 < p’ < p. They also obtained a non-linear version of the Maurey-Pisier
theorem for type$4, 46, yielding a characterization of metric spaces which contain bi-Lipschitz copies of
the Hamming cube. 58] Pisier proved that for Banach spaces, Rademachergypgplies Enflo typep’
for every O< p’ < p. Variants of these problems were studied by Naor and Schechtm&g]ir[stronger
notion of non-linear type, known as Markov type, was introduced by Bhiin[his study of thelLipschitz
extension problemThis important notion has since found applications to various fundamental problems in
metric geometry30,/42,5,51, 48|

Despite the vast amount of research on non-linear type, a non-linear notion of cotype remained elusive.
Indeed, the problem of finding a notion of cotype which makes sense for arbitrary metric spaces, and which
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coincides (or almost coincides) with the notion of Rademacher type when restricted to Banach spaces,
became a central open problem in the field.

There are several fliculties involved in defining non-linear cotype. First of all, one cannot simply
reverse inequalitiegdf and 5), since the resulting condition fails to hold true even for Hilbert space (with
p = 2). Secondly, if Hilbert space satisfies an inequality sucl#lashien it must satisfy the same inequality
where the distances are raised to any power O< p. This is because Hilbert space, equipped with the
metric||x — y||'/P, is isometric to a subset of Hilbert space (s84, 69]). In the context of non-linear type,
this observation makes perfect sense, since if a Banach space hgsthgreit also has type for every
0 < r < p. But, this is no longer true for cotype (in particular, no Banach space has cotype less than 2).
One viable definition of cotype of a metric spaX¢hat was suggested in the early 1980s is the following:
Let M be a metric space, and denote by L§p) the Banach space of all real valued Lipschitz functions on
M, equipped with the Lipschitz norm. One can then define the non-linear cotypkasfthe (Rademacher)
cotype of the (linear) dual Lip¥)*. This is a natural definition wheM is a Banach space, since we can
view Lip(M) as a non-linear substitute for the dual spadé (note that in87] it is shown that there is a
norm 1 projection from Lip§1) onto M*). With this point of view, the above definition of cotype is natural
due to the principle of local reflexivity3, 30]. Unfortunately, Bourgaing] has shown that under this
definition subsets of1 need not have finite non-linear cotype (while has cotype 2). Additionally, the
space LipW)* is very hard to compute- for example it is an intriguing open problem whether even the unit
square [01]? has non-linear cotype 2 under the above definition.

In this paper we introduce a notion of cotype of metric spaces, and show that it coincides with Rademacher
cotype when restricted to the category of Banach spaces. Namely, we introduce the following concept:

Definition 1.1 (Metric cotype). Let (M, dy,) be a metric space amgl > 0. We shall say 1, dy) has
metric cotypeg with constant” if for every integem € N, there exists an even integer such that for every
f:zy - M,

an E, [dM (f (x + gej), f(x))q] < TP B,y [dpi(F(x + ), F()], ©6)
=1

where the expectations above are taken with respect to uniformly chosét}, ande € {-1,0,1}" (here,
and in what follows we denote b{ye,-}?zl the standard basis @"). The smallest constait with which
inequality 6) holds true is denotely(M).

Several remarks on Definitioh.1 are in order. First of all, in the case of Banach spaces, if we apply
inequality ©) to linear functionsf (x) = T:l XjVj, then by homogeneitgn would cancel, and the resulting
inequality will simply become the Rademacher cotgpeondition (this statement is not precise due to the
fact that addition orZy, is preformed modulon- see Sectio®.1 for the full argument). Secondly, it is easy
to see that in any metric space which contains at least two points, ined@&itges the scaling factaon
to be large (see Lemnad)- this is an essential flerence between Enflo type and metric cotype. Finally,
the averaging over € {—1,0, 1}" is natural here, since this makes the right-hand sid&pb¢ a uniform

average over all pairs A, whose distance is at most 1 in the metric.
The following theorem is the main result of this paper:

Theorem 1.2. Let X be a Banach space, amgfle [2, «0). ThenX has metric cotype if and only if X has

Rademacher cotypg Moreover,

- ColX) < Tg(X) < 90C(X)



Apart from settling the non-linear cotype problem described above, this notion has various applications.
Thus, in the remainder of this paper we proceed to study metric cotype and some of its applications, which
we describe below. We believe that additional applications of this notion and its variants will be discovered
in the future. In particular, it seems worthwhile to study the interaction between metric type and metric
cotype (such as in Kwapien’s theoreB%E]), the possible “Markov” variants of metric cotypa ka Ball 4])
and their relation to the Lipschitz extension problem, and the relation between metric cotype and the non-
linear Dvoretzky theorem (se&@, 5] for information about the non-linear Dvoretzky theorem, &2@| for
the connection between cotype and Dvoretzky’s theorem).

1.1 Some applications of metric cotype

1) A non-linear version of the Maurey-Pisier theorem. Given two metric spaces\, dy) and (V, dy),
and an injective mappinf) : M — N, we denote théistortionof f by

dist(f) = Ifllup - I1FHuip = sup DACRTON g dnlxy)

xyem  AmY)  xyem dn(F(X). F(Y))

X£Y X£Y

The smallest distortion with whicM can be embedded int¥ is denotedy (M), i.e.
cy(M) = inf{dist(f) : f: M <— N}.

If cy(M) < @ then we sometimes use the notatidh <> N. WhenA = Lp for somep > 1 we write
() = cp().
For a Banach spaceé write
Px =sudp>1: Tp(X) <o} and gx =inf{q>2: Cqy(X) < oo}.

Xis said to have non-trivial type fx > 1, andX is said to have non-trivial cotype @y < oo.
In [54] Pisier proved thaiX has no non-trivial type if and only if for eveny € N and everye > O,

o 25 X. A non-linear analog of this result was proved by Bourgain, Milman and Woli&th(gee also
Pisier’s proof inbg]). They showed that a metric spadd does not have BMW type larger than 1 if and
only if for everyn € N and everye > 0, ({0, 1}",] - |l1) i M. In [46] Maurey and Pisier proved that a
Banach spac has no non-trivial cotype if and only for evenye N and everye > 0, {1 G X. To obtain

a non-linear analog of this theorem we need to introduce a variant of metric cotype (which is analogous to
the variant of Enflo type that was used by Bourgain, Milman and Wolfson).

Definition 1.3 (Variants of metric cotypea la Bourgain, Milman and Wolfson). Let (M, d,,) be a metric
space and & p < g. We denote by“qp)(M) the least constart such that for every integer € N there
exists an even integen, such that for every : Z) — M,

Zn: Ey [dM (f (x ; gej), f(x))p] < TPIPR 8 By [dpi(F (X + 8), F()P], )
=1

where the expectations above are taken with respect to uniformly clxosét}, ande € {-1,0,1}". The
smallest constart with which inequality 7) holds true is denote‘fﬁp)(M). In particularrgq)(M) =T'q(M).
When 1< p < gwe shall refer toT) as a weak metric cotypginequality with exponenp and constant.
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The following theorem is analogous to Theor&rf.

Theorem 1.4. Let X be a Banach space, and assume that for stmep < q, ng)(X) < oo. ThenX has
cotypeq’ for everyq > q. If q = 2thenX has cotype. On the other hand,

TP(X) < cpeCa(X),
wherecg is a universal constant depending only pandg.

In what follows, form,n € N andp € [1, o] we let [m]’g, denote the s€D, 1,. .., m}", equipped with the
metric induced by}. The following theorem is a metric version of the Maurey-Pisier theorem (for cotype):

Theorem 1.5. Let M be a metric space such thE&Z)(M) = oo for all g < . Then for everyn,n € N and

everye > 0,
1+e

M), — M.
We remark that in46] Maurey and Pisier prove a stronger result, namely that for a Banach Xpéae

everyn € N and everys > 0, {’BX i X andé’a‘X i X. Even in the case of non-linear type, the results of
Bourgain, Milman and Wolfson yield an incomplete analog of this result in the case of BMW type greater
than 1. The same phenomenon seems to occur when one tries to obtain a non-linear analog of the full
Maurey-Pisier theorem for cotype. We believe that this issue deserves more attention in future research.

2) Solution of a problem posed by Arora, Lovasz, Newman, Rabani, Rabinovich and Vempala.The
following question appears i8] (see Conjecture 1 there):

Let ¥ be a normal metric class which does not contain all finite metrics with distortion arbitrar-
ily close to 1. Does this imply that there exists- 0 and arbitrarily larg@-point metric spaces
M. such that for every € 7, cy (M) > (logn)®?

We refer toB] for the definition of a normal metric class (see Section 2 there), since we will not use this
notion in what follows. We also refer t8] for background and motivation from combinatorial optimization
for this problem, where several partial results in this direction are obtained. Here we apply metric cotype to
settle this conjecture positively, without any restriction on the cfass

To state our result we first introduce some notatior¥: s a family of metric spaces we write

cr(N) =inf{cp(N) : Me F}.
For an integen > 1 we define
Dn(F) = sudcr(N) : N is a metric spacelN| < n}.

Observe that if, for examplé; consists of all the subsets of Hilbert spacel(y, then Bourgain's embed-
ding theorem(T] implies thatD,(F) = O(logn).
For K > 0 we define th&-cotype (with exponent 2) of a family of metric spacess

qg)(K) = supinf {q € (0,00] : F((qz)(M) < K}.
MeF

Finally we let
2 _ (2
qy: - r|<rlfoq7: (K)

The following theorem settles positively the problem stated above:
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Theorem 1.6. Let¥ be a family of metric spaces. Then the following conditions are equivalent:
1. There exists a finite metric spagd for whichce(M) > 1.
2. qg) < o0,

3. There existd < a < o such thatD,(F) = Q ((logn)®).

3) A guantitative version of Matousek’'s BD Ramsey theorem. In [43] MatouSek proved the following
result, which he calls the Bounded Distortion (BD) Ramsey theorem. We retd8Jtéof motivation and
background on these types of results.

Theorem 1.7 (Matowsek’s BD Ramsey theorem).Let X be a finite metric space and> 0, y > 1. Then
there exists a metric spade= Y(X, &, y), such that for every metric spaZe

cz(Y)<y = cz(X) <1l+e.
We obtain a new proof of Theorein7, which is quantitative and concrete:

Theorem 1.8 (Quantitative version of Matowek’'s BD Ramsey theorem).There exists a universal con-
stantC with the following properties. Let be ann-point metric space and € (0, 1), y > 1. Then for every
integerN > (Cy)?*, where

Ao max{ 4 diam(X) }

& MiNygzy dx (X, Y)
if a metric spaceZ satisfiescz(X) > 1 + & then,cz ([N5]ONO) > .

We note that Matagek’s argument in43] uses Ramsey theory, and is non-constructive (at best it can
yield tower-type bounds on the sizeffwhich are much worse than what the cotype-based approach gives).

4) Uniform embeddings and Smirnov’s problem. Let (M, d,) and (V, dy) be metric spaces. A mapping

f : M — N is called auniform embeddingf f is injective, and botH and f~1 are uniformly continuous.
There is a large body of work on the uniform classification of metric spaces- we refer to the survey ar-
ticle [38], the book B], and the references therein for background on this topic. In spite of this, several
fundamental questions remain open. For example, it wasn’t known for which values ¢f q < o, L
embeds uniformly intd.q. As we will presently see, our results yield a complete characterization of these
values ofp, g.

In the late 1950’s Smirnov asked whether every separable metric space embeds uniforntly into
(see R3]). Smirnov’s problem was settled negatively by Enfloli7]f Following Enflo, we shall say that a
metric spaceM is auniversal uniform embedding spaié@very separable metric space embeds uniformly
into M. Since every separable metric space is isometric to a sub§$0gf], this is equivalent to asking
whetherCJ0, 1] is uniformly homeomorphic to a subset.M (the space[0, 1] can be replaced here loy
due to Aharoni’'s theorentl]). Enflo proved thaty, does not uniformly embed into Hilbert space. B) [
Aharoni, Maurey and Mityagin systematically studied metric spaces which are uniformly homeomorphic to
a subset of Hilbert space, and obtained an elegant characterization of Banach spaces which are uniformly
homeomorphic to a subset bf. In particular, the results oP|] imply that for p > 2, L, is not uniformly
homeomorphic to a subset bj.

Here we prove that in the class of Banach spaces with non-trivial typeeihbeds uniformly intoX,
thenY inherits the cotype oK. More precisely:



Theorem 1.9. Let X be a Banach space with non-trivial type. Assume thas a Banach space which
uniformly embeds intX. Thengy < gx.

As a corollary, we complete the characterization of the values off2q < oo for which L, embeds
uniformly into Lq:

Theorem 1.10.For p,q > 0, L, embeds uniformly inthg if and only ifp < qorq< p< 2.

We believe that the assumption tbéhas non-trivial type in Theoreh € can be removed- in Sectiéh
we present a concrete problem which would imply this fact. If true, this would imply that cotype is pre-
served under uniform embeddings of Banach spaces. In particular, it would follow that a universal uniform
embedding space cannot have non-trivial cotype, and thus by the Maurey-Pisier thégjriémist contain
{"’s with distortion uniformly bounded in.

5) Coarse embeddings. Let (M,dy) and (V,dy) be metric spaces. A mappin: M — N is
called acoarse embedding there exists two non-decreasing functiong : [0, o) — [0, o) such that
liMi_, a(t) = oo, and for everyx,y € M,

a(dm(x.y)) < dy(F(X), () < Bldm(xY)).

This (seemingly weak) notion of embedding was introduced by Gromovi2§Pednd has several important
geometric applications. In particular, Yi1] obtained a striking connection between the Novikov and
Baum-Connes conjectures and coarse embeddings into Hilbert spac&?.Kagparov and Yu generalized

this to coarse embeddings into arbitrary uniformly convex Banach spaces. It was unclear, however, whether
this is indeed a strict generalization, i.e. whether or not the existence of a coarse embedding into a uniformly
convex Banach space implies the existence of a coarse embedding into a Hilbert space. This was resolved
by Johnson and Randrianarivony 29[, who proved that fop > 2, L, does not coarsely embed intg.

In [6Q], Randrianarivony proceeded to obtain a characterization of Banach spaces which embed coarsely into
L, in the spirit of the result of Aharoni, Maurey and Mityag®j.[ There are very few known methods of
proving coarse non-embeddability results. Apart from the pa@8$0] quoted above, we refer t26, (16,

53] for results of this type. Here we use metric cotype to prove the following coarse variants of Thk8rem

and Theoreri.1( which generalize, in particular, the theorem of Johnson and Randrianarivony.

Theorem 1.11. Let X be a Banach space with non-trivial type. Assume th& a Banach space which
coarsely embeds int§. Thenay < gx. In particular, for p,q > 0, L, embeds coarsely intlo, if and only if
p<gorg<pc<?2

6) Bi-Lipschitz embeddings of the integer lattice Bi-Lipschitz embeddings of the integer Iattiae][; were
investigated by Bourgain irf] and by the present authors #4g]. In [48] is was shown that if X p < «

andY is a Banach space which admits an equivalent norm whose modulus of uniform convexity has power
type 2, then

CY([m]?,) = @(min{n%_%,ml_%}), (8)

where the implied constants in the above asymptotic equivalence depgndnzhon the 2-convexity con-
stant ofY. Moreover, it was shown irdig] that

ny_ i _nho_m
cv([m]m)—Q[mln{ ogn’ \/W“})
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It was conjectured in48] that the logarithmic terms above are unnecessary. Using our results on metric
cotype we settle this conjecture positively, by proving the following general theorem:

Theorem 1.12.LetY be a Banach space with non-trivial type which has cotyp&hen
cy([m2) = Q(min{n*/9, m}).

Similarly, our methods imply thaB] holds true for any Banach spa¥evith non-trivial type and cotype
2 (note that these conditions are strictly weaker than being 2-convex, as shown éa}).iMpreover, it is
possible to generalize the lower bound@) {0 Banach spaces with non-trivial type, and cotype @ < p,

. , 1.1 4.4
in which case the lower bound becomes r{mm P, mt p}.

7) Quadratic inequalities on the cut-cone. An intriguing aspect of Theoreih.2 is thatL; has metric

cotype 2. Thus, we obtain a non-trivial inequality bpwhich involves distancesquared To the best of

our knowledge, all the known non-embeddability resultslfprare based on Poindatype inequalities in

which distances are raised to the power 1. Clearly, any such inequality reduces to an inequality on the real
line. Equivalently, by the cut-cone representatiorLgimetrics (seel1d]) it is enough to prove any such
inequality forcut metrics which are particularly simple. Theorei?2 seems to be the first truly “infinite
dimensional” metric inequality i1, in the sense that its non-linearity does not allow a straightforward
reduction to the one-dimensional case. We believe that understanding such inequalltiesleserves

further scrutiny, especially as they hint at certain non-trivial (and non-linear) interactions between cuts.

2 Preliminaries and notation

We start by setting some notation and conventions. Consider the staad@alyley graph orz},, namely
X,y € Zjy, are joined by an edge if and only if they are distinct andy € {-1,0, 1}". This induces a shortest-
path metric oriZy, which we denote byizn (-, -). Equivalently, the metric spac&g, dzn) is precisely the
quotient £, ]| - |l)/(mMZ)" (for background on quotient metrics sde3[25]). The ball of radiug around
x € Zp, will be denotedBzn (x, r). We denote by: the normalized counting measure 8§ (which is clearly
the Haar measure on this group). We also denoter-lilie normalized counting measure pfi, 0, 1}".
In what follows, whenever we average over uniformly chosen sigas{—1, 1}" we use the probabilistic
notationE; (in this sense we break from the notation used in the introduction, for the sake of clarity of the
ensuing arguments).

In what follows all Banach spaces are assumed to be over the complex nuthb&lsof our results
hold for real Banach spaces as well, by a straightforward complexification argument.

Given a Banach spac¢andp, g € [1, o) we denote b)Cép)(X) the infimum over all constants > 0
such that for every integere N and everyxy, ..., X, € X,

n p\1/p 1({d 1/q
(Eszg,-x,- ) ZE(anjng‘() : 9)
=1

X j=1
Thus, using our previous notatioﬁgq)(X) = C4(X). Kahane’s inequalityd]] says that for 1< p,q < oo
there exists a constantd Apq < oo such that for every Banach spa¥gevery integen € N, and every

X1,...,%n € X,

P\1/p 1/q

(Eg ) < qu(Eg ) | (10)
X

n

D €%

=1

n

D EiX

=1

q

X



Where clearlyAp, = 1if p < g, and for every 1< q < p < o0, Ayq = O(/P) (see B5)). It follows in

particular from [L0) that if X has cotypeg then for everyp € [1, ), Cép)(X) = Opg(Cqy(X)), where the
implied constant may depend @randg.

GivenA C {1,..., n}, we consider the Walsh functiol¥, : {-1,1}" — C, defined as

WA(Sl,...,sm) = HSJ.

jeA
Every f : {-1,1}" — X can be written as

fler,....en) = Z f(A)Wa,

Ac{1,...,n}

wheref(A) € X are given by N
F(A) = Bq(f()Wa)-
TheRademacher projectioof f is defined by

n

Rad(f) = > f(AW;.
j=1

The K-convexity constant oK, denotedK(X), is the smallest constait such that for every and every
f {-1,1" - X,
E [Rad(f)(e)ll < KZEcllf (&)l

In other words,
K(X) = SUNPHRadllLz({—1,1}n,X)—>L2({—1,1}n,X).
ne

Xis said to beK-convex ifK(X) < co. More generally, fop > 1 we define
Kp(X) = supliRadllL,(1-1.1nx)-Lp((-1.1}.X)-
neN
It is a well known consequence of Kahane’s inequality and duality that for gvery,

P

Kp(X) < o( 1)- K(X).

The following deep theorem was proved by Pisiel5f]{

Theorem 2.1 (Pisier'sk-convexity theorem b6]). Let X be a Banach space. Then
gx > 1 & K(X) < o0.

Next, we recall some facts concerning Fourier analysis on the dgipuivenk = (ky, ..., kn) € Z,
we consider the Walsh functiof : Z, — C:

Wi(X) = exp(@ Z ijj).
m =



Then, for any Banach spagg any f : Z, — X can be decomposed as follows:

f09 = ), WK,

kezZh,

where
9= [ 10)WGIu0) < X

If X is a Hilbert space then Parseval’s identity becomes:
5 — 2
| nroagane = 3 [
Zn keZh,

2.1 Definitions and basic facts related to metric cotype

Definition 2.2. Given 1< p < g, an integemn and an even integen, let l“fqp)(/\/(; n, m) be the infimum over
allT > 0 such that for every : Z, - M,

4 m P _p
,-; fz nmdM(f(x+§ej),f(x)) du(x) < TPmPn & f{_ o fz nmdM(f(x+s),f(x))pdu(x)do-(s). (11)

If p=qthenwe writel"&p)(M; n, m) = Iq(M;n, m). With this notation,
() ; (P Af-
Iy’(M)=su (lnf r M,n,m).
g M) ne£ e d ( )
We also denote bmgp)(M; n,I') the smallest even integerfor which (11) holds. As usual, whep = g
we write mép)(/\/(; n,T) = my(M;n,T).
The following lemma shows that for nontrivial metric spagesmg(M; n,I") must be large.
Lemma 2.3. Let (M, dy) be a metric space which contains at least two points. Then for every integer
everyl’ > 0, and everyp, q > 0,

nl/d
mPMnT) > —.

Proof. Fix u,v € M, and without loss of generality normalize the metric so thatu,v) = 1. Denote
m = qup)(M; n,T). Let f : Z) — M be the random mapping such that for everyg Z;,, Pr[f(x) = u] =
Prif(x) = v] = % and{f(X)}xezn are independent random variables. Then for every distingte Zp,
E [dp(f(X), f(Y))P] = 3. Thus the required result follows by applyiriiflf to f, and taking expectation.o

Lemma 2.4. For every two integen, k, and every even integen,
Fép)(M; n, km) < ng)(/\/(; n, m).
Proof. Fix f : Z; — M. For everyy € Z; definefy : Zg, — M by

fy(x) = f(kx+Yy).

10



FixT > ng)(M; n, m). Applying the definition oﬂ"gp)(M; n, m) to fy, we get that

n km p
Zf dM(f(kx+ e +y), f(kx+y)) duzn ()
j=1 2
< IPmPnt4 f Ay (F (kx+ ke +y) , F(kx+ Y))P duzn (X)dor(e).
{-1,0,1}" JZ},

Integrating this inequality with respect yoe Z} we see that
n P
Zf dM(f(z+ k—mej),f(z)) duzn (2)
£ 7n 2 km
=1 km

; km P
= Zfzn fzn dM(f (kx+ - € +y), f(kx+ y)) duzg () duzn (y)
j=1 k m

ront [l ook ke ). Fock 9)P duzg (0 0)der(e)
-1o4n Jzn Jzp,

IA

= PPt f dm (f (z+ke), 1(2)P duzy (2do(e)
{-ron Jzp "

IA

k

rPmPntd f f kP-1 Z dm (f (z+ se), T(z+ (5-1)e))P duzp (2do(e)

=royn Jzg, s=1
p

= TP(kmPnt e f{_ o fz du(f 2+ ), FR)P duz (Ador(e)

Lemma 2.5. Letk, n be integers such th&t < n, and letm be an even integer. Then
n\1-§
ng)(M; k,m) < (E) K -ng)(M; n, m).

Proof. Given andf : ZK — M, we define anM-valued function orZ?, = ZK x Z"X by g(x,y) = f(X).
Applying the definitionrfqp)(/\/(; n, m) to g yields the required inequality. m|

We end this section by recording some general inequalities which will be used in the ensuing arguments.
In what follows (M, dy,) is an arbitrary metric space.

Lemma 2.6. For everyf : Z) — M,
n
> [ an(tocren 100 dum <3-270n- [ [ dui(fc ), (0P o),
= Y (-1,04" JZ},
Proof. For everyx € Z}, ande € {-1,0,1}",

dp(F(x+ €)), F(X)P < 2P Ly (F(x+ &), (X + &) + 27 Ldpy(F(x + &), F(X))P.

11



Thus

%Lpﬂ dM(f(x+ &), f(X))pd,u(X) =o(lee(-L0,1": & # -1})- an dM(f(x+ ej), f(X))pd,u(X)

< zp—lf{e{ Lot e fz (dae(FOx+ ej),f(x+s))p+dM(f(x+s),f(x))p)d,u(x)da-(s)
= 20! f dM(f(y+s),f(y))pdu(y)dcr(s)+
{ee(-1,0,1)": &;#1)
21 f dp(F(X + &), F(X)Pdu(X)do(s)
{ee{-10,1)" &j#-1} AR

< pr dp(f(x+ &), F(X)Pdu(X)do(e).
{101 JZ}
Summing overj = 1,..., nyields the required result. m|

Lemma 2.7. Let (M, dy() be a metric space. Assume that for an integand an even integem,
n m p
> dM(f(x+—ej),f(x)) du(x)
j=1Zm 2

n
< Cpmpnl—%’(ng da (F(X+ &), F(X)P du(x) + 1 Z f dp (f(x+ey), f(x))pd,u(x)).
v/l N Jzn,
Then
rP(M;n,m) < 5C.
Proof. Fix f : Z3, — Mand0 # A C {1,...,n}. Our assumption implies that

D ] dM(f (x+ gej), f (x))pdy(x)

jeA
< Cpmpnl—g(Eg fzn dM(f(XJfZ/;EjeJ) f(x)) du(x) + m f dM f(x+e,) f(x)) d/u(x))
m je

Multiplying this inequality by%, and summing over al # AC {1,...,n}, we see that

ginﬂdM(f(X+ e,) f(x)) du(¥) = E J;fz x+—e,) f(x)) du(x)

j=1 QJ;tAC{l .....
PmMPAL-§ 24
< CFmPn q( Z ﬁngzn dM(f(x+ Zsjej),f(x)) du(x) +
0+AC{1,...,n} m jeA
A b
- dpy(f(x+€), T(X) d,u(x)) (12)
0£AC(L,... n}l A3 ;fzg M( J )
< Cpmpnl‘g(f dM(f(x+6),f(x))pd,u(x)do-(6)+}anf dM(f(X-i-ej),f(X))pdﬂ(X))
-10,4n Jzn, N Jzp,
< CPmPnl6 (3P + 1) dM(f (x+ ), F(x)P du(x)do(5), (13)
-0,

12



where we used the fact that iid), the codficient ofdy, (f(x + e)), f(x)) equalsyll_; 2 (E 1) < % and

in (13) we used Lemma.€. |

3 Warmup: the case of Hilbert space

The fact that Hilbert spaces have metric cotype 2 is particularly simple to prove. This is contained in the
following proposition.

Proposition 3.1. LetH be a Hilbert space. Then for every integerand every integem > %n vnwhich is
divisible by4,

6
I'>(H;n,m) < i

T
Proof. Fix f : Z}, — H and decompose it into Fourier deients:

f09 = ), WK,

keZp,

For everyj = 1,2,...,nwe have that

f (x+ gej) S = ) W) (6 - 1) FiK.

keZh,
Thus
(x+ —ej) d,u(x) _ Z(Z e — 1] )Hf(k)“
=1 kezp,
= 4Z| ki=1 mod 3|-Hf\(k)Hi.
keZh,

Additionally, for everye € {-1,0, 1}",
f(x+8) = f(x) = > W)Wk(e) - DT(K).

keZh,
Thus

f{_ Lo o 11OCFE) - F (I du()do(e) = Z( f{_ o |Wk(s)—1|2da(s))|’ﬂk)||i|

kezZp,

f{—101 n ex;(%i Zm: kjgj)_
2- 21_[f
o, 21_[1+2cos(2”k,)

Observe that

2
1| do(e)

f Wie) — 1% dor(e)
{-1,0,1}n

exp(—k,sj) do(e)
1,0,

1+ 2’005(%”kj)|

2-2
3

j: kji=1 mod 2

\%
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Note that ifmis divisible by 4 and’ € {0,..., m— 1} is an odd integer, then

2

cos% < cosz_” <1-
m /|~ m/l - m’
Hence
2 272 l{j: k;=1 mod 3|
Wi(e) — 15 do(e) > 2(1_(1__) )
[—1,0,1}n e) (©) 3m?
2|(j: kj=1 mod AIn2
> 2(1 - E_T)
271'2
> ji:ki=1 d2al.- =
= [k mod 3 e
provided thatn > Zx y/n. .

4 K-convex spaces

In this section we prove the “hard direction” of Theordn® and Theoreni.4 when X is a K-convex
Banach space, namely we show that in this case Rademacher gatypées metric cotype). There are

two reasons why we single out this case before passing to the proofs of these theorems in full generality.
First of all, the proof folK-convex spaces is filerent and simpler than the general case. More importantly,

in the case oK-convex spaces we are able to obtain optimal bounds on the valwdroDefinition|1.1

and Definition1.2 Namely, we show that iK is a K-convex Banach space of cotypethen for every
1<p<aq nﬁp)(x; n,I) = O(nY9), for somel’ = I'(X). This is best possible due to Lemi@&. In the

case of general Banach spaces we obtain worse bounds, and this is why we have the restrictias that
K-convex in Theorerd.9and Theoreri.11 This issue is taken up again in Sect®&n

Theorem 4.1. Let X be aK-convex Banach space with cotygpelhen for every integar and every integer
mwhich is divisible by,

1/q
m > (p)2n— — TP(X;n,m) < 15CPX)Kp(X).
Cq” (X)Kp(X)
Proof. For f : Z}, — X we define the following operators:
B;f(x) = f(x+¢) - f(x—g),
Eif(X) = E, f(x+ Zstyeg),

%]
and fore € {-1,0, 1}",

0:.f(X) = f(x+¢&) - f(X).
These operators operate diagonally on the Walsh fé&igczn as follows:

— [ 2niK;
)W = (W(ej) — Wi(-e€})) W = 23m(T) W (14)
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EjWk = (E‘8 e% )Wk = (l—[ cos(%k[))wk,

l#] {+]

and fore € {-1, 1}",

9 W (W(e) - 1) W

n 27'ri£jkj
( e m - l)Wk
j=1

[ =) (%) s

=1

R

=1

(15)

(16)

The last step was a crucial observation, using the factsthat{-1, 1}. Thinking of ;W as a function of

€ {—1,1}", equations14), (15) and (L6) imply that

Rad(d, W) = |(Zn: & sin(%) 11 cos(z%kf))wk = lz(zn: s,-?a',-s,-)wk.

=1 ] =1

Thus for everyx € Zh and f : Z, — X,

Rad(, (X)) = 12(2 g,-?a',-a,-)f(x).

=1
p —~

du(X) f Bl Y 20 (%)
X Zn =1

., B IRac. FO)I

It follows that

L=
Zm

n

Zsj[ij(x+ ej) —ij(X— ej)]

=1

n

p
du(x)
X

IA

By (L7) and the definition o€{P(X), for everyC > C{P(X) we have that

[Kp(X)CIPE, fG 1F(x+ &) — FI2u(¥)

n p
z Cp'E"’f Z‘gj[aif(Xerj)—ajf(X—ej)] du(x)
= y
n p/q
> [ (D lleitecren-estc-enlf) aus
Z\

1 n
AP/ D fz €T (x+ ) — & (x = &)|[5 du(x).
=1 YZh

15
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Now, for j € {1,...,n},

L

m/4

A
J>I3

Eif x+23q) 8f(x+2(s 1)eJ H du(x)

&t (x+ gej) - gt (x)Hz du(x)

& %,

p
( ) fzrnn'|51f(x+ej)—81f(x—ej)||§ du(). (19)

&3

Plugging 9) into (18) we get

(F) m=E1o00CIP f ||f(X+8)—f(X)||§dM(X)>Z f it (x+ Ze1) Sf(x)H du()

> %;fzm f(x+gej)—f(x) Xdu(x)—zzfzn 16;F 00 = £ 0012 du(x)
_ 39_1—122;[2,“ f(x+gej)—f(x) du(x) 2Zf (( msfeg)—f(x)) Zdﬂ(x)
> 3”_1‘1,22;fzm f(x+%’e,)—f(x) du(x) - ZZE fz ( ;sgeg)—f(x) zdﬂ(x)
> 3p—1_1§fzm f(x+%’e,-)-f(x) (G2, [T (o e) = £ 09I ) -
2PJZ:E€fan £ (x+e8) = 19 zdﬂ(x).
Thus, the required result follows from Lemi@ia. .

The above argument actually gives the following generalization of Thedr&mvhich holds for prod-
ucts of arbitrary compact Abelian groups.

Theorem 4.2. Let Gy, ...,Gy be compact Abelian group$gi,...,gn) € Gy X --- X G, and letX be a
K-convex Banach space. Then for every intdgand everyf : G; x --- x G — X,

n

O e 2aie) - 115de, © - ©me)()
j=1 JG1x%Gn

< [
1,0,1)" JGy1x--XGp

® 111
c<5max{c (X)Kp(X)kn® 3, p}.

d(,uel ® - @ piG,)(¥)do(e),

(x+ sjgjej) - f(x)

where

Hereug denotes the normalized Haar measure on a compact Abelian Growe refer the interested
reader to the bool63], which contains the necessary background required to generalize the proof of Theo-
rem4.1to this setting.
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5 The equivalence of Rademacher cotype and metric cotype

We start by establishing the easy direction in TheclePrand Theorerdi.4, i.e. that metric cotype implies
Rademacher cotype.
5.1 Metric cotype implies Rademacher cotype

Let X be a Banach space and assume]fﬁQA(X) < oo forsome 1< p < q. FixT > ng)(X), Vi,...,Vh € X,
and letmbe an even integer. Defirfe: Zj, — X by

2ni><j
f(X1,..., %) = em v
=1
Then
n
MUGES ) 109 ) = 2PZ||v,nx, (20)
=
and
n erixJ 2n|5
f f I (x+6) — TR du()dor(e) = f f e (e m —1)\/J d,u(x)do-(é). (1)
{-1,0,1}" JZ}, {-1,0,1}" JZ}, =1

We recall thecontraction principle(see BG]), which states that for ever, ..., a, € R,

n p
&jayv; max|aj|| -E
Z; i3}V (1<J<n| Jl) g

Observe that for every = (e1,...,&n) € {-1,1}",

n

D&

=1

p

X

ix sz)

N,
e (e m —1)\/J d,u(x)da(d)
(~roap Jzpll4
_ ( )(— 1)y o
- + — 1)y du(9ao (o)
—1.04n JZ, X
2niX 27r|o
_ f f > ere mj e m —1)vJ d/,t(X)da'((S).
1,01 JZp,

Taking expectation with respect.ﬁoand using the contraction principle, we see that

27r|><J 27r|6
f f " (e - 1)y dﬂ(X)dO'((S)
1,0,1" JZp,
n 27r|><J 27r|($

= f f Z m (e 0y —1) dy(x)da(c‘)‘)

{-1,0,1}" JZ}, -1

27r|() p n 471_ p n p

< Zp(max e m —1) eiVi d Xd0'6 S(_) Es &V , 22

f{lol}nLn 1<j<n Z”X“() @) =17 ZJJX (22)

=1 =1
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where in the last inequality above we used the fact thaf #f0, 7], |€¢ — 1] < 6.
Combining ), (20), (21), and 22), we get that

n 47 \P o n n
PN iR < PP (=] nYaEB|) ejvi £iVj
mx m 1Yl 1Y)

j=1 j=1

=1
If p=qwe see tha€Cy(X) < 21T4(X). If p < qthen wherj|vi||x = --- = [Ivallx = 1 we get that

p\1/p 1/q
n

) :Q( ).

X r

This means thaX has “equal norm cotypg’, implying thatX has cotypey for everyq’ > q(seeb8,'34,67]
for quantitative versions of this statement). Whea 2 this implies thaX has cotype 2 (se®§] and the
references therein).

— (42T)Pn 4 E,

p p
X X

n

5

a\1l/q n
gjVj ) > (E‘9 Z
i X

£jVj
=1 j

=1

5.2 Proof of Theoreml1.2and Theorem1.4

The proof of Theoreni.2 and Theorenl.4 is based on several lemmas. Fix an odd intdgerN, with
k < 2, and assume thatd p < g. Givenj € {1,...,n} defineS(j, k) € Z{, by

S(j.K) ={ye[-kK"czZy: yj=0 mod2and/{#j y,=1 mod 3.
For f : Z}, — X we define

()¢ :(f*M) -t
& 1) 1(S(j, K) 9 1(S3,K) Js(ik

Lemma 5.1. For everyp > 1, everyj € {1,...,n}, and everyf : Z}, — X,

f(x+y)du(y). (23)

f 69109 - 1], du(x) < 2P, f 1£(x+€) = F QIR ca(x)+ 2P~ f 1 (x+ €)= F QIR da(¥).
zn X zn zn

Proof. By convexity, for everyx € Z]},,

p

Hagk)f(x) - f(x)||z = [f(x+Y) = F()]du(y)

1
HM(S(J} K) Js(ik
1

u(S(J,K) Js(ik

Let x € [0,K]" be such that for alj € {1,...,n}, x; is a positive odd integer. Observe that there exists
a geodesiy : {0,1,..., X} — Z7, such thaty(0) = 0, y(/IXllw) = x and for everyt € {1,...,||X|lw}
y(t) —y(t—1) € {-1, 1}". Indeed, we defing(t) inductively as follows:y(0) = 0,y(1) = (1, 1,...,1), and if
t > 2is odd then

X
1 () = f(x+ V)l du(y). (24)

n
YO =y(t-1)+ > e and yt+1)=yt-1)+2 > e
=1 se(T..n}
Y(t=1)s<xs
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Since all the coordinates of are odd,y(||X/|) = X. In what follows we fix an arbitrary geodesjg :
{0,1,...,|IXlo} — Zp, as above. Fox € (Zm \ {0})" we denotelx] = (|xil,...,|xn]) and signk) =
(signx), ...,sign(x,)). If x € [-k,K]" is such that all of its coordinates are odd, then we define-
sign(x) - y|x (where the multiplication is coordinate-wise).

If y € S(j,K) then all the coordinates ¢f+ e; are odd. We can thus define two geodesic paths

+1 -1 _ .
Yxy = X+ € +Yy-g and Yxy = X~ €t Vy+ep

where the addition is point-wise.
Forze Z} ande € {-1, 1}" define

Flize) ={(xy) e ZnxS(j.K) - Fte(l....ly-ejlloh Yiyt—1) =2z y3(t) = z+ &},

and
Flze) ={(xy) e ZnxS(j.k) - Fte(l....lly+eflloh Yoyt —1) =2z y3(t) = z+ &}
Claim 5.2. For everyzw € Z]} ande, § € {-1,1}",
F ™z o)l +IF ™z &)l = IF*H(w, 6) + [F~(w, 0).
Proof. Definey : Zj, x S(j, k) — Zj}, x S(]j, k) by
Y(XY) = (W— £6Z+ &6X, £5Y).

We claim thaty is a bijection betweeR *1(z &) andF#i% (w, ¢), and alsay is a bijection betweeFr‘l(z, £)
andF~#i%i(w, 6). Indeed, if & y) € F*1(z &) then there existse {1,..., |ly - &jllo} Such thatyy; (t -1)=z

andyy; (t) = z+ &. The pathw — &6z + géy equals the patl;rs’(SJ which by definition goes through
at tlmet — 1 andw + ¢ at timet. Since these transformatlons are clearly invertible, we obtain the required
result forF*1(z &). The proof forF~1(z ¢) is analogous. O

Claim 5.3. DenoteN = [F*l(z &)l + [F~1(z &)|, which is independent of € Z}} ande € {-1,1}", by

Claim5b.2. Then K- 1S(i K
2n—1

Proof. We have that

N-m- 2" = > (Flze+IFze)
(ze)ezZhx{-1,1}"

ly—€jllo

1

( {yibt-1)=2 A 74 (t):z+s}) +
(z&)eZix{-L 1" \(x,y)eZhxS(j,k) t=1

[ly+€jlloo
( Z 1{7;,§(t—1)=2 A 7;,§(t)=2+8})
(ze)eZRx{-1,1}" \(x,y)eZnxS(j.k) t=1
= > ly-gle+ D ly+elle
(xY)eZixS(j.k) (xY)eZixS(j.k)
2k - m"-[S(j, K)I.

IA
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We now conclude the proof of Lemr®al. Observe that fok € Z}, andy € S(j, k),

f(x) — f P lly=ejlloo
PO UM < i foce eI+ Iy g2 > N0 - 1t - 1L
t=1
ly—€jllo
< IFO) - fox+ el + kP 3 I O) - st - DI, (25)
t=1
and
1£00 — F(x+ IR LS ;
o < IFEY = FOx—enlf + Iy + el > I (ry(®) — Flryt - DI
t=1
[ly+€jllo
< IFEY - FOx—elf + k1 > I1f iy () — Flry(t = IS (26)
t=1

Averaging inequalities25) and 26), and integrating, we get that

1 ) ;
u(S(J, k) fz,nn fsu,k) T = FOx+ V)l du(y)du(x)

1 N p 1 N-27 3 p
< 20 10 e) ~ TR0 + @O g [ e o) @i 27)
< 20 [ (cre) - 11RO + 275, [ If(z+ #) - TIRHE, (28)
Zh zh

where in R7) we used Clainb.2 and in 28) we used Clainb.2 By (24), this completes the proof of
Lemma5s.1L O

Lemmal.4 below is the heart of our proof. It contains the cancellation of terms which is key to the
validity of Theorenil.2and Theoreri.4.

Lemma 5.4. For everyf : Z) — X, every integen, every even integan, everye € {-1,1}", every odd
integerk < m/2, and everyp > 1,

fzg

Zn: & [agk) f(x +€j) - a§k>f(x— e,-)]

p
du(x)
i=1 X

n

<I |G o) = fx=fdu0) + =5 D | I1T(x+ ) = FIRek.
m j=1 m

We postpone the proof of Lemradto Sectiorb.3 and proceed to prove Theordn? and Theorerd.4
assuming its validity.

Proof of Theorerd.2 and Theoreri.4 Taking expectations with respect4ce {—1, 1}" in Lemma5.4we
get that
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Zm

< 31g, fz 227 (1 0+ &) = FOOUG + 1709 = F(x = &)IIF) du(x) +

24Pn2p-1 &

kP Zfz I (x+ e)) — F(XlI%du(x)
=1 Yz

n
D e [ERx+ g) - P f(x-e))]
j=1

P
dp(x)
X

24Pp2p-1

6P :
<GB [ 0ok - FIR0e + T ) JIRGCEDRCTTCRCY

Fix x € Z, and letm be an integer which is divisible by 4 such tmat- 6n21/9. Fixing C > C{(X),
n
j:

and applying the definition €’ (X) to the vectors{agk) f(x +€j) - Sgk)f(x - &)} .+ We get

Eg

n p n
égj[Sgk)f(Hej)_S(jk)f(x_ej)]Hx y cn.r111—p/q;“Sgk)f(“ei)‘aﬁk)f(x—ej)Hi' (30)

Now, for everyj € {1,...,n},
ST ® b (4w m ®) P
3 €1 (x + 258) - & f(x+2(s—1)ej)“x2(a) Haj f(x+ 5e)- & f(x)HX. (31)
s=1

Averaging B1) overx € Z] we get that

p
® NP CPPAN 1 4
fm eWt(x+e)) - &N F(x eJ)deu(x)z(m) fz%

Combining [B0) and B2) we get the inequality

Zm

p
&9f (x ; gej) - &0f (x)H du(®.  (32)
X

P
dr(x)
X

pn
i
CP.nl-p/a \m/ <« 7

J:]_ nm

n
D e [8R 0+ g) - P f(x—e))]
j=1

p
&9f (x ; gej) - &lf (x)H du(¥). (33)
X

Now, for everyj € {1,...,n},

fzpn

sW s (x + gej) - Sgk)f (X)

J
fza

i d 1 flx+ f ’ d
> —e: | — —
§ 11(X) =] L% (x 5 e,) (X)HX 11(X)

g0 (x + gej) _f (x + gej) zdﬂ(x) - fz nm 69t 00 - 1 (x)Hz du()

= o [ (e o) - foof e -2 [ [l 09 - 19 o
> 3p—1_1an f(x+ nquj)— f (X)Hz du(x) — 2P* kP E, fzpn"f(x+8)_ fFONRdu(x) —
2szn I1f(x+e)) — FQIIRdu(X), (34)
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where we used Lemnial
Combining B4) with (33), we see that

n

. (3Cm)pnla f
= 3.4p

f (x+ gej) _f (x)Hz du(x)

Z [EWf(x+e)) - P f(x—¢
=1

&enE, [ 110k 0) = 100IEek(+ 67 [ 10+ €)= IR
m j:]_ m

p
du(xX) +
X

1-B
(% . apkpn) B, f 170c+2) = TOIIRdu(3) +

1-§ 2p-1
[ 2+ 6")2 JIRGCEDRCTRTC (@)

IA

(180m)pnl_5(ng If (x+ &) = (I dﬂ(X)d0(8)+ f If(x+€5) - £l du(X)), (36)
Zm

where in B5) we used[29), and B6) holds true when we choos@%4< k < = 1/q (which is possible if we
assume than > 6n>*/9). By Lemma2.7, this completes the proof of Theoreh#. O

5.3 Proof of Lemmab.4

Fix ¢ € {-1,1}", andx € Z}. Consider the following two sums:

n 1
Ar(x &) = ;g, [£9f(x+e) - 8N (x| = FrEEVES Z ay(x &) F(y), (37)
and
1
Bf (X, 8) = W [f(Z+ 8) - f(Z— 8)] k(k 1)n T - 11 Z by(X S)f(Y) (38)

z-xe(—k,K)"n(2Z)" yezZm

whereay(x, ), by(x, €) € Z are appropriately chosen d&eients, which are independent bf
For x € Z}, defineS(x) c Z;),,
S(¥) ={yex+(2Z+1)": dgp(y.x) =k andlfj: lyj - x| =k modm}>2}.
Claim 5.5. For x € Zy, andy ¢ S(X), ay(x, ) = by(x, &).

Proof. If there exists a coordinates {1, ..., n} such thak; —y; is even, then it follows from our definitions
thatay(x, €) = by(x, &) = 0. Similarly, |fd2%(x y) > kthenay(x, ) = by(x, &) = 0 (becausé&is odd). Assume
thatx —y € (2Z + 1)". If dzn (y, X) < kthen for eachj the termf(y) cancels inSEk)f(x +€j) - Sgk)(x -€j),
implying thatay(x, ) = 0. Similarly, in the sum definings (x, ) the termf (y) appears twice, with opposite
signs, so thalby(x,&) =0
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It remains to deal with the casf : |yj — Xj| = k modmj| = 1. We may assume without loss of

generality that
ly1 —xil=k modm andforj>2 y;—x;€(-kk) modm

If y1 — X1 = kK modmthenay(x, &) = &1, since in the terms corresponding jta> 2 in the definition of
At (x, &) the summand (y) cancels out. We also claim that in this cdg€x, €) = 1. Indeed, ifs; = 1 then
f(y) appears in the sum definirg (x, €) only in the term corresponding o=y — &, while if &1 = =1 then
f(y) appears in this sum only in the term corresponding $oy + &, in which case its cd&cient is—1. In
the casg, — x; = —k mod mthe same reasoning shows thatx, ) = by(X, &) = —e&1. O

By Claim5.5we have

1
Ar(xe) = Bilx e) = oy D [ay(x.8) =By (x 1) (39)
yeS(X)
Thus,
1 p
p - p _
[localgans = @ [l [ et 3 awaro] o
1 p
[ e X Bk 0)] dutx.
zn || k(k + 1)n-1 YGZS(ZX) X
Thus Lemméb.4 will be proved once we establish the following inequalities
bf|desM§¢K@sbf|HU+€%—HX—@&@A@, (40)
z0 z0
1 P 8P2P~1 O p
_ ay(X g)f(y)H du(x) < f f(x+e) - X, , (41)
L% k(k+ 1)n 1 YE;X) X kp ; an” ] ’x
and
]‘——i——ilmu@udﬁmm<8%m{ijqWu+ﬂ—umf (42)
zpl[k(k + 1)* yeS(x) ’ X -k =1 Zm : x

Inequality @0) follows directly from the definition 0B (X, €), by convexity. Thus, we pass to the proof
of (41) and @2).
Forj=1,2,...,ndefine fory € S(x),

xpnn ] Y—2keg yj—x;=k modm,
7j0) = { y otherwise

and seir}((y) = ywheny ¢ S(x). Observe that the following identity holds true:

() = 7y - %) + X (43)
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Claim 5.6. Assume that for everye {1,2,...,n}, x,y € Zy, ande € {-1,1}", we are given a real number
ni(x.y,e) € [-1,1]. Then

L

Proof. Denote byN(Xx, €) the number of non-zero summands in

n

1 « 2p-1
w;y;nj(xy,s)[f(y)—f(f (y))]H du(¥) < 2”kp Z f I£0x+ €)= O (9.

D0 iy 8| fy) - ).

j=1yezZpy

For every? > 2 let S/(xX) be the set of aly € S(x) for which the number of coordinatgssuch that
yj - Xj € {k. -k} modm equalst. Then|S‘(x)| = (})2'(k - 1)". Moreover, fory € S‘(x) we have that
y# T}‘(y) for at most¢ values ofj. Hence

n n

N(x, &) < Z|s"(x)|f = Z( )2"(k D™ =2n|(k+ 1) - (k- 1) <A k(k+ 1)1,

(=2 =2

Now, using @3), we get

L.

Z D nixy.e) [f) - f(rX(y))]H du(x)

k(k+ K(k + 1)1 o L
N(X, ) P .
fz X (k(k+ 1)n_1) N(X 5 ;yzz ni(xY.e)[f) - (7] (y))]” du(x)
N(x, g)PL

o B e 25 25 [0~ T )

4P~1p2p-2

K2pI(k + 1)1 Z Z f ”f(Y) - f(TX(y))“ du(x)

4P-1p2p-2

= TG Z Z f [t@+ % - 1G3@) + )] dutx. (44)

Consider the following set:
={zezy: 192 = z— 2ke).
Observe that that for every
n-1 2n
Ej| = Z ( , )zf(k ) < k+ DM - (k-1 < Tk )"t (45)
=1

Using the translation invariance of the Haar measurghwe get that

24



n

Z L“ Hf(z+ X) = f(T(j)(Z) + X)“z du(x) = Zn: Z L“ I1f(z+X) — f(z+ x— 2ke))[IFdu(x)
=1 zezp, ¥ Zm m

j=1 zezZy, j=1 z€E;

E [ 1F)  fw- 2keidun
=1 JIm

n

2n
< —(k+ 1)”‘1Zf ||f(W)—f(w—2kej)I|§d,u(W) (46)
k j=1 an
2N n 2k
= n-1 p-1 —(t — N _ta)IIP
s k1) ; fz nm((Zk) t;uf(w (t-1)ej) - f(w tej)llx)d,u(w)
n
< 2Pk k1)t Y f I1f(z+ ) - f@I5du(). (47)
j=1Zm
where in 46) we used45). Combining d4) and @7) completes the proof of Claif.é. O

By Claim5.6, inequalities'41) and @2), and hence also Lemnia4, will be proved once we establish
the following identities:

D atafy) =) > &[fo) - fEm)]. (48)
yeS(x) =1 yezq,
and
D, et =), > sixy.e)|fo) - f@m)]. (49)
yeS(x) j=1yezh

for somesj(x,y, €) € {-1,0,1}.
Identity (48) follows directly from the fact thai37) implies that for every € S(X),
ay(x,g) = Z gj — Z gj.
j: yj=xj=k modm j:yj=xj=—k modm

It is enough to prove identity4@) for x = 0, sinceby(x,&) = by_x(0,&). To this end we note that it
follows directly from B8) that for everyy € S(0)

1 3djyj=egk modmandvly, # —ejk modm
by(0,€) =5 -1 3jy;=-gik modmandv¥{y, # ejk modm
0 otherwise

Fory € S(0) define

Vo = -yj yj€{k -k} modm
71y otherwise

Sinceby(0, &) = —bye(0, &) we get that
> b(0.2)f(y) =% > B(0.9)[f(y) - F°)]. (50)

yeS(0) yeS(0)
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Define forf € {1,...,n+ 1} a vectory® € Z by

Vo = -yj Jj<tandy;e{k,—k} modm
I 71y, otherwise

Theny®1 = y© y°1 = y and by 60)

n

> b(0,8)f(y) = Z > by(0.8)[Fy) - FP)].

yeS(0) ¢=1yeS(0)

Since whenevey® # y°e1, each of these vectors is obtained from the other by flipping the sign @ftthe
coordinate, which is ifk, —k} modm, this implies the representatiod9). The proof of Lemm&b.4 is
complete. |

6 A nonlinear version of the Maurey-Pisier theorem

In what follows we denote bgiag(Zy) the graph orizy, in which x,y € Z], are adjacent if for every
ie{l,...,n}, % -V €{x1l modm}.

For technical reasons that will become clear presently, givane N we denote byB(M;n, ¢) the
infimum over8 > 0 such that for every evem € N and for everyf : Z3 — M,

Zn: ., dp(f (x+ Cey), f(x))2 du(x) < B>°nE, fz du(f(x+e), f(X))2du(X).
=1 m

Lemma 6.1. For every metric spacéM, dy ), everyn,a € N, every evem,r € Nwith0 <r < m, and
everyf : Z - M,

Zn: dM(f(x+(am+r)ej),f(x))zdu(x)smin{rz,(m—r)z}-nng da(F(x + &), £(X)%du(X). (51)
=1 YZm 4

In particular, B(M; n,¢) < 1for everyn € N and every evefic N.

Proof. The left-hand side 0i51) depends only on, and remains unchanged if we repladey m—r. We
may thus assume that= 0 andr < m-r. Fix x € ZJ,andj € {1,...n}. Observe that

{X 1- (l)kZQ.+kej}

r# k=0

is a path of length joining x andx + re; in the graphdiag(Zy,). Thus the distance betwearandx + re; in
the graptdiag(Zy) equals'. If (x = wo, Wy, ..., W, = X+rej) is a geodesic joining andx+re; in diag(Zy,),
then by the triangle inequality

du(fx+re)). F0)? < ) d(f(wi). F(wi-0))? (52)
k=1
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Observe that if we sunb@) over all geodesics joining andx + re; in diag(Zy,), and then over alk € Zj,
then in the resulting sum each edgediag(Z)) appears the same number of times. Thus, averaging this
inequality overx € Zp, we get that

dm(F(x+ rep), F(¥))?du(X) < rE[dp(f(x + &), f(¥))]2
z

Summing overj = 1,...nwe obtain the required result. m|

Lemma 6.2. For every four integerg, k, s;t € N,
BM; tk, st) < B(M;(,9) - B(M;k,t).
Proof. Let mbe an even integer and take a functibn Z& — M. Fix x € Z& ande € {-1, 1}, Define

g: 2zt — Mby
k ¢
ay) = f(X + Z Z Ej(r-1) " Y * ej+(r—1)f)~

r=1 j=1

By the definition ofB (M; ¢, ), applied tog, for everyB; > 8 (M; ¢, s) we have that

¢ ¢ k
Z L[ dM( (X+ r ZSJ+(I'—1)€ “Yi - €ja(r-1) + SZ Ear(r-1) ea+(r—1)e),

a=1 =1 j=1 r=1

2
f(X * Z Z Ej+(r-1) " Yj - ej+(r—1)£)) d'qun(y)

r=1 j=1

k ¢
< Biszt’-E(;f ( ( +ZZ€J+(r—1)L"(Yj+5j)'ej+(r—1)¢’)’

r=1 j=1

k ¢ 2
( + Z Z Ej+(r-1)¢ " Yj - ej+(r—1)€)) dﬂz{n(Y)~

r=1 j=1

Averaging this inequality ovex € Z& ande € {1, 1}, and using the translation invariance of the Haar
measure, we get that

14 K ,
E. ; fzek dM(f(X + s; Ear(r-1) * ea+(r—1)€), f(x)) dpa(X)
< B%SZZE‘E f[k dy (f(x+¢), f (X))2 dﬂzfnk(x). (53)
Zm

Next we fixx € Z&K, u e {1,..., ¢}, and definey, : ZK, — M by

k
hy(y) = f(X + SZ Yr - eu+(r—l)£’)-
r=1

By the definition ofB (M; k, t), applied tohy, for everyB, > 8 (M; k, t) we have that
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k 2
D, f dM( (X+ SZ e - Cus(r-1)¢ + St (i 1)5) (X+ SZ Ve - s 1)5)) bz (V)

=1 r=1

Z fzk Ay + te;). ) iz ()
=1 V7

IA

B35, [ d(hu(y+e) )2 dzy )

K K 2
BAHKE, fzk dM(f(X + SZ(yr + Eur(r-1)t) - eu+(r—1){f), f(X+ SZ Yr - eU+(r—1){f)) Cuezx (¥)-
m r=1 r=1

Summing this inequality ovar e {1, ..., ¢} and averaging ovex € ZX, we get, using%3), that

tk 4 k 2
D [ anelf (e ste). 10200 < 83%KE, Y [ dM(f(x+s28u+<r_1>g-%+(r_1)g),f(x)) du()
a=1YZm u=1“Zm r=1

< B2k B2SUE, fz . dag (f (x+ &), f ()2 du(x).

This implies the required result. m|

Lemma 6.3. Assume that there exist integaig £ > 1 such thatB(M;ng, o) < 1. Then there exists
0 < g < oo such that for every integer,

mP(M; n, 3ng) < 260 0,

In particular, I“gz)(/\/() < oo.
Proof. Let q < oo satisfy B(M, ng, £p) < n_l/q. Iterating Lemma6.2 we get that for every integek,
B(nk, €5 <n, k9 Denotingn = n§ andm = Zé’k this implies that for every : Z" — M,

n 2

> f dM(f (x+ gej), f(x)) du(¥) < i—L‘rmznl_% E, fz dpi(F(x + &), F(3)2du(X).

j=1 VZm m
By Lemma2.7 we deduce thalfgz)(M nk 25") < 3. For generah, let k be the minimal integer such that
k< ng. By Lemma2.5we get thal'(M; n, 26'3) < Sné 29 < 3no. In other words,

mZ(M; n, 3ng) < 2K < 2600 %o .
m

Theorem 6.4. Letn > 1 be an integerm an even integer, and an integer divisible byl. Assume that
n € (0, 1) satisfies8*" /57 < % and that there exists a mappirig Zj, — M such that

Z f dM x+sq) f(x)) du(x) > (1 - n)$nE, f da(F(X + &), F(X)?du(x). (54)

i=
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Then
cp([S/41%) < 1+ 8%y,
In particular, if B(M;n, s) = Lthency ([s/4]%,) = 1.

Proof. Observe first of all that54) and Lemméb.1imply thatm > 2s4/1-n > 2s- 1, so thaim > 2s. In
what follows we will use the following numerical fact: &, ...,a > 0and 0O< b < % 25:1 aj, then

at —rb. (55)

r (aj - b)2 <
=1

r
=1
Forx € Zp, let gj+(x) (resp.gj‘(x)) be the set of all geodesics joiningandx + sg (resp. X — sg) in
the graphdiag(Z})). As we have seen in the proof of Lemi@d, sincesis even, these sets are nonempty.

Notice that ifm = Zstheng}(x) = gj‘(x), otherwiseg}f(x) mgj‘(x) = (. Denote bygji(x) = gj*(x) ugj‘(x),
and forr € gji(x),
+1 ifreGi(x)
sgn) = !
gné) {—1 otherwise

Each geodesic ini(x) has lengths. We write eachr € gji(x) as a sequence of verticas= (ng =

X,m1,....7s = X+ sgnfr)sg). Using B5) with aj = dy(f(x)). f(rj-1)) andb = 1dy((f (x+ sg), f(x)),
which satisfy the the conditions ¢b%) due to the triangle inequality, we get that for each gji(x),

S 2
> [dM(f(ﬂg), f (1)) - %dM (f (x+san)sg). f(x))]

=1

< kz_; dm(f (o), fme-1))® - édM (f (x + sgnér)sq), f(x))z, (56)

By symmetrylglf(x)l = 1g; ()|, and this value is independent gf € zy andj € {1,...,n}. Denote
g= |gji(x)|, and observe thag < 2- 2", Averaging b6) over allx € Zy, andr € gji(x), and summing over
je{l,...,n}, we get that

1 S 1 2
QZfzn Z Z[dM(f(m), f(me-1)) - ng(f (X+Sgn€'r)sq), f(X))] du(¥)
i1

m reGE(x) (=1
1 2
< snEgL%dM(f(x+s),f(x))zdu(x)—gg;L%dM(f(x+ sq). f(¥)" du(x)

< r;snng dp(F(x + &), F(X))? du(x). (57)
Zh
Definey : Zy, — R by

Y(x) = 2SR Ec[dp(f(x + &), f(X))?]-

n S

2
> D03 i fead) - b (x+ samess) 1)

j=1 7€G7(¥) (=1
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Inequality 67), together with the bound agy implies that

1
0< [ woowtd = g [ vt

YeZ,
dop (xy)<S

It follows that there existg® € Z, such that
S

n 1 X
yezz; 2y ”€g+(% o ; [dM(f(m), F(me-1)) = SAm (f(y+sane)ss). f(y))}
dup ()< R

<2psr2 X B [dm(f(y+e), f(y)?]. (58)

YeZn,
dzn (0Cy)<s

By scaling the metricly we may assume without loss of generality that

ﬁ D Befdm(fly+e), fo)?] =1 (59)
YeZn,

dan(Xo,y)<s
It follows that there existg® € Zh, satisfyingdzn (x,y°) < ssuch that
Ee [dm(f(° + ), f(y)?] 2 L. (60)

By translating the argument ¢f and multiplying (coordinate-wise) by an appropriate sign vectprinl}",

we may assume thaf = 0 and all the coordinates of are non-negative. Observe that this implies
that everyy € {0,1,...,s— 1" satisfiesdzpn(xo,y) < s Thus 6£8), and 69) imply that for everyy €
{0,1,...,s= 1", everyj € {1,...,n}, everyr € gji(y), and every € {1,..., s},

< \2n(2s- 1)nsr2sn < 22N\, (61)

1
da(f(mo). FGre-1)) = Zdwi (T (y + sane)se) . 1 1)
Claim 6.5. For everye, 6 € {—1,1}" and everyx € Z;},, such thatx + £ € {0, 1,...,s— 1}",

1dad(F (X + &), T(X) = dpe(F(x + 8), FOQ)] < 277 - 227

Proof. If & = ¢ then there is nothing to prove, so assume that —,. DenoteS = {j € {1,...,n} . g} =
-6;} and define, T € {-1,1}" by

—&r sz —&¢ J:f
0;=1s; jes\iy and 1={e jeS\{f
1 je¢s 1 jes.

Consider the following path in diag(Zy,): Start atx+ € € {0,1,...,s— 1}", go in direction—¢ (i.e. pass
to x), then go in directiord (i.e. pass tx + ¢), then go in directior® (i.e. pass ta + ¢ + ), then go in
directionr (i.e. pass to(+ 6 + 6 + 1), and repeat this proces#4 times. It is clear from the construction that
m € G, (x+ &). Thus, by 61) we get that

ldm(F(x+ &), £)) = dpe(f (x+6), TN = ldm(F(ra), f(70)) = dpi(f (m2), F(ro))l < 2y - 22",

30



Corollary 6.6. There exists a numbék > 1 such that for every € {-1, 1}",

(1-4vn- 2" A< dp(f(e). 1(0) < (1+4v- 22" A

Proof. Denotee = Z’j‘:l e =(11,...,1) and take

A= (Bs [du(F0), FO)2])".
By (60), A > 1. By Claim6.5we know that for every, § € {-1,1}%,
dp(f (&), £(0)) < dpi(f(€), F(0)) + 277 - 225" < dp((F (), T(0)) + 4 /77 - 2%,
Averaging ovew, and using the Cauchy-Schwartz inequality, we get that
du(F (). 1(0)) < (Bs [dn((6). FO)P])"” + 47 - 25" = A+ 45 - 22" < (1+ 45 27) A
In the reverse direction we also know that
A2 = Byldp(F(0). FO] < [dn(F(e). F(0)) + 47 - 22",
which implies the required result sinée> 1. m|
Claim 6.7. Denote
V:{er”m: VjOSXjSSande isever}. (62)
Then the following assertions hold true:

1. For everyx,y € V there is some € {x,y}, j € {1,...,n}, and a pathr € g}f(z) of lengths which
goes throughx andy. Moreover, we can ensure thatsif= (rg,...,ns) then for allf € {1,..., s},
(e, -1} N {0, ..., s= 1" £ 0.

2. For everyx,y € V, dgiagzn) (X, ¥) = dzn (X, Y) = [IX = Yllo-

Proof. Let j € {1,...,n} be such thaly; — Xj| = [[X-Yllw = t. Without loss of generality; > x;. We
will construct a path of lengtls in g}f(x) which goes througly. To begin with, we define’, §¢ € {-1,1}"
inductively as follows:

1 x+23 1+ <y 1 x+23 3+ <y
g =2-1 % +23 ek +6 >y and & =9-1 X+ 25 E+ K > v
1 % +233 e+ =y ~1 X + 2% (el + 65 =y

If we definea; = x+ Yf_, e+ Y-t ok andb, = x+ 3f_; &+ Xf_, 6¥ then the sequence
(X, a1, b1, a0, b, ..., ay2-1,0t2 = Y)

is a path of length in diag(Zy,) joining x andy. This proves the second assertion above. We extend this
path to a path of lengthk (in diag(Zy,)) from x to x + sg as follows. Observe that for everyd ¢ < t/2,

&b = 6l = 1. Thus—s" + 2¢j, -6" + 2ej € (-1, 1)". If we definec, = y + Fj_, (- + 2¢)) + TEH(—0% + 26))
andd; =y + X{_,(—+ 2¢)) + Xi_, (-6 + 2€j), thendy 2 = x + 2tej. Observe that by the definition df,

2t < s, ands— 2tis even. Thus we can continue the path frem 2te; to X + sg by alternatively using the
directionsej + X, & andej — ¥, €. O
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Corollary 6.8. Assume thax € V. Then forA as in Corollary6.€, we have for alk € {-1, 1}",
(1-120v7- 225" A< dp(f(x + &), F(x) < (1+10v7- 227 A

Proof. By Claim/6.7 (and its proof), there existse {1,...,n} andr € gj+(0) suchthatry = e=(4,...,1)
and for somek € {1,.. ., s}, 7k = X. Now, by 61) we have that

Idac (F(€), £(0)) — dpq (f(min), T(X))| < 277 - 22N
Observe that sincee V, x+e€ {0,...,s— 1}". Thus by Clain6.5
ldac (F(X + &), T(X) — dpr (f(€), FO))] < [dpm ((€), F(0)) — dpt (f(rri-1), F(X))I +

| (F(7k-1), £(X)) — dae (F(x+ €), T(X))] + [ (F(x+ &), £(X) — dac (f(x+ ), F(X))|
S 6% . 228[1’

so that the required inequalities follow from Coroll&e. |

Corollary 6.9. For every distinctx,y € V,

< In(f(), f)

(1-12y7- 22" A< XY < (1+12v7 - 227 A

whereA s as in Corollary6.€.

Proof. Denotet = X — yllo, and we may assume that there exists{1,...,n} such thaty; — x; = t. By
Claiml6.7there is a pathr € gjf(x) of lengths such thatr; = y. By (61) and Corollary6.8 we have for every
te{l,...,s

’dM(f(Jrg), f (1)) - %dM(f (x+sg). f()| < vi- 22",

" (1- 107 25" A < dp(F(mo), f((m2)) < (1+ 1037~ 227) A
Thus, for all¢ € {1,..., s},

(1- 127 22 A < dp(F(me), Fro)) < (1+ 12+ - 2250) A
Thus

t
dm(f(9, F0) < D du(F (o), ) < t-(1+ 127 227) A= [IX - Yilo - (1 + 1277 - 227) A
(=1

On the other hand
dm(f(x), f(y))

\%

dam(f(x+ s§), (X)) — du(f(x+ se), f(y))

sdy(f(¥), Fr) = svi7- 22" = )" du(F(xe), Fle-a))

=t+1
S(1-10v3- 2" A= sy - 22"~ (s— 1) (1- 1277 - 2°") A
X = Ylloo - (L= 1277 - 227) A

\%

v

\%
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This concludes the proof of Theorédr, since the mapping — x/2 is a distortion 1 bijection between
(V. dz) and [s/4]2,. 0

We are now in position to prove Theoréirt.

Proof of Theoreri.5. We are assuming thﬁﬁf)(M) = oo for all g < . By Lemma6.2 it follows that for
every two integers, s> 1, B(M;n, s) = 1. Now the required result follows from Theor&. m|

Lemma 6.10. Let M be a metric space and > 0. Fix g < co and assume than := n’éz)(M; n, K) < oo.

Then
nl/q

Zy) > —.
CM( m/ = 2K

Proof. Fix a bijectionf : Zy, - M. Then

Lip

IA

IA

K2mPnlé f dp(f(X + &), f(X)2du(X)do(s)
{-1,01" JZp,

-2
K2mPn®=a flj2, .

IA

. 1/q
It follows that dist(f) > 5. o

Corollary 6.11. Let ¥ be a family of metric spaces afid< g,K,c < . Assume that for alh € N,
I“gz)(M; n,n%) < K for everyM € #. Then for every integeN,

1 ( logN \Y@
D) = 3¢ (Iog IogN) '

We require the following simple lemma, which shows that the problems of embeddjfigghdZ;, are
essentially equivalent.

Lemma 6.12. The grid[m]g, embeds isometrically int@3 . ConverselyZ)  embeds isometrically into
[m+ 1]2"™". Moreover, for eacls > 0, 5 embeds with distortioft + 6e into [m+ 1](%/¢1+1n,

Proof. The first assertion follows by considering only element&hf whose coordinates are at most- 1.
Next, the Féchet embedding — (dz,, (X, 0), dz, (% 1),...,dz, (X, 2m - 1)) € [m+ 1]2", is an isometric
embedding oZom. ThusZ)  embeds isometrically intar+ 1]2™". The final assertion is proved analogously

by showing thatZay, embeds with distortion % & into [m + 1].2¢™1. This is done by considering the
embedding

X = (dz,, (%, 0), dz,,,(x, [2em]), dz,, (X, [4em]), dz,, (X, [Beml), ... ., dz,,(X, [ 2[1/&1em])),
which is easily seen to have distortion at most @e. m|

We are now in position to prove Theorél€.
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Proof of Theorerd.6. We first prove the implication 1)=— 2). LetZ be the disjoint union of all finite
subsets of members &, i.e.

Z=U{N: IN|<coandI M e F, N C M.

For everyk > 1 we define a metridk onZ by

dy(xy)
de(x.y) = domey IMe 7, AN c Mst NI <coandxye N
k otherwise

Clearlydy is a metric. Moreover, by construction, for evédyk > 1,

dz.a) (K) = g (K).

Assume for the sake of contradiction that for evéyk > 1, qzq)(K) = co. In other words, for every
g < o, andk > 1, ng)(z, dk) = co. By Lemmae6.3it follows that for everyk > 1, and every two integers
ns>1,

B((Z.dy);n.9) =1

Theoremg6.4implies thatcz g ([mM]7,) = 1.

By our assumption there exists a metric spcsuch thatc+(X) := D > 1. Define a metric space
X' = X x {1,2} via dx ((x 1), (y, 1)) = dx ((% 2), (Y, 2)) = dx(x,y) anddx ((x, 1), (v, 2)) = 2diam(X). For
large enougls we have that[zyg]gos(X’) < D. Thuscizgy(X") < D for all k. Define

_ 4diam(X)
Minxyex dx(X, )
X£Y
Then there exists a bijectioh: X" — (Z, dx) with dist(f) < min{2, D}. DenoteL = || f||Lip.
We first claim that there exist8 € ¥, and a finite subse¥ € M, such thatf(X’) n N| > 2. Indeed,
otherwise, by the definition aly, for all X',y € X’, de(f(X), f(y')) = k. Choosing distinck,y € X, we
deduce that

k = de(f(x 1), f(y,1)) < Ldx(x y) < L diam(X),

and

k = d(f(x 1), F(y,2)) > ~dy (% 1), (¥, 2)) > % -2 diam(X) = L diam(X),

L
dist(f)
which is a contradiction.

Thus, there existd1 € ¥ and a finite subsetv € M such thaff(X’) N N| > 2. We claim that this
implies thatf (X") € N. This will conclude the proof of 13= 2), since the metric induced lak on NV is a
re-scaling ofdy,, so thatX embeds with distortion smaller th&ninto N € M € F, which is a contradiction
to the definition oD.

Assume for the sake of a contradiction that there existsX’ such thatf (x’) ¢ N. By our assumption
there are distina’, b’ € X’ such thatf ('), f(b") € M. Now,

1> de(f(@), f((b)) = ~dy(a',b') > L min dx(u, v),
2 uvexX

U#v

dist(f)
while

4 diam(x)

Mingvex dx (U, V)
UV

= k= de(F(X), f((@)) < Ld(X, &) < Ldiam(X’) = 2L diam(X),
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which is a contradiction.

To prove the implication 2= 3) observe that in the above argument we have shown that there exists
k,g < oo such thal“gz)(z, dy) < oo. It follows that for some integety, B((Z, dk); no, Np) < 1, since otherwise
by Theoren6.4 we would get thatZ, di) contains, uniformly im, bi-Lipschitz copies ofifi]”.. Combining
Lemme6.12and Lemm&.10we arrive at a contradiction. By Lemnged, the fact thaB((Z, dk); no, no) < 1,
combined with Corollar.113, implies thatDy(Z, dy) = Q((logn)®) for somea > 0. By the definition of
(Z, dy), this implies the required result. m|

We end this section by proving Theordn&

Proof. Denote/X| = nand

_diam(X)

 Mingyd(x,y)’
Write t = 40/¢ and lets be an integer divisible by 4 such thet maxn,t}. Thencgs (X) < 1+ 7. Fixa
metric space and assume thag(X) > 1+ &. It follows thatcz([s]3) > 1+ 5. By Theorem6.4we deduce

that
2

&
B(Z,S,4S) <1- 2_82

By Lemmal6.2 we have thatmP(M;n,3s) < 8sri°%“9, whereq < 1. Thus by Lemmab.10 and
Lemmab6.12we see that for any integer> 8s,

nta e 2/108
z([n*[) = %5 =
4s 4s
s
ChoosingN =~ (Cy) -2, for an appropriate universal const&htyields the required result. m|

7 Applications to bi-Lipschitz, uniform, and coarse embeddings
Let (N, dy) and (M, dyy) be metric spaces. Fdr: N — M andt > 0 we define

Q¢ (t) = suddp(f(x), f(¥); duv(xy) <t}

and
wt(t) = Inf{dp(F(X), F(¥)); da(xy) > t}.
ClearlyQ¢ andw; are non-decreasing, and for evety € N,

wf (dyv(xY)) < dp(f(x), () < Q (dn(x.Y))

With these definitionsf is uniformly continuous if lina,o Q¢ (t) = 0, andf is a uniform embedding if is
injective and bothf and f~1 are uniformly continuous. Alsdf, is a coarse embedding§is(t) < oo for all
t > 0and lim_. wf(t) = o

Lemma 7.1. Let(M, dp() be a metric spacan an integerl” > 0, and0 < p < g < r. Then for every function
f: — M, and everys > 0,

/r
nY9w¢(2s) < Fr‘rﬁp)(M: n,T)- -Qf( 2rst )

mP(M;n, 1)/
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Proof. Denotem = m{’(M; n,T), and defing : Z}, — M by

n 27rixl'
o)~ 13567
j=1
Then
n
d ; Pdu(x)d < Q
f{_ Lo fz , IM(G0c+ #),000) (o) = _max f(s(z

=1

27(i£j
em —1

nl/rp /r\P
] <o)

m

On the other hand,

i fz (1 (x+ e1). f(x))pd,u(x) > nwi (29)P.

=1

By the definition ofm{’ (M; n, ) it follows that

27rsnl/r)ID

nwi(29)P < TPmMPR a0 ( -

as required. O

Corollary 7.2. Let M be a metric space and assume that there exist constdnts 0 such that for infinitely
many integers, mép)(M; n,I') < cn¥9. Then for every > g, ¢, does not uniformly or coarsely embed into
M.

Proof. To rule out the existence of a coarse embedding cheesai 7
we get that

in Lemma7.l. Using Lemme2.3

wi (an'lf%) < Qg (2n1)

Sinceq < r, it follows that lim inf_,., w(t) < o0, sof is not a coarse embedding.

To rule out the existence of a uniform embedding, assumefthat, — X is invertible andf1is
uniformly continuous. Then there exigts- 0 such that fo,y € ¢, if da(f(X), f(y)) < é then||x-y]|; < 2.
It follows thatw¢(2) > 6. Choosings = 1 in Lemmé7.1, and using Lemma.3, we get that

1
r

0<6<wi(2) < Qs (27rF~ n ‘%).

Sincer > qit follows that lim sup_,o Q+(t) > 0, so thatf is not uniformly continuous. m|
The following corollary contains TheoreinS, Theorenil.10and Theorerd.11

Corollary 7.3. Let X be aK-convex Banach space. Assume thias a Banach space which coarsely or
uniformly embeds int&. Thendgy < gx. In particular, for p,q > 0, L, embeds uniformly or coarsely into
Lgifandonlyifp<qorq<p<2.
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Proof. By the Maurey-Pisier theoren#§], for everye > 0 and everyn € N, Y contains a (& ¢) dis-
torted copy oft’gY. By Theorend.], sinceX is K-convex, for eveng > gx there existd" < oo such that
mg(M;n,I) = O(nl/q). Thus, by the proof of Corollary.2, if Y embeds coarsely or uniformly inéthen
gy < @, as required.

The fact that ifp < qthenL, embeds coarsely and uniformly inkg follows from the fact that in this
caselp, equipped with the metrigx — yllp/q embedsgsometricallyinto Lq (for p < g < 2 this is proved
in [12,169]. For the remaining cases see Remark 5.1@#j)[ If 2 > p > qthenL, is linearly isometric to
a subspace dfq (see e.g.10]). It remains to prove that ip > qandp > 2 thenL, does not coarsely or
uniformly embed intd_q. We may assume that> 2, since forq < 2, Ly embeds coarsely and uniformly
into Lp. But, now the required result follows from the fact thafis K convex andq,, = g, g, = p
(see B9)). m|

We now pass to the proof of Theorelnlz Before doing so we remark that Theordni2is almost
optimal in the following sense. The identity mapping embed},[into ¢ with distortion n'/d, By the
Maurey-Pisier theoren#f], Y contains a copy ofg, with distortion 1+ ¢ for everye > 0. Thuscy([m]g,) <
n'/a . Additionally, [m]?, is m-equivalent to an equilateral metric. Thusyifis infinite dimensional then
cy([m]%) < m. It follows that

cy([ml2) < min{n®%, m}.

Proof of Theorerd.12 Assume thamis divisible by 4 and

2n1/q
mz —————.
Cq(Y)K(Y)

By Theoren#.], for everyf : Z), — Y,

n

(x+— - f(x)H du(x) < [15Cq(Y)K(Y)] md f{ o fz rnn||f(x+s)— f I3 du(x)dor(s).

=1

Thus, assuming thétis bi-Lipschitz we get that

nnfl
e S KM m- 5,
2014, [196s i -
ie.
dist(f) 7
Ist(f) > ————-
30C4(Y)K(Y)
By Lemmal6.12 this shows that fom > % such thatm is divisible by 4,cy([m]2) = Q(nl/q). If
m < % then the required lower bound follows from the fact thal"] contains an isometric copy

of [my]%, wherem, is an integer divisible by 4y > R (Y)K(Y), andmy = ®(m), np = ©(MY). Passing to
integersmwhich are not necessarily divisible by 4 is ]USt as simple. m|

Remark 7.4. Similar arguments yield bounds en([m]}), which strengthen the bounds 1]
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Remark 7.5. AlthoughL; is notK-convex, we can still show that
ca(ml2) = @ (min{ Vi, m}).

This is proved as follows. Assume thiat Z], — L; is bi-Lipschitz. Ifmis divisible by 4, andn > 7 /n,
then the fact thal;, equipped with the metrig/||x — yl|1, is isometric to a subset of Hilbert spa&&[14],
together with Propositio.1, shows that

n
21,

Arguing as in the proof of Theoreth1Z, we see that fom ~ +/n, c;([m]7) = Q(\/ﬁ) This implies the
required result, as in the proof of TheordmiZ

f(x+ ) - 109 cho < n? f I£(x+ &) - F(Rdu(¥)dor(e).

(-1o.4" JZg,

8 Discussion and open problems

1. Perhaps the mostimportant open problem related to the non-linear cotype inequality on Banach spaces
is whether for every Banach spaewith cotypeq < oo, for every 1< p < ¢ there is a constant
I' < oo such thatm{P(X;n,T) = O(n/9). By Lemma2.2 this is best possible. In theoredil we
proved that this is indeed the case whérs K-convex, while our proof of Theore®.2 only gives
mP(X;n,T) = O(n2+1/q).

2. Ly is not K-convex, yet we do know that$’(Ly;n,4) = O(vh). This follows directly from Re-
mark7.5, Lemme2.4and Lemm&.5. It would be interesting to prove the same thingr®e(Ls; n,T’).

3. We conjecture that th&-convexity assumption in Theorefn€ and Theoreni.11lis not necessary.
SincelL; embeds coarsely and uniformly intg, these theorems do hold fay. It seems to be
unknown whether any Banach space with finite cotype embeds uniformly or coarselyirtoravzex
Banach space. The simplest space for which we do not know the conclusion of these theorems is the
Schatten trace clag3; (seellF(]. In [|6€] it is shown that this space has cotype 2). The fact Gat
does not embed uniformly into Hilbert space follows from the result2pftpgether with 55, 32].

For more details we refer to the discussiongh(g similar argument works for coarse embeddings of
C; into Hilbert space, usinggl]). We remark that the arguments presented here show that a positive
solution of the first problem stated above would yield a proof of TheoteSvand Theoreni.11
without theK-convexity assumption.
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